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A Class of Artin-Schreier Towers
with Finite Genus
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Abstract. We study the asymptotic behaviour of the genus in some Artin-Schreier
towers of function fields over a finite field, and we present a new class of Artin-Schreier
towers having finite genus.
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1 Introduction

A tower F = (Fo, Fy, ...) of function fieldsover the finite fieldF, is an infi-
nite sequence of function fields /Fq with Fo € F; € F, € ..., having the
following properties:

(i) The extensions;1/F; are separable of degrég 1 : F] > 1, andF is
algebraically closed i, for alli > 0.

(i) Forsomej > 0, the genus oF; satisfiey(Fj) > 2.

It follows from the Hurwitz genus formula thaj(F) — oo fori — oo,
and the following limits do exist (we denote Dy(F) the number off,-rational
places of a function fieldF /Fy):

e 9(R) o N(F)
yH =lm g PO =M
(1.1)
and A(F) = lim w
i—o0 g(F) "
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We call»(F) thelimit of the tower y (/F) is thegenus of the toweandv (F) is
the splitting rate of the towerBy the Drinfeld-VIadut bound [2] one has

0<A(F) <G-1 (1.2)

The towerf is said to beasymptotically goodf A(’F) > 0, otherwise it is said
to beasymptotically bad

The interest in asymptotically good towers comes from various applications

of function fields with “many” rational places (with respect to the genus) in

Coding theory, Cryptography, etc. (see[10], [12]). This motivates the search for

asymptotically good towers. However, it turns out that it is a non-trivial problem

to provide examples of asymptotically good towers. The first examples are due
to Ihara [8], Tsfasman-Vladut-Zink [13] and Serre [11]. These examples come
from modular curves or from classfield theory, and the function fields in these

towers are not given by simple explicit equations.

Garcia, Stichtenoth and others have constructed some explicit asymptotically

good towers in aecursivemanner as follows: There is given a polynomial
f(X,Y) e Fq[ X, Y] such thaty = Fy(Xo) is the rational function field ovef,
andF 1 = Fi(Xi;1), where the irreducible equation far, 1 over the fieldF; is
just the equation

f(X,X41) =0, forall i >0. (1.3)

In this situation we say that the towét = (Fg, F1, ...) is recursively defined
by the polynomialf (X, Y). If the polynomial f (X, Y) has the special form

FOXY) = 91(X) - oY) — Yo(X),

whereg(Y) € Fy[Y] is a separabladditivepolynomial overfy,

m
oY) = ZanpJ with p = char(Fy), a; € Fy, a-am # 0,

j=0
and (X)), ¥1(X) € Fq[X], the tower¥ is called arecursive Artin-Schreier
tower (AS tower for short). We say then thgf is defined recursively by the
equation

P(Y) = Yo(X)/$1(X) =: ¥ (X) € Fq(X). (1.4)

If all roots of the polynomialp(Y) are inFy, then the extensionk;;,/F; are

Artin-Schreier extensions of degreg® = dege(Y). The class of recursive AS
towers is especially interesting since it contains examples of tofwerdose
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limit A(F) attains or is close to the Drinfeld-VIadut bound (1.2), see [4], [7]. It
is therefore a natural problem to study AS towers more closely.

Beelen, Garcia and Stichtenoth investigated recursive AS towers of prime
degreep = char(IFy); i.e., where the defining equation of the tower has the
form

YP+bY = ¢ (X) (1.5)

with 0 # b € Fy andy (X) € Fq(X). Their main result is as follows (see [1],
Thm. 4.1 and Thm. 4.6): If Eq. (1.5) defines an asymptotically good recursive
tower overlFy, then the rational functiogy (X) is of one of the following three

types:
Typel: ¥ (X) = (X —0)P/y1(X) + a, with a, ¢ € [Fq and a separable
polynomialy1(X) € Fq[ X] of degree deg)1(X) < p.
Type ll: ¥ (X) = Yo(X)/(X —a)P with a € F, and a separable poly-
nomialyo(X) € Fq[X] of degree degpo(X) < p.
Type lll: ¥ (X) = 1/¥1(X) + a, with a € Fy and a separable poly-
nomialyr1(X) € Fy[X] of degree deg)1(X) = p.

As it was observed in [1], all hitherto known examples of asymptotically good
recursive AS towers of degrgeare of Type |, and it is an open problem if there
exist good towers of Type Il or Type lll. The situation is somewhat similar as
for towers ofKummer typewhich are recursively defined by an equation of the
form

Y™ = h(X) € Fq[X], with gcd(m,q) = 1.

Lenstra [9] proved that asymptotically good towers of this type do not exist over
the prime fieldF .

Since the limitA(F) of a towerF satisfiesh(‘F) = v(F)/y (F) (see (1.1)),
the tower is asymptotically good if and only if its genué¥) is finite and its
splitting ratev(F) is strictly positive. Therefore a necessary first step towards
the construction of good AS towers is to find examples where the ge(ibisis
finite. It is the aim of this note to provide a class of recursive AS towers of Type
Il with this property.

2 Artin-Schreier towers of Type Il with finite genus

In this section we consider a sequerEe= (Fo, F1, F2, ...) of function fields
Fi /Fq which is recursively defined by the equation

YP 4+ bY =1/(XP+cX) (2.1)
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with b, ¢ € Fq \ {0} andb 3 c. This means thaF, = Fy(Xo) is the rational
function field, and foi > 0 we haveF; 1 = F; (Xj1) with

X"+ %41 = 1/(xP + cx). (2.2)

First we have to prove that this sequence of function fields is indeed a tower, see
Prop. 2.2 below. We need

Lemma 2.1. LetK = [y be the algebraic closure df; and consider the
function fieldF = K(x, y), wherex, y satisfy Eq. (2.1)withb,c € Fq \ {0}
andb # c. Then the extensiors/K (x) and F/K (y) are Galois of degree,
and the following holds:

(i) Over K (x) exactly the zeroes of — a with «P + ca = 0 are ramified,
each with ramification indep and different exponer2(p — 1). All these
places are poles of.

(i) Over K (y) exactly the zeroes of — g with 8P + bg = 0 are ramified,
each with ramification indeyp and different exponer2(p — 1). All these
places are poles of.

Proof. This follows immediately from the theory of Artin-Schreier extensions
of function fields, cf. [12], Ch.111.7.8. O

Proposition 2.2. The sequencg = (Fo, F1, F2, ...) of function fields over
[Fq which is defined recursively . (2.1)is a tower.

Proof. First we have to show that the equatigf 4 bY = 1/(x” + cx) is
absolutely irreducible ovel, for alli > 0. So we con_sider the constant field
extensiond := F; - K over the algebraic closut¢ = IFy, and we must show

that[F/,, : F'] = p. The casé = 0 follows from Lemma 2.1. Now let > 1.

We choose elements, ai_1, ..., a1, ap € K such that
a +caj =0, of +baj #0 (2.3)
and
af +caj =1/(a],, +baji1), of +baj #0 (2.4)

forall j <i. These choices are possible siticg c. There exists a plac® of
F/ which is a common zero of the functiors—o;, Xi_1 —ai_1, . .., Xo—ap, and
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Q is unramified in the extensioR/K (x;) by Lemma 2.1(ii). LetP denote the
restriction ofQ to K (x;). By (2.3) and Lemma 2.1(i), the pla¢gis ramified in

K (X, X 11)/K (X)) with ramification indexp, and it follows from Abhyankar’s
Lemma (see [12], 111.8.9) tha® is ramified inF/,_,/F/ with ramification index

p, so[F/ ; : F'1 = p. This proves that the polynomi&l° +bY = 1/(x° +cx)

is irreducible ovelF,, which implies that the field extensidf_.1/F; is of degree
[Fi+1: Fi]1 = pand that the field is algebraically closed i 1.

By Lemma 2.1(i), the degree of the differentlef/ Fy is deg Diff(F1/Fo) =
2p(p — 1), hence the genus & is g(F1) = (p — 1)°. So we havey(F,) > 2
forall p # 2. Inthe casg = 2 itis easy to see that(F,) > 2. O

For any towerF = (Fo, Fy,...) overFg, the ramification locusV (¥) is
defined as

V(F)={P| Pis a place ofywhich ramifies inF,/Fy for somen > 1}.
If the ramification locus is finite, we set

degV (F) = Z degP.
PeV(F)

Proposition 2.3. Let F = (Fo, F1, F2,...) be the tower oveffy which is
recursively defined by

YP 4+ bY =1/(XP +cX), (2.1)

with the additional condition
beb — ¢)?P2 = 1. (2.5)
Then the ramification locug (F) is finite and has degregegV () < 1+ p.

Proof. Since the degree of the ramification locus is invariant under constant
field extensions, we can assume that the following #aet® are contained in
Fyq: .
A:={8eFq|8P+cb—c)P1s=0}
Q:={aeFq|aP+bae A}
Now let P € V(F). There is som@ > 1 and a plac& of F, lying aboveP,

such thatQ is ramified in the extensioi,/F,_;. ThenQ is a pole ofx, by
Lemma 2.1; i.e.x,(Q) = oco. Fori =0, 1, ..., nwe set

ai = Xni(Q) € Fq U {oo},
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and we want to prove the following claim:
aj € QU{oo}, fori=0,...,n. (2.6)
Sincexp(Q) = ap, this will imply that
PeV(F) = Xo(P)e QU{oo},

and therefore dey (F) < 1+ || = 1+ p?, as desired.

We show (2.6) by induction over (with n fixed). By definition we have
ag = Xn(Q) = oco. Suppose now that € Q U {0}, for somei < n— 1. If
o = o0, it follows from Eq. (2.2) thatr” ; + caj1 = 0. Setting

Sit1 = o1 +baiyr = (o) + caiy1) + (b— Ocipr = (b — O)atiya
we see that

8P +cb—0)P 85 = (b—0)Pef, +caiy) =0,

hencey;,; € Q.

Now we assume that; € Q. If «j,1 = oo then Claim (2.6) holds also for
i +1 and we are done. So it remains to consider the case whete2 and
aj;1 # oo. From Eqg. (2.2) we obtain

al g+ Cai1 = 1/(a) + bayy). (2.7)
By induction hypothesis, the elemeht:= & + ba; # 0 satisfies the equation
8P +cb—oP s =0, (2.8)

and we have to prove tht,; = aip+l + ba; ;1 also satisfies this equation. From
Eq. (2.7) follows
Sir1=8"+ (-1,

hence

8P +cb—c)P 184,

=5 "+ b-0Paf; +cb—0)P LS + (b—O)ait1)

=6 " +cb-0oP I + (b—0)Pe); + Caistr)

=8P +bb-c)Pis?

= b(b — ¢)P~15 PP (5P + 5 /b(b — c)P 1)

=b(b—c)P 15 PP +cb — c)P 1) = 0.
Observe that in the last line we have used Eg. (2.5) and (2.8). O
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It is well known that in the case of tamely ramified towers finite ramification
locus implies finite genus, since the different exponent is bounded by the ram-
ification index (see [5]). This is in general not true for wildly ramified towers
(cf. [4], Example 4.1). However, in our case we can show that the different
exponents of ramified places in the extensibryd are small enough to ensure
finite genus. The key point is the following proposition from [6]. A detailed
exposition of calculations of different exponents in the tower in Proposition 2.3
can also be found in [14].

Proposition 2.4. (See [6], Lemma 2.).etE; andE; be distinct cyclic function
field extensions df of degreep, and letE be the composite field &; and E,.
ThenE/F is a Galois extension of degrg#. Suppose thaP is a place of F
which is ramified both irE; and E, and suppose that the different exponent in
both extensions i8p — 2. ThenP is either unramified irE/E; (i = 1, 2), orin
case of ramification the different exponentiiiE; is also2p — 2.

By Lemma 2.1 we can use Proposition 2.4 to calculate the different exponents
of all ramified places in the towerg which are defined by Eq. (2.1). Using the
transitivity of different exponents we obtain: for &l € V() and all places
Q of F, lying aboveP, the different exponent a®|P isd(Q|P) = 2(p! — 1)
if & Q|P) = p'. Thus, in any tower recursively defined by Eq. (2.1), the
different exponents of ramified places in the extensiBn$-, are bounded by
the ramification index multiplied by two (see also [6], Lemma 3).

Now we can prove our main result:

Theorem 2.5. Letq = p' (pis a prime number), and assume that < [y
satisfy the conditiolc(b — ¢)?P~? = 1. Then the equation

YP4+bY=——
+ XP+4+cX

defines recursively a toweF overlFy with finite genus

y(F) = lim g(Fo)/[Fn: Fol < p?

Proof. The Hurwitz genus formula yields

29(Fn) — 2 = [Fn : Fol(2g(Fo) — 2) + deg Diff(F,/Fo)
< 2[Fn : Fol(degV (F) — 1) < 2p?[Fy, : Fol. 0
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Remark 2.6. One can easily see that all results also hold if we replace the
prime numbermp by a powerp®.
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