
“main” — 2005/11/29 — 17:39 — page 333 — #1

Bull Braz Math Soc, New Series 36(3), 333-362
© 2005, Sociedade Brasileira de Matemática

A generalized Jensen’s mapping and linear
mappings between Banach modules

Chun-Gil Park

Abstract. Let X andY be vector spaces. It is shown that a mappingf : X → Y
satisfies the functional equation

(d + 1) f

(∑d+1
j =1 xj

d + 1

)
=

d+1∑

j =1

f (xj ) (‡)

if and only if the mappingf : X → Y is additive, and prove the Cauchy–Rassias stability
of the functional equation(‡) in Banach modules over a unitalC∗-algebra. LetA andB
be unitalC∗-algebras, PoissonC∗-algebras, PoissonJC∗-algebras or LieJC∗-algebras.
As an application, we show that every almost homomorphismh : A → B of A intoB
is a homomorphism whenh((d + 2)nuy) = h((d + 2)nu)h(y) or h((d + 2)nu ◦ y) =
h((d + 2)nu) ◦ h(y) for all unitariesu ∈ A, all y ∈ A, andn = 0, 1, 2, ∙ ∙ ∙ .

Moreover, we prove the Cauchy–Rassias stability of homomorphisms inC∗-algebras,
PoissonC∗-algebras, PoissonJC∗-algebras or LieJC∗-algebras.

Keywords: Cauchy–Rassias stability,C∗-algebra homomorphism, PoissonC∗-algebra
homomorphism, PoissonJC∗-algebra homomorphism, LieJC∗-algebra homomor-
phism.

Mathematical subject classification:Primary 47B48, 39B52, 46L05, 17A36.

1 Introduction

In 1940, S.M. Ulam [24] raised the following question: Under what conditions
does there exist an additive mapping near an approximately additive mapping?

Let X andY be Banach spaces with norms|| ∙ || and‖ ∙ ‖, respectively. Hyers
[4] showed that ifε > 0 and f : X → Y such that

‖ f (x + y) − f (x) − f (y)‖ ≤ ε
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for all x, y ∈ X, then there exists a unique additive mappingT : X → Y such
that

‖ f (x) − T(x)‖ ≤ ε

for all x ∈ X.
Consider f : X → Y to be a mapping such thatf (t x) is continuous int ∈ R

for each fixedx ∈ X. Assume that there exist constantsε ≥ 0 andp ∈ [0, 1)

such that
‖ f (x + y) − f (x) − f (y)‖ ≤ ε(||x||p + ||y||p) (*)

for all x, y ∈ X. Th.M. Rassias [16] showed that there exists a uniqueR-linear
mappingT : X → Y such that

‖ f (x) − T(x)‖ ≤
2ε

2 − 2p
||x||p

for all x ∈ X. The inequality (∗) that was introduced for the first time by
Th.M. Rassias [16] we call Cauchy–Rassias inequality and the stability of the
functional equationCauchy–Rassias stability. This inequality has provided a
lot of influence in the development of what we now callHyers–Ulam–Rassias
stability of functional equations. Beginning around the year 1980 the topic of
approximate homomorphisms, or the stability of the equation of homomorphism,
was taken up by a number of mathematicians (cf. [2], [5], [11]–[14], [18]–
[23]). Th.M. Rassias [17] during the 27th International Symposium on Functional
Equations asked the question whether such a theorem can also be proved for
p ≥ 1. Z. Gajda [1] following the same approach as in Th.M. Rassias [16], gave
an affirmative solution to this question forp > 1.

Jun and Lee [6] proved the following: Denote byϕ : X\{0}×X\{0} → [0, ∞)

a function such that

ϕ̃(x, y) =
∞∑

j =0

3− j ϕ(3 j x, 3 j y) < ∞

for all x, y ∈ X \ {0}. Suppose thatf : X → Y is a mapping satisfying

‖2 f

(
x + y

2

)
− f (x) − f (y)‖ ≤ ϕ(x, y)

for all x, y ∈ X \ {0}. Then there exists a unique additive mappingT : X → Y
such that

‖ f (x) − f (0) − T(x)| ≤
1

3
(ϕ̃(x, −x) + ϕ̃(−x, 3x))
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for all x ∈ X \ {0}. C. Park and W. Park [15] applied the Jun and Lee’s result to
the Jensen’s equation in Banach modules over aC∗-algebra.

Throughout this paper, assume thatd is a positive integer.
In this paper, we solve the following functional equation

(d + 1) f

(∑d+1
j =1 xj

d + 1

)
=

d+1∑

j =1

f (xj ). (1.i)

We moreover prove the Cauchy–Rassias stability of the functional equation (1.i)
in Banach modules over a unitalC∗-algebra. The main purpose of this paper
is to investigate homomorphisms betweenC∗-algebras, between PoissonC∗-
algebras, between PoissonJC∗-algebras and between LieJC∗-algebras, and to
prove their Cauchy–Rassias stability.

2 A generalized Jensen’s mapping

Throughout this section, assume thatX andY are linear spaces.

Lemma 2.1. A mappingf : X → Y satisfies(1.i) for all x1, x2, ∙ ∙ ∙ , xd+1 ∈ X
and f (0) = 0 if and only if f is additive.

Proof. Assume thatf : X → Y satisfies (1.i) for allx1, x2, ∙ ∙ ∙ , xd+1 ∈ X.
Puttingx2 = ∙ ∙ ∙ = xd+1 = 0 in (1.i), we get

(d + 1) f

(
x1

d + 1

)
= f (x1) (2.1)

for all x1 ∈ X. Puttingx3 = ∙ ∙ ∙ = xd+1 = 0 in (1.i), it follows from (2.1) that

f (x1 + x2) = (d + 1) f

(
x1 + x2

d + 1

)
= f (x1) + f (x2)

for all x1, x2 ∈ X. Thus f is additive.
The converse is obviously true. �

When d = 1 in the functional equation (1.i), the functional equation (1.i)
becomes the Jensen functional equation 2f (

x+y
2 ) = f (x) + f (y).
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3 Cauchy–Rassias stability of the generalized Jensen’s mapping in Banach
modules over aC∗-algebra

Throughout this section, assume thatA is a unitalC∗-algebra with norm| ∙ | and
unitary groupU(A), and thatX andY are left Banach modules overA with
norms|| ∙ || and‖ ∙ ‖, respectively.

Given a mappingf : X → Y, we set

Du f (x1, ∙ ∙ ∙ , xd+1) := (d + 1) f

(∑d+1
j =1 uxj

d + 1

)
−

d+1∑

j =1

u f (xj )

for all u ∈ U(A) and allx1, ∙ ∙ ∙ , xd+1 ∈ X.

Theorem 3.1. Let f : X → Y be a mapping satisfyingf (0) = 0 for which
there is a functionϕ : Xd+1 → [0, ∞) such that

ϕ̃(x1, ∙ ∙ ∙ , xd+1) :=
∞∑

j =0

1

(d + 2) j
ϕ((d + 2) j x1, ∙ ∙ ∙ , (d + 2) j xd+1) < ∞, (3.i)

‖Du f (x1, ∙ ∙ ∙ , xd+1)‖ ≤ ϕ(x1, ∙ ∙ ∙ , xd+1) (3.ii)

for all u ∈ U(A) and allx1, ∙ ∙ ∙ , xd+1 ∈ X. Then there exists a uniqueA-linear
generalized Jensen’s mappingL : X → Y such that

‖ f (x) − L(x)‖ ≤

1

d + 2





ϕ̃

(
(d + 2)x, −

x

d
, ∙ ∙ ∙ , −

x

d︸ ︷︷ ︸
d times

)
+ ϕ̃

(
x, −

x

d
, ∙ ∙ ∙ , −

x

d︸ ︷︷ ︸
d times

)




 (3.iii)

for all x ∈ X.

Proof. Let u = 1 ∈ U(A). Puttingx1 = dx andx2 = ∙ ∙ ∙ = xd+1 = −x in
(3.ii), we have

‖ − f (dx) − d f (−x)‖ ≤ ϕ(dx, −x, ∙ ∙ ∙ , −x︸ ︷︷ ︸
d times

) (3.1)
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for all x ∈ X. Puttingx1 = (d2 + 2d)x andx2 = ∙ ∙ ∙ = xd+1 = −x in (3.ii), we
have

‖(d + 1) f (dx) − f ((d2 + 2d)x) − d f (−x)‖ ≤ ϕ((d2 + 2d)x, −x, ∙ ∙ ∙ , −x︸ ︷︷ ︸
d times

)

for all x ∈ X. So

‖(d + 2) f (dx) − f ((d2 + 2d)x)‖ ≤ϕ((d2 + 2d)x, −x, ∙ ∙ ∙ , −x︸ ︷︷ ︸
d times

)

+ ϕ(dx, −x, ∙ ∙ ∙ , −x︸ ︷︷ ︸
d times

),

and

‖ f (x) −
1

d + 2
f ((d + 2)x)‖ ≤

1

d + 2
ϕ

(
(d + 2)x, −

x

d
, ∙ ∙ ∙ , −

x

d︸ ︷︷ ︸
d times

)

+
1

d + 2
ϕ

(
x, −

x

d
, ∙ ∙ ∙ , −

x

d︸ ︷︷ ︸
d times

) (3.2)

for all x ∈ X. Hence

‖
1

(d + 2)n
f ((d + 2)nx) −

1

(d + 2)n+1
f ((d + 2)n+1x)‖

=
1

(d + 2)n
‖ f ((d + 2)nx) −

1

d + 2
f ((d + 2)(d + 2)nx)‖

≤
1

(d + 2)n+1
ϕ

(
(d + 2)n+1x, −

(d + 2)nx

d
, ∙ ∙ ∙ , −

(d + 2)nx

d︸ ︷︷ ︸
d times

)

+
1

(d + 2)n+1
ϕ

(
(d + 2)nx, −

(d + 2)nx

d
, ∙ ∙ ∙ , −

(d + 2)nx

d︸ ︷︷ ︸
d times

)

(3.3)
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for all x ∈ X and all positive integersn. By (3.3), we have

‖
1

(d + 2)m
f ((d + 2)mx) −

1

(d + 2)n
f ((d + 2)nx)‖

≤
n−1∑

k=m

(
1

(d + 2)k+1
ϕ

(
(d + 2)k+1x, −

(d + 2)kx

d
, ∙ ∙ ∙ , −

(d + 2)kx

d︸ ︷︷ ︸
d times

)

+
1

(d + 2)k+1
ϕ

(
(d + 2)kx, −

(d + 2)kx

d
, ∙ ∙ ∙ , −

(d + 2)kx

d︸ ︷︷ ︸
d times

))

(3.4)

for all x ∈ X and all positive integersm andn with m < n. This shows that the

sequence
{ 1

(d + 2)n
f ((d + 2)nx)

}
is a Cauchy sequence for allx ∈ X. Since

Y is complete, the sequence
{ 1

(d + 2)n
f ((d + 2)nx)

}
converges for allx ∈ X.

So we can define a mappingL : X → Y by

L(x) := lim
n→∞

1

(d + 2)n
f ((d + 2)nx)

for all x ∈ X. Also, we get

‖D1L(x1, ∙ ∙ ∙ , xd+1)‖ = lim
n→∞

1

(d + 2)n
‖D1 f ((d + 2)nx1, ∙ ∙ ∙ , (d + 2)nxd+1)‖

≤ lim
n→∞

1

(d + 2)n
ϕ((d + 2)nx1, ∙ ∙ ∙ , (d + 2)nxd+1) = 0

for all x1, ∙ ∙ ∙ , xd+1 ∈ X. By Lemma 2.1,L is additive. Puttingm = 0 and
lettingn → ∞ in (3.4), we get (3.iii).

Now, let L ′ : X → Y be another generalized Jensen’s mapping satisfying
(3.iii). Then we have

‖L(x)−L ′(x)‖ =
1

(d + 2)n
‖L((d + 2)nx) − L ′((d + 2)nx)‖

≤
1

(d + 2)n
(‖L((d + 2)nx) − f ((d + 2)nx)‖

+ ‖L ′((d + 2)nx) − f ((d + 2)nx)‖)
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≤
2

(d + 2)n+1
ϕ̃

(
(d + 2)n+1x, −

(d + 2)nx

d
, ∙ ∙ ∙ , −

(d + 2)nx

d︸ ︷︷ ︸
d times

)

+
2

(d + 2)n+1
ϕ̃

(
(d + 2)nx, −

(d + 2)nx

d
, ∙ ∙ ∙ , −

(d + 2)nx

d︸ ︷︷ ︸
d times

)
,

which tends to zero asn → ∞ for all x ∈ X. So we can conclude that
L(x) = L ′(x) for all x ∈ X. This proves the uniqueness ofL.

By the assumption, for eachu ∈ U(A), we get

‖DuL(x, 0, ∙ ∙ ∙ , 0︸ ︷︷ ︸
d times

)‖ = lim
n→∞

1

(d + 2)n
‖Du f ((d + 2)nx, 0, ∙ ∙ ∙ , 0︸ ︷︷ ︸

d times

)‖

≤ lim
n→∞

1

(d + 2)n
ϕ((d + 2)nx, 0, ∙ ∙ ∙ , 0︸ ︷︷ ︸

d times

) = 0

for all x ∈ X. So

(d + 1)L

(
ux

d + 1

)
= uL(x)

for all u ∈ U(A) and allx ∈ X. SinceL is additive,

L(ux) = (d + 1)L

(
ux

d + 1

)
= uL(x) (3.5)

for all u ∈ U(A) and allx ∈ X.
Now leta ∈ A (a 6= 0) andM an integer greater than 4|a|. Then| a

M | < 1
4 <

1 − 2
3 = 1

3. By [7, Theorem 1], there exist three elementsu1, u2, u3 ∈ U(A)

such that 3a
M = u1 + u2 + u3. So by (3.5)

L(ax) = L

(
M

3
∙ 3

a

M
x

)
= M ∙ L

(
1

3
∙ 3

a

M
x

)
=

M

3
L

(
3

a

M
x

)

=
M

3
L(u1x + u2x + u3x) =

M

3
(L(u1x) + L(u2x) + L(u3x))

=
M

3
(u1 + u2 + u3)L(x) =

M

3
∙ 3

a

M
L(x)

= aL(x)

for all a ∈ A and allx ∈ X. Hence

L(ax + by) = L(ax) + L(by) = aL(x) + bL(y)
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for all a, b ∈ A(a, b 6= ′) and allx, y ∈ X. And L(0x) = 0 = 0L(x) for all
x ∈ X. So the unique generalized Jensen’s mappingL : A → B is anA-linear
mapping, as desired. �

Corollary 3.2. Let θ and p < 1 be positive real numbers. Letf : X → Y be
a mapping satisfyingf (0) = 0 such that

‖Du f (x1, ∙ ∙ ∙ , xd+1)‖ ≤ θ

d+1∑

j =1

||xj ||
p

for all u ∈ U(A) and allx1, ∙ ∙ ∙ , xd+1 ∈ X. Then there exists a uniqueA-linear
generalized Jensen’s mappingL : X → Y such that

‖ f (x) − L(x)‖ ≤
(d + 2)p + 1 + 2d1−p

(d + 2) − (d + 2)p
θ ||x||p

for all x ∈ X.

Proof. Defineϕ(x1, ∙ ∙ ∙ , xd+1) = θ
∑d+1

j =1 ||xj ||p, and apply Theorem 3.1.�

Theorem 3.3. Let f : X → Y be a mapping satisfyingf (0) = 0 for which
there is a functionϕ : Xd+1 → [0, ∞) such that

ϕ̃(x1, ∙ ∙ ∙ , xd+1) :=
∞∑

j =1

(d + 2) j ϕ

(
x1

(d + 2) j
, ∙ ∙ ∙ ,

xd+1

(d + 2) j

)
< ∞, (3.iv)

‖Du f (x1, ∙ ∙ ∙ , xd+1)‖ ≤ ϕ(x1, ∙ ∙ ∙ , xd+1) (3.v)

for all u ∈ U(A) and allx1, ∙ ∙ ∙ , xd+1 ∈ X. Then there exists a uniqueA-linear
generalized Jensen’s mappingL : X → Y such that

‖ f (x) − L(x)‖ ≤
1

d + 2
ϕ̃

(
(d + 2)x, −

x

d
, ∙ ∙ ∙ , −

x

d︸ ︷︷ ︸
d times

)

+
1

d + 2
ϕ̃

(
x, −

x

d
, ∙ ∙ ∙ , −

x

d︸ ︷︷ ︸
d times

) (3.vi)

for all x ∈ X.
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Proof. Replacingx by x
d+2 in (3.2), we have

‖ f (x) − (d + 2) f

(
x

d + 2

)
‖ ≤ϕ

(
x, −

x

d(d + 2)
, ∙ ∙ ∙ , −

x

d(d + 2)︸ ︷︷ ︸
d times

)

+ ϕ

(
x

d + 2
, −

x

d(d + 2)
, ∙ ∙ ∙ , −

x

d(d + 2)︸ ︷︷ ︸
d times

)

for all x ∈ X. So

‖(d + 2)n f

(
x

(d + 2)n

)
− (d + 2)n+1 f

(
x

(d + 2)n+1

)
‖

= (d + 2)n‖ f

(
x

(d + 2)n

)
− (d + 2) f

(
1

d + 2
∙

x

(d + 2)n

)
‖

≤ (d + 2)nϕ

(
x

(d + 2)n
, −

x

d(d + 2)n+1
, ∙ ∙ ∙ , −

x

d(d + 2)n+1
︸ ︷︷ ︸

d times

)

+ (d + 2)nϕ

(
x

(d + 2)n+1
, −

x

d(d + 2)n+1
, ∙ ∙ ∙ , −

x

d(d + 2)n+1
︸ ︷︷ ︸

d times

)

(3.6)

for all x ∈ X and all positive integersn. By (3.6), we have

‖(d + 2)m f

(
x

(d + 2)m

)
− (d + 2)n f

(
x

(d + 2)n

)
‖

≤
n−1∑

k=m

(
(d + 2)kϕ

(
x

(d + 2)k
, −

x

d(d + 2)k+1
, ∙ ∙ ∙ , −

x

d(d + 2)k+1
︸ ︷︷ ︸

d times

)

+ (d + 2)kϕ

(
x

(d + 2)k+1
, −

x

d(d + 2)k+1
, ∙ ∙ ∙ , −

x

d(d + 2)k+1
︸ ︷︷ ︸

d times

))

(3.7)

for all x ∈ X and all positive integersm andn with m < n. This shows that the
sequence{(d + 2)n f ( x

(d+2)n )} is a Cauchy sequence for allx ∈ X. SinceY is
complete, the sequence{(d + 2)n f ( x

(d+2)n )} converges for allx ∈ X. So we can
define a mappingL : X → Y by

L(x) := lim
n→∞

(d + 2)n f

(
x

(d + 2)n

)
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for all x ∈ X. Also, we get

‖D1L(x1, ∙ ∙ ∙ , xd+1)‖ = lim
n→∞

(d + 2)n‖D1 f

(
x1

(d + 2)n
, ∙ ∙ ∙ ,

xd+1

(d + 2)n

)
‖

≤ lim
n→∞

(d + 2)nϕ

(
x1

(d + 2)n
, ∙ ∙ ∙ ,

xd+1

(d + 2)n

)
= 0

for all x1, ∙ ∙ ∙ , xd+1 ∈ X. By Lemma 2.1,L is additive. Puttingm = 0 and
lettingn → ∞ in (3.7), we get (3.vi).

The rest of the proof is similar to the proof of Theorem 3.1. �

Corollary 3.4. Let θ and p > 1 be positive real numbers. Letf : X → Y be
a mapping satisfyingf (0) = 0 such that

‖Du f (x1, ∙ ∙ ∙ , xd+1)‖ ≤ θ

d+1∑

j =1

||xj ||
p

for all u ∈ U(A) and allx1, ∙ ∙ ∙ , xd+1 ∈ X. Then there exists a uniqueA-linear
generalized Jensen’s mappingL : X → Y such that

‖ f (x) − L(x)‖ ≤
(d + 2)p + 1 + 2d1−p

(d + 2)p − (d + 2)
θ ||x||p

for all x ∈ X.

Proof. Defineϕ(x1, ∙ ∙ ∙ , xd+1) = θ
∑d+1

j =1 ||xj ||p, and apply Theorem 3.3.�

Theorem 3.5. Let d > 1, and let f : X → Y be an odd mapping for which
there is a functionϕ : Xd+1 → [0, ∞) such that

ϕ̃(x1, ∙ ∙ ∙ , xd+1) :=
∞∑

j =0

1

d j
ϕ(d j x1, ∙ ∙ ∙ , d j xd+1) < ∞, (3.vii)

‖Du f (x1, ∙ ∙ ∙ , xd+1)‖ ≤ ϕ(x1, ∙ ∙ ∙ , xd+1) (3.viii)

for all u ∈ U(A) and allx1, ∙ ∙ ∙ , xd+1 ∈ X. Then there exists a uniqueA-linear
generalized Jensen’s mappingL : X → Y such that

‖ f (x) − L(x)‖ ≤
1

d
ϕ̃(dx, −x, ∙ ∙ ∙ , −x︸ ︷︷ ︸

d times

) (3.ix)

for all x ∈ X.
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Proof. Note that f (0) = 0 and f (−x) = − f (x) for all x ∈ X since f is an
odd mapping. Letu = 1 ∈ U(A). By (3.1),

‖ − f (dx) + d f (x)‖ ≤ ϕ(dx, −x, ∙ ∙ ∙ , −x︸ ︷︷ ︸
d times

) (3.8)

for all x ∈ X. So

‖ f (x) −
1

d
f (dx)‖ ≤

1

d
ϕ(dx, −x, ∙ ∙ ∙ , −x︸ ︷︷ ︸

d times

)

for all x ∈ X. Hence

‖
1

dn
f (dnx) −

1

dn+1
f (dn+1x)‖ =

1

dn
‖ f (dnx) −

1

d
f (d ∙ dnx)‖

≤
1

dn+1
ϕ(dn+1x, −dnx, ∙ ∙ ∙ , −dnx︸ ︷︷ ︸

d times

)

(3.9)

for all x ∈ X and all positive integersn. By (3.9), we have

‖
1

dm
f (dmx) −

1

dn
f (dnx)‖ ≤

n−1∑

k=m

1

dk+1
ϕ(dk+1x, −dkx, ∙ ∙ ∙ , −dkx︸ ︷︷ ︸

d times

) (3.10)

for all x ∈ X and all positive integersm andn with m < n. This shows that the
sequence{ 1

dn f (dnx)} is a Cauchy sequence for allx ∈ X. SinceY is complete,
the sequence{ 1

dn f (dnx)} converges for allx ∈ X. So we can define a mapping
L : X → Y by

L(x) := lim
n→∞

1

dn
f (dnx)

for all x ∈ X. Since f (−x) = − f (x) for all x ∈ X, we haveL(−x) = L(x)

for all x ∈ X. Also, we get

‖D1L(x1, ∙ ∙ ∙ , xd+1)‖ = lim
n→∞

1

dn
‖D1 f (dnx1, ∙ ∙ ∙ , dnxd+1)‖

≤ lim
n→∞

1

dn
ϕ(dnx1, ∙ ∙ ∙ , dnxd+1) = 0

for all x1, ∙ ∙ ∙ , xd+1 ∈ X. By Lemma 2.1,L is additive. Puttingm = 0 and
lettingn → ∞ in (3.10), we get (3.ix).

The rest of the proof is similar to the proof of Theorem 3.1. �
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Corollary 3.6. Let d > 1 and letθ and p < 1 be positive real numbers. Let
f : X → Y be an odd mapping such that

‖Du f (x1, ∙ ∙ ∙ , xd+1)‖ ≤ θ

d+1∑

j =1

||xj ||
p

for all u ∈ U(A) and allx1, ∙ ∙ ∙ , xd+1 ∈ X. Then there exists a uniqueA-linear
generalized Jensen’s mappingL : X → Y such that

‖ f (x) − L(x)‖ ≤
d + dp

d − dp
θ ||x||p

for all x ∈ X.

Proof. Defineϕ(x1, ∙ ∙ ∙ , xd+1) = θ
∑d+1

j =1 ||xj ||p, and apply Theorem 3.5.�

Theorem 3.7. Let d > 1 and let f : X → Y be an odd mapping for which
there is a functionϕ : Xd+1 → [0, ∞) such that

ϕ̃(x1, ∙ ∙ ∙ , xd+1) :=
∞∑

j =1

d j ϕ

(
x1

d j
, ∙ ∙ ∙ ,

xd+1

d j

)
< ∞, (3.x)

‖Du f (x1, ∙ ∙ ∙ , xd+1)‖ ≤ ϕ(x1, ∙ ∙ ∙ , xd+1) (3.xi)

for all u ∈ U(A) and allx1, ∙ ∙ ∙ , xd+1 ∈ X. Then there exists a uniqueA-linear
generalized Jensen’s mappingL : X → Y such that

‖ f (x) − L(x)‖ ≤
1

d
ϕ̃(dx, −x, ∙ ∙ ∙ , −x︸ ︷︷ ︸

d times

) (3.xii)

for all x ∈ X.

Proof. Note that f (0) = 0 and f (−x) = − f (x) for all x ∈ X since f is an
odd mapping. Replacingx by x

d in (3.8), we have

‖ f (x) − d f (
x

d
)‖ ≤ ϕ

(
x, −

x

d
, ∙ ∙ ∙ , −

x

d︸ ︷︷ ︸
d times

)
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for all x ∈ X. So

‖dn f

(
x

dn

)
− dn+1 f

(
x

dn+1

)
‖ = dn‖ f

(
x

dn

)
− d f

(
1

d
∙

x

dn

)
‖

≤ dnϕ

(
x

dn
, −

x

dn+1
, ∙ ∙ ∙ , −

x

dn+1
︸ ︷︷ ︸

d times

)
(3.11)

for all x ∈ X and all positive integersn. By (3.11), we have

‖dm f

(
x

dm

)
− dn f

(
x

dn

)
‖ ≤

n−1∑

k=m

dkϕ

(
x

dk
, −

x

dk+1
, ∙ ∙ ∙ , −

x

dk+1
︸ ︷︷ ︸

d times

)
(3.12)

for all x ∈ X and all positive integersm andn with m < n. This shows that the
sequence{dn f ( x

dn )} is a Cauchy sequence for allx ∈ X. SinceY is complete,
the sequence{dn f ( x

dn )} converges for allx ∈ X. So we can define a mapping
L : X → Y by

L(x) := lim
n→∞

dn f

(
x

dn

)

for all x ∈ X. Since f (−x) = − f (x) for all x ∈ X, we haveL(−x) = L(x)

for all x ∈ X. Also, we get

‖D1L(x1, ∙ ∙ ∙ , xd+1)‖ = lim
n→∞

dn‖D1 f

(
x1

dn
, ∙ ∙ ∙ ,

xd+1

dn

)
‖

≤ lim
n→∞

dnϕ

(
x1

dn
, ∙ ∙ ∙ ,

xd+1

dn

)
= 0

for all x1, ∙ ∙ ∙ , xd+1 ∈ X. By Lemma 2.1,L is additive. Puttingm = 0 and
lettingn → ∞ in (3.12), we get (3.xii).

The rest of the proof is similar to the proof of Theorem 3.1. �

Corollary 3.8. Let d > 1 and letθ and p > 1 be positive real numbers. Let
f : X → Y be an odd mapping such that

‖Du f (x1, ∙ ∙ ∙ , xd+1)‖ ≤ θ

d+1∑

j =1

||xj ||
p

for all u ∈ U(A) and allx1, ∙ ∙ ∙ , xd+1 ∈ X. Then there exists a uniqueA-linear
generalized Jensen’s mappingL : X → Y such that

‖ f (x) − L(x)‖ ≤
dp + d

dp − d
θ ||x||p
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for all x ∈ X.

Proof. Defineϕ(x1, ∙ ∙ ∙ , xd+1) = θ
∑d+1

j =1 ||xj ||p, and apply Theorem 3.7.�

4 Isomorphisms between unitalC∗-algebras

Throughout this section, assume thatA is a unitalC∗-algebra with norm|| ∙ ||,
unit eand unitary groupU(A), and thatB is a unitalC∗-algebra with norm‖ ∙‖.

We are going to investigateC∗-algebra isomorphisms between unitalC∗-
algebras.

Theorem 4.1. Let h : A → B be a bijective mapping satisfyingh(0) = 0
and h((d + 2)nuy) = h((d + 2)nu)h(y) for all u ∈ U(A), all y ∈ A, and
n = 0, 1, 2, ∙ ∙ ∙ , for which there is a functionϕ : Ad+1 → [0, ∞) satisfying
(3.i) such that

‖(d + 1)h

(∑d+1
j =1 μxj

d + 1

)
−

d+1∑

j =1

μh(xj )‖ ≤ ϕ(x1, ∙ ∙ ∙ , xd+1), (4.i)

‖h((d + 2)nu∗) − h((d + 2)nu)∗‖ ≤ϕ((d + 2)nu, ∙ ∙ ∙ , (d + 2)nu︸ ︷︷ ︸
d + 1 times

) (4.ii)

for all u ∈ U(A), all x1, ∙ ∙ ∙ , xd+1 ∈ A, all μ ∈ T1 := {λ ∈ C | |λ| = 1}
and n = 0, 1, 2, ∙ ∙ ∙ . Assume that(4.iii) lim n→∞

h((d+2)ne)
(d+2)n is invertible. Then

the bijective mappingh : A → B is aC∗-algebra isomorphism.

Proof. We can consider aC∗-algebra as a Banach module over a unitalC∗-
algebraC. So by Theorem 3.1, there exists a uniqueC-linear mappingH : A →
B such that

‖h(x) − H(x)‖ ≤
1

d + 2
ϕ̃

(
(d + 2)x, −

x

d
, ∙ ∙ ∙ , −

x

d︸ ︷︷ ︸
d times

)

+
1

d + 2
ϕ̃

(
x, −

x

d
, ∙ ∙ ∙ , −

x

d︸ ︷︷ ︸
d times

) (4.iv)

for all x ∈ A. The mappingH : A → B is given by

H(x) = lim
n→∞

1

(d + 2)n
h((d + 2)nx) (4.1)
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for all x ∈ A.
By (3.i) and (4.ii), we get

H(u∗) = lim
n→∞

h((d + 2)nu∗)

(d + 2)n
= lim

n→∞

h((d + 2)nu)∗

(d + 2)n

=
(

lim
n→∞

h((d + 2)nu)

(d + 2)n

)∗

= H(u)∗

for all u ∈ U(A). SinceH isC-linear and eachx ∈ A is a finite linear combi-
nation of unitary elements (see [8, Theorem 4.1.7]), i.e.,x =

∑m
j =1 λ j u j (λ j ∈

C, u j ∈ U(A)),

H(x∗) = H

( m∑

j =1

λ j u
∗
j

)
=

m∑

j =1

λ j H(u∗
j ) =

m∑

j =1

λ j H(u j )
∗

=
( m∑

j =1

λ j H(u j )

)∗

= H

( m∑

j =1

λ j u j

)∗

= H(x)∗

for all x ∈ A.
Sinceh((d + 2)nuy) = h((d + 2)nu)h(y) for all u ∈ U(A), all y ∈ A, and

all n = 0, 1, 2, ∙ ∙ ∙ ,

H(uy) = lim
n→∞

1

(d + 2)n
h((d + 2)nuy)

= lim
n→∞

1

(d + 2)n
h((d + 2)nu)h(y)

= H(u)h(y)

(4.2)

for all u ∈ U(A) and ally ∈ A. By the additivity ofH and (4.2),

(d + 2)nH(uy) = H((d + 2)nuy) = H(u((d + 2)ny)) = H(u)h((d + 2)ny)

for all u ∈ U(A) and ally ∈ A. Hence

H(uy) =
1

(d + 2)n
H(u)h((d + 2)ny) = H(u)

1

(d + 2)n
h((d + 2)ny) (4.3)

for all u ∈ U(A) and ally ∈ A. Taking the limit in (4.3) asn → ∞, we obtain

H(uy) = H(u)H(y) (4.4)
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for all u ∈ U(A) and ally ∈ A. SinceH isC-linear and eachx ∈ A is a finite
linear combination of unitary elements, i.e.,x =

∑m
j =1 λ j u j (λ j ∈ C, u j ∈

U(A)), it follows from (4.4) that

H(xy) = H

( m∑

j =1

λ j u j y

)
=

m∑

j =1

λ j H(u j y) =
m∑

j =1

λ j H(u j )H(y)

= H

( m∑

j =1

λ j u j

)
H(y) = H(x)H(y)

for all x, y ∈ A.
By (4.2) and (4.4),

H(e)H(y) = H(ey) = H(e)h(y)

for all y ∈ A. Since limn→∞
h((d + 2)ne)

(d + 2)n
= H(e) is invertible,H(y) = h(y)

for all y ∈ A.
Therefore, the bijective mappingh : A → B is aC∗-algebra isomorphism.�

Corollary 4.2. Let h : A → B be a bijective mapping satisfyingh(0) = 0
andh((d + 2)nuy) = h((d + 2)nu)h(y) for all u ∈ U(A), all y ∈ A, and all
n = 0, 1, 2, ∙ ∙ ∙ , for which there exist constantsθ ≥ 0 and p ∈ [0, 1) such that

‖(d + 1)h

(∑d+1
j =1 μxj

d + 1

)
−

d+1∑

j =1

μh(xj )‖ ≤ θ

d+1∑

j =1

||xj ||
p,

‖h((d + 2)nu∗) − h((d + 2)nu)∗‖ ≤ (d + 1)(d + 2)npθ

for all μ ∈ T1, all u ∈ U(A), n = 0, 1, 2, ∙ ∙ ∙ , and all x1, ∙ ∙ ∙ , xd+1 ∈ A.
Assume thatlimn→∞

h((d+2)ne)
(d+2)n is invertible. Then the bijective mappingh : A →

B is aC∗-algebra isomorphism.

Proof. Defineϕ(x1, ∙ ∙ ∙ , xd+1) = θ
∑d+1

j =1 ||xj ||p, and apply Theorem 4.1.�

Theorem 4.3. Let h : A → B be a bijective mapping satisfyingh(0) = 0
and h((d + 2)nuy) = h((d + 2)nu)h(y) for all u ∈ U(A), all y ∈ A, and
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n = 0, 1, 2, ∙ ∙ ∙ , for which there is a functionϕ : Ad+1 → [0, ∞) satisfying
(3.i), (4.ii), and(4.iii) such that

‖(d + 1)h

(∑d+1
j =1 μxj

d + 1

)
−

d+1∑

j =1

μh(xj )‖ ≤ ϕ(x1, ∙ ∙ ∙ , xd+1), (4.v)

for all x1, ∙ ∙ ∙ , xd+1 ∈ A and μ = 1, i . If h(t x) is continuous int ∈ R for
each fixedx ∈ A, then the bijective mappingh : A → B is a C∗-algebra
isomorphism.

Proof. Putμ = 1 in (4.v). By the same reasoning as in the proof of Theorem
4.1, there exists a unique generalized Jensen’s mappingH : A → B satisfying
(4.iv). By the same reasoning as in the proof of [16, Theorem], the additive
mappingH : A → B isR-linear.

Putμ = i in (4.v). By the same method as in the proof of Theorem 4.1, one
can obtain that

H(i x) = lim
n→∞

h((d + 2)ni x)

(d + 2)n
= lim

n→∞

ih((d + 2)nx)

(d + 2)n
= i H (x)

for all x ∈ A.
For each elementλ ∈ C, λ = s + i t , wheres, t ∈ R. So

H(λx) = H(sx+ i t x) = sH(x) + t H(i x) = sH(x) + i t H (x)

= (s + i t )H(x) = λH(x)

for all λ ∈ C and allx ∈ A. So

H(ζ x + ηy) = H(ζ x) + H(ηy) = ζ H(x) + ηH(y)

for all ζ, η ∈ C, and allx, y ∈ A. Hence the additive mappingH : A → B is
C-linear.

The rest of the proof is the same as in the proof of Theorem 4.1. �

Now we prove the Cauchy–Rassias stability ofC∗-algebra homomorphisms
in unitalC∗-algebras.

Theorem 4.4. Let h : A → B be a mapping satisfyingh(0) = 0 for which
there exists a functionϕ : Ad+1 → [0, ∞) satisfying(3.i), (4.i) and (4.ii) such
that

‖h((d + 2)nu(d + 2)nv) − h((d + 2)nu)h((d + 2)nv)‖

≤ ϕ((d + 2)nu, (d + 2)nv, 0, ∙ ∙ ∙ , 0︸ ︷︷ ︸
d − 1 times

) (4.vi)
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for all u, v ∈ U(A) andn = 0, 1, 2, ∙ ∙ ∙ . Then there exists a uniqueC∗-algebra
homomorphismH : A → B satisfying(4.iv).

Proof. By the same reasoning as in the proof of Theorem 4.1, there exists a
uniqueC-linear involutive mappingH : A → B satisfying (4.iv).

By (4.vi),

1

(d + 2)2n
‖h((d + 2)nu(d + 2)nv) − h((d + 2)nu)h((d + 2)nv)‖

≤
1

(d + 2)2n
ϕ((d + 2)nu, (d + 2)nv, 0, ∙ ∙ ∙ , 0︸ ︷︷ ︸

d − 1 times

)

≤
1

(d + 2)n
ϕ((d + 2)nu, (d + 2)nv, 0, ∙ ∙ ∙ , 0︸ ︷︷ ︸

d − 1 times

),

which tends to zero by (3.i) asn → ∞. By (4.1),

H(uv) = lim
n→∞

h((d + 2)nu(d + 2)nv)

(d + 2)2n
= lim

n→∞

h((d + 2)nu)h((d + 2)nv)

(d + 2)2n

= lim
n→∞

h((d + 2)nu)

(d + 2)n

h((d + 2)nv)

(d + 2)n
= H(u)H(v)

for all u, v ∈ U(A). SinceH is C-linear and eachx ∈ A is a finite linear
combination of unitary elements, i.e.,x =

∑m
j =1 λ j u j (λ j ∈ C, u j ∈ U(A)),

H(xv) = H

( m∑

j =1

λ j u j v

)
=

m∑

j =1

λ j H(u j v) =
m∑

j =1

λ j H(u j )H(v)

= H

( m∑

j =1

λ j u j

)
H(v) = H(x)H(v)

for all x ∈ A and allv ∈ U(A). By the same method as given above, one can
obtain that

H(xy) = H(x)H(y)

for all x, y ∈ A. So the mappingH : A → B is aC∗-algebra homomorphism,
as desired. �
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5 Homomorphisms between PoissonC∗-algebras

A PoissonC∗-algebraA is aC∗-algebra with aC-bilinear map{∙, ∙} : A×A →
A, called aPoisson bracket, such that(A, {∙, ∙}) is a complex Lie algebra and

{ab, c} = a{b, c} + {a, c}b

for all a, b, c ∈ A. Poisson algebras have played an important role in many
mathematical areas and have been studied to find sympletic leaves of the cor-
responding Poisson varieties. It is also important to find or construct a Poisson
bracket in the theory of Poisson algebra (see [3], [9], [10]).

Throughout this section, letA be a unital PoissonC∗-algebra with norm|| ∙ ||,
unit e and unitary groupU(A), andB a unital PoissonC∗-algebra with norm
‖ ∙ ‖.

Definition 5.1. A C∗-algebra homomorphismH : A → B is called a Poisson
C∗-algebra homomorphism ifH : A → B satisfies

H({z, w}) = {H(z), H(w)}

for all z, w ∈ A.

We are going to investigate PoissonC∗-algebra homomorphisms between Pois-
sonC∗-algebras.

Theorem 5.1. Let h : A → B be a mapping satisfyingh(0) = 0 andh((d +
2)nuy) = h((d + 2)nu)h(y) for all y ∈ A, all u ∈ U(A) andn = 0, 1, 2, ∙ ∙ ∙ ,
for which there exists a functionϕ : Ad+3 → [0, ∞) such that

ϕ̃(x1, ∙ ∙ ∙ , xd+1, z, w) :=
∞∑

j =0

1

(d + 2) j
ϕ((d + 2) j x1, ∙ ∙ ∙ ,

(d + 2) j xd+1, (d + 2) j z, (d + 2) j w) < ∞, (5.i)

‖(d + 1)h

(∑d+1
j =1 μxj + {z, w}

d + 1

)
−

d+1∑

j =1

μh(xj ) − {h(z), h(w)}‖

≤ ϕ(x1, ∙ ∙ ∙ , xd+1, z, w), (5.ii)

‖h((d + 2)nu∗) − h((d + 2)nu)∗‖

≤ ϕ((d + 2)nu, ∙ ∙ ∙ , (d + 2)nu︸ ︷︷ ︸
d + 1 times

, 0, 0) (5.iii)
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for all u ∈ U(A), all x1, ∙ ∙ ∙ , xd+1, z, w ∈ A, all μ ∈ T1 andn = 0, 1, 2, ∙ ∙ ∙ .
Assume that(5.iv) limn→∞

h((d+2)ne)
(d+2)n is invertible. Then the mappingh : A → B

is a PoissonC∗-algebra homomorphism.

Proof. By the same reasoning as in the proof of Theorem 4.1, there exists a
uniqueC∗-algebra homomorphismH : A → B such that

‖h(x) − H(x)‖ (5.v)

≤
1

d + 2

(
ϕ̃((d + 2)x, −

x

d
, ∙ ∙ ∙ , −

x

d︸ ︷︷ ︸
d times

, 0, 0) + ϕ̃(x, −
x

d
, ∙ ∙ ∙ , −

x

d︸ ︷︷ ︸
d times

, 0, 0)

)

for all x ∈ A. In the proof of Theorem 4.1, we showed that theC∗-algebra
homomorphismH : A → B is exactly the mappingh : A → B.

It follows from (4.1) that

H(x) = lim
n→∞

h((d + 2)2nx)

(d + 2)2n
(5.1)

for all x ∈ A. Let x1 = ∙ ∙ ∙ = xd+1 = 0 in (5.ii). Then we get

‖(d + 1)h

(
{z, w}

d + 1

)
− {h(z), h(w)}‖ ≤ ϕ(0, ∙ ∙ ∙ , 0︸ ︷︷ ︸

d + 1 times

, z, w)

for all z, w ∈ A. So

1

(d + 2)2n
‖(d + 1)h

(
{(d + 2)nz, (d + 2)nw}

d + 1

)

− {h((d + 2)nz), h((d + 2)nw)}‖

≤
1

(d + 2)2n
ϕ(0, ∙ ∙ ∙ , 0︸ ︷︷ ︸

d + 1 times

, (d + 2)nz, (d + 2)nw)

≤
1

(d + 2)n
ϕ(0, ∙ ∙ ∙ , 0︸ ︷︷ ︸

d + 1 times

, (d + 2)nz, (d + 2)nw)

(5.2)
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for all z, w ∈ A. By (5.i), (5.1) and (5.2),

(d + 1)H

(
{z, w}

d + 1

)
= lim

n→∞

(d + 1)h((d + 2)2n {z,w}
d+1 )

(d + 2)2n

= lim
n→∞

(d + 1)h
( {(d+2)nz,(d+2)nw}

d+1

)

(d + 2)2n

= lim
n→∞

1

(d + 2)2n
{h((d + 2)nz), h((d + 2)nw)}

= lim
n→∞

{
h((d + 2)nz)

(d + 2)n
,

h((d + 2)nw)

(d + 2)n
} = {H(z), H(w)}

for all z, w ∈ A. So

H({z, w}) = (d + 1)H

(
{z, w}

d + 1

)
= {H(z), H(w)}

for all z, w ∈ A.
Therefore, the mappingh : A → B is a PoissonC∗-algebra homomor-

phism. �

Now we are going to prove the Cauchy–Rassias stability of PoissonC∗-algebra
homomorphisms in unital PoissonC∗-algebras.

Theorem 5.2. Let h : A → B be a mapping satisfyingh(0) = 0 for which
there exists a functionϕ : Ad+3 → [0, ∞) satisfying(5.i), (5.ii) and(5.iii) such
that

‖h((d + 2)nu(d + 2)nv)−h((d + 2)nu)h((d + 2)nv)‖

≤ ϕ((d + 2)nu, (d + 2)nv, 0, ∙ ∙ ∙ , 0︸ ︷︷ ︸
d + 1 times

) (5.vi)

for all u, v ∈ U(A) andn = 0, 1, 2, ∙ ∙ ∙ . Then there exists a unique Poisson
C∗-algebra homomorphismH : A → B satisfying(5.v).

Proof. The proof is similar to the proofs of Theorems 4.4 and 5.1. �

Remark 5.1. If each Poisson bracket{∙, ∙} in this section is replaced by the
Lie product[∙, ∙], which is defined in Section 8, one can obtain a result for‘Lie
C∗-algebra homomorphism’.
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6 Homomorphisms between PoissonJC∗-algebras

The original motivation to introduce the class of nonassociative algebras known
as Jordan algebras came from quantum mechanics (see [25]). LetL(H ) be the
real vector space of all bounded self-adjoint linear operators onH , interpreted as
the (bounded)observablesof the system. In 1932, Jordan observed thatL(H )

is a (nonassociative) algebra via theanticommutator productx ◦ y := xy+yx
2 .

A commutative algebraX with productx ◦ y is called aJordan algebra. A
unital JordanC∗-subalgebra of aC∗-algebra, endowed with the anticommutator
product, is called aJC∗-algebra. A PoissonC∗-algebra, endowed with the
anticommutator product, is called aPoissonJC∗-algebra.

Throughout this section, assume thatA is a unital PoissonJC∗-algebra with
unit e, norm|| ∙ || and unitary groupU(A), and thatB is a unital PoissonJC∗-
algebra with unite′ and norm‖ ∙ ‖.

Definition 6.1. A C-linear mappingH : A → B is called a PoissonJC∗-
algebra homomorphism ifH : A → B satisfies

H(x ◦ y) = H(x) ◦ H(y),

H({x, y}) = {H(x), H(y)}

for all x, y ∈ A.

We are going to investigate PoissonJC∗-algebra homomorphisms between
PoissonJC∗-algebras.

Theorem 6.1. Let h : A → B be a mapping satisfyingh(0) = 0 andh((d +
2)nu◦y) = h((d+2)nu)◦h(y) for all y ∈ A, all u ∈ U(A) andn = 0, 1, 2, ∙ ∙ ∙ ,
for which there exists a functionϕ : Ad+3 → [0, ∞) satisfying(5.i) such that

‖(d + 1)h

(∑d+1
j =1 μxj + {z, w}

d + 1

)
−

d+1∑

j =1

μh(xj ) − {h(z), h(w)}‖

≤ ϕ(x1, ∙ ∙ ∙ , xd+1, z, w),

(6.i)

for all x1, ∙ ∙ ∙ , xd+1, z, w ∈ A, and allμ ∈ T1. Assume(6.ii)

lim
n→∞

h((d + 2)ne)

(d + 2)n
= e′.

Then the mappingh : A → B is a PoissonJC∗-algebra homomorphism.
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Proof. By the same reasoning as in the proof of Theorem 4.1, there exists a
uniqueC-linear mappingH : A → B satisfying (5.v).

Sinceh((d + 2)nu ◦ y) = h((d + 2)nu) ◦ h(y) for all y ∈ A, all u ∈ U(A)

andn = 0, 1, 2, ∙ ∙ ∙ ,

H(u ◦ y) = lim
n→∞

1

(d + 2)n
h((d + 2)nu ◦ y)

= lim
n→∞

1

(d + 2)n
h((d + 2)nu) ◦ h(y)

= H(u) ◦ h(y)

(6.1)

for all y ∈ A and allu ∈ U(A). By the additivity ofH and (6.1),

(d+2)nH(u◦y) = H((d+2)nu◦y) = H(u◦((d+2)ny)) = H(u)◦h((d+2)ny)

for all y ∈ A and allu ∈ U(A). Hence

H(u◦y) =
1

(d + 2)n
H(u)◦h((d+2)ny) = H(u)◦

1

(d + 2)n
h((d+2)ny) (6.2)

for all y ∈ A and allu ∈ U(A). Taking the limit in (6.2) asn → ∞, we obtain

H(u ◦ y) = H(u) ◦ H(y) (6.3)

for all y ∈ A and allu ∈ U(A). SinceH is C-linear and eachx ∈ A is a
finite linear combination of unitary elements i.e.,x =

∑m
j =1 λ j u j (λ j ∈ C, u j ∈

U(A)),

H(x ◦ y) = H

( m∑

j =1

λ j u j ◦ y

)
=

m∑

j =1

λ j H(u j ◦ y) =
m∑

j =1

λ j H(u j ) ◦ H(y)

= H

( m∑

j =1

λ j u j

)
◦ H(y) = H(x) ◦ H(y)

for all x, y ∈ A.
By (6.ii), (6.1) and (6.3),

H(y) = H(e◦ y) = H(e) ◦ h(y) = e′ ◦ h(y) = h(y)

for all y ∈ A. SoH(y) = h(y) for all y ∈ A.
The rest of the proof is similar to the proof of Theorem 5.1. �
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Theorem 6.2. Let h : A → B be a mapping satisfyingh((d + 2)x) = (d +
2)h(x) for all x ∈ A for which there exists a functionϕ : Ad+3 → [0, ∞)

satisfying(5.i), (6.i) and(6.ii) such that

‖h((d + 2)nu ◦ y) − h((d + 2)nu) ◦ h(y)‖ ≤ ϕ(u, y, 0, ∙ ∙ ∙ , 0︸ ︷︷ ︸
d + 1 times

) (6.iii)

for all y ∈ A, all u ∈ U(A) andn = 0, 1, 2, ∙ ∙ ∙ . Then the mappingh : A → B
is a PoissonJC∗-algebra homomorphism.

Proof. By the same reasoning as in the proof of Theorem 4.1, there exists a
uniqueC-linear mappingH : A → B satisfying (5.v).

By (6.iii) and the assumption thath((d + 2)x) = (d + 2)h(x) for all x ∈ A,

‖h((d + 2)nu ◦ y)−h((d + 2)nu) ◦ h(y)‖

=
1

(d + 2)2m
‖h((d + 2)m(d + 2)nu ◦ (d + 2)my)

− h((d + 2)m(d + 2)nu) ◦ h((d + 2)my)‖

≤
1

(d + 2)2m
ϕ((d + 2)mu, (d + 2)my, 0, ∙ ∙ ∙ , 0︸ ︷︷ ︸

d + 1 times

)

≤
1

(d + 2)m
ϕ((d + 2)mu, (d + 2)my, 0, ∙ ∙ ∙ , 0︸ ︷︷ ︸

d + 1 times

),

which tends to zero asm → ∞ by (5.i). So

h((d + 2)nu ◦ y) = h((d + 2)nu) ◦ h(y)

for all y ∈ A, all u ∈ U(A) andn = 0, 1, 2, ∙ ∙ ∙ . But by (4.1),

H(x) = lim
n→∞

1

(d + 2)n
h((d + 2)nx) = h(x)

for all x ∈ A.
The rest of the proof is the same as in the proof of Theorem 5.1. �

We are going to show the Cauchy–Rassias stability of homomorphisms in
PoissonJC∗-algebras.
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Theorem 6.3. Let h : A → B be a mapping satisfyingh(0) = 0 for which
there exists a functionϕ : Ad+5 → [0, ∞) such that

ϕ̃(x1, ∙ ∙ ∙ , xd+1, z, w, a, b) :=
∞∑

j =0

1

(d + 2) j
ϕ((d + 2) j x1, ∙ ∙ ∙ , (d + 2) j xd+1,

(d + 2) j z, (d + 2) j w, (d + 2) j a, (d + 2) j b) < ∞, (6.iv)

‖(d + 1)h

(∑d+1
j =1 μxj + {z, w} + a ◦ b

d + 1

)
−

d+1∑

j =1

μh(xj ) − {h(z), h(w)}

−h(a) ◦ h(b)‖ ≤ ϕ(x1, ∙ ∙ ∙ , xd+1, z, w, a, b) (6.v)

for all μ ∈ T1 and all x1, ∙ ∙ ∙ , xd+1, z, w, a, b ∈ A. Then there exists a unique
PoissonJC∗-algebra homomorphismH : A → B such that

‖h(x) − H(x)‖ ≤
1

d + 2
ϕ̃

(
(d + 2)x, −

x

d
, ∙ ∙ ∙ , −

x

d︸ ︷︷ ︸
d times

, 0, 0, 0, 0

)

+
1

d + 2
ϕ̃

(
x, −

x

d
, ∙ ∙ ∙ , −

x

d︸ ︷︷ ︸
d times

, 0, 0, 0, 0

) (6.vi)

for all x ∈ A.

Proof. By the same reasoning as in the proof of Theorem 4.1, there exists a
uniqueC-linear mappingH : A → B satisfying (6.vi).

The rest of the proof is similar to the proofs of Theorems 4.1 and 5.1.�

7 Homomorphisms between LieJC∗-algebras

A unital C∗-algebraC, endowed with the Lie product[x, y] = xy−yx
2 on C, is

called aLie C∗-algebra. A unital C∗-algebraC, endowed with the Lie product
[∙, ∙] and the anticommutator product◦, is called aLie JC∗-algebraif (C, ◦) is
a JC∗-algebra and(C, [∙, ∙]) is a LieC∗-algebra (see [3], [9]).

Throughout this paper, letA be a unital LieJC∗-algebra with norm|| ∙ ||, unit
e and unitary groupU(A) = {u ∈ A | uu∗ = u∗u = e}, andB a unital Lie
JC∗-algebra with norm‖ ∙ ‖ and unite′.
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Definition 7.1. AC-linear mappingH : A → B is called a LieJC∗-algebra
homomorphism ifH : A → B satisfies

H(x ◦ y) = H(x) ◦ H(y),

H([x, y]) = [H(x), H(y)],

H(x∗) = H(x)∗

for all x, y ∈ A.

Remark 7.1. A C-linear mappingH : A → B is aC∗-algebra homomorphism
if and only if the mappingH : A → B is a Lie JC∗-algebra homomorphism.

Assume thatH is a Lie JC∗-algebra homomorphism. Then

H(xy) = H([x, y] + x ◦ y) = H([x, y]) + H(x ◦ y)

= [H(x), H(y)] + H(x) ◦ H(y)

= H(x)H(y)

for all x, y ∈ A. SoH is aC∗-algebra homomorphism.
Assume thatH is aC∗-algebra homomorphism. Then

H([x, y] = H(
xy − yx

2
) =

H(x)H(y) − H(y)H(x)

2
= [H(x), H(y)],

H(x ◦ y) = H(
xy + yx

2
) =

H(x)H(y) + H(y)H(x)

2
= H(x) ◦ H(y)

for all x, y ∈ A. SoH is a Lie JC∗-algebra homomorphism.

We are going to investigate LieJC∗-algebra homomorphisms between Lie
JC∗-algebras.

Theorem 7.1. Let h : A → B be a mapping satisfyingh(0) = 0 andh((d +
2)nu◦y) = h((d+2)nu)◦h(y) for all y ∈ A, all u ∈ U(A) andn = 0, 1, 2, ∙ ∙ ∙ ,
for which there exists a functionϕ : Ad+3 → [0, ∞) satisfying(5.i) and (5.iii)
such that

‖(d + 1)h

(∑d+1
j =1 μxj + [z, w]

d + 1

)
−

d+1∑

j =1

μh(xj ) − [h(z), h(w)]‖

≤ ϕ(x1, ∙ ∙ ∙ , xd+1, z, w),

(7.i)

for all μ ∈ T1, and all x1, ∙ ∙ ∙ , xd+1, z, w ∈ A. Assume(7.ii)

lim
n→∞

h((d + 2)ne)

(d + 2)n
= e′.

Then the mappingh : A → B is a Lie JC∗-algebra homomorphism.
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Proof. By the same reasoning as in the proof of Theorem 4.1, there exists a
uniqueC-linear involutive mappingH : A → B satisfying (5.v).

In the proof of Theorem 6.1, we showed that

H(x ◦ y) = H(x) ◦ H(y)

for all x, y ∈ A, and that the mappingH : A → B is exactly the mapping
h : A → B.

It follows from (4.1) that

H(x) = lim
n→∞

h((d + 2)2nx)

(d + 2)2n
(7.1)

for all x ∈ A. Let x1 = ∙ ∙ ∙ = xd+1 = 0 in (7.i). Then we get

‖(d + 1)h

(
[z, w]

d + 1

)
− [h(z), h(w)]‖ ≤ ϕ(0, ∙ ∙ ∙ , 0︸ ︷︷ ︸

d + 1 times

, z, w)

for all z, w ∈ A. So

1

(d + 2)2n
‖(d + 1)h

(
[(d + 2)nz, (d + 2)nw]

d + 1

)

− [h((d + 2)nz), h((d + 2)nw)]‖

≤
1

(d + 2)2n
ϕ(0, ∙ ∙ ∙ , 0︸ ︷︷ ︸

d + 1 times

, (d + 2)nz, (d + 2)nw)

≤
1

(d + 2)n
ϕ(0, ∙ ∙ ∙ , 0︸ ︷︷ ︸

d + 1 times

, (d + 2)nz, (d + 2)nw)

(7.2)

for all z, w ∈ A. By (5.i), (7.1), and (7.2),

(d + 1)H

(
[z, w]

d + 1

)
= lim

n→∞

(d + 1)h((d + 2)2n [z,w]
d+1 )

(d + 2)2n

= lim
n→∞

(d + 1)h( [(d+2)nz,(d+2)nw]
d+1 )

(d + 2)2n

= lim
n→∞

1

(d + 2)2n
[h((d + 2)nz), h((d + 2)nw)]

= lim
n→∞

[
h((d + 2)nz)

(d + 2)n
,

h((d + 2)nw)

(d + 2)n
] = [H(z), H(w)]
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for all z, w ∈ A. So

H([z, w]) = (d + 1)H

(
[z, w]

d + 1

)
= [H(z), H(w)]

for all z, w ∈ A.
Therefore, the mappingh : A → B is a Lie JC∗-algebra homomorphism.�

Theorem 7.2. Let h : A → B be a mapping satisfyingh((d + 2)x) = (d +
2)h(x) for all x ∈ A for which there exists a functionϕ : Ad+3 → [0, ∞)

satisfying(5.i), (5.iii) , (6.iii) , (7.i) and(7.ii). Then the mappingh : A → B is a
Lie JC∗-algebra homomorphism.

Proof. The proof is similar to the proofs of Theorems 5.1 and 6.2. �

We are going to show the Cauchy–Rassias stability of LieJC∗-algebra homo-
morphisms in LieJC∗-algebras.

Theorem 7.3. Let h : A → B be a mapping satisfyingh(0) = 0 for which
there exists a functionϕ : Ad+5 → [0, ∞) satisfying(6.iv) such that

‖(d + 1)h(

∑d+1
j =1 μxj + [z, w] + a ◦ b

d + 1
) −

d+1∑

j =1

μh(xj ) − [h(z), h(w)]

−h(a) ◦ h(b)‖ ≤ ϕ(x1, ∙ ∙ ∙ , xd+1, z, w, a, b) (7.iii)

‖h((d + 2)nu∗) − h((d + 2)nu)∗‖

≤ ϕ((d + 2)nu, ∙ ∙ ∙ , (d + 2)nu︸ ︷︷ ︸
d + 1 times

, 0, 0, 0, 0) (7.iv)

for all μ ∈ T1, all u ∈ U(A), n = 0, 1, 2, ∙ ∙ ∙ , and allx1, ∙ ∙ ∙ , xd+1, z, w, a, b ∈
A. Then there exists a unique LieJC∗-algebra homomorphismH : A → B
satisfying(6.vi).

Proof. By the same reasoning as in the proof of Theorem 4.1, there exists a
uniqueC-linear involutive mappingH : A → B satisfying (6.vi).

The rest of the proof is similar to the proof of Theorem 7.1. �
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