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The Nash modification and hyperplane sections
on surfaces
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Abstract. We prove that the planar components of the tangent cone of a complex

analytic surface at a point correspond to the base points of hyperplane sections by
the Nash modification. This correspondence is then used to characterize domination
relations between the normalized Nash modification and the normalized blow-up of a
point.
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1 Introduction

For studying singularities of germs at a point of complex analytic surfaces, two

particular modifications may be considered: the blow-up of the point and the
Nash modification. Both transformations have desingularization virtues. In

fact, the surface can be desingularized after a finite iteration of normalized point
blow-ups ([11], [1]) or normalized Nash madifications ([9]).

The domination relation between these two modifications is related to hy-
perplane sections and polar curves and their base points after one or another
modification.

It is well known that the normalized blow-up of a point factors through the
Nash madification if and only if the family of local (absolute) polar curves does
not have a base point after the blow-up ([3], [9]). These base points correspond
to the so called “exceptional tangents” of the surface at the blown-up point ([6]).
They are completely characterized in the case of normal surfaces in [8]. For the
case of hypersurfaces @f with non-isolated singularities we refer to [5].

In this work, we give a necessary and sufficient condition for the normalized
Nash modification to factor through the blow-up of a point.

Received 14 September 2004.



310 JAWAD SNOUSSI

We first characterize the base points of hyperplane sections after Nash modi-
fication. We prove that these base points are in one-to-one correspondence with
the planar components of the tangent cone of the surface at the considered point
(Theorem 3.2).

Then we prove that the normalized Nash modification of the surface factors
through the blow-up of a point if and only if the tangent cone of the surface at
that point does not have any planar component (Theorem 4.2).

In the last section, we use the characterizations of the base points of the polar
curves after the blow-up of a point, given in [8], to prove that, in the case of
normal surfaces, the normalized blow-up of a point dominates the normalized
Nash modification if and only if they are isomorphic (Theorem 5.4).

The main tool we use to prove the results of this work is the so-called “normal-
conormal” diagram, adapted to the case of the Nash modification (see for example
[6]).

During the preparation of the manuscript, the author was supported by a post-
doctoral grant from Instituto do Milénio— CNPq, Brasil, and hosted at the ICMC-
USP in Sdo Carlos. The author would like to thank particularly M.A. Ruas for
all the help she provided, and also R. Bondil, D.T. L&, and P. Popescu-Pampu for
fruitful discussions and comments on preliminary versions of the manuscript.

2 Planes of the tangent cone

Let (S, 0) be a germ of reduced and equidimensional complex analytic surface
embedded ifCN, 0).

Denote bye : S — Sthe blow-up of the origin in a representative(& 0);
or equivalently the blow-up of the maximal ideal of the local ringOQso of
holomorphic functions oS, 0). Call § the non-singular locus of the surface
S, and consider the morphisin: § — G(2, N) such that.(x) = T«S; where
G(2, N) is the Grassmannian of 2-dimensional linear subspac€d @indT, S
is the direction of the tangent spaceSatx. The closureS of the graph of. in
S x G(2, N) is a reduced analytic surface. The induced morphisn — S
is called the Nash modification & it is an isomorphism over the non-singular
locus of S (see for example [3], [5] or [9]). The blow-up of the idealds,
defines a morphisme : X — S.

We have the following commutative diagram:

SxPN1xGR2N) 5 X —2 5 & C SxG@N)

v l v J (1)

SxpN-1 5§ —— S c N
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where the morphism’ is induced by the universal property of the blowing-up.
Let us callé : X — Sthe composed morphismec € = eo V.

Recall the following description of the fibers of the morphissvandv:

le~1(0)| is isomorphic tdProjCso|, where|ProjCs o| is the set of generatrices
of the tangent cone d at the origin (see [10, 88]). In other words, a line
represented by a point &~ is such that0, 1) € |e~1(0)| if and only if there
exists a sequenae,) of points in S converging to 0 such that the sequence of
lines (Ox,) (called secants) convergesltm PN—1,

On the other hand,wy~1(0)| is the set of all limits of directions of tangent
spaces at the origin. In other word6, T) € |[v=2(0)]| if and only if there exists
a sequencex,) of non-singular points ilsconverging to 0 such that the sequence
(Tx,S) converges td in G(2, N).

Thanks to Whitney’slemma (see [10, theorem 22.1]), we can give the following
description of the fibers of the morphigngsee also [5, proof of theorem 1.4.4.1]):

A point of £71(0) is of the form(0, |, T) wherel andT are respectively limits
of secants and directions of tangent spaces reached by the same sequence of
non-singular points; in particular we have T.

Consider now the irreducible decompositiggt*(0)| = |, D.. All the
componentd,, are of dimension 1. CalW, = |€(D,)|, andV, = [v'(D,)|.
The duality between th¥,’s and theW,'s is important for the description of
the limits of tangent spaces (see [6] and [2]). We are going to use this duality
to describe some particular components of the tangent cone of the surface at the
origin; namely the planar components.

Proposition 2.1. The setdV, of dimensiorO are in one-to-one correspondence
with the 2-dimensional planes of the tangent cidgy|.

Proof. If dimW, = 0 then itis of the form(0, T,) with T, € G(2, N). The
componentD, being of dimension one, there exists an irreducible component
C, of |Cso| suchD, = {(0,1, T,), | € Proj (C,)}. By the description we gave
for £71(0), we haveC, c T,. SinceT, is a two-dimensional plane, we have
Co=T,.

If To is a two-dimensional plane contained in the reduced tangent cone of S
at 0, thenTy is a limit of tangent spaces t8 at 0 ([4, theorem 1.5]). Hence
Dy, = {(0,1, To),| € Proj(To)} is an irreducible component ¢§~1(0)|. The
imageW,, = €(D,,) = {(0, Tp)} is of dimension 0. O

Remark 2.2. Note that aW, of dimension 1 is an irreducible component of
the fiber|v=2(0)|, in case it has dimension one. By the characterization given
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in [6], it is either a pencil of planes containing an exceptional tangent or the
planes tangent to a non-planar irreducible component of the tangent cone at the
origin.

3 Base points of hyperplane sections by the Nash modification

D.T. Lé and B. Teissier showed that the exceptional tangents correspond exactly
to the base points of the local (absolute) polar curves after the blow-up of the
maximal ideal ([6, proposition 2.2.1]).

We are going to prove a dual statement, making a correspondence between the
planes of the tangent cone and the base points of hyperplane sections after the
Nash modification.

Definition 3.1. Let (C,, 0) be a family of germs of curves on the surfa&e0),
parameterized by a projective spae Consider a modification of the surface
w:X—S

A pointy € X is a base point of the family of curvés,) by the modification
w if there exists an open dense setC P, such that; is a point of the strict
transform of the curve, for anya € Q.

Theorem 3.2. A pointy € Sis a base point of the hyperplane sectionsSdfy
the Nash modification if and onlysjfcorresponds to a plane of the tangent cone
of Sat 0.

Proof. Setn = (0, To) € v~1(0), and suppos&, is a plane of the tangent cone
Cs,o.

By Proposition (2.1), there existssuch that{(0, Tp)} = W, = €(D,). On
the other handy,, = v'(D,,) is an irreducible component of Pri§s| that is
actually Proj(Tp).

For any hyperplan&l € (PN-1)¥, we have ProfH) N Proj(To) # ¢. Hence
by commutativity of the diagram (1), the strict transformtbfy Sby v contains
the pointy; son is a base point.

Conversely, supposegis a base point of the hyperplane sectionSof v. By
commutativity of the diagram (1), for a generic hyperplahgthe intersection
Proj (H) N v/ (€~1(n)) is not empty. Hence, ding—%(n) > 0. The pointy
corresponds then to &/, of dimension zero, which is, by Proposition 2.1, a
plane of the tangent cone. O

Remark 3.3. From the proof of theorem 3.2, it follows that if the tangent cone
Cso contains a plane then, the strict transforms by the Nash modification of all
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the hyperplane sections (not only generical ones) will contain the point corre-
sponding to that plane.

4 Factorization of the Nash modification through the blow-up of the
maximal ideal

It is known that the Nash modification has a “universal property" with respect
to polar curves, in the sense that a normalized modificatiofthe origin does
not have any base point for the polar curves if and on}y factorizes through
the normalized Nash modification (see [9, 1l.1.2] and [3, 1.2]).

In this section we will state a similar result with respect to hyperplane sections
and the blow-up of the maximal ideal.

We first prove an algebraic version of the statement that seems to be well
known to many specialists.

Let fy, ..., f, be holomorphic functions ids o, whose unique common zero
in a sufficiently small neighborhood of the origin is 0. The linear system of
curves generated by thg's is the family of curves defined by an equation of the
formaifi+...+o ff =0with (oeg ;... ) e P71,

Proposition 4.1.Letu : X — Sbe a normalized modification of the surfaBe
The linear system of curves generatedfhy. .., f, has no base point by if
and only if the ideal shedffs, ..., fr)Ox is locally principal.

Proof. Letus calll the ideal of©so generated byf,, ..., f,.

Supposen € u~1(0) C X is not a base point by of the linear system
generated byf, ..., f,. Then there exists a linear combinatiénof the fi's
such that:

i) The strict transform off = 0 by . does not contain, and

i) The valuation of f along the irreducible components of the exceptional
divisor passing through is minimum among the valuations of all the
functions inl .

Letg € |. SinceX is a normal surface, the exceptional divisoyois Cartier
outside a finite number of points. So the quotient 1)/ ( f o 1) is well defined
nearn except maybe im. Again by normality ofX, this quotient extends to a
holomorphic function neay. Hence(f o 1) generate$ Ox .

Conversely, supposk®x , principal, withn € ©=1(0) c X. If fj, is such
that the order a) of (fi, o ) is minimum among the orders atof the other
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generators, thehOx , = (fi, o ©)Ox,. Since the ideal is primary for the
maximal ideal ofOs o, the strict transform off;, = 0 by  does not contain.
So, for a generic linear combinatidn= «; f; + ... 4+ o, f; the strict transform
by 1 of f = 0 does not contain the point Hencen is not a base point. [

If we apply Proposition 4.1 to the Nash modification, consider the tasen
and use the universal property of the blowing-up and theorem 3.2, then we obtain:

Theorem 4.2.The normalized Nash modification of a reduced equidimensional
germ of surfacg’S, 0) dominates the blow-up of the origin if and only if the
reduced tangent cone &at 0 does not contain any two-dimensional plane.

5 Comparison between Nash modification and point blow-up for normal
surfaces

We already know that, the normalized blow-up of the origin of a normal surface
dominates the Nash modification if and only if there are no base points of the
polar curves by the blow-up of the origin ([9, theorem Ill, 1.2]).

In [8, theorem 5.8], we gave characterizations of base points of polar curves
on a normal surface by the blow-up of the origin. We used for that the fact that
they correspond one-to-one to the exceptional tangents of the surface at 0 (see
[6, proposition 2.2.1]).

Let us state this result for the commodity of the reader:

Theorem 5.1. Let (S, 0) be a germ of a normal surface singularity. Call:
S — Sthe blow-up of the origin, and : S — S its normalization. The base
points of the family of polar curves by the blow-eipre:

« the image by of the singular points of the surfa&

» the image byn of the singular points of the exceptional divisige o
n~10),

* the critical values of the restriction of to the exceptional divisof(e o
n)~*(0)|, and

« the singular points of the analytically irreducible components of the ex-
ceptional divisorle 1(0)]|.

As a corollary of this theorem we have the following properties for the normal
surfaces without base points for the polar curves by the blow-up of the origin.
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Corollary 5.2. Let (S, 0) be a germ of a normal surface such that the family of
polar curves does not have base points by the blow-up of the origin. Then, the
normalized blow-up of the origin is smooth and the tangent cone at the origin is
irreducible.

Proof. The smoothness of the normalized blow-up is immediate from Theo-
rem5.1.

If the reduced tangent cone is not irreducible, then the exceptional divisor
[(e o n)~1(0)| will have at least two irreducible components. By Zariski's main
theorem, there is at least one singular point of the exceptional diyiear
n)~1(0)|. By theorem 5.1, the image of such a point will be a base point of the
polar curves bye. So the reduced tangent cone needs to be irreducible. O

Remark 5.3. Notice that, in theorem 5.1, an intersection point of two irreducible
components ag~%(0) does not need to be a base point of the polar curves by
(unlessitis one of the other points specified in theorem 5.1). However, in the case
of hypersurfaces of2, or normal singularities whose blow-up at the origin is
still normal, these intersection points are always base points of the polar curves
(see [4, theorem 3.1] and [8, corollary 5.11] respectively).

We can now state and prove the main result of this section:

Theorem 5.4.Let(S, 0) be a singular germ of a normal surface. The normalized
blow-up of the origin dominates the normalized Nash modification if and only
they are isomorphic. In this case they both desingularize the surface.

Proof. Suppose that the normalized Nash modification does not dominate the
blow-up of the origin. By theorem 4.2, the tangent c@, contains a two-
dimensional plane. Two cases are possible:

i) The reduced tangent cone is not irreducible. By corollary 5.2, the polar curves
have a base point by the blow-up of the origin. Hence, by [9, theorem Ill, 1.2],
the normalized blow-up of the origin does not dominate the Nash modification.

i) Csp is irreducible and is a two-dimensional plane. In this case, consider a
linear spacel. ¢ CN of dimensionN — 2, such that. N |Cso| = {0}. Call

p : CN — C? the linear projection whose kernellis The restriction ofp to

Sis a finite generic map : S — C?. Since the surfac& is singular at 0,

the discriminant ofr is a non-empty curve (see [7, proposition 2.3]). ket

be a line of the tangent cone of the discriminant at 0. By, [8, theorem 3.3], the
hyperplaneH = p~1(D) is a limit of tangent hyperplanes ®at 0. Because
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of the conditionL N |Cso| = {0}, the hyperplanéd can not contain the tangent
plane to the tangent cone (that is the tangent cone itself) H Smntains an
exceptional tangent (see [6] or [8]). Hence the polar curves have a base point by
the normalized blow-up of the origin. So, by [9, theorem lll, 1.2], the normalized
blow-up of the origin does not dominate the Nash modification.

We have then proved that, if the normalized blow-up of the origin dominates
the normalized Nash modification then the converse is also true, and hence they
are isomorphic.

The other implication is obviously true. The smoothness is given by Corol-
lary 5.2. O

6 Examples

i) Consider the surfacg defined inC? by the equationf = x" + y" + z" = 0.

f being homogeneous, the tangent c@yg is also defined byf = 0. Itis

an irreducible cone that is not a plane. So the normalized Nash modification
dominates the blow-up of the origin (theorem 4.2).

We can prove independently of the results contained in this work, that the
normalized Nash modification of this surface is isomorphic the the blow-up of
the origin. In fact, the Nash modification is the blow-up of the jacobian ideal
(x"1, y"=1 Zz"-1). The jacobian ideal has the same integral closure as the ideal
(X, ¥, 2", and this last one has the same blow-up as the maximal(idegal z).

So the normalized blow-up of the jacobian ideal is isomorphic to the blow-up of
the maximal ideal (that is already normal).

i) Sis defined inC? by x2 + y? 4+ z2 = 0. The tangent cone is a union of two
planes. So the normalized Nash modification does not dominate the blow-up of
the origin (theorem 4.2).

Actually, the blow-up of the origin is the minimal resolution(@, 0). On the
other hand the normalized Nash modification produces two singular points of
multiplicity 3 each one (see for example [3]).

iii)y Consider the surfac& union of two planes irfC* intersecting at the origin.
The Nash modification o is the normalization o8, that is non-singular. The
blow-up of the origin is a resolution of the singularity; it factors then through the
normalization. But they are not isomorphic since the blow-up is not finite. This
proves that we can not extend theorem 5.4 to hon-normal surface singularities.
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