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On Vertices, focal curvatures and
differential geometry of space curves

Ricardo Uribe-Vargas

Abstract. Thefocal curveof an immersed smooth curye: 6 — y(6), in Euclidean
spaceR™ 1, consists of the centres of its osculating hyperspheres. This curve may be
parametrised in terms of the Frenet frame df, ny, ..., Ny), asC,, (8) = (y +cin1 +

Cono + - -+ + cmnm) (0), where the coefficientsy, . .., cm_1 are smooth functions that

we call thefocal curvaturesof y. We discovered a remarkable formula relating the
Euclidean curvatures,i = 1, ..., m, of y with its focal curvatures. We show that the
focal curvatures satisfy a system of Frenet equations (not vectorial, but scalar!). We use
the properties of the focal curvatures in order to giveffef 1, ..., m, necessary and
sufficient conditions for the radius of the osculatiigdimensional sphere to be critical.

We also give necessary and sufficient conditions for a poipttofbe a vertex. Finally,

we show explicitly the relations of the Frenet frame and the Euclidean curvatupes of
with the Frenet frame and the Euclidean curvatures of its focal cDyve
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Introduction

The differential geometry of space curves is a classical subject which usually
relates geometrical intuition with analysis and topology. Lastyears, the ideas and
techniques of singularity theory of wave fronts and caustics ([1], [2]), revealed
to be a powerful tool to discover new theorems on the differential geometry of
curves and surfaces (c.f. [3]-[6], [13], [17], [22]-[31]).

Thefocal surfaceor causticof a curvey in Euclidean 3-space is the envelope
of the normal planes of. The study of the focal surface of a curve can provide
useful geometric information about that curve and vice versa. Darboux found
how to determine thevolutesof a curvey, that is, the curves whose tangents
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286 RICARDO URIBE-VARGAS

are normals of. Moreover, he showed (proved) thtae focal surface of is
foliated by the evolutes, and all of them lie on the focal surfaee [10].

The focal surface of is singular along a curv€, (it has a cuspidal edge
alongC, ) which is called thdocal curveof y (in [9], it is called theevolute of
second typef y). The osculating planes &, are the normal planes of, and
the points ofC, are the centres of the osculating sphereg p$ee [9].

In this paper, we study the geometry of the focal surface, focusing on the
properties of the focal curve, . Using these properties, we formulate and prove
new results for curves in Euclideanrspace for arbitrarm > 2.

Lety : R — R™?! be a smooth curve (a source of light). Ttwusticof y
(defined as the envelope of the normal lineg ok a singular and stratified hyper-
surface. Théocal curveof y, C,, is defined as the singular stratum of dimension
1 of the caustic and consists of the centres of the osculating hypersphergs of
Since the centre of any hypersphere tangeptata point lies on the normal plane
toy atthat point, the focal curve gfmay be parametrised using the Frenet frame
(t,nq, ..., Nny) of y as follows:C, (6) = (y + ciny + CoNz + - - - + CNm) (0),

where the coefficients,, ..., cn_1 are smooth functions that we call thecal
curvaturesof y.
The Euclidean curvatures ¢f «1, ko, ..., km, form a system o functions

which determine the curve up to translation and rotation. Let us denote with a
prime the derivation with respect to the arc-length parameter. We prove that the
following formula holds (Theorem 2):

GG+ GG+ +CiiC g
Ci-1G

Ki , fori > 2,
showing that the focal curvatures also determine the curve up to translation and
rotation (if all zeros ofy, 2 < k <m — 1, are simple).

In Theorem 1, we show th#te focal curvatures of satisfy a system of Frenet
equationgnot vectorial, but scalar equations and with the same Frenet matrix of

v
Fork =1,...,m— 1, we give necessary and sufficient conditions, in terms

of the focal curvatures, for the radius of tkalimensional osculating sphere of
a generic curve ilR™* to be critical (Theorem 4).

We prove that:A point of y is a vertex(that is, a point at which the order
of contact ofy with its osculating hypersphere is higher than the usual dne)
and only ifc, + Cm_1km = O at that point(Theorem 3). So, in terms of the
focal curvatures, the equation characterising the curves lying on a hypersphere
in R™1 is very simple:c/,, + Cm_14m = 0.
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ON VERTICES AND FOCAL CURVATURES OF SPACE CURVES 287

In Theorem 5, we show explicitly that the Frenet frame of the focal cGryve
consist (up to signs) of the same vectors of the Frenet framebat the order of
the vectors is reversed. Moreover, the Euclidean curvatjes. ., K., of the
focal curveC, are related to those of by

Ki Ko [Kml _ 1
|kl Km-1 K1 |C§n ~+ Cm—1Kml .
These relations, together with the stratification of the caustic described in 82,

provide a partial solution to thieaverse problemgiven the caustic, reconstruct
the source of light.

In 80, we define the order of contact of a curve with a submanifold"cdnd
we recall some basic notions and results on the differential geometry of space
curves. In 81, we state the results of the paper. In 82, we use the techniques of
singularity theory (in symplectic geometry) to study the geometry and the natural
stratification of thdocal setof a curvey in Euclideam-space (the codimension
1 strata being the focal curve ). In §3, we prove our results.

80. Preliminary Definitions and Remarks

In order to give the definition of osculatikgspheres of a curve (at a point of it)
we need to introduce the following definition:

Definition. Let M be ad-dimensional submanifold dR", considered as a
complete intersectionM = {x e R" : g1(X) = --- = gh_q(X) = 0}. We say
that a (regularly parametrised) smooth cupve 6 +— y(0) € R" hask-point
contactwith M or that itsorder of contacts k, at a pointy (6p), if at & = 6y each
functiong; oy, ..., gh_g o ¥ has a zero of multiplicity at leaktand at least one
of them has a zero of multiplicity.

Remark. To make this definition more invariant, one could denote the image
of y by I" and then write that therder of contaciat a point is the minimum of
the multiplicities of zero among the functions of the fogpn : I' — R at that
point, whereg belongs to the generating ideal bf and we assume that 0 is a
regular value of.

In this paperM will be an affine subspace or a sphere of dimension

Remark. Do not confuse our order of contact with the order of tangency: two
perpendicular lines in the plane have order of contact 1 at the point of intersection,
but the order of tangency is 0.
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Example 1. A smooth curve in Euclidean (or affine) spaR@ has 2-point
contact with its tangent line (at the point of tangency) for the generic points of
the curve. The plane curye = x3 has 3-point contact with the ling = 0, at

the origin: the equatior® = 0 has a root of multiplicity 3.

Conventions. Write n = m + 1. In the sequeR™*! denotes a Euclidean
spacef denotes any regular parameter of the curvesdenotes the arc length
parameter. A parametrised curye= y(#) in R™1 is said to begoodif its
derivatives of order 1 .., m, are linearly independent at any poim.generic
curve is good We will consider only good curves.

Theosculatingk-planeof a curve at a point is the affine subspace spanned by
the firstk derivatives of the curve at that poir.curve has at leask(+ 1)-point
contact with its osculating-plane at the point of osculatiorrork = mwe will
simply write osculating hyperplane

Given a point of a generic smoothly immersed curv&if-?, the sequence
consisting of that point and of the osculatikgplanesk = 1,..., m, form a
complete flag, which is called thasculating flagof the curve at that point.

By convention, thek-dimensional affine subspaces of the Euclidean space
R™ will be also considered dsdimensional spheres of infinite radius.

Definition. Fork = 1, ..., m, ak-osculating spherat a point of a curve in
Euclidean spac®™! is ak-dimensional sphere having at leakt+ 2)-point

contact with the curve at that point. Hoe= m we will simply write osculating
hypersphere

Example 2. Ageneric plane curve and its osculating circle have 3-point contact
at an ordinary point of the curve.

Remark. For1< ¢ < m,the osculating-sphere at a point of a curve k™1
is the intersection of the osculating hypersphere with the osculating)-plane
at that point.

Curvature, Frenet frame and higher order curvatures. For a curvey in R3
parametrised by arc-length (from a fixed point of it) the tangent va¢r=
y’(S) is unitary and it is orthogonal ti(s) = y (s)”. If y(s)” # 0 these vectors
span the (unique) osculating planeyofats. Write t’(s) = x1(s)n1(s), where
n1(s) is the unit vector orthogonal tigs) such that the coefficient, (s), called
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ON VERTICES AND FOCAL CURVATURES OF SPACE CURVES 289

thecurvature ofy ats, is positive. The radius of the osculating circleyoats
is given byR;(s) = 1/k1(s) and it is called theadius of curvature of ats.

Assume thaR?is oriented and take the unit vectox(s) such that the basiss),
n1(s), N2(s), calledFrenet frameis positive (right-handed), thatis =t x n;.
One easily proves that there is a numbge «,(s), called theorsionor second
curvatureof y ats, such thain, = —«;n;. Itis the speed of rotation of the
vectorn,. For any good curve we have the following formulas:

t' = Kkqn1, n’l = —K1t + k2No, n’2 = —kKoN1,

which are called-renet equationsf the curvey.

Consider a good curvg in the oriented spac&™!, that is, the vectors
Y'(9), ...,y ™(s) are linearly independent for asy Apply Gram-Schmidt pro-
cess to these vectors to obtain the orthonormal systemni(s), ..., Nm_1(S).
Letnn(s) be the (unique) vector such that the ba&ss, n1(s), ..., Nn(s), called
Frenet frameof y ats, is orthonormal and positive. The derivatives of the Frenet
frame vectors are given by the so calaétem of Frenet equation$ y :

, 0 K1 0 0 0 0
v 1 0 K 0o o0 0 t
n; N
n/2 0 —K2 0 Ny
né _ 0 0 —K3 ns
: 0
N_2 0 Km_1 O Nm-2
N1 Nm-1
, : —Km-1 0 Km
nr, Nm
0 0 0 —km 0
The functionsc; = k1(S), ..., km = km(S) are calledEuclidean curvaturesf

the curve and are defined only for good curves. Note thatitieEuclidean
curvaturex, gives the speed of rotation of the osculatifxglane around the
osculating { — 1)-plane, with respect to the variation of the arc-length parameter
(one can find other geometric interpretations of the Euclidean curvatures). The
curvatures, ..., km_1 Of any good curve are strictly positive, whidg can take

any real value.

A point of a smooth curve ilR™* for which the derivative of the curve of
orderm + 1 belongs to the osculating hyperplane is said to flateening At
a flattening the last Euclidean curvaturg, vanishes and the curve has at least
(m + 2)-point contact with its osculating hyperplane at that point
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Remark about flattenings. At a flattening of a generic curve the osculating
hypersphere is unique and it coincides with the osculating hyperplane. In this
case, the centre of the osculating hypersphere is not defined and we will say that
“itis atinfinity”. If at a point the order of contact gf with its osculating sphere

of codimension 2S™1, is greater than the usual one, then the point is a non
generic flattening. In this case, all hyperspheres contaiiihg are osculating,

i.e. the centre of the osculating hypersphere is not uniquely defined.

Example. These conditions (not satisfied for any point of a generic curve) are
however satisfied by the flattenings of a generic spherical curve (thatis, a generic
curve among the curves lying on a hypersphere).

For these reasons we will assume that our curves are good and have no flat-
tening, unless we consider (explicitly) spherical curves.

81. Statement of Results

Definition. The curveC, : 6 — C,(9) € R™! consisting of the centres of
the osculating hyperspheres of a good curve (without its flattenings) +—
y(0) € R™ s called theparametrised focal curvef y.

Remark. Ingeometrical optics, a curyein Euclidean 3-space can be consid-
ered as a source of light. The envelope of all light rays normali®thefocal
surfaceor causticof . The light intensity is much more concentrated on the
caustic than in all other points of the space. Moreover, the caustic itself is more
illuminated along its cuspidal edge, which is the focal curve of

Consider agood curve : R — R™L, Writek, k2, . .., km for its Euclidean
curvatures and, ny, ..., ny, for its Frenet frame. The hyperplane normalto
at a point consists of the set of centres of all hyperspheres tanggrattthat
point. Hence the centre of the osculating hypersphere at that point lies in such
normal hyperplane. Therefore (denoti@g(6) by C,, y(¢) by y and so on,...)
we can write
C, =y +cn +CN2+ -+ CnNm,

where the coefficients,, . .., cn_1 are smooth functions of the parameter of the
curvey.

Definition. The coefficient;, i = 1, ..., m, is called tha " focal curvature

of y.
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Remark. The first focal curvature; never vanishesc; = 1/«;.

The Frenet equations of a curve im ¢ 1)-Euclidean space is a system of
m+ 1 vectorial equations involving the unit vectors of the Frenet frame and their
derivatives. The following theorem shows that the focal curvatures of that curve
satisfy a system o$calar Frenet equationwhich “is obtained from the usual
Frenet equations by replacing tH& normal vector of the Frenet frame by the
ith focal curvature”.

Theorem 1. The focal curvatures of a curve lying on a hypersphereR —
S" ¢ R™1, parametrised by arc length, satisfy the following “scalar Frenet

equations”:

0 «xx O 0 0O O
1 %1 0 k - 0O 0 O 0
C ¢t
C’2 0 —K2 0 Co
Cs 0 0 —«s3 Cs
: 0 :
Cn—2 0 «ma1 O Cm—2
Cin1 Cm-1
c —Km-1 0 Km Cm
m 0 0 0 —km O
Remark. If the curve is not spherical then the correcting ter sz) must be

. . (ern)l
add;%to the last component of the left hand side vector to obfain52-, for
Cm -

Theorem 2. The Euclidean curvatures of a good curvgwith «, # 0) in

R™ parametrised by arc length, are given in terms of the focal curvatures of

y by the formula:

_CC + GG+ + Gl
Ci-1G

, fori > 2.

Ki

Remark. For a generic curve, the focal curvaturgsor ¢;_; can vanish at
isolated points. At these points the functiof; + c,¢, + - - - + ¢i_1¢/_, also
vanishes, and the corresponding value of the Euclidean curvaturey be
obtained by I'Hopital rule.
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Definition. A vertexof a curve inR" is a point at which the curve has at least
(n + 2)-point contact with its osculating hypersphere.

Example 3. The vertices of a curve in Euclidean plaié are the points at
which the curvature is criticalFor instance, a non-circular ellipse has 4 vertices:
They are the points at which the ellipse intersects its principal axes.

The interest on the vertices of curves came, for instance, from geometrical
optics (c.f. Huygens) and from thlgeometry in the largeNamely the classical
4-vertex theorem states thatsmooth closed convex plane curve has at least
4 different vertices[16]. Besides several important works generalising this
theorem (c.f. [14, 15, 7, 21, 18, 20]), the recent progress in symplectic geometry
and singularity theory have revived the interest on the study of vertices together
with the different variants of its definition (c.f. [22, 11, 13, 17], [24]-[31]). Here
we are mainly concerned with local properties of vertices.

The next theorem (implicitly contained in [19]) provides necessary and suffi-
cient conditions for a point to be a vertex.

Theorem 3. A non-flattening point of a good curve parametrised by arc length
inR™?1 m > 1, is a vertex if and only if

Cm + Cm—14km = O at that point.

Corollary 1. A good curve parametrised by arc length in Euclidean space
R™1 m > 1, lies on a hypersphere if and only if

Ch, + Cm_1km = 0.

Example 4. For curves in Euclidean 3-space, Corollary 1 provides the follow-
ing classical result on spherical curves (see for instance [8]):

A smoothly immersed curve &2, with curvaturex and torsiont both
nowhere zero, lies on a sphere if and only if

/

R /
c,+cit =0, i.e. ifand only if (—1> + Ryt =0,
T

where derivation is taken with respectto the arc length of the curvéand 1/«
is the radius of curvature.

There is a small mistake in the beautiful Hilbert—Cohn Vossen’s book, [12]:
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A curve ofR3 lies on a sphere if and only if
o1
R? 4 (Rl)zﬁ = const (W)

Of course, a curve lying on a sphere satisfies condition (W), which means
that the radius of the osculating sphere is constant. However, the dimension of
the space of non-spherical curves satisfying condition (W) is infifiie curve
with nowhere vanishing torsion has constant curvatures 0 then the radius
of its osculating sphere is constant and equaRe= 1/«. This follows from
condition (W). One example is the circular hdlix> (cost, sint, t)). The above
statement becomes true if one suppose the genericity conéitiea0.

The radius of the osculating hypersphere of a cunRTH? is critical at each
vertex of that curve; the converse statement is not always trumfer 1 (see
[23], [31]): There are examples of curves having points for which the radius of
the osculating hypersphere is critical, but which are not vertices. The geometric
meaning of such points becomes clear from Proposition 0, below.

The following two theorems give necessary and sufficient conditions for the
radius of the osculating sphere of dimensiog m to be critical.

Theorem 4. For 1 < ¢ < m, the radius of the osculatingsphere of a generic
curve inR™ s critical if and only if either

¢, =0o0rcy1=0.
Moreover,c; never vanishes.
Remark. Ata point of a curve/, the first¢ focal curvaturesy, .. ., ¢, are the
coordinates (with respect to the Frenet frame) of the centre of-tienensional

osculating sphere of at that point. Therefore the curve, described by the
centre of theZ-dimensional osculating sphere is parametrised by:

Ye =Y + CiN1 + CoN2 + - - - + C¢gNy.

Of course,ym = C,. Theorem 4 implies for instance thifie curvesy, andy,
intersect at least twice, and the curygintersects eithey,_; or y,,1, at least
at two points.1 < £ < m.

Corollary 2. If the ¢! focal curvaturec, vanishes at a point, then both the
radii of the osculating spheres of dimensiohs- 1 and ¢ are critical at that
point.
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294 RICARDO URIBE-VARGAS

Remark. The m'" focal curvaturec,, at a point of a smooth curve iR™?!
is the signed distance between the osculating hyperplane and the centre of the
osculating hypersphere at that point.

Definition. A point of a curve is said to be@seudo-verterf that curve if the
centre of the osculating hypersphere at that pointlies in the osculating hyperplane
at that point (that is, i€, = 0).

Corollary 3. A generic closed curve i3 has at least two vertices or two
pseudo-vertices

Corollary 4. At a pseudo-vertex of a smooth curveRifit!, m > 1, both the
radius of the osculating hypersphere and the radius of the osculatng 1)-
sphere are critical

Proposition 0. The radius of the osculating hypersphere at a point of a good
curve inR™* m > 1, is critical if and only if such point is either a vertex or a
pseudo-vertex.

A point of a generic smooth curve at which the last Euclidean curvature vanish,
km = 0, is aflatteningof the curve (see our Remark about flattenings above).
The following statement is a consequence of Proposition O.

Corollary 5. Write V, F and P for the number of vertices, flattenings and
pseudo-vertices of a generic closed curve smoothly immers&f'ih. The
following inequalities hold:

V4+P>F andV +P > 2.

We reformulate Proposition 0 (and we will prove it, in 83) in terms of the focal
curvatures,, andcm_1:

Proposition 0. The radius of the osculating hypersphere of a good curve in
R™ m > 1, parametrised by arc length, is critical at a point if and only if
eithercy, = 0 or ¢, + Cn_1km = O at that point.

After | have sent this paper to V.D. Sedykh, he communicated to me that he
had discovered independently Proposition 0 and Corollary 5, but he had not
published them and he urged me to publish all results of this paper.
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Remark. By definition, the firstn — 1 Euclidean curvatures of a generic curve

y : R — R™! are positive everywhere, while the last org, can take any

real value. The sign of the last Euclidean curvature at a non-flattening point of a
curve is defined only when the orientation on the ambient sgice is fixed :

km IS positive (negative) at the points of the curve where the derivatives of order
1,...,m+ 1 form a positive (negative, resp.) basisRst?,

Remark. Consider a curvg’ : R — R™! in the oriented Euclidean space
R™ 1 If the numbem > 0 is of the formdk or 4k 4 1, with k € N, then

sign of the last Euclidean curvature gfat a non-flattening point depends on
the orientation of the curveThat is, the last Euclidean curvature of a curve at
a non-flattening point is a function whose sign depends not only on the point of
the curve but also on the orientation of the curve given by the parametrisation.

Proof. Lety : R — R™ be a generic curve iR™?, such thaty (0) is not

a flattening. Writer (t) = —t and consider the parametrisation in the opposite
directiony = y ot : t — y(—t). The derivative of order of y att = 0 is

70 (©0) = y©(0) - (-=1)". So the derivatives of odd order pfandy att = 0
have opposite directions while the derivatives of even orderandy att = 0
coincide. Therefore the basis obtained from the derivatives of order Im+1

of y att = 0 and the basis obtained from the derivatives of order. I m+ 1

of y att = 0 give different orientations @&™+! if and only if the cardinality of
the setfr e N: risodd and <m+ 1}is odd, i.e. if and only if the number
m > 0 is of the form & or 4k + 1, withk € N.

Theorem 5. Lety : s+ y(s) € R™1 be a good curve without flattenings.
Writeky, ..., km for its Euclidean curvatures and, nq, ..., ny} for its Frenet
frame. For each non-vertegx(s) of y, write e (s) for the sign of ¢/, + Cm_1km) (S)
and sy (s) for the sign of(—1)ke(S)km(S), k = 1, ..., m. For any non-vertex of
y the following holds:

a) The Frenet framgT, Ny, ..., Ny} of C, atC, (s) is well-defined and its
vectors are given by = enpy, Nk = ik, fork =1,...,m— 1, and
N = =+t, the sign intt is chosen in order to obtain a positive basis.

b) The Euclidean curvaturels,, ..., Ky, of the parametrised focal curve of
v, C, :s— C,(s), are related to those of by :
K Ke __ [Kml _ 1
|Kml Km-1 K1 |C;n + Cm—1Kml ’

the sign ofK,, is equal tod,, times the sign chosen iht.
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That is, the Frenet matrix &, atC, (s) is

0 il 0 0 0 0
_|Km| 0 Km-1 0 0 0
O _Kmfl 0
1 O O —Km-2
|Cry, + Cm—1Km| 0
0 K2 0
—K?2 0 Fomk1
0 0 0 4émkr 0

RICARDO URIBE-VARGAS

Application to self-congruent curves. A curve of R™! is said to beself-
congruentif for any two pointsa andb of it, there is a preserving orientation
orthogonal transformation &™+! sending the curve to itself and sendiado
b. One can prove thdhe class of self-congruent curves coincides with the class
of curves whose Euclidean curvatures are constant

The focal curvatures of these curves are therefore constant and the scalar Frenet
equations imply that

4
sz
cx =0 and Cze+1=l_[( )

=0 K2j+1

where the conventioky = 1 is used, and the subindices@nd Z + 1 are taken
over all values of for which2< 2¢ < mand 1< 2¢ + 1 < m, respectively.

Proposition. Forany? € NsuchthaD < 2¢ < m, the following holds: Atany
point of a self-congruent curve &™! the centre of the osculating¢-sphere
lies in the osculatin@¢-plane

Proof. This follows from the above equalities, = 0.

§2. Study of the Focal Set (caustic) of a Curve

Thefocal setor causticof a submanifold of positive codimension in Euclidean
spaceR™ ! (for instance, of a curve iiR%) is defined as the envelope of the
family of normal lines to the submanifold.

Bull Braz Math Soc, Vol. 36, N. 3, 2005
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Remark. Similarly to geometrical optics in Euclidean 3-space, a submanifold
of positive codimension in Euclidean spa&®*! may be considered as a source
of light (or as an initial wave front). The normal lines to this source submanifold
are callechormal light raysand its focal set (on which the light intensity is much
more concentrated than in the other points of the space) is calledtisticof

that submanifold.

We will study the focal set of a generic curye R — R™1L,

The hyperplane normal tp at a point is the union of all lines normal foat
that point. The envelope of all hyperplanes norma} tis thus a component of
the focal set. We call it thenain componentthe other component is the curve
y itself, but we will not consider it).

The normal hyperplanes of a curve at two neighbouring points intersect along
an affine subspace of codimension 2 which approaches a limiting position as the
points move into coincidence. The affine subspace that assumes this limiting
position is called the 2odimensional focal subspacé the curve at the point
under consideration.

When the point moves along the curve the 2-codimensional focal subspace
generates a hypersurface which, by construction, is the envelope of the hyper-
planes normal tg, i.e. it is the main component of the focal set.

So the main component of the focal set of a curve is the union (in a one-
parameter family) of affine subspaces of codimension 2 (see Claim 3in subsection
2.2).

Example 5. At a point of a curve iR, the 2-codimensional focal subspace
is the line through the centre of the osculating circle, which is parallel to the bi-
normal vector. In classical differential geometry of curves in Euclidean 3-space,
it is called thepolar line (see [10]).

2.1 The caustic of a family of functions
We will use techniques of singularity theory in order to have a more detailed
study of the focal set.

Definition. The causticof a family of functions depending smoothly on pa-
rameters consists of the parameter values for which the corresponding function
has a non-Morse critical point.

Bull Braz Math Soc, Vol. 36, N. 3, 2005
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Example 6. Given a generic curvg : R — R™1 JetF : R™1 x R — R be
the (m + 1)-parameter family of real functions given by

1
F@.0)=31a-v® .
The caustic of the family is given by the set

{geR™':30 e R: Fy(0) = 0andF, () = O}.

Proposition A. The caustic of the famillf (q, 6) = % | g—y () ||? coincides
with the focal set of the curve : R — R™,

Proof. The caustic of is defined by the pair of equatioﬁﬁ(e) =0, Fé/(e) =
0. Foreachfixed value 6f the set of pointg € R™ ! satisfying the firstequation
form the hyperplane normal te at y (6):

Fi(0) = —(q—y(0).y'(®) =0.

The set of pointg] € R™?! satisfying both equations for a fixetlare thus
the stationary points of the normal hyperplane /&) under an infinitesimal
variation of it. They form an affine subspace of codimension R

Fe@) =—(@—-y©®,y" @)+ {©).r©)=0.

Of course this subspace coincides with the 2-codimensional focal plane of the
curve aty (9), considered above.

2.2 The natural stratification of the focal set

The focal set of a curvg : R — R™! is stratified in a natural way. The
following claims describe the geometry of such stratification for curves without
flattenings.

Denote byA'; ),k =1,...,m+ 2, the set consisting of the centres of all
hyperspheres having at legkt+ 1)-point contact withy aty (9).

Claiml. The setA'; ), k=1, ..., m+1lisan affine subspace of codimension
kin R™1,

Claim2. The seiAi (0) (consisting of the centres of all hyperspheres having at
least2-point contact withy at y (6)) is the hyperplane normal tp at the point
y ().
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Definition. The affine subspacA}k, (0) is calledk-codimensional focal plane
of y aty ().

Corollary (of claims 1 and 2). The sequence of focal subspadkfﬁ(e) D
AJZ/ @ >---D A;j‘*l(@) defines a complete flag on the hyperplane norma to
aty ().

Remark. The complete flaghl(9) > A2(0) D --- D A} (0) defines a
natural stratification on the hyperplane normajtat y (6). This stratification
induces a natural stratification on the focal sefofThe stratum of dimension 1
being the focal curve gf. The O-dimensional stratum consists of isolated points
at which the focal curve is singular (it has a cusp, see Proposition 1in 83). These
singular points of the focal curve ¢f correspond to the vertices gf(for these
points the seA}r}”Z(e) is not empty).

Claim 3. The focal set of a smooth curve consists of the centres of all hyper-
spheres having at lea8tpoint contact with that curve at a point of it (i.e. itis
the union of all the2-codimensional focal planes of the curve).

Proposition B. The complete flag\; () > A2(0) D --- D AT(0) is the
osculating flag of the focal curve ¢f at the pointC, (9). In particular, the
hyperplane normal ter at y (9) coincides with the osculating hyperplane of the
focal curve ofy at the pointC, ().

Lemma 0. A pointq € R™1 is the centre of a hypersphere havikgoint
contact withy at the pointy (6p) if and only if the functiorFq(0) = % lq-—
¥ (8) || has a critical point of multiplicityk — 1 at 6p:

Fy(0) = F/(00) = ... = F{*Y(8p) = 0 and F(6o) # 0.

Proof. The sphere of radiuswith centre afj is defined by the equation

1
g0 =3l a—x |2 —r? =0.

So a poinfg is the centre of a hypersphere havikgoint contact withy at the
pointy (6p) if and only if the functiong: oy has a zero of multiplicitk atd = 6y,
for somer, i.e. if and only if the functiorF, () = % | g—y(®) ||> has a critical
point of multiplicity k — 1 at6fo. g
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Proof of Claims 2 and 3. To prove Claims 2 and 3, use Lemma 0 and repeat
the proof of Proposition A. Another proof of Claim 3 follows from Example 6,
Lemma 0 and Proposition A. O

Proof of Claim 1. Consider the following system @i + 2) equations

Fq@) = 0
Ff©® = 0
F{mM2@©) = 0.

For each fixed value o, it can be easily seen that the fiksequations —
written explicitly— define an affine subspace of codimensidn R™? (the
caseXk = 1, 2, are in the proof of Proposition A). So the 5#3(0) of centres of
all hyperspheres having at ledkt+ 1)-point contact withy aty (9) is an affine
subspace aR™ 1, O

Remark. The (generating) family(q, 0) = % | g — y(©®) ||? together with
Sturm theory can be used to calculate the number of vertices of the gusee
[31].

Remark (for Singularity Theory Specialists). In the setting of the theory

of Lagrangian singularities, Lagrangian maps and the caustics of Lagrangian
maps, the focal set of the curyeis the caustic of thé&lormal mapassociated

to y, which is a Lagrangian map defined by the generating fafily, 6) (for

the notions of caustic, Lagrangian map, Lagrangian singularity and generating
family, we refer the reader to [1] and [2]). Thtiee vertices of a curve iR™?
correspond to a Lagrangian singularify, ., of the normal map, thatis, the focal

set has a “swallowtail” singularity at the centres of the osculating hyperspheres
corresponding to the vertices of the curve.

83. The Proofs of the Results

As we mentioned in the introduction, the ideas and techniques of the theory
of Lagrangian and Legendrian singularities (singularities of caustics and wave
fronts) were an important tool for the discovery of the results of this paper and
also for their initial proofs. Some of these results would be difficult to discover
only using Frenet frame theory. However, once the results were discovered and
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proved, the author has made an effort in order to present the proofs as short as
possible and as elementary as possible. The author hopes the proofs will be
understandable for anyone.

To prove our results we will prove before some lemmas related to the focal
curve. Below, denotes any regular parameter of the curve saddnotes the
arc length parameter.

Lemmal. Lety : 60— (¢1(0),...,ome1(0)) be a good curve iR™?1. The
velocity vector'(9) of the focal curve of até is proportional to thent"-normal
vectorng,(0) of y.

Proof. Consider the (generating) family of functiols : R x R™*! — R
defined by

1
Fo@ =3 lla—y® 2.

Write g = ”72 Asin 82, use the factthatF = y - q — ”—22 — q—; to recall that
the following system ofn + 1 equations defines ttiecal curveq(#) of y:

Yy -a0)—-9g = 0,

y"-a0)—-9" = 0
: ()
y(m+l) . q(e) _ g(m+1) : 0.
Derive each equation with respecitto obtain a second system of equations:
y - q@®+y"-aq0) -g9° = 0,
Y- 9O +y”-a@)—-g" = 0,
: ()
y™-q© +g™Y-q0) - g™ = 0,
y(m+1) . q/(g) + g(m+2) i q(@) _ g(m+2) = 0.

Combine theé" equation of systertix) with the (i + 1) equation of system
(%), fori =1,..., m, to obtain

Y -q®) =

y'-q'®) =

oo

(k)

y™.q'@®) = 0.

This means that the velocity vectqf(@) is orthogonal to the osculating hy-
perplane ofy, i.e. q'(0) is proportional to thent"-normal vecton,,. O
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Proposition 1. A non-flattening point of a good curve R™! is a vertex if
and only if the velocity vector of the focal curve is zero.

Proof. If the pointy (9) is a vertex ofy, then besides the system of equations
(x) obtained in the proof of Lemma 1, it also satisfies the equation:

y™?.q@) - g™? =0,
which combined with the last equation of systém) gives the equation
y™P.q'6) =0.

The preceding equation together with the system ) imply that for a non-
flat vertexy (6) of the curvey the velocity vectory' (9) of the focal curve is
zero.

Conversely, if a poiny (6p) is not a vertex then the corresponding point of the
focal curve satisfies the relation

y ™2 (60) - a(Bo) — 9™ (00) # O,
which together with the last equation @fx), for 6 = 6, imply that
d'(fo) # 0. [

Lemma 1 and Proposition 1 were also stated in [19], where the condition to
the point to be a non-flattening is unfortunately absent. Without this condition
Proposition 1 does not hold.

Lemma 2. Lety : R — R™! pe a good curve with,, # 0. The derivative
of its parametrised focal curv@, with respect the arc lengthof y is
Proof of Theorem 1, Proposition 0 and Lemma 2. Consider the parametrised
focal curve ofy:

C,(s) = (y +C1iny + CoNz + - - - + CyNm) (S).

DenoteC, (9), y(9) and so on byC,, y, etc. DeriveC,, with respect to the arc
length ofy and use Frenet equationsjoto obtain:

C, =t +ci(—kat +k2n2) 4+ €1 + - - 4 € 1Nm-1 + Cm(—KmNm—1) + CNm
= (1—Cciept + (C;_ — K2C)Ny + (C/Z + Cikp — C3k3)Np + - - -
+ (¢ + Ci—1ki — Ciyaki+)Ni + -+ - + (C, + C—16m)Nm.

Bull Braz Math Soc, Vol. 36, N. 3, 2005



ON VERTICES AND FOCAL CURVATURES OF SPACE CURVES 303

By Lemma 1, the firsm — 1 components o€}, vanish. Consequently
C; = (C;n ~+ Cm—1Km)Nm (1)

and the following equalities hold:

1 = Kt
C/l = K20Cy,
C/Z = —kK2C1 + k3C3, (2)

Equation (1) proves Lemma 2. Use the fact that the raBiysf the osculating
hypersphere satisfig®?, =|| C, — y [|* to obtain

(ern)/ = (Cy -Y Cy - )/>/
= 2(C,—vy,C,—vy)
= 2((cy, + Cm—1km)Nm — t, C1N1 + - - - + CmNm)
= 2Cm<C;n + Cm—1Km);

i.e. (R2)Y = 2cm(Cl, + Cm_1km)- (3)
Thus forcy, # 0, ¢, — (Eg“?/ = —Cm_1km. This equation together with the set
of equationg2) (using our conventionsy = 0 andc; = 1) prove Theorem 1.
Equation (3) and Theorem 3 prove Proposition 0. a
Proof of Theorem 3 and of its Corollary. By Lemma 2, we have that
Proposition 1 implies thus that a point of the cugvés a vertex if and only if

C;T'I + Cmfle == 0 |:|

Proof of Theorem 2. The proof will be done by induction. Use the scalar
Frenet equations of Theorem 1 to obtain that

C/

c, C1C; C, + Ciko C/z +cd CoC, + C1C;
K1 ==, kp=-—+=-"2 and k3 = -2 — © _ 222 1
C1 Co C1Co C3 C3 CoC3
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Suppose that
_ Gi1C g+ -+ CCh + C1C) @
Gi-1G '

The scalar Frenet equations of Theorem 1 imply thatxi.1 = ¢ + Ci_1k;.
Substitute equatiot) to obtain

Ki

, GG+ +CC+CC G 4 - 4 CCh + CiC
CiiiKiy1 =G G = G .

O

Proof of Theorem 4. We haveR? = ¢ +---+c2. ThusR,R, = ¢i¢; +-- -+
c,c,. Combine last equation with the formula of Theorem 2 to obtain

R, Rz = CpCyy1Kp+1, forl<¢ <m.

For a generic curve ilR™*! the firstm — 1 Euclidean curvatures are nowhere
vanishing and thent" Euclidean curvature may vanish at isolated points, which
do not coincide with the points at whidRy,_1 is critical. Thus for a generic curve
inR™I m> 1, R, = 0ifand only if eitherc, = 0 orc,py =0forl < ¢ <m.
Moreover, for a smoothly immersed curve the functign= R; = 1/«; never
vanishes. This proves Theorem 4. d

Proof of Theorem 5. Write o (s) for the value of the arc length parameter of
C, atC,(s). We assume that the orientations of the parametrised focal curve
C, given by the arc length parametof y and by the arc length parameter

of C, coincide. Lemma 2 and Theorem 3 imply that, at a non-vertex, dhe

unit tangent vector of the parametrised focal cutyes

(Gt sk

|C;n ~+ Cm—1Kml
Moreover, for any non vertex

ds 1
do |C§n+cm—1’(m|.

In order to obtain that

Ny = 81Nm-1 (6)
andK, = —*ml
|Ch, + Cm—1Kml]
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derive equation (5) with respectoand apply the Frenet equationsyofaking
into account that the firgh — 1 Euclidean curvatures of a generic curve are
always positive. In the same way, use equation (6) to obtain

Km-1
|C;-n ~+ Cn—1Kml

To finish the proof, apply induction process. O

No = 82np—s and Ky =
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