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A Class of Artin-Schreier Towers
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Abstract. We study the asymptotic behaviour of the genus in some Artin-Schreier
towers of function fields over a finite field, and we present a new class of Artin-Schreier
towers having finite genus.
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1 Introduction

A towerF = (F0, F1, . . .) of function fieldsover the finite fieldFq is an infi-
nite sequence of function fieldsFi /Fq with F0 ⊆ F1 ⊆ F2 ⊆ . . ., having the
following properties:

(i) The extensionsFi +1/Fi are separable of degree[Fi +1 : Fi ] > 1, andFq is
algebraically closed inFi , for all i ≥ 0.

(ii) For some j ≥ 0, the genus ofFj satisfiesg(Fj ) ≥ 2.

It follows from the Hurwitz genus formula thatg(Fi ) → ∞ for i → ∞,
and the following limits do exist (we denote byN(F) the number ofFq-rational
places of a function fieldF/Fq):

γ (F) = lim
i →∞

g(Fi )

[Fi : F0]
, ν(F) = lim

i →∞

N(Fi )

[Fi : F0]

and λ(F) = lim
i →∞

N(Fi )

g(Fi )
.

(1.1)
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We callλ(F) thelimit of the tower, γ (F) is thegenus of the tower, andν(F) is
thesplitting rate of the tower. By the Drinfeld-Vladut bound [2] one has

0 ≤ λ(F) ≤
√

q − 1. (1.2)

The towerF is said to beasymptotically goodif λ(F) > 0, otherwise it is said
to beasymptotically bad.

The interest in asymptotically good towers comes from various applications
of function fields with “many” rational places (with respect to the genus) in
Coding theory, Cryptography, etc. (see [10], [12]). This motivates the search for
asymptotically good towers. However, it turns out that it is a non-trivial problem
to provide examples of asymptotically good towers. The first examples are due
to Ihara [8], Tsfasman-Vladut-Zink [13] and Serre [11]. These examples come
from modular curves or from classfield theory, and the function fields in these
towers are not given by simple explicit equations.

Garcia, Stichtenoth and others have constructed some explicit asymptotically
good towers in arecursivemanner as follows: There is given a polynomial
f (X,Y) ∈ Fq[X,Y] such thatF0 = Fq(x0) is the rational function field overFq

andFi +1 = Fi (xi +1), where the irreducible equation forxi +1 over the fieldFi is
just the equation

f (xi , xi +1) = 0 , for all i ≥ 0. (1.3)

In this situation we say that the towerF = (F0, F1, . . .) is recursively defined
by the polynomialf (X,Y). If the polynomial f (X,Y) has the special form

f (X,Y) = ψ1(X) ∙ ϕ(Y)− ψ0(X),

whereϕ(Y) ∈ Fq[Y] is a separableadditivepolynomial overFq,

ϕ(Y) =
m∑

j =0

aj Y
pj

with p = char(Fq), aj ∈ Fq, a0 ∙ am 6= 0,

andψ0(X), ψ1(X) ∈ Fq[X], the towerF is called arecursive Artin-Schreier
tower (AS tower for short). We say then thatF is defined recursively by the
equation

ϕ(Y) = ψ0(X)/ψ1(X) =: ψ(X) ∈ Fq(X). (1.4)

If all roots of the polynomialϕ(Y) are inFq, then the extensionsFi +1/Fi are
Artin-Schreier extensions of degreepm = degϕ(Y). The class of recursive AS
towers is especially interesting since it contains examples of towersF whose
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limit λ(F) attains or is close to the Drinfeld-Vladut bound (1.2), see [4], [7]. It
is therefore a natural problem to study AS towers more closely.

Beelen, Garcia and Stichtenoth investigated recursive AS towers of prime
degreep = char(Fq); i.e., where the defining equation of the tower has the
form

Yp + bY = ψ(X) (1.5)

with 0 6= b ∈ Fq andψ(X) ∈ Fq(X). Their main result is as follows (see [1],
Thm. 4.1 and Thm. 4.6): If Eq. (1.5) defines an asymptotically good recursive
tower overFq, then the rational functionψ(X) is of one of the following three
types:

Type I: ψ(X) = (X − c)p/ψ1(X)+ a, with a, c ∈ Fq and a separable
polynomialψ1(X) ∈ Fq[X] of degree degψ1(X) ≤ p.

Type II: ψ(X) = ψ0(X)/(X − a)p with a ∈ Fq and a separable poly-
nomialψ0(X) ∈ Fq[X] of degree degψ0(X) ≤ p.

Type III: ψ(X) = 1/ψ1(X)+ a, with a ∈ Fq and a separable poly-
nomialψ1(X) ∈ Fq[X] of degree degψ1(X) = p.

As it was observed in [1], all hitherto known examples of asymptotically good
recursive AS towers of degreep are of Type I, and it is an open problem if there
exist good towers of Type II or Type III. The situation is somewhat similar as
for towers ofKummer type, which are recursively defined by an equation of the
form

Ym = h(X) ∈ Fq[X], with gcd(m,q) = 1.

Lenstra [9] proved that asymptotically good towers of this type do not exist over
the prime fieldFp.

Since the limitλ(F) of a towerF satisfiesλ(F) = ν(F)/γ (F) (see (1.1)),
the tower is asymptotically good if and only if its genusγ (F) is finite and its
splitting rateν(F) is strictly positive. Therefore a necessary first step towards
the construction of good AS towers is to find examples where the genusγ (F) is
finite. It is the aim of this note to provide a class of recursive AS towers of Type
III with this property.

2 Artin-Schreier towers of Type III with finite genus

In this section we consider a sequenceF = (F0, F1, F2, . . .) of function fields
Fi /Fq which is recursively defined by the equation

Yp + bY = 1/(X p + cX) (2.1)
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with b, c ∈ Fq \ {0} andb 6= c. This means thatF0 = Fq(x0) is the rational
function field, and fori ≥ 0 we haveFi +1 = Fi (xi +1) with

xp
i +1 + bxi +1 = 1/(xp

i + cxi ). (2.2)

First we have to prove that this sequence of function fields is indeed a tower, see
Prop. 2.2 below. We need

Lemma 2.1. Let K = F̄q be the algebraic closure ofFq and consider the
function fieldF = K (x, y), wherex, y satisfy Eq. (2.1)with b, c ∈ Fq \ {0}
andb 6= c. Then the extensionsF/K (x) and F/K (y) are Galois of degreep,
and the following holds:

(i) Over K (x) exactly the zeroes ofx − α with α p + cα = 0 are ramified,
each with ramification indexp and different exponent2(p − 1). All these
places are poles ofy.

(ii) Over K (y) exactly the zeroes ofy − β with β p + bβ = 0 are ramified,
each with ramification indexp and different exponent2(p − 1). All these
places are poles ofx.

Proof. This follows immediately from the theory of Artin-Schreier extensions
of function fields, cf. [12], Ch.III.7.8. �

Proposition 2.2. The sequenceF = (F0, F1, F2, . . .) of function fields over
Fq which is defined recursively byEq. (2.1)is a tower.

Proof. First we have to show that the equationYp + bY = 1/(xp
i + cxi ) is

absolutely irreducible overFi , for all i ≥ 0. So we consider the constant field
extensionsF ′

i := Fi ∙ K over the algebraic closureK = F̄q, and we must show
that[F ′

i +1 : F ′
i ] = p. The casei = 0 follows from Lemma 2.1. Now leti ≥ 1.

We choose elementsαi , αi −1, . . . , α1, α0 ∈ K such that

α
p
i + cαi = 0, α

p
i + bαi 6= 0 (2.3)

and
α

p
j + cα j = 1/(α p

j +1 + bα j +1), α
p
j + bα j 6= 0 (2.4)

for all j < i . These choices are possible sinceb 6= c. There exists a placeQ of
F ′

i which is a common zero of the functionsxi −αi , xi −1−αi −1, . . . , x0−α0, and
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Q is unramified in the extensionF ′
i /K (xi ) by Lemma 2.1(ii). LetP denote the

restriction ofQ to K (xi ). By (2.3) and Lemma 2.1(i), the placeP is ramified in
K (xi , xi +1)/K (xi ) with ramification indexp, and it follows from Abhyankar’s
Lemma (see [12], III.8.9) thatQ is ramified inF ′

i +1/F ′
i with ramification index

p, so[F ′
i +1 : F ′

i ] = p. This proves that the polynomialYp +bY = 1/(xp
i +cxi )

is irreducible overF ′
i , which implies that the field extensionFi +1/Fi is of degree

[Fi +1 : Fi ] = p and that the fieldFq is algebraically closed inFi +1.

By Lemma 2.1(i), the degree of the different ofF1/F0 is deg Diff(F1/F0) =
2p(p − 1), hence the genus ofF1 is g(F1) = (p − 1)2. So we haveg(F1) ≥ 2
for all p 6= 2. In the casep = 2 it is easy to see thatg(F2) ≥ 2. �

For any towerF = (F0, F1, . . .) over Fq, the ramification locusV(F) is
defined as

V(F) = {P | P is a place ofF0 which ramifies inFn/F0 for somen ≥ 1}.

If the ramification locus is finite, we set

degV(F) =
∑

P∈V(F)

degP.

Proposition 2.3. Let F = (F0, F1, F2, . . .) be the tower overFq which is
recursively defined by

Yp + bY = 1/(X p + cX), (2.1)

with the additional condition

bc(b − c)2p−2 = 1. (2.5)

Then the ramification locusV(F) is finite and has degreedegV(F) ≤ 1 + p2.

Proof. Since the degree of the ramification locus is invariant under constant
field extensions, we can assume that the following sets1,� are contained in
Fq:

1 := {δ ∈ F̄q | δ p + c(b − c)p−1δ = 0},

� := {α ∈ F̄q | α p + bα ∈ 1}.

Now let P ∈ V(F). There is somen ≥ 1 and a placeQ of Fn lying aboveP,
such thatQ is ramified in the extensionFn/Fn−1. Then Q is a pole ofxn by
Lemma 2.1; i.e.,xn(Q) = ∞. For i = 0, 1, . . . , n we set

αi := xn−i (Q) ∈ F̄q ∪ {∞},
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and we want to prove the following claim:

αi ∈ � ∪ {∞}, for i = 0, . . . , n. (2.6)

Sincex0(Q) = αn, this will imply that

P ∈ V(F) =⇒ x0(P) ∈ � ∪ {∞},

and therefore degV(F) ≤ 1 + |�| = 1 + p2, as desired.
We show (2.6) by induction overi (with n fixed). By definition we have

α0 = xn(Q) = ∞. Suppose now thatαi ∈ � ∪ {∞}, for somei ≤ n − 1. If
αi = ∞, it follows from Eq. (2.2) thatα p

i +1 + cαi +1 = 0. Setting

δi +1 := α
p
i +1 + bαi +1 = (α

p
i +1 + cαi +1)+ (b − c)αi +1 = (b − c)αi +1

we see that

δ
p
i +1 + c(b − c)p−1δi +1 = (b − c)p(α

p
i +1 + cαi +1) = 0 ,

henceαi +1 ∈ �.
Now we assume thatαi ∈ �. If αi +1 = ∞ then Claim (2.6) holds also for

i + 1 and we are done. So it remains to consider the case whereαi ∈ � and
αi +1 6= ∞. From Eq. (2.2) we obtain

α
p
i +1 + cαi +1 = 1/(α p

i + bαi ). (2.7)

By induction hypothesis, the elementδi := α
p
i + bαi 6= 0 satisfies the equation

δ
p
i + c(b − c)p−1δi = 0, (2.8)

and we have to prove thatδi +1 = α
p
i +1 + bαi +1 also satisfies this equation. From

Eq. (2.7) follows
δi +1 = δ−1

i + (b − c)αi +1 ,

hence

δ
p
i +1 + c(b − c)p−1δi +1

= δ
−p
i + (b − c)pα

p
i +1 + c(b − c)p−1(δ−1

i + (b − c)αi +1)

= (δ
−p
i + c(b − c)p−1δ−1

i )+ (b − c)p(α
p
i +1 + cαi +1)

= δ
−p
i + b(b − c)p−1δ−1

i

= b(b − c)p−1δ
−(p+1)
i (δ

p
i + δi /b(b − c)p−1)

= b(b − c)p−1δ
−(p+1)
i (δ

p
i + c(b − c)p−1δi ) = 0.

Observe that in the last line we have used Eq. (2.5) and (2.8). �
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It is well known that in the case of tamely ramified towers finite ramification
locus implies finite genus, since the different exponent is bounded by the ram-
ification index (see [5]). This is in general not true for wildly ramified towers
(cf. [4], Example 4.1). However, in our case we can show that the different
exponents of ramified places in the extensionsFi /F0 are small enough to ensure
finite genus. The key point is the following proposition from [6]. A detailed
exposition of calculations of different exponents in the tower in Proposition 2.3
can also be found in [14].

Proposition 2.4. (See [6], Lemma 2.)Let E1 andE2 be distinct cyclic function
field extensions ofF of degreep, and letE be the composite field ofE1 andE2.
ThenE/F is a Galois extension of degreep2. Suppose thatP is a place of F
which is ramified both inE1 and E2 and suppose that the different exponent in
both extensions is2p− 2. ThenP is either unramified inE/Ei (i = 1, 2), or in
case of ramification the different exponent inE/Ei is also2p − 2.

By Lemma 2.1 we can use Proposition 2.4 to calculate the different exponents
of all ramified places in the towersF which are defined by Eq. (2.1). Using the
transitivity of different exponents we obtain: for allP ∈ V(F) and all places
Q of Fn lying aboveP, the different exponent ofQ|P is d(Q|P) = 2(pt − 1)
if e(Q|P) = pt . Thus, in any tower recursively defined by Eq. (2.1), the
different exponents of ramified places in the extensionsFi /F0 are bounded by
the ramification index multiplied by two (see also [6], Lemma 3).

Now we can prove our main result:

Theorem 2.5. Let q = pr (p is a prime number), and assume thatb, c ∈ Fq

satisfy the conditionbc(b − c)2p−2 = 1. Then the equation

Yp + bY =
1

X p + cX

defines recursively a towerF overFq with finite genus

γ (F) = lim
n→∞

g(Fn)/[Fn : F0] ≤ p2.

Proof. The Hurwitz genus formula yields

2g(Fn)− 2 = [Fn : F0](2g(F0)− 2)+ deg Diff(Fn/F0)

< 2[Fn : F0](degV(F)− 1) ≤ 2p2[Fn : F0]. �
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Remark 2.6. One can easily see that all results also hold if we replace the
prime numberp by a powerps.
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