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On Vertices, focal curvatures and
differential geometry of space curves

Ricardo Uribe-Vargas

Abstract. Thefocal curveof an immersed smooth curveγ : θ 7→ γ (θ), in Euclidean
spaceRm+1, consists of the centres of its osculating hyperspheres. This curve may be
parametrised in terms of the Frenet frame ofγ (t, n1, . . . , nm), asCγ (θ) = (γ +c1n1 +
c2n2 + ∙ ∙ ∙ + cmnm)(θ), where the coefficientsc1, . . . , cm−1 are smooth functions that
we call thefocal curvaturesof γ . We discovered a remarkable formula relating the
Euclidean curvaturesκi , i = 1, . . . , m, of γ with its focal curvatures. We show that the
focal curvatures satisfy a system of Frenet equations (not vectorial, but scalar!). We use
the properties of the focal curvatures in order to give, for` = 1, . . . , m, necessary and
sufficient conditions for the radius of the osculating`-dimensional sphere to be critical.
We also give necessary and sufficient conditions for a point ofγ to be a vertex. Finally,
we show explicitly the relations of the Frenet frame and the Euclidean curvatures ofγ

with the Frenet frame and the Euclidean curvatures of its focal curveCγ .
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Introduction

The differential geometry of space curves is a classical subject which usually
relates geometrical intuition with analysis and topology. Last years, the ideas and
techniques of singularity theory of wave fronts and caustics ([1], [2]), revealed
to be a powerful tool to discover new theorems on the differential geometry of
curves and surfaces (c.f. [3]-[6], [13], [17], [22]-[31]).

Thefocal surfaceor causticof a curveγ in Euclidean 3-space is the envelope
of the normal planes ofγ . The study of the focal surface of a curve can provide
useful geometric information about that curve and vice versa. Darboux found
how to determine theevolutesof a curveγ , that is, the curves whose tangents
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are normals ofγ . Moreover, he showed (proved) thatthe focal surface ofγ is
foliated by the evolutes, and all of them lie on the focal surface, see [10].

The focal surface ofγ is singular along a curveCγ (it has a cuspidal edge
alongCγ ) which is called thefocal curveof γ (in [9], it is called theevolute of
second typeof γ ). The osculating planes ofCγ are the normal planes ofγ , and
the points ofCγ are the centres of the osculating spheres ofγ , see [9].

In this paper, we study the geometry of the focal surface, focusing on the
properties of the focal curveCγ . Using these properties, we formulate and prove
new results for curves in Euclideann-space for arbitraryn ≥ 2.

Let γ : R → Rm+1 be a smooth curve (a source of light). Thecausticof γ

(defined as the envelope of the normal lines ofγ ) is a singular and stratified hyper-
surface. Thefocal curveof γ , Cγ , is defined as the singular stratum of dimension
1 of the caustic andit consists of the centres of the osculating hyperspheres ofγ .
Since the centre of any hypersphere tangent toγ at a point lies on the normal plane
toγ at that point, the focal curve ofγ may be parametrised using the Frenet frame
(t, n1, . . . , nm) of γ as follows:Cγ (θ) = (γ + c1n1 + c2n2 + ∙ ∙ ∙ + cmnm)(θ),
where the coefficientsc1, . . . , cm−1 are smooth functions that we call thefocal
curvaturesof γ .

The Euclidean curvatures ofγ , κ1, κ2, . . . , κm, form a system ofm functions
which determine the curveγ up to translation and rotation. Let us denote with a
prime the derivation with respect to the arc-length parameter. We prove that the
following formula holds (Theorem 2):

κi =
c1c′

1 + c2c′
2 + ∙ ∙ ∙ + ci −1c′

i −1

ci −1ci
, for i ≥ 2,

showing that the focal curvatures also determine the curve up to translation and
rotation (if all zeros ofck, 2 ≤ k ≤ m − 1, are simple).

In Theorem 1, we show thatthe focal curvatures ofγ satisfy a system of Frenet
equations(not vectorial, but scalar equations and with the same Frenet matrix of
γ !).

For k = 1, . . . , m − 1, we give necessary and sufficient conditions, in terms
of the focal curvatures, for the radius of thek-dimensional osculating sphere of
a generic curve inRm+1 to be critical (Theorem 4).

We prove that:A point ofγ is a vertex(that is, a point at which the order
of contact ofγ with its osculating hypersphere is higher than the usual one)if
and only ifc′

m + cm−1κm = 0 at that point(Theorem 3). So, in terms of the
focal curvatures, the equation characterising the curves lying on a hypersphere
in Rm+1 is very simple:c′

m + cm−1κm ≡ 0.
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In Theorem 5, we show explicitly that the Frenet frame of the focal curveCγ

consist (up to signs) of the same vectors of the Frenet frame ofγ but the order of
the vectors is reversed. Moreover, the Euclidean curvaturesK1, . . . , Km of the
focal curveCγ are related to those ofγ by

K1

|κm|
=

K2

κm−1
= ∙ ∙ ∙ =

|Km|

κ1
=

1

|c′
m + cm−1κm|

.

These relations, together with the stratification of the caustic described in §2,
provide a partial solution to theinverse problem: given the caustic, reconstruct
the source of light.

In §0, we define the order of contact of a curve with a submanifold ofRn and
we recall some basic notions and results on the differential geometry of space
curves. In §1, we state the results of the paper. In §2, we use the techniques of
singularity theory (in symplectic geometry) to study the geometry and the natural
stratification of thefocal setof a curveγ in Euclideann-space (the codimension
1 strata being the focal curve ofγ ). In §3, we prove our results.

§0. Preliminary Definitions and Remarks

In order to give the definition of osculatingk-spheres of a curve (at a point of it)
we need to introduce the following definition:

Definition. Let M be ad-dimensional submanifold ofRn, considered as a
complete intersection:M = {x ∈ Rn : g1(x) = ∙ ∙ ∙ = gn−d(x) = 0}. We say
that a (regularly parametrised) smooth curveγ : θ 7→ γ (θ) ∈ Rn hask-point
contactwith M or that itsorder of contactis k, at a pointγ (θ0), if at θ = θ0 each
functiong1 ◦ γ, . . . , gn−d ◦ γ has a zero of multiplicity at leastk and at least one
of them has a zero of multiplicityk.

Remark. To make this definition more invariant, one could denote the image
of γ by 0 and then write that theorder of contactat a point is the minimum of
the multiplicities of zero among the functions of the formg|0 : 0 → R at that
point, whereg belongs to the generating ideal ofM and we assume that 0 is a
regular value ofg.

In this paper,M will be an affine subspace or a sphere of dimensiond.

Remark. Do not confuse our order of contact with the order of tangency: two
perpendicular lines in the plane have order of contact 1 at the point of intersection,
but the order of tangency is 0.
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Example 1. A smooth curve in Euclidean (or affine) spaceRn has 2-point
contact with its tangent line (at the point of tangency) for the generic points of
the curve. The plane curvey = x3 has 3-point contact with the liney = 0, at
the origin: the equationx3 = 0 has a root of multiplicity 3.

Conventions. Write n = m + 1. In the sequelRm+1 denotes a Euclidean
space,θ denotes any regular parameter of the curve ands denotes the arc length
parameter. A parametrised curveγ = γ (θ) in Rm+1 is said to begood if its
derivatives of order 1, . . . , m, are linearly independent at any point.A generic
curve is good. We will consider only good curves.

Theosculatingk-planeof a curve at a point is the affine subspace spanned by
the firstk derivatives of the curve at that point.A curve has at least (k+1)-point
contact with its osculatingk-plane at the point of osculation. Fork = m we will
simply writeosculating hyperplane.

Given a point of a generic smoothly immersed curve inRm+1, the sequence
consisting of that point and of the osculatingk-planes,k = 1, . . . , m, form a
complete flag, which is called theosculating flagof the curve at that point.

By convention, thek-dimensional affine subspaces of the Euclidean space
Rm+1 will be also considered ask-dimensional spheres of infinite radius.

Definition. For k = 1, . . . , m, a k-osculating sphereat a point of a curve in
Euclidean spaceRm+1 is a k-dimensional sphere having at least(k + 2)-point
contact with the curve at that point. Fork = m we will simply write osculating
hypersphere.

Example 2. A generic plane curve and its osculating circle have 3-point contact
at an ordinary point of the curve.

Remark. For 1≤ ` < m, the osculating̀-sphere at a point of a curve inRm+1

is the intersection of the osculating hypersphere with the osculating (`+1)-plane
at that point.

Curvature, Frenet frame and higher order curvatures. For a curveγ in R3

parametrised by arc-length (from a fixed point of it) the tangent vectort(s) =
γ ′(s) is unitary and it is orthogonal tot ′(s) = γ (s)′′. If γ (s)′′ 6= 0 these vectors
span the (unique) osculating plane ofγ at s. Write t ′(s) = κ1(s)n1(s), where
n1(s) is the unit vector orthogonal tot(s) such that the coefficientκ1(s), called
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thecurvature ofγ at s, is positive. The radius of the osculating circle ofγ at s
is given byR1(s) = 1/κ1(s) and it is called theradius of curvature ofγ at s.

Assume thatR3 is oriented and take the unit vectorn2(s)such that the basist(s),
n1(s), n2(s), calledFrenet frame, is positive (right-handed), that isn2 = t × n1.
One easily proves that there is a numberκ2 = κ2(s), called thetorsionor second
curvatureof γ at s, such thatn′

2 = −κ2n1. It is the speed of rotation of the
vectorn2. For any good curve we have the following formulas:

t ′ = κ1n1, n′
1 = −κ1t + κ2n2, n′

2 = −κ2n1,

which are calledFrenet equationsof the curveγ .

Consider a good curveγ in the oriented spaceRm+1, that is, the vectors
γ ′(s), . . . , γ (m)(s) are linearly independent for anys. Apply Gram-Schmidt pro-
cess to these vectors to obtain the orthonormal systemt(s), n1(s), . . . , nm−1(s).
Letnm(s) be the (unique) vector such that the basist(s), n1(s), . . . , nm(s), called
Frenet frameof γ ats, is orthonormal and positive. The derivatives of the Frenet
frame vectors are given by the so calledsystem of Frenet equationsof γ :
















t ′

n′
1

n′
2

n′
3
...

n′
m−2

n′
m−1
n′

m
















=



















0 κ1 0 ∙ ∙ ∙ 0 0 0
−κ1 0 κ2 ∙ ∙ ∙ 0 0 0

0 −κ2 0
...

0 0 −κ3
...

... 0
0 κm−1 0

... −κm−1 0 κm

0 0 ∙ ∙ ∙ 0 −κm 0


































t
n1

n2

n3
...

nm−2

nm−1

nm
















.

The functionsκ1 = κ1(s), . . . , κm = κm(s) are calledEuclidean curvaturesof
the curve and are defined only for good curves. Note that the`-th Euclidean
curvatureκ` gives the speed of rotation of the osculating`-plane around the
osculating (̀ −1)-plane, with respect to the variation of the arc-length parameter
(one can find other geometric interpretations of the Euclidean curvatures). The
curvaturesκ1, . . . , κm−1 of any good curve are strictly positive, whileκm can take
any real value.

A point of a smooth curve inRm+1 for which the derivative of the curve of
orderm + 1 belongs to the osculating hyperplane is said to be aflattening. At
a flattening the last Euclidean curvatureκm vanishes and the curve has at least
(m + 2)-point contact with its osculating hyperplane at that point.
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Remark about flattenings. At a flattening of a generic curve the osculating
hypersphere is unique and it coincides with the osculating hyperplane. In this
case, the centre of the osculating hypersphere is not defined and we will say that
“it is at infinity”. If at a point the order of contact ofγ with its osculating sphere
of codimension 2,Sm−1, is greater than the usual one, then the point is a non
generic flattening. In this case, all hyperspheres containingSm−1 are osculating,
i.e. the centre of the osculating hypersphere is not uniquely defined.

Example. These conditions (not satisfied for any point of a generic curve) are
however satisfied by the flattenings of a generic spherical curve (that is, a generic
curve among the curves lying on a hypersphere).

For these reasons we will assume that our curves are good and have no flat-
tening, unless we consider (explicitly) spherical curves.

§1. Statement of Results

Definition. The curveCγ : θ 7→ Cγ (θ) ∈ Rm+1 consisting of the centres of
the osculating hyperspheres of a good curve (without its flattenings)γ : θ 7→
γ (θ) ∈ Rm+1 is called theparametrised focal curveof γ .

Remark. In geometrical optics, a curveγ in Euclidean 3-space can be consid-
ered as a source of light. The envelope of all light rays normal toγ is thefocal
surfaceor causticof γ . The light intensity is much more concentrated on the
caustic than in all other points of the space. Moreover, the caustic itself is more
illuminated along its cuspidal edge, which is the focal curve ofγ .

Consider a good curveγ : R → Rm+1. Writeκ1, κ2, . . . , κm for its Euclidean
curvatures andt, n1, . . . , nm for its Frenet frame. The hyperplane normal toγ

at a point consists of the set of centres of all hyperspheres tangent toγ at that
point. Hence the centre of the osculating hypersphere at that point lies in such
normal hyperplane. Therefore (denotingCγ (θ) by Cγ , γ (θ) by γ and so on,…)
we can write

Cγ = γ + c1n1 + c2n2 + ∙ ∙ ∙ + cmnm,

where the coefficientsc1, . . . , cm−1 are smooth functions of the parameter of the
curveγ .

Definition. The coefficientci , i = 1, . . . , m, is called thei th focal curvature
of γ .
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Remark. The first focal curvaturec1 never vanishes:c1 = 1/κ1.

The Frenet equations of a curve in (m + 1)-Euclidean space is a system of
m+1 vectorial equations involving the unit vectors of the Frenet frame and their
derivatives. The following theorem shows that the focal curvatures of that curve
satisfy a system ofscalar Frenet equationswhich “is obtained from the usual
Frenet equations by replacing thei th normal vector of the Frenet frame by the
i th focal curvature”.

Theorem 1. The focal curvatures of a curve lying on a hypersphereγ : R →
Sn ⊂ Rm+1, parametrised by arc lengths, satisfy the following “scalar Frenet
equations”:
















1
c′

1
c′

2
c′

3
...

c′
m−2

c′
m−1
c′

m
















=



















0 κ1 0 ∙ ∙ ∙ 0 0 0
−κ1 0 κ2 ∙ ∙ ∙ 0 0 0

0 −κ2 0
...

0 0 −κ3
...

... 0
0 κm−1 0

... −κm−1 0 κm

0 0 ∙ ∙ ∙ 0 −κm 0


































0
c1

c2

c3
...

cm−2

cm−1

cm
















.

Remark. If the curve is not spherical then the correcting term− (R2
m)′

2cm
must be

added to the last component of the left hand side vector to obtainc′
m − (R2

m)′

2cm
, for

cm 6= 0.

Theorem 2. The Euclidean curvatures of a good curveγ (with κm 6= 0) in
Rm+1, parametrised by arc length, are given in terms of the focal curvatures of
γ by the formula:

κi =
c1c′

1 + c2c′
2 + ∙ ∙ ∙ + ci −1c′

i −1

ci −1ci
, for i ≥ 2.

Remark. For a generic curve, the focal curvaturesci or ci −1 can vanish at
isolated points. At these points the functionc1c′

1 + c2c′
2 + ∙ ∙ ∙ + ci −1c′

i −1 also
vanishes, and the corresponding value of the Euclidean curvatureκi may be
obtained by l’Hôpital rule.
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Definition. A vertexof a curve inRn is a point at which the curve has at least
(n + 2)-point contact with its osculating hypersphere.

Example 3. The vertices of a curve in Euclidean planeR2 are the points at
which the curvature is critical. For instance, a non-circular ellipse has 4 vertices:
They are the points at which the ellipse intersects its principal axes.

The interest on the vertices of curves came, for instance, from geometrical
optics (c.f. Huygens) and from thegeometry in the large. Namely the classical
4-vertex theorem states thata smooth closed convex plane curve has at least
4 different vertices, [16]. Besides several important works generalising this
theorem (c.f. [14, 15, 7, 21, 18, 20]), the recent progress in symplectic geometry
and singularity theory have revived the interest on the study of vertices together
with the different variants of its definition (c.f. [22, 11, 13, 17], [24]-[31]). Here
we are mainly concerned with local properties of vertices.

The next theorem (implicitly contained in [19]) provides necessary and suffi-
cient conditions for a point to be a vertex.

Theorem 3. A non-flattening point of a good curve parametrised by arc length
in Rm+1, m > 1, is a vertex if and only if

c′
m + cm−1κm = 0 at that point.

Corollary 1. A good curve parametrised by arc length in Euclidean space
Rm+1, m > 1, lies on a hypersphere if and only if

c′
m + cm−1κm ≡ 0.

Example 4. For curves in Euclidean 3-space, Corollary 1 provides the follow-
ing classical result on spherical curves (see for instance [8]):

A smoothly immersed curve ofR3, with curvatureκ and torsionτ both
nowhere zero, lies on a sphere if and only if

c′
2 + c1τ ≡ 0, i.e. if and only if

(
R′

1

τ

)′

+ R1τ ≡ 0,

where derivation is taken with respect to the arc length of the curve andR1 = 1/κ,
is the radius of curvature.

There is a small mistake in the beautiful Hilbert–Cohn Vossen’s book, [12]:
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A curve ofR3 lies on a sphere if and only if

R2
1 + (R′

1)
2 1

τ 2
= const. (W)

Of course, a curve lying on a sphere satisfies condition (W), which means
that the radius of the osculating sphere is constant. However, the dimension of
the space of non-spherical curves satisfying condition (W) is infinite:If a curve
with nowhere vanishing torsion has constant curvatureκ 6= 0 then the radius
of its osculating sphere is constant and equal toR = 1/κ. This follows from
condition (W). One example is the circular helixt 7→ (cost, sint, t)). The above
statement becomes true if one suppose the genericity conditionR′

1 6= 0.

The radius of the osculating hypersphere of a curve inRm+1 is critical at each
vertex of that curve; the converse statement is not always true form > 1 (see
[23], [31]): There are examples of curves having points for which the radius of
the osculating hypersphere is critical, but which are not vertices. The geometric
meaning of such points becomes clear from Proposition 0, below.

The following two theorems give necessary and sufficient conditions for the
radius of the osculating sphere of dimension` ≤ m to be critical.

Theorem 4. For 1 ≤ ` < m, the radius of the osculating̀-sphere of a generic
curve inRm+1 is critical if and only if either

c` = 0 or c`+1 = 0.

Moreover,c1 never vanishes.

Remark. At a point of a curveγ , the first` focal curvaturesc1, . . . , c` are the
coordinates (with respect to the Frenet frame) of the centre of the`-dimensional
osculating sphere ofγ at that point. Therefore the curveγ` described by the
centre of thè -dimensional osculating sphere is parametrised by:

γ` = γ + c1n1 + c2n2 + ∙ ∙ ∙ + c`n`.

Of course,γm = Cγ . Theorem 4 implies for instance thatthe curvesγ1 andγ2

intersect at least twice, and the curveγ` intersects eitherγ`−1 or γ`+1, at least
at two points,1 < ` < m.

Corollary 2. If the `th focal curvaturec` vanishes at a point, then both the
radii of the osculating spheres of dimensions` − 1 and ` are critical at that
point.

Bull Braz Math Soc, Vol. 36, N. 3, 2005



“main” — 2005/11/29 — 17:31 — page 294 — #10

294 RICARDO URIBE-VARGAS

Remark. The mth focal curvaturecm at a point of a smooth curve inRm+1

is the signed distance between the osculating hyperplane and the centre of the
osculating hypersphere at that point.

Definition. A point of a curve is said to be apseudo-vertexof that curve if the
centre of the osculating hypersphere at that point lies in the osculating hyperplane
at that point (that is, ifcm = 0).

Corollary 3. A generic closed curve inR3 has at least two vertices or two
pseudo-vertices.

Corollary 4. At a pseudo-vertex of a smooth curve inRm+1, m > 1, both the
radius of the osculating hypersphere and the radius of the osculating(m − 1)-
sphere are critical.

Proposition 0. The radius of the osculating hypersphere at a point of a good
curve inRm+1, m > 1, is critical if and only if such point is either a vertex or a
pseudo-vertex.

A point of a generic smooth curve at which the last Euclidean curvature vanish,
κm = 0, is aflatteningof the curve (see our Remark about flattenings above).
The following statement is a consequence of Proposition 0.

Corollary 5. Write V , F and P for the number of vertices, flattenings and
pseudo-vertices of a generic closed curve smoothly immersed inRm+1. The
following inequalities hold:

V + P ≥ F and V + P ≥ 2.

We reformulate Proposition 0 (and we will prove it, in §3) in terms of the focal
curvaturescm andcm−1:

Proposition 0̃. The radius of the osculating hypersphere of a good curve in
Rm+1, m > 1, parametrised by arc length, is critical at a point if and only if
eithercm = 0 or c′

m + cm−1κm = 0 at that point.

After I have sent this paper to V.D. Sedykh, he communicated to me that he
had discovered independently Proposition 0 and Corollary 5, but he had not
published them and he urged me to publish all results of this paper.
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Remark. By definition, the firstm−1 Euclidean curvatures of a generic curve
γ : R → Rm+1 are positive everywhere, while the last one,κm, can take any
real value. The sign of the last Euclidean curvature at a non-flattening point of a
curve is defined only when the orientation on the ambient spaceRm+1 is fixed :
κm is positive (negative) at the points of the curve where the derivatives of order
1, . . . , m + 1 form a positive (negative, resp.) basis ofRm+1.

Remark. Consider a curveγ : R → Rm+1 in the oriented Euclidean space
Rm+1. If the numberm > 0 is of the form4k or 4k + 1, with k ∈ N, then
sign of the last Euclidean curvature ofγ at a non-flattening point depends on
the orientation of the curve. That is, the last Euclidean curvature of a curve at
a non-flattening point is a function whose sign depends not only on the point of
the curve but also on the orientation of the curve given by the parametrisation.

Proof. Let γ : R → Rm+1 be a generic curve inRm+1, such thatγ (0) is not
a flattening. Writeτ(t) = −t and consider the parametrisation in the opposite
direction γ̃ = γ ◦ τ : t 7→ γ (−t). The derivative of orderr of γ̃ at t = 0 is
γ̃ (r )(0) = γ (r )(0) ∙ (−1)r . So the derivatives of odd order ofγ andγ̃ at t = 0
have opposite directions while the derivatives of even order ofγ andγ̃ at t = 0
coincide. Therefore the basis obtained from the derivatives of order 1, . . . , m+1
of γ̃ at t = 0 and the basis obtained from the derivatives of order 1, . . . , m + 1
of γ at t = 0 give different orientations ofRm+1 if and only if the cardinality of
the set{r ∈ N : r is odd andr ≤ m + 1 } is odd, i.e. if and only if the number
m > 0 is of the form 4k or 4k + 1, with k ∈ N.

Theorem 5. Let γ : s 7→ γ (s) ∈ Rm+1 be a good curve without flattenings.
Write κ1, . . . , κm for its Euclidean curvatures and{t, n1, . . . , nm} for its Frenet
frame. For each non-vertexγ (s) ofγ , writeε(s) for the sign of(c′

m+cm−1κm)(s)
andδk(s) for the sign of(−1)kε(s)κm(s), k = 1, . . . , m. For any non-vertex of
γ the following holds:

a) The Frenet frame{T, N1, . . . , Nm} of Cγ at Cγ (s) is well-defined and its
vectors are given byT = εnm, Nk = δknm−k, for k = 1, . . . , m − 1, and
Nm = ±t , the sign in±t is chosen in order to obtain a positive basis.

b) The Euclidean curvaturesK1, . . . , Km of the parametrised focal curve of
γ , Cγ : s 7→ Cγ (s), are related to those ofγ by :

K1

|κm|
=

K2

κm−1
= ∙ ∙ ∙ =

|Km|

κ1
=

1

|c′
m + cm−1κm|

,

the sign ofKm is equal toδm times the sign chosen in±t .
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That is, the Frenet matrix ofCγ at Cγ (s) is

1

|c′
m + cm−1κm|



















0 |κm| 0 ∙ ∙ ∙ 0 0 0
−|κm| 0 κm−1 ∙ ∙ ∙ 0 0 0

0 −κm−1 0
...

0 0 −κm−2
...

... 0
0 κ2 0

... −κ2 0 ∓δmκ1

0 0 ∙ ∙ ∙ 0 ±δmκ1 0



















.

Application to self-congruent curves. A curve ofRm+1 is said to beself-
congruentif for any two pointsa andb of it, there is a preserving orientation
orthogonal transformation ofRm+1 sending the curve to itself and sendinga to
b. One can prove thatthe class of self-congruent curves coincides with the class
of curves whose Euclidean curvatures are constant.

The focal curvatures of these curves are therefore constant and the scalar Frenet
equations imply that

c2` = 0 and c2`+1 =
`∏

j =0

(
κ2 j

κ2 j +1

)
,

where the conventionκ0 = 1 is used, and the subindices 2` and 2̀ + 1 are taken
over all values of̀ for which 2≤ 2` ≤ m and 1≤ 2` + 1 ≤ m, respectively.

Proposition. For any` ∈ N such that0 < 2` ≤ m, the following holds: At any
point of a self-congruent curve ofRm+1 the centre of the osculating2`-sphere
lies in the osculating2`-plane.

Proof. This follows from the above equalitiesc2` = 0.

§2. Study of the Focal Set (caustic) of a Curve

The focal setor causticof a submanifold of positive codimension in Euclidean
spaceRm+1 (for instance, of a curve inR3) is defined as the envelope of the
family of normal lines to the submanifold.
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Remark. Similarly to geometrical optics in Euclidean 3-space, a submanifold
of positive codimension in Euclidean spaceRm+1 may be considered as a source
of light (or as an initial wave front). The normal lines to this source submanifold
are callednormal light raysand its focal set (on which the light intensity is much
more concentrated than in the other points of the space) is called thecausticof
that submanifold.

We will study the focal set of a generic curveγ : R → Rm+1.
The hyperplane normal toγ at a point is the union of all lines normal toγ at

that point. The envelope of all hyperplanes normal toγ is thus a component of
the focal set. We call it themain component(the other component is the curve
γ itself, but we will not consider it).

The normal hyperplanes of a curve at two neighbouring points intersect along
an affine subspace of codimension 2 which approaches a limiting position as the
points move into coincidence. The affine subspace that assumes this limiting
position is called the 2-codimensional focal subspaceof the curve at the point
under consideration.

When the point moves along the curve the 2-codimensional focal subspace
generates a hypersurface which, by construction, is the envelope of the hyper-
planes normal toγ , i.e. it is the main component of the focal set.

So the main component of the focal set of a curve is the union (in a one-
parameter family) of affine subspaces of codimension 2 (see Claim 3 in subsection
2.2).

Example 5. At a point of a curve inR3, the 2-codimensional focal subspace
is the line through the centre of the osculating circle, which is parallel to the bi-
normal vector. In classical differential geometry of curves in Euclidean 3-space,
it is called thepolar line (see [10]).

2.1 The caustic of a family of functions

We will use techniques of singularity theory in order to have a more detailed
study of the focal set.

Definition. The causticof a family of functions depending smoothly on pa-
rameters consists of the parameter values for which the corresponding function
has a non-Morse critical point.
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Example 6. Given a generic curveγ : R → Rm+1, let F : Rm+1 ×R → R be
the(m + 1)-parameter family of real functions given by

F(q, θ) =
1

2
‖ q − γ (θ) ‖2 .

The caustic of the familyF is given by the set

{q ∈ Rm+1 : ∃θ ∈ R : F ′
q(θ) = 0 andF ′′

q (θ) = 0}.

Proposition A. The caustic of the familyF(q, θ) = 1
2 ‖ q−γ (θ) ‖2 coincides

with the focal set of the curveγ : R → Rm+1.

Proof. The caustic ofF is defined by the pair of equationsF ′
q(θ) = 0, F ′′

q (θ) =
0. For each fixed value ofθ , the set of pointsq ∈ Rm+1 satisfying the first equation
form the hyperplane normal toγ atγ (θ):

F ′
q(θ) = −〈q − γ (θ), γ ′(θ)〉 = 0.

The set of pointsq ∈ Rm+1 satisfying both equations for a fixedθ are thus
the stationary points of the normal hyperplane atγ (θ) under an infinitesimal
variation of it. They form an affine subspace of codimension 2 inRm+1:

F ′′
q (θ) = −〈q − γ (θ), γ ′′(θ)〉 + 〈γ ′(θ), γ ′(θ)〉 = 0.

Of course this subspace coincides with the 2-codimensional focal plane of the
curve atγ (θ), considered above.

2.2 The natural stratification of the focal set

The focal set of a curveγ : R → Rm+1 is stratified in a natural way. The
following claims describe the geometry of such stratification for curves without
flattenings.

Denote byAk
γ (θ), k = 1, . . . , m + 2, the set consisting of the centres of all

hyperspheres having at least(k + 1)-point contact withγ atγ (θ).

Claim 1. The setAk
γ (θ), k = 1, . . . , m+1 is an affine subspace of codimension

k in Rm+1.

Claim 2. The setA1
γ (θ) (consisting of the centres of all hyperspheres having at

least2-point contact withγ at γ (θ)) is the hyperplane normal toγ at the point
γ (θ).
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Definition. The affine subspaceAk
γ (θ) is calledk-codimensional focal plane

of γ atγ (θ).

Corollary (of claims 1 and 2). The sequence of focal subspacesA1
γ (θ) ⊃

A2
γ (θ) ⊃ ∙ ∙ ∙ ⊃ Am+1

γ (θ) defines a complete flag on the hyperplane normal toγ

at γ (θ).

Remark. The complete flagA1
γ (θ) ⊃ A2

γ (θ) ⊃ ∙ ∙ ∙ ⊃ Am+1
γ (θ) defines a

natural stratification on the hyperplane normal toγ at γ (θ). This stratification
induces a natural stratification on the focal set ofγ . The stratum of dimension 1
being the focal curve ofγ . The 0-dimensional stratum consists of isolated points
at which the focal curve is singular (it has a cusp, see Proposition 1 in §3). These
singular points of the focal curve ofγ correspond to the vertices ofγ (for these
points the setAm+2

γ (θ) is not empty).

Claim 3. The focal set of a smooth curve consists of the centres of all hyper-
spheres having at least3-point contact with that curve at a point of it (i.e. it is
the union of all the2-codimensional focal planes of the curve).

Proposition B. The complete flagA1
γ (θ) ⊃ A2

γ (θ) ⊃ ∙ ∙ ∙ ⊃ Am+1
γ (θ) is the

osculating flag of the focal curve ofγ at the pointCγ (θ). In particular, the
hyperplane normal toγ at γ (θ) coincides with the osculating hyperplane of the
focal curve ofγ at the pointCγ (θ).

Lemma 0. A point q ∈ Rm+1 is the centre of a hypersphere havingk-point
contact withγ at the pointγ (θ0) if and only if the functionFq(θ) = 1

2 ‖ q −
γ (θ) ‖2 has a critical point of multiplicityk − 1 at θ0:

F ′
q(θ0) = F ′′

q (θ0) = . . . = F (k−1)
q (θ0) = 0 and Fk

q (θ0) 6= 0.

Proof. The sphere of radiusr with centre atq is defined by the equation

gr (x) =
1

2
(‖ q − x ‖2 −r 2) = 0.

So a pointq is the centre of a hypersphere havingk-point contact withγ at the
pointγ (θ0) if and only if the functiongr ◦γ has a zero of multiplicityk atθ = θ0,
for somer , i.e. if and only if the functionFq(θ) = 1

2 ‖ q −γ (θ) ‖2 has a critical
point of multiplicity k − 1 atθ0. �
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Proof of Claims 2 and 3. To prove Claims 2 and 3, use Lemma 0 and repeat
the proof of Proposition A. Another proof of Claim 3 follows from Example 6,
Lemma 0 and Proposition A. �

Proof of Claim 1. Consider the following system of(m + 2) equations

F ′
q(θ) = 0

F ′′
q (θ) = 0

...

F (m+2)
q (θ) = 0.

For each fixed value ofθ , it can be easily seen that the firstk equations —
written explicitly— define an affine subspace of codimensionk in Rm+1 (the
casesk = 1, 2, are in the proof of Proposition A). So the setAk

γ (θ) of centres of
all hyperspheres having at least(k + 1)-point contact withγ atγ (θ) is an affine
subspace ofRm+1. �

Remark. The (generating) familyF(q, θ) = 1
2 ‖ q − γ (θ) ‖2 together with

Sturm theory can be used to calculate the number of vertices of the curveγ , see
[31].

Remark (for Singularity Theory Specialists). In the setting of the theory
of Lagrangian singularities, Lagrangian maps and the caustics of Lagrangian
maps, the focal set of the curveγ is the caustic of theNormal mapassociated
to γ , which is a Lagrangian map defined by the generating familyF(q, θ) (for
the notions of caustic, Lagrangian map, Lagrangian singularity and generating
family, we refer the reader to [1] and [2]). Thusthe vertices of a curve inRm+1

correspond to a Lagrangian singularityAm+2 of the normal map, that is, the focal
set has a “swallowtail” singularity at the centres of the osculating hyperspheres
corresponding to the vertices of the curve.

§3. The Proofs of the Results

As we mentioned in the introduction, the ideas and techniques of the theory
of Lagrangian and Legendrian singularities (singularities of caustics and wave
fronts) were an important tool for the discovery of the results of this paper and
also for their initial proofs. Some of these results would be difficult to discover
only using Frenet frame theory. However, once the results were discovered and
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proved, the author has made an effort in order to present the proofs as short as
possible and as elementary as possible. The author hopes the proofs will be
understandable for anyone.

To prove our results we will prove before some lemmas related to the focal
curve. Below,θ denotes any regular parameter of the curve ands denotes the
arc length parameter.

Lemma 1. Let γ : θ 7→ (ϕ1(θ), . . . , ϕm+1(θ)) be a good curve inRm+1. The
velocity vectorq′(θ) of the focal curve ofγ atθ is proportional to themth-normal
vectornm(θ) of γ .

Proof. Consider the (generating) family of functionsF : R × Rm+1 → R
defined by

Fq(θ) =
1

2
‖ q − γ (θ) ‖2 .

Write g = γ 2

2 . As in §2, use the fact that−F = γ ∙ q − γ 2

2 − q2

2 to recall that
the following system ofm + 1 equations defines thefocal curveq(θ) of γ :

γ ′ ∙ q(θ) − g′ = 0,

γ ′′ ∙ q(θ) − g′′ = 0,
...

γ (m+1) ∙ q(θ) − g(m+1) = 0.

(∗)

Derive each equation with respect toθ to obtain a second system of equations:

γ ′ ∙ q′(θ) + γ ′′ ∙ q(θ) − g′′ = 0,

γ ′′ ∙ q′(θ) + γ ′′′ ∙ q(θ) − g′′′ = 0,
...

γ (m) ∙ q′(θ) + g(m+1) ∙ q(θ) − g(m+1) = 0,

γ (m+1) ∙ q′(θ) + g(m+2) ∙ q(θ) − g(m+2) = 0.

(∗∗)

Combine thei th equation of system(∗∗) with the(i +1)th equation of system
(∗), for i = 1, . . . , m, to obtain

γ ′ ∙ q′(θ) = 0,

γ ′′ ∙ q′(θ) = 0,
...

γ (m) ∙ q′(θ) = 0.

(∗∗∗)

This means that the velocity vectorq′(θ) is orthogonal to the osculating hy-
perplane ofγ , i.e. q′(θ) is proportional to themth-normal vectornm. �
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Proposition 1. A non-flattening point of a good curve inRm+1 is a vertex if
and only if the velocity vector of the focal curve is zero.

Proof. If the pointγ (θ) is a vertex ofγ , then besides the system of equations
(∗) obtained in the proof of Lemma 1, it also satisfies the equation:

γ (m+2) ∙ q(θ) − g(m+2) = 0,

which combined with the last equation of system(∗∗) gives the equation

γ (m+1) ∙ q′(θ) = 0.

The preceding equation together with the system(∗ ∗ ∗) imply that for a non-
flat vertexγ (θ) of the curveγ the velocity vectorq′(θ) of the focal curve is
zero.

Conversely, if a pointγ (θ0) is not a vertex then the corresponding point of the
focal curve satisfies the relation

γ (m+2)(θ0) ∙ q(θ0) − g(m+2)(θ0) 6= 0,

which together with the last equation of(∗∗), for θ = θ0, imply that
q′(θ0) 6= 0. �

Lemma 1 and Proposition 1 were also stated in [19], where the condition to
the point to be a non-flattening is unfortunately absent. Without this condition
Proposition 1 does not hold.

Lemma 2. Let γ : R → Rm+1 be a good curve withκm 6= 0. The derivative
of its parametrised focal curveCγ with respect the arc lengths of γ is

C′
γ = (c′

m + cm−1κm)nm.

Proof of Theorem 1, Proposition 0 and Lemma 2. Consider the parametrised
focal curve ofγ :

Cγ (s) = (γ + c1n1 + c2n2 + ∙ ∙ ∙ + cmnm)(s).

DenoteCγ (θ), γ (θ) and so on byCγ , γ , etc. DeriveCγ with respect to the arc
length ofγ and use Frenet equations ofγ to obtain:

C′
γ = t + c1(−κ1t + κ2n2) + c′

1n1 + ∙ ∙ ∙ + c′
m−1nm−1 + cm(−κmnm−1) + c′

mnm

= (1 − c1κ1)t + (c′
1 − κ2c2)n1 + (c′

2 + c1κ2 − c3κ3)n2 + ∙ ∙ ∙

+ (c′
i + ci −1κi − ci +1κi +1)ni + ∙ ∙ ∙ + (c′

m + cm−1κm)nm.
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By Lemma 1, the firstm − 1 components ofC′
γ vanish. Consequently

C′
γ = (c′

m + cm−1κm)nm (1)

and the following equalities hold:

1 = κ1c1,

c′
1 = κ2c2,

c′
2 = −κ2c1 + κ3c3,
...

...
...

c′
m−1 = −cm−2κm−1 + cmκm.

(2)

Equation (1) proves Lemma 2. Use the fact that the radiusRm of the osculating
hypersphere satisfiesR2

m =‖ Cγ − γ ‖2 to obtain

(R2
m)′ = 〈Cγ − γ, Cγ − γ 〉′

= 2〈C′
γ − γ ′, Cγ − γ 〉

= 2〈(c′
m + cm−1κm)nm − t, c1n1 + ∙ ∙ ∙ + cmnm〉

= 2cm(c′
m + cm−1κm);

i.e. (R2
m)′ = 2cm(c′

m + cm−1κm). (3)

Thus forcm 6= 0, c′
m − (R2

m)′

2cm
= −cm−1κm. This equation together with the set

of equations(2) (using our conventionsc0 = 0 andc′
0 = 1) prove Theorem 1.

Equation (3) and Theorem 3 prove Proposition 0. �

Proof of Theorem 3 and of its Corollary. By Lemma 2, we have that

C′
γ = (c′

m + cm−1κm)nm.

Proposition 1 implies thus that a point of the curveγ is a vertex if and only if
c′

m + cm−1κm = 0. �

Proof of Theorem 2. The proof will be done by induction. Use the scalar
Frenet equations of Theorem 1 to obtain that

κ1 =
1

c1
, κ2 =

c′
1

c2
=

c1c′
1

c1c2
and κ3 =

c′
2 + c1κ2

c3
=

c′
2 + c1

c′
1

c2

c3
=

c2c′
2 + c1c′

1

c2c3
.
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Suppose that

κi =
ci −1c′

i −1 + ∙ ∙ ∙ + c2c′
2 + c1c′

1

ci −1ci
. (4)

The scalar Frenet equations of Theorem 1 imply thatci +1κi +1 = c′
i + ci −1κi .

Substitute equation(4) to obtain

ci +1κi +1 = c′
i +

ci −1c′
i −1 + ∙ ∙ ∙ + c2c′

2 + c1c′
1

ci
=

ci c′
i + ∙ ∙ ∙ + c2c′

2 + c1c′
1

ci
. �

Proof of Theorem 4. We haveR2
` = c2

1 +∙ ∙ ∙+ c2
` . ThusR` R′

` = c1c′
1 +∙ ∙ ∙+

c`c′
`. Combine last equation with the formula of Theorem 2 to obtain

R` R′
` = c`c`+1κ`+1, for 1 ≤ ` < m.

For a generic curve inRm+1 the firstm − 1 Euclidean curvatures are nowhere
vanishing and themth Euclidean curvature may vanish at isolated points, which
do not coincide with the points at whichRm−1 is critical. Thus for a generic curve
in Rm+1, m > 1, R′

` = 0 if and only if eitherc` = 0 orc`+1 = 0 for 1 ≤ ` < m.
Moreover, for a smoothly immersed curve the functionc1 = R1 = 1/κ1 never
vanishes. This proves Theorem 4. �

Proof of Theorem 5. Write σ(s) for the value of the arc length parameter of
Cγ at Cγ (s). We assume that the orientations of the parametrised focal curve
Cγ given by the arc length parameters of γ and by the arc length parameterσ

of Cγ coincide. Lemma 2 and Theorem 3 imply that, at a non-vertex ofγ , the
unit tangent vector of the parametrised focal curveCγ is

T =
(c′

m + cm−1κm)

|c′
m + cm−1κm|

nm = εnm. (5)

Moreover, for any non vertex

ds

dσ
=

1

|c′
m + cm−1κm|

.

In order to obtain that
N1 = δ1nm−1 (6)

andK1 =
|κm|

|c′
m + cm−1κm|

,
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derive equation (5) with respect toσ and apply the Frenet equations ofγ taking
into account that the firstm − 1 Euclidean curvatures of a generic curve are
always positive. In the same way, use equation (6) to obtain

N2 = δ2nm−2 and K2 =
κm−1

|c′
m + cm−1κm|

.

To finish the proof, apply induction process. �
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