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On Sobolev infinitesimal rigidity of linear
hyperbolic actions on the 2-torus*

Cédric Rousseau

Abstract. Let A be a symmetric hyperbolic matrix in $2, Z) andT" the subgroup of
SL(2, Z) generated byA. We aim to study the infinitesimal rigidity of the standard action
of I" on the torusT?. More precisely, we will consider the SoboleVs—infinitesimal
rigidity of this action (that is to determine if the cohomology spat&I", WS(T M))

is trivial or not), and show that it i8vS—infinitesimally rigid only if 0 < s < 1. A
consequence will be that this action is @—infinitesimally rigid.
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Introduction

Let G be a topological group and be a finitely-generated group. We denote
by R(T, G) the set of all group homomorphisms Bfinto G endowed with
the topology of pointwise convergence. i, ..., yk are fixed generators of
I', one may consideR(I", G) as a closed subset & by means of the map
o= (0(y), ..., p(¥)). Note thaiG acts naturally ofiR(I", G) by conjugation:
if p e ROIG) andg € G, thenforally e T, (g.0)(¥) = go(y)g~ L. A
homomorphismnpg is said to bdocally rigid if its orbit is open inR(T", G), or
equivalently, if there exists a neighborhoddof pg in R(I", G) such that every
p € U is conjugated tgg. Inthe casés is a Lie groupG acts differentiably on
itself by conjugation (for ango in G, ®g, : g — gogg* is an automorphism
of G), and this action induces an action @fon its Lie Algebrag, which is
isomorphic to the tangent spaced, by means of the derivatives; (1). This
is what is called theadjoint representatiorAdg of G in g. In this context,
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Weil [W] proved that ifo € R(I", G) is such thaH(I", Adg o p) = 0 thenp is
locally rigid (see also Raghunathan [R], chapter VI).

Let nowM be a compadE* manifold and Difi M) be the group o€ diffeo-
morphisms oM endowed with the usu&@l* topology. We denote bg>°(T M)
the space oC* vector fields onM. Any representatiop € R(T, Diff (M))
induces a linear action 6f onC*°(T M), andp is said to beC*—infinitesimally
rigid (or for shortinfinitesimally rigid) if HY(I", C*°(T M)) = 0. This termi-
nology used by Zimmer [Z] suggests an analogy with Weil's theorem. Indeed,
C*(T M) is the Lie algebra of the infinite dimensional Lie group DWMf), and
the natural action of on C*>(T M) is in fact the composition of the represen-
tation of I" into Diff (M) with the adjoint representation of Diff1) on its Lie
algebra. Nevertheless, there is no established results connecting infinitesimal
and local rigidity.

For results about local rigidity of the standard action ofi®LZ) on the torus
T", the reader can refer to [H1], [H2], [KL], [KLZ]. With regard to infinitesimal
rigidity of these actions on tori, many results have been established, especially
whenn > 3andr isasubgroup offiniteindexin §h, Z). Forinstance, Pollicott
[P] showed that the action of $8, Z) on T2 is infinitesimally rigid, and Lewis
[Le] proved that fom > 7 andI’ a subgroup of finite index in Sh, Z), the
action ofl" onT" is also infinitesimally rigid. A more general result is given by
Hurder [H3], stating that fon > 3 andI” a subgroup of finite index in Sh, Z),
every affine action of onT" associated to the standard action is infinitesimally
rigid. The reader interested by affine actions on tori can also refer to [Lu]. As
a matter of fact the case = 2 is raised in [H1], [H2], but these results only
concern local rigidity.

The goal of this note is to study infinitesimal rigidity for the following example:
let Abe a symmetric and hyperbolic matrix (thatis to say thhas no eigenvalue
of modulus 1, or equivalently in this case, thatA| > 2) in SL(2, Z) acting
linearly onM = T?. This matrix has two irrational eigenvalues, saynd
A~ with |A| > 1. The infinite cyclic subgroup generated byA is of infinite
index in SL(2, Z) and its action orM is Anosov. LetL?(T M) be the Hilbert
space of square integrable vector fieldsdbrand, for every real number> 0,
denote byWs(T M) the space of vector fields &Sobolev class; naturally
WO(T M) = L2(T M) and the intersectiow> (T M) of all theWS(T M) is equall
to C>°(T M). We will show that the action df on M is W*—infinitesimally rigid
if and only if s < 1, and in patrticular, that the action 8fon M is not C*—
infinitesimally rigid.
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1 The spaceH%(T, L%(T M)) of invariant L? vector fields

The problem of infinitesimal rigidity of the action 6fon M, that is to determine
H(I", C>(T M)), makes sense when considering real vector fieldd oiow-
ever, the special case M = T2 will enable us to use Fourier analysis and then
to treat the more general problem of the cohomology’ aicting on complex
vector fields onM.

The local coordinates of a particular pointe M = T? will be denoted by
(X, y). If X is a vector field orM, then on the covering spa¥, we have

X(@) = 06 )2 +gOx, y)-
o ’yax g ’yay’

where f andg are Z?-periodic functions. The fielK is said to bel? if the
coefficientsf andg are L? functions onM. In this case,f andg have the
following Fourier expansions:

f(X, y) — Z fm’ne2|n(mx+ny) , g(x, y) — Z gm’neZ|n(mx+ny) ’
m,n m,n

where( f,n) and(gm.n) are elements of the Hilbert spa¢&72, C) of complex
square summable families indexed B%. In the caseX is a real vector field,
coefficientsfy, , andgm  verify additional relations:

f—m,—n = m and O-m-n= m

From now on, we identify_? functions onM with elements o#?(Z?, C).

b
basis ofR?, say

A0 1 cos® —sing
A=P (0 A‘1> P with P = (sine cosd ) e SO2, R).

SinceA = (a 2) is symmetric, it admits a diagonalization in an orthogonal

The action o' =< A > onL?(T M) is given by
0 0
A.X(A2) = (af(2) + bg(2)) x + (bf(2) + cg(2) 3y

Linear eigenvector fieldX; = cosd + sin@% and X;-1 = —singZ +
cos@aiy respectively associated foandi~! (that is to sayA, X, = A X, and
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A, X;-1 = A71X;-1) form a basis ofL2(T M) in which any vector fieldX is
written X (2) = u(z) X, 4+ v(2) X, -1, whereu andv areL? functions onM. Then
we have

A X (A2) = A2 X5 + 2 Tw(2) X, -1. (1)

For convenience, we put for arign, n) € Z:

(£)-40) = ()-+(0)

If (Mo, Ng) is a reference pair i&?, we put for anyk e Z:

(““() Qk(lll()).
“k “0
We can now ShOW tl 1at

Theorem 1.1. The spaceH (T, L2(T M)) of I'-invariant L? vector fields is
trivial.

Proof. An L2 vector field X is invariant if and only ifA,X = X; this is
equivalent to

VzeM, u(Az) = ru(z) and v(A2) = 2 1u(2).
Replacing for instance the functienby its Fourier expansion, we obtain:

Z upYqeZ|7r((ap+bq)x—&-(bp+cq)y) — Z A um’neZ|7r(mx+ny)
p.q m.n

i.e. Z up’qezm(ﬁ)&ﬁy) — Z)“ um’nezm(merny)'
p.q m,n

By identifying coefficients, and doing it similarly far, we obtain
Unn = AUmn @ndvmn = A umn.

Using these conditions, we can first deduce that = voo = 0.

Suppose now that there exists a p@ip, ng) # 0 such thatiy, n, # 0. Then
forallk € N, Un_n = MUmg.no: hence lim_, o [Umn | = +00. But this
contradicts the fact that the orbit b of every point ofZ? different from 0 is
infinite (see lemma 1.3 below), and that the Fourier coeffiaigntof u tends to
0 when(m, n) tends to infinity. Thus we havg, , = 0 (and in the same manner
vmn = 0) for all (m, n) € Z2. Sou=v =0i.e. X =0. O
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We give from now on two simple lemmas concerning the orbitg%for the
action of A that will be useful especially in the last section of this paper. The
first one is about the number of these orbits, and the second one specifies their
asymptotic behaviour.

Lemma 1.2. There is a countable infinite number of orbits for the actiordof
onZ2.

Proof. It suffices to remark that two pairs of integers that belong to the same
orbit have the same G.C.D, so each point of the fopnp) wherep is a prime
number belongs to a unique orbit. O

Lemma 1.3. For any fixed pairnimo, ng) # O, there exists positive constarts
andc_ such that

2 | 2 2k 2 | 2 —2
mg +ng ~ c A% and mZ+ng ~ c_A
k T Nk + kT Nk~

: A0 R __(cosf —sinf .
Proof. SinceA=P (0 )rl) P~ with P = (sin@ cosd ),we have:

mq\ o (A 0 1 (Mg
()7 (o )= (&
_{ A¥cosH(mgycosh + Nngsing) + A~ sind(—mg sing + ng coss)
— \ =2Ksing(mycosh + ngsing) + 17X cosd(—mg siné + nycosh) )

So
M2 + N = A%(mMg cosh + Ng sind)2 + 1~ (—mq sind + Ng cosh)?

thus
2 2 2k 2 2 -2k
me +n ~ C A, mi+ng ~ Cc_AK,
k+ k+oo + k+ k—oo

where
¢, = (Mpcosh + npsing)? and c_ = (—mgsind + ng cosh)?.

Now (cosf, sind) is an eigenvector oA and we can show then that absnd
sind are rationally independent. $q > 0 andc_ > 0. O
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2 Ws-infinitesimal rigidity for 0 <s < 1
For every reak > 0, we say that a vector field is in WS(T M), thes-Sobolev
space of vector fields oll, if its coefficients are both ikVS(M), with

WS(M) = {f .72 C ‘ 3 (M 4+ 12 fnal? < +oo}.

(m,n)#0
Then for 0< s < g, we have
C®(M) = ﬂWs(M) C WS (M) c W3 (M) c WO(M) = L2(M).
s>0

For everys < oo, W3(M) is a Hilbert space with the hermitian prodyet e)

S
(f’ g>s = 1:O,OQT,O + Z (m2 + nz)s fm,ngm,n»
(m,n)#0
and the associated norm :

1flls = [ [fool®+ D (M* 41> finnl?
(m,nz0

Let {™"} n.nez2 De the canonical Hilbert basis 64(Z2, C), that is:

5m,n — 1 If (p’ q) = (m7 n)a
g 0 otherwise

Itis clear that{s™"} is a Hilbert basis of/*(M) for anys > 0.
Let X € W3(T M) with X(Z) = u(2) X; +v(2)Y,-1. According to expression
(1), we haveA, X (2) = U (@) X, + V(2) X, -1, with

§] (2) = )»U(A_lZ) = A Z um’nean(m(cx—by)+n(_bx+ay))

m,n
= A Z um’ne2m(mx+ﬂy) _— Z um’ﬁeZIn(merny);
m,n mn
Vg = r» (Al = );lz Um’ﬁeZIn(mH»ny)'
m,n

SoU = ATau andV = A~1Tav, whereTy is the linear operator consisting of
the permutation of the indices of Fourier coefficientsAy

vV feLl?M), (Taf)mn = fmn
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It is clear thafT, is a bijective isometry 0f?(Z?, C) and thafTo ™! = Ta-1.
Let us be more precise with the the following proposition:

Proposition 2.1. For anys > 0, T and T,-1 are bijective continuous operators
of WS (M) and ||| Ta-1llg = [l Tallly = [AI°.

Proof. Letf =" fya™" € WY(M); thenTaf =) " frn™" and

m,n m,n
2 2 2 281 (2
ITafIZ = Ifool® + Y (M +1n)° fogl
(m,n)#0
= [fool® + Y (M7 +0n%% fmnl’.
(m,n)#0
Since A1 is diagonalizable in an orthogonal basis, we can easily show that, as
a linear operator of the usual euclidian sp&Z|||A~||| = |x| > 1. Conse-
quently,

_ 2
ITafI2 < [fool® + D AT +n?)° frnal®
(m,n)#0

2 2
<2112,

and this for anyf € WS(M), hencel||Talll; < [A]°.
Let e > 0; the functionx — x5 is continuous inj0, +oo[, therefore there
existsn > 0 such that

Vx>0, [Xx=[All <n=X°= A <e.
Then, for a small enough > 0 :
IAS—e < (A = n)°.

Now, as|||A~2||| = |A|, there exists a paiip, q) € Z x N* such that

Al —n < A (p(P2 + 622, q(p? + 62 2)|| < |Al,
and so

(P? + g2°(Al — ) < (P* + g)° < (P° + 992
Letg = (p? +q?)~28P9 € WS(M), SO that|g|l, = 1 and

(2= m* < |ITagll? = (p* + @*)°(p* + %) ° < A%,
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and then
A° =€ < (1Al = m)° < [ITaglly < A5

Thus,

Ve>0,3ge W(M), llgll, =1 and [A]°—e < [[Tagll, < I2I°
and we can conclude th@{Talll; = [A[>. Moreover, all this holds forA~1
instead ofA, so that we also hav¢| Ta-1|; = |A 5. O
We can then assert:

Corollary 2.2. For anys > 0, W3(T M) is a subF—module ofL?(T M).
Since the group’ is isomorphic tdz, it is well known that

HY(T, WS(T M) = WS(T M)/ {AX — X | X e W(TM)}.

To prove thatH(I", WS(T M)) = 0 is equivalent to show that, for each vector
fieldY in WS(T M), there exists a vector field in WS(T M) suchthatA, X — X =
Y. Let X(2) = u(@ X, + v(2)X,-1 andY (2) = U(2)X; 4+ V(2) X,-1; then the
equationA, X — X =Y is equivalent to the system
ATa—Idu = U

{ O Ta—ldw = V @
or equivalently:

(TA—l — )\.Id)u = —TA—IU (3)

(Ta—Aldyv = AV

Let us putSy = Ta — Ald andS,-1 = Ta-1 — Ald.
We can now easily prove that
Proposition 2.3.For0 <s < 1, HYT", W3(T M)) = 0.

Proof. Itis an established fact that, for a continuous operator of a Hilbert space
(and more generally of a Banach space), its spectral radius is not greater than its
norm. So, if 0< s < 1, then|A|® < |A| and as a consequenceis a regular

value of bothT, andT,-1, that is to saySa andS,-1 are invertible operators of
W3(M). Hence there exists a unique pair of functiersndv verifying system

(3), and so the equatiofA, X — X = Y has a unigue solution Ws(M). O

It is straightforward thafa andT,-1, and thenS, and S,-1, sends real-valued
functions to real-valued functions. It is not much more difficult to show it for
their inversesS,* andS, ;. So we can assert:

Theorem 2.4.For 0 < s < 1, the action of” on M is Ws—infinitesimally rigid.
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3 The spaceH(I", WS(T M)) for s > 1

Now, let us show that, fos > 1, the vector spacel(I", WS(T M)) is non
trivial. In order to do that, we just have to exhibit a vector fi¥ldh WS(T M)
such that the unique solutiofiin L2(T M) of the equatiomA, X — X = Y is not
in WS(T M). Itis then useful to determine the preimages of the bi@§i$} by
Sp1.

Proposition 3.1. For any fixed pair(mg, ng) € Z2, we sety™ " = S;,llémOv”O.
Then

+00

1 .
10 = 0% and ™™ = - AT if (Mo, no) #O.
k=0

Proof. By using the relatiomp®™ — Anqo"™ = 879", we have:
e If (mg, ng) = 0, then
0,0 0,0
Moo — Moo = 1
Moy — Ay =0 if (m,n) #0;

hence
1

1-1°

Ny = An%% if (m,n) # 0.
If we refer to the proof of theorem 1.1, we know that fam, n) # 0, we
necessarily have}}, = 0, hence

0,0
No,0
0,0
m.n

3

1
0,0 0,0
0= _= 500,
TSI
e If (mg, Ng) # 0, then
RS, — e = 1

%™ — Anm%™© =0 if (m, n) # (Mo, No).

Thus
nrrgg’lr?(r)],l = 1 + )\'nmg:ﬂg ’
Moas = Ao = AL+ Angero)
pee = A+ agTenoy forall k> 1.
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Similarly, in the opposite direction, we have also

Mol _— 5 —1,Mo,No

nml,nl - nmo,no ’
Mo, N, _ —2,_mo,n
Mmon, = A “mging »
nero = A Kpmore forall k>0,
Once again because lim, . ny°"% = 0, we necessarily have
Mo,Ngp —
Anmdns = 0, and consequently
jmono _ 0 if K <0,
MMk Ak ifk>0.

When the point'm, n) does not belong to the orbit @fg, ng), we use
the same argument again to assert thig, = 0. Finally, for all
(Mo, No) # O:
+o0
mo,Ng __ —k—1 ¢my,nk
n = — Z A ) .
k=0
We verify by the way thag™" is actually inW°(M) = L?(M) and that

|A]

—_— ]
1—21—2

Mo, No —
|[n™er), =

For every paimg, np), itis clear thas™:-" s in WS(M) for any realk; but what
abouty™ " (of course in the cas@mg, ng) # 0, since it is obvious thaj®C is
in everyWs(M))?

Proposition 3.2. For any pair (mg, ng) # 0, ™" is not inWS(M) if s > 1.

Proof. We have to show that the seri®$,_o(mZ + n?)sA~2~2is divergent.

Lemma 1.3 implies thatm2 + nZ)Sa—22 I A~2¢, 226Dk “and the series
o

> eo(ME 4 nf)A =22 is convergent if and only i < 1. 0

Finally, we are in a position to give an example of a countable favy of
real vector fields orM such thaty, € WS(T M) for anys > 0 and for which
the unique fieldX, in L2(T M) such thatA, X, — Xp = Y, is not inWS(T M)
if s> 1.
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Proposition 3.3. Let P be the set of prime numbers and put for evprg P,
Yp(2) = 2cog(a+ b)px+ (b +c)py) X,.
Then for anyp € P, the unique vector fiel&, € L2(T M) such that
AXp—Xp=Yp
is not inWs(T M) fors > 1.
Proof. Itis obvious thatY, = UpX; with U, = §7P~P 4 §P-P is in WS(T M)

foranys > 0. NowXp = upX; withup = =S, 1, Ta-1Up = —(n PP+ PP),
and if we seimg, ng) = (p, p), we have

+00 +00
up — Z)\‘—k—lg—mk,—nk 4+ Z )\’—k—lamk,nk’

k=0 k=0
hence .
2 _ 2 238, —2k—2 _ p.pI(2 _
llupll? = zkig(mﬁnk) 27H2 = 2P| = oo,
Soup ¢ WS(M) and thenX, ¢ WS(T M). O

Proposition 3.4. The family {[Ypl}per is linearly independent in
HYT, WS(T M)) whens > 1.

Proof. LetJ be a finite subset a? and(up)pes € C” such that

D wplYpl=0 in WTM), s> 1.

ped
Then, there existX € WS(T M), X = uX,, such thaEpEJ wpYp=AX—-X
withu =3, _; upup, and

2 _ 2 2 2 2
UlZ =) lrplPllupll? = |ngl?llugl)?  foranyq e J.
peld

So, sian|u||S2 < 400 and||uq||s2 = 400, we necessarily haveq = 0 for any
geJ. O
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As a conclusion, we have:

Theorem 3.5. The action ofl’ on M = T? is Ws—infinitesimally rigid if and
only if0 < s < 1. Moreover, in casd < s < oo, the spaceH (", W3(T M)) is
infinite-dimensionnal.

We could expect to obtain similar results fare SL(n, Z) acting onT" with
n > 2 using the same kind of method. However, in dimension 2, the fact that
the two eigenvalues oA are the inverse one of the other appears to be essential.
So a generalization in higher dimension seems to be difficult, except maybe in
the casa is even, because there exist then symmetric hyperbolic matices
SL(n, Z) such thatA and A~* have the same eigenvalues.
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