
“main” — 2005/11/29 — 17:37 — page 319 — #1

Bull Braz Math Soc, New Series 36(3), 319-332
© 2005, Sociedade Brasileira de Matemática

Positive periodic solutions for a nonlinear
difference system via a continution theorem

Genqiang Wang and Sui Sun Cheng

Abstract. Based on a continuation theorem of Mawhin, the existence of a positive
periodic solution for a nonlinear difference system is studied.

Keywords: Nonlinear difference system, positive periodic solution, continution theo-
rem.

Mathematical subject classification:39A11.

1 Introduction

In [1], we explained that scalar difference equations of the form

yn+1 = yn exp{ f (n, yn, yn−1, ..., yn−k)} , n ∈ Z = {0, ±1, ±2, ...} , (1)

where f = f (t, u0, u1, ..., uk) is a real continuous function defined onRk+2

such that

f (t + ω, u0, ..., uk) = f (t, u0, ..., uk), (t, u0, ..., uk) ∈ Rk+2,

andω is a positive integer, are of interest since they include well known equations
such as

yn+1 = yn exp

{
μ(1 − yn)

K

}
, K > 0,

and they are intimately related to delay differential equations with piecewise
constant independent arguments [2]:

y′ (t) = y (t) f ([t ] , y ([t ]) , y ([t − 1]) , y ([t − 2]) , ..., y([t − k])) , t ∈ R.

We also show that continuation theorems can be used to show existence of
periodic solutions of these equations.
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Note that in the above equations, only one time dependent variableyt is in-
volved. In real problems, multiple time dependent variables may interact, and
therefore it is natural to study systems of difference equations.

In this paper, we consider one such system of the form

y(n+1)
i = y(n)

i exp



r (n)
i −

k∑

j =1

a(n)
i j y(n)

j −
k∑

j =1

b(n)
i j y

(
n−τ

(n)
i j

)

j



 ,

i ∈ {1, ..., k}, n ∈ Z, (2)

where

ri =
{
r (n)

i

}

n∈Z
, ai j =

{
a(n)

i j

}

n∈Z
, bi j =

{
b(n)

i j

}

n∈Z
and τi j =

{
τ

(n)
i j

}

n∈Z
,

are realω-periodic sequences such that

r (n)
i = r (n+ω)

i , n ∈ Z

a(n)
i j = a(n+ω)

i j , n ∈ Z

b(n)
i j = b(n+ω)

i j , n ∈ Z

τ
(n)
i j = τ

(n+ω)
i j , n ∈ Z

for i, j ∈ {1, ..., k}. We assume further that

a(n)
i j , b(n)

i j > 0, i, j ∈ {1, ..., k}; n ∈ Z,

∑

0≤n≤ω−1

r (n)
i > 0, i ∈ {1, ..., k},

and ∑

0≤n≤ω−1

(
a(n)

i i + b(n)
i i

)
6= 0, i ∈ {1, ..., k}.

The numberω is a positive integer as before.
A solution of (2) is a real vector sequence of the formy =

{
y(n)

}
n∈Z

where

y(n) =
(

y(n)

1 , y(n)

2 , ..., y(n)
k

)†
which renders (2) into an identity after substitution.

As in [1], we are concerned with the existence of positive solutions which are
ω-periodic, that is, solutions that satisfyy(n+ω) = y(n) for n ∈ Z andy(n)

i > 0
for n ∈ Z andi ∈ {1, ..., k}.

Our system (2) can be used to describe multispecies ecological competition
systems or multi-nation competition models. The analogous problem for differ-
ential systems has been treated by Smith [4], Cushing [5], Zanolin [6], Fan and
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Wang [7] and others. In particular, in [7], the authors study differential systems
of the form

y′
i (t) = yi (t)



ri (t) −
k∑

j =1

ai j (t)yj (t) −
k∑

j =1

bi j (t)yj (t − τi j )



 , i = 1, 2, ..., k.

As for our system, we can also show that it is related to differential systems with
piecewise constant independent arguments of the form

y′
i (t) = yi (t)



ri ([t ]) −
k∑

j =1

ai j ([t ]) yj (n) −
k∑

j =1

bi j ([t ]) yj

(
[t ] − τi j ([t ])

)


 ,

i ∈ {1, ..., k}, t ∈ R, (3)

where[x] is the greatest-integer function,ri (t) , ai j (t) andbi j (t) are real contin-
uousω-periodic functions defined onR. Indeed, once the existence of a positive
ω-periodic solution of (2) can be demonstrated, we may then make immediate
statements about the existence of positiveω-periodic solutions of (3). The proof
of our assertion is not much different from that of Theorem 1 in [1], and hence
is not included here.

As in [1], we will invoke a continuation theorem of Mawhin for obtaining
periodic solutions of (2). For the sake of easy reference, we briefly describe this
result here. LetX andY be two Banach spaces andL : DomL ⊂ X → Y is a
linear mapping andN : X → Y a continuous mapping. The mappingL will be
called a Fredholm mapping of index zero if dim KerL = codim ImL < +∞,
and ImL is closed inY. If L is a Fredholm mapping of index zero, there exist
continuous projectorsP : X → X andQ : Y → Y such that ImP = KerL and
ImL = KerQ = Im(I − Q). It follows that L |DomL∩KerP : (I − P) X → ImL
has an inverse which will be denoted byKP. If � is an open and bounded subset
of X, the mappingN will be calledL-compact on�̄ if QN

(
�̄

)
is boundedand

K P (I − Q) N
(
�̄

)
is compact. Since ImQ is isomorphic to KerL there exist an

isomorphismJ : ImQ → KerL.

Theorem A (Mawhin’s continuation theorem [1]). Let L be a Fredholm
mapping of index zero, and letN beL-compact on�̄. Suppose

(i) for eachλ ∈ (0, 1), x ∈ ∂�, Lx 6= λN x; and

(ii) for eachx ∈ ∂� ∩ KerL , QN x 6= 0 anddeg(J QN,� ∩ KerL , 0) 6= 0.
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Then the equationLx = N x has at least one solution in̄� ∩ domL.

We recall the useful nonstandard “summation” operation [1] for any real se-
quence

{
u(n)

}
n∈Z

:

β⊕

n=γ

u(n) =






∑β
n=γ u(n), γ ≤ β

0, β = γ − 1
−

∑γ−1
n=β+1 u(n), β < γ − 1

.

As usual, the forward difference is defined by1u(k) = u(k+1) − u(k).

We will also employ the following notations for the ‘time’ averages:

r i =
1

ω

∑

0≤n≤ω−1

r (n)
i ,

Ri =
1

ω

∑

0≤n≤ω−1

∣
∣
∣r (n)

i

∣
∣
∣ ,

ai j =
1

ω

∑

0≤n≤ω−1

a(n)
i j ,

bi j =
1

ω

∑

0≤n≤ω−1

b(n)
i j .

2 Existence Criteria

The main result of our paper is the following.

Theorem 1. Suppose the following set of conditions hold:

(i) for eachi ∈ {1, ..., k}, r i > 0,

(ii) for i, j ∈ {1, ..., k}, the inverse of the matrix
(
ai j + bi j

)
k×k

exists and all
its components are positive, and

(iii) for eachi ∈ {1, ..., k},

r i >
∑

1≤ j ≤k, j 6=i

(
ai j + bi j

) r j

a j j + bj j

exp

(
1

2

(
Rj + r j

)
ω

)
.

Then (2) has a positiveω-periodic solution.

Bull Braz Math Soc, Vol. 36, N. 3, 2005
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In order to provide a proof, we proceed in a manner similar to that of Theorem 1
in [1]. However, there are sufficient difference to warrant some details in the
following discussions. We first note that if

x =
{(

x(n)

1 , x(n)

2 , ..., x(n)
k

)†
}

n∈Z

is aω-periodic solution of the following system

x(n)
i = x(0)

i +
n−1⊕

s=0



r (s)
i −

k∑

j =1

a(s)
i j exp

(
x(s)

j

)
−

k∑

j =1

b(s)
i j expx

(
s−τ

(s)
i j

)

j



 ,

i ∈ {1, ..., k}, n ∈ Z, (4)

then we can easily check that

y =
{(

y(n)

1 , y(n)

2 , ..., y(n)
k

)†
}

n∈Z

=
{(

ex(n)
1 , ex(n)

2 , ..., ex(n)
k

)†
}

n∈Z

is a positiveω-periodic solution of (1).
We will therefore seek anω-periodic solution of (4). LetXω be the Banach

space of all real vectorω-periodic sequences of the formx = {x(n)}n∈Z where

x(n) =
(

x(n)

1 , x(n)

2 , ..., x(n)
k

)†
and endowed with the usual linear structure as well

as the norm

‖x‖1 =

(
∑

1≤i ≤k

(
max

0≤n≤ω−1

∣
∣
∣x(n)

i

∣
∣
∣

)2
) 1

2

.

Let Yω be the Banach space of all real sequences of the form

y = {y(n)}n∈Z =
{
nα + h(n)

}
n∈Z

such thaty(0) = 0, whereα = (α1, ..., αk)
† ∈ Rk and {h(n)}n∈Z ∈ Xω, and

endowed with the usual linear structure as well as the norm‖y‖2 = |α| + ‖h‖1 ,

here|α| =
(∑

1≤i ≤k α2
i

) 1
2 . Let the zero element ofXω andYω be denoted byθ1

andθ2 respectively.
Define the mappingsL : Xω → Yω andN : Xω → Yω respectively by

(Lx)(n) = x(n) − x(0), n ∈ Z. (5)
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and

(N x)(n)
i =

n−1⊕

s=0



r (s)
i −

k∑

j =1

a(s)
i j expx(s)

j −
k∑

j =1

b(s)
i j expx

(
s−τ

(s)
i j

)

j



 ,

i ∈ {1, ..., k}, n ∈ Z. (6)

Let

h̄(n)
i =

n−1⊕

s=0



r (s)
i −

k∑

j =1

a(s)
i j expx(s)

j −
k∑

j =1

b(s)
i j exp

(

x

(
s−τ

(s)
i j

)

j

)



−
n

ω

ω−1⊕

s=0



r (s)
i −

k∑

j =1

a(s)
i j expx(s)

j −
k∑

j =1

b(s)
i j exp

(

x

(
s−τ

(s)
i j

)

j

)



(7)

for i = 1, ..., k andn ∈ Z.

Sinceh̄ = {h̄(n)}n∈Z ∈ Xω andh̄(0) = θ1, N is a well-defined operator from
Xω to Yω. On the other hand, direct calculation shows that KerL = {x ∈ Xω |
x(n) = x(0), n ∈ Z, x(0) ∈ Rk} and ImL = Xω ∩Yω. Let us defineP : Xω → Xω

andQ : Yω → Yω respectively by

(Px)(n) = x(0), n ∈ Z, (8)

for x = {x(n)}n∈Z ∈ and
(Qy)(n) = nα (9)

for y = {nα + h(n)}n∈Z ∈ Yω. The operatorsP and Q are projections and
Xω = KerP ⊕ KerL , Yω = ImL ⊕ ImQ. It is easy to see that dim KerL = k =
dim ImQ = codimImL , and

ImL = {y ∈ Xω | y (0) = 0} ⊂ Yω.

It follows that ImL is closed inYω. Thus the following Lemma is true.

Lemma 1. The mappingL defined by (5) is a Fredholm mapping of index zero.

Lemma 2. Let L and N defined by (5) and (6) respectively. Suppose� is an
open and bounded subset ofXω. ThenN is L-compacton�.
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Proof. From (6), (7) and (9), we see that for anyx = {x(n)}n∈Z ∈ Xω,

(QN x)(n)
i =

n

ω

ω−1⊕

s=0



r (s)
i −

k∑

j =1

a(s)
i j expx(s)

j −
k∑

j =1

b(s)
i j exp

(

x

(
s−τ

(s)
i j

)

j

)

 ,

i ∈ {1, 2, .., k}, n ∈ Z. (10)

We denote the inverse of the mappingL |DomL∩KerP: (I − P) X →ImL by K P.
Direct calculation leads to

(K P(I − Q)N x)(n)
i =

n−1⊕

s=0



r (s)
i −

k∑

j =1

a(s)
i j expx(s)

j −
k∑

j =1

b(s)
i j expx

(
s−τ

(s)
i j

)

j





−
n

ω

ω−1⊕

s=0



r (s)
i −

k∑

j =1

a(s)
i j expx(s)

j −
k∑

j =1

b(s)
i j expx

(
s−τ

(s)
i j

)

j



 . (11)

It is easy to see thatQN and K P(I − Q)N are continuous onXω and takes
bounded sets into bounded sets respectively. Since the Banach spaceXω is finite
dimensional,N is L-compacton�. The proof is complete. �

Let lω, whereω > 2 is positive number, be the space of all realω-periodic
sequences of the formu =

{
u(n)

}
n∈Z

.

Lemma 3. If u =
{
u(n)

}
n∈Z

∈ lω, then

max
0≤s,i ≤ω−1

∣
∣u(s) − u(i )

∣
∣ ≤

1

2

ω−1∑

k=0

∣
∣1u(k)

∣
∣ , (12)

where the constant factor1/2 is the best possible.

Proof. Let u =
{
u(n)

}
n∈Z

∈ lω ands, i ∈ {0, 1, ..., ω − 1}. Without loss of any
generality, lets ∈ {i + 1, ..., i + ω − 1}, we have

u(s) = u(i ) +
s−1∑

k=i

1u(k) (13)

and

u(i ) = u(i +ω) = u(s) +
i +ω−1∑

k=s

1u(k). (14)
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From (13) and (14), we see that for anys ∈ {i, i + 1, . . . , i + ω − 1},

2u(s) = 2u(i ) +
s−1∑

k=i

1u(k) −
i +ω−1∑

k=s

1u(k), (15)

that is

u(s) = u(i ) +
1

2

{
s−1∑

k=i

1u(k) −
i +ω−1∑

k=s

1u(k)

}

. (16)

Thus for anys ∈ {i, i + 1, . . . , i + ω − 1},

∣
∣u(s) − u(i )

∣
∣ ≤

1

2

i +ω−1∑

k=i

∣
∣1u(k)

∣
∣ =

1

2

ω−1∑

k=0

∣
∣1u(k)

∣
∣ , (17)

so that

max
0≤s,i ≤ω−1

∣
∣u(s) − u(i )

∣
∣ ≤

1

2

ω−1∑

k=0

∣
∣1u(k)

∣
∣ . (18)

Now we assert that ifβ is a constant andβ < 1/2, then there areu =
{
u(n)

}
n∈Z

∈
lω and such that

max
0≤s,i ≤ω−1

∣
∣u(s) − u(i )

∣
∣ > β

ω−1∑

k=0

∣
∣1u(k)

∣
∣ . (19)

Indeed, if we letu(n) = j for n = kω + j, k ∈ Z and j = 0, 1, ..., ω − 1, then
max0≤s,i ≤ω−1

∣
∣u(s) − u(i )

∣
∣ = ω − 1 and

1u(n) =
{

1, n = 0, 1, .., ω − 2
− (ω − 1) , n = ω − 1

, (20)

and

β

ω−1∑

k=0

∣
∣1u(k)

∣
∣ = 2β (ω − 1) < max

0≤s,i ≤ω−1

∣
∣u(s) − u(i )

∣
∣

as required. This shows that the constant 1/2 in (12) is the best possible. The
proof is complete. �

Now, we consider the following system

x(n)
i − x(0)

i = λ

n−1⊕

s=0



r (s)
i −

k∑

j =1

a(s)
i j expx(s)

j −
k∑

j =1

b(s)
i j exp

(

x

(
s−τ

(s)
i j

)

j

)

 ,

i ∈ {1, ..., k}, n ∈ Z, (21)

whereλ ∈ (0, 1).
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Lemma 4. Suppose the condition (iii) in Theorem 1 holds. Then there ex-
ist positive constantsH1, ..., Hk such that for any solutionx = {x(n)}n∈Z ={(

x(n)

1 , ..., x(n)
k

)†
}

n∈Z

∈ Xω of (21), we have the following inequalities

max
0≤n≤ω−1

∣
∣
∣x(n)

i

∣
∣
∣ ≤ Hi , i ∈ {1, ..., k}. (22)

Proof. Let x = {x(n)}n∈Z be aω-periodic solution of (21). Then

ω−1⊕

s=0



r (s)
i −

k∑

j =1

a(s)
i j expx(s)

j −
k∑

j =1

b(s)
i j expx

(
s−τ

(s)
i j

)

j



 = 0, i ∈ {1, ..., k}. (23)

It leads to

ω−1⊕

s=0




k∑

j =1

a(s)
i j expx(s)

j +
k∑

j =1

b(s)
i j expx

(
s−τ

(s)
i j

)

j



 = ωri . (24)

From (21), we have

1x(n)
i = λ



r (n)
i −

k∑

j =1

a(n)
i j expx(n)

j −
k∑

j =1

b(n)
i j exp

(

x

(
n−τ

(n)
i j

)

j

)

 ,

i ∈ {1, ..., k}, n ∈ Z. (25)

By (24) and (25), we see that

ω−1⊕

s=0

∣
∣
∣1x(s)

i

∣
∣
∣ ≤

ω−1⊕

s=0




∣
∣
∣r (s)

i

∣
∣
∣ +

k∑

j =1

a(s)
i j expx(s)

j +
k∑

j =1

b(s)
i j expx

(
s−τ

(s)
i j

)

j





=
ω−1⊕

s=0

∣
∣
∣r (s)

i

∣
∣
∣ +

ω−1⊕

s=0




k∑

j =1

a(s)
i j exp

(
x(s)

j

)
+

k∑

j =1

b(s)
i j expx

(
s−τ

(s)
i j

)

j





=
(
Ri + r i

)
ω.

(26)
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Let x(μi )

i = max0≤n≤ω−1 x(n)
i andx(νi )

i = min0≤n≤ω−1 x(n)
i , where 0≤ μi , νi ≤

ω − 1. From (24), we have

ωr i >
ω−1⊕

s=0




k∑

j =1

a(s)
i j expx

(ν j )

j +
k∑

j =1

b(s)
i j expx

(ν j )

j





=
k∑

j =1

(
ai j + bi j

)
ω expx

(ν j )

j

>
(
aii + b

)
ω expx(νi )

i ,

(27)

that is,

x(νi )
i ≤ ln

{
r i

aii + bii

}
. (28)

In view of Lemma 3, (26) and (28), we see that for anyn = 0, 1, ..., ω − 1,

x(n)
i ≤ x(νi )

i +
1

2

ω−1∑

k=0

∣
∣
∣1x(k)

i

∣
∣
∣ ≤ Bi , (29)

where

Bi = ln

{
r i

aii + bii

}
+

1

2

(
Ri + r i

)
ω. (30)

Furthermore, from (24), we have

ωr i ≤
ω−1⊕

s=0




k∑

j =1

a(s)
i j expx

(μ j )

j +
k∑

j =1

b(s)
i j expx

(μ j )

j





=
k∑

j =1

(
ai j + bi j

)
ω expx

(μ j )

j .

(31)

By (29) and (31), we see that

(
aii + bii

)
expx(μi )

i

> r i −
∑

1≤ j ≤k, j 6=i

(
ai j + bi j

)
expx

(μ j )

j

> r i −
∑

1≤ j ≤k, j 6=i

(
ai j + bi j

) r j

a j j + bj j

exp

(
1

2

(
Rj + r j

)
ω

)
,

(32)
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that is
x(μi )

i > Ci , (33)

where

Ci = ln






r i −
∑

1≤ j ≤k, j 6=i

(
ai j + bi j

) r j

a j j +bj j
exp

(
1
2

(
Rj + r j

)
ω

)

aii + bii





. (34)

In view of Lemma 3, (26) and (33), we see that for anyn = 0, 1, ..., ω − 1,

x(n)
i > x(μi )

i −
1

2

ω−1∑

k=0

∣
∣
∣1x(k)

i

∣
∣
∣ > Ci −

1

2

(
Ri + ri

)
ω. (35)

From (29) and (35), we have

max
0≤n≤ω−1

∣
∣
∣x(n)

i

∣
∣
∣ ≤ Hi, (36)

whereHi = max
{
|Bi | ,

∣
∣Ci − 1

2

(
Ri + ri

)
ω

∣
∣} + 1. The proof is complete. �

Proof of Theorem 1. Let L , N, P and Q be defined by (5), (6), (8) and (9)
respectively. By conditions (i) and (ii), we know that the linear system of the
form

r i −
k∑

j =1,

(
ai j + bi j

)
v j = 0, i ∈ {1, ..., k}, (37)

has the unique solutionv∗ =
(
v∗

1, v
∗
2, ..., v

∗
k

)†
andv∗

i > 0 for i ∈ {1, ..., k}. Pick
M such that

(
k∑

i =1

(
ln v∗

i

)2

) 1
2

< M. (38)

From Lemma 4, we know there exist positive constantsH1, ..., Hk such that for

any solutionx = {x(n)}n∈Z =
{(

x(n)

1 , ..., x(n)
k

)†
}

n∈Z

∈ Xω of (21), we have the

following inequalities

max
0≤n≤ω−1

∣
∣
∣x(n)

i

∣
∣
∣ ≤ Hi , i = 1, ..., k. (39)

Let H =
(∑k

i =1 H2
i

) 1
2
+ M. Then‖x‖1 < H. Set

� = {x ∈ Xω| ‖x‖1 < H}.
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It is easy to see that� is an open and bounded subset ofXω and for eachλ ∈ (0, 1)

andx ∈ ∂�, Lx 6= λN x. Furthermore, in view of Lemma 1 and Lemma 2,L
is a Fredholm mapping of index zero andN is L-compacton �. Noting that

H >
(∑k

i =1 H2
i

) 1
2
, by Lemma 4, for eachλ ∈ (0, 1) andx ∈ ∂�, Lx 6= λN x.

Next note that a vector sequencex = {x(n)}n∈Z ∈ ∂�∩KerL must be a constant
vector and‖x‖1 = H > M. Hence

‖QN x‖2 =






k∑

i =1







r i −
k∑

j =1

(
ai j + bi j

)
expxj









2





1
2

6= 0.

So
QN x 6= θ2.

The isomorphismJ : Im Q → KerL is defined byJ Qy = α for y = {nα +
h(n)}n∈Z ∈ Yω. Then

(J QN x)(n)
i =

1

ω

ω−1⊕

s=0



r (s)
i −

k∑

j =1

a(s)
i j expx(s)

j −
k∑

j =1

b(s)
i j expx

(
s−τ

(s)
i j

)

j





= r i −
k∑

j =1

(
ai j + bi j

)
expxj ,

(40)

for n ∈ Z and i ∈ {1, ..., k}. Since (37) has the unique solutionv∗ =(
v∗

1, v
∗
2, ..., v

∗
k

)†
with positive components and such that (38) is satisfied, we see

that thesystem

r i −
k∑

j =1

(
ai j + bi j

)
exp

(
xj

)
= 0, i ∈ {1, ..., k} (41)

has a uniquesolution x =
(
x∗

1, x∗
2, ..., x∗

k

)†
in � ∩ Ker L, so that from the

condition (ii) we have

deg(J QN x,� ∩ Ker L , θ1) = sign detϒJ QN (x) 6= 0.

whereϒJ QN (x) is the Jacobi matrix ofJ QN at x. By Theorem A, we see that
equationLx = N x has at least one solutionin � ∩ DomL. In other words, (4)

has aω-periodic solutionx = {x(n)}n∈Z, and hence
{(

ex(n)
1 , ..., ex(n)

k

)}

n∈Z
is a

positiveω-periodic solution of (2). The proof is complete. �
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We remark that by the relationship that exists between (2) and (3), under the
same assumption of Theorem 1, system (3) has a positiveω-periodic solution.

We now illustrate our main result by considering the following system





y(n+1)

1 = y(n)

1 exp

(

r (n)

1 − a(n)

11 y(n)

1 − b(n)

12 y

(
n−τ

(n)
12

)

2

)

,

y(n+1)

2 = y(n)

2 exp

(

r (n)

2 − a(n)

22 y(n)

2 − b(n)

21 y

(
n−τ

(n)
21

)

1

)

,

whereri , bi j , aii andτi j for i, j ∈ {1, 2} are 2-periodic sequences and

r (0)

1 = 0, r (1)

1 = 1, r (0)

2 = 1, r (1)

2 = 0, a(0)

11 = 1/3, a(1)

11 = 2/3, a(0)

22 = 2/3,

a(1)

22 = 1/3, b(0)

12 = 1/6e, b(1)

12 = 1/4e, b(0)

21 = 1/5e, b(1)

21 = 1/7e.

It is easily verified from Theorem 1 that it has a positive 2-periodic solution.
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