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Minimal invariant varieties and first integrals
for algebraic foliations

Philippe Bonnet

Abstract. Let X be anirreducible algebraic variety ov&rendowed with an algebraic
foliation F. In this paper, we introduce the notion of minimal invariant varltyf, Y)

with respect to(F, Y), whereY is a subvariety ofX. If Y = {x} is a smooth point
where the foliation is regular, its minimal invariant variety is simply the Zariski closure
of the leaf passing through. First we prove that for very generic, the varieties

V (F, x) have the same dimensign Second we generalize a result due to X. Gomez-
Mont (see [G-M]). More precisely, we prove the existence of a dominant rational map
F : X — Z, whereZ has dimensiorin — p), such that for very generic, the Zariski
closure ofF ~1(F (x)) is one and only one minimal invariant variety of a point. We end
up with an example illustrating both results.
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1 Introduction

Let X be an affine irreducible variety ov&r, andOy its ring of regular functions.

Let F be an algebraic foliation, i.e. a collection of algebraic vector fieldXon

stable by Lie bracket. We consider the elementgads C-derivations on the

ring Ox. In this paper, we are going to extend the notion of algebraic solution

for F: this will be the minimal invariant varieties fgF. We will study some of

their properties and relate them to the existence of rational first integrafs. for
Recall that a subvariety of X is an algebraic solution off if Y is the

closure (for the metric topology) of a leaf ¢f. A non-constant rational function

f on X is a first integral ifo(f) = 0 for anya in F. Since the works of

Darboux, the existence of such varieties has been extensively studied in the case
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2 PHILIPPE BONNET

of codimension 1 foliations (see [Jou],[Gh],[Bru]). In particular, from these
works, we know that only two cases may occur for codimension 1 foliations:

T has finitely many algebraic solutions,

» F has infinitely many algebraic solutions, and a rational first integral.

So rational first integrals appear if and only if all leavesfofare algebraic
solutions. In this case, the fibres of any rational first integral is a finite union of
closures of leaves. This fact has been generalised by Gomez-Mont (see [G-M])
in the following way.

Theorem 1.1. Let X be a projective variety angr an algebraic foliation on

X such that all leaves are quasi-projective. Then there exists a rational map
F : X — Y such that, for every generic poiptof Y, the Zariski closure of
F~1(y) is the closure of a leaf of .

We would like to find a version of this result that does not need all leaves to be
algebraic. To that purpose, we need to give a correct definition to the algebraic
object closest to a leaf. A good candidate would be the Zariski closure of a leaf,
but this choice may rise difficulties due to the singularities of bo#nd 7. We
counterpass this problem by the following algebraic approach.

LetY be an algebraic subvariety &f andly the ideal of vanishing functions
onY. Let 7 be the set of idealk in Oy satisfying the two conditions:

() ©cl cly and (i) YoeF, a()Cl.

Since(0) belongs tg], 7 is non-empty and itis partially ordered by the inclusion.
Since it is obviously inductive] admits a maximal element If J is any other
ideal of 7, thenl + J enjoys the condition§) and(ii ), hence it belongs td.

By maximality, we havd = | + J andJ is contained in . Thereforel is the
unique maximal element ¢f, which we denote by (F, Y).

Definition 1.2. The minimal invariant variety (‘F, Y) is the zero set df('F, Y)
in X.

From a geometric viewpoin¥/ (‘F, Y) can be seen as the smallest subvariety
containingY and invariant by the flows of all elements $f In particular, ifx
is a smooth point oK where the foliation is regular, theh(F, x) is the Zariski
closure of the leaf passing through In section 2, we show that (F,Y) is
irreducible ifY is itself irreducible.
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FIRST INTEGRALS FOR ALGEBRAIC FOLIATIONS 3

In this paper, we would like to study the behaviour of these invariant varieties,
and relate it to the existence of first integrals. We analyze some properties of the
function:

ng: X — N, X+—dim V(F,X)

Let M be theo-algebra generated by the Zariski topology X¥n A function
f : X — N is measurable for the Zariski topolodl f ~1(p) belongs toM
for any p. The spaceM contains in particular all countable intersectiehef
Zariski open sets. A proper holds forevery very generic pointin X if (x)
is true for any poink in such an intersectiofi.

Theorem 1.3.Let X be an affine irreductible variety ovérand F an algebraic
foliation on X. Then the functiom is measurable for the Zariski topology.
Moreover there exists an integ@rsuch that(1) ny(x) < p for any pointx in

X and(2) ng(x) = p for any very generic point in X.

Setp = max dim V(F, x) and note thatp is achieved for every generic
point of X. In the last section, we will produce an example of a foliation on
C* where the functioms is measurable but not constructible for the Zariski
topology. In this sense, theorem 1.3 is the best result one can expect for any
algebraic foliation.

Let K4 be the field generated iy and the rational first integrals gf. By
construction, the invariant varietids(F, x) are defined set-theoretically, and
they seem to appear randomly, i.e. with no link within each other. In fact there
does exist some order among them, and we are going to see that they are “mostly”
given as the fibres of a rational map. More precisely:

Theorem 1.4. Let X be an affine irreducible variety ove of dimensiom
and F an algebraic foliation onX. Then there exists a dominant rational map
F : X — Y, whereY is irreducible of dimensiofin — p), such that for every
very generic poink of X, the Zariski closure oF ~X(F (x)) is equal toV (F, X).

In particular, the transcendence degreetof overC is equal to(n — p).

The idea of the proof is to construct enough rational first integrals. These will
be the coordinate functions of the rational nfagiven above. The construction
consists in choosing a codimensidirreducible varietyH in X. We show there
exists an integer > 0 such that, for every very generic powbf X, V (F, X)
intersectsH in r distinct pointsy,, ..., y;. We then obtain a correspondence:

H: X — {y1, ..., Vi }.

We can modify{ so as to get a rational mdp that represents everyuple
{y1, ..., Yr } by a single point. Since the imagexbnly depends on the intersec-
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4 PHILIPPE BONNET

tion of V (F, x) with H, the mapF will be invariant with respect to the elements
of F.

One question may arise after these two results. Does there exist an effective
way of computing these minimal invariant varieties and detect the presence of
rational first integrals? For instance, we may attempt to use the description
of the idealsl (‘F, Y) given by lemma 2.1. Unfortunately we cannot hope to
compute them in a finite number of steps bounded, for instance, by the degrees
of the components of the vector fields $f Indeed, consider the well-known
derivationd on C?: ; ;

d = pxax +qyay.
For any couple of non-zero coprime integérs q), this derivation will have
f(x,y) = x9y~P as a rational first integral, and we cannot find another one of
smaller degree. The minimal invariant varieties of points will be given in general
by the fibres off . Therefore we cannot bound the degree of the generators of
I (F, x) solely by the degree d.

However, we may find them by an inductive process. For one derivation, an
approach is given in the paper of J.V.Pereira via the notion of extatic curves (see
[Pe]). The idea is to compute a series of Wronskians attached to the derivation.
Then one of them vanishes identically if and only the derivation has a rational
first integral.

Last thing to say is that the previous results carry over all algebraic irreducible
varieties. Given an algebraic varie¥/ with an algebraic foliation, we choose
a covering ofX by open affine sets; and work on thdJ;. For any algebraic
subvarietyY of X, we define the minimal invariant varieW(F, Y) by gluing
together the Zariski closure of the varietdsF, Y N U;) in X.

2 The contact order with respect to’f

In this section, we are going to show that the minimal invariant vakigty, Y)

is irreducible ifY is irreducible. This result is already known whénhconsists

of one derivation (see [Ka]). We could reproduce the proof given in [Ka] for
any set of derivations, but we prefer to adopt another strategy. We will instead
introduce a notion of contact order with respectftpand we will use it to show
that! (/F,Y) is prime if Iy is prime. Denote by ; the ©x-module spanned by

the elements ofF. We start by giving the following characterisationldff, Y).

Lemma2.1.1(F,Y) = {f €ly, Y01, ...,0« € My, d10...00(f) € IY}.
Proof. Let f be an element ofy such thab; o ... o dx( f) belongs tdy for any
91, ...,  INn Mz. Thendo...o dk( f) belongs tdy for any elements, ..., oy of
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FIRST INTEGRALS FOR ALGEBRAIC FOLIATIONS 5

F. Letl betheideal generated fyand all the elements of the fordio...ocdx (),
where eveny; lies in F. By construction, this ideal is contained lin, and is
stable by every derivation gf. Thereforel is contained inl (F,Y), and a
fortiori f belongs tal (F, Y). We then have the inclusion:

{fely, Vo, ...,0c € Mg, d10...0d(f) ey} SI(F.Y).

Conversely letf be an elementdf(f, Y). Sincel (F, Y)is containedirly and
is stable by every derivation ¢f, 9, o ... o 9( f) belongs tdy for any elements
1, ..., & Of F. SinceMy is spanned byf, 91 o ... o d¢( ) belongs tdy for any
01, ..., O IN Mf. O

Since the space df-derivations on9y is an ©@x-module of finite type and
Ox is noetherianM ¢ is finitely generated as afx-module. Let{d., ..., 9, } be
a system of generators M . If | = (iy, ..., in) belongs to{1, ..., r}", we set
9, = dj, 0...0 9, and|l| = n. By convention{1, ..., r}° = {#}, || = 0 anddy
is the identity on9yx. We introduce the following map:

ordry : Ox — NU {400}, f+—inf{|l], 3/(f) &lv}.

Definition 2.2. The mapordy v is the contact order with respect {¢F, Y).

By lemma 2.1,f belongs tol (‘F, Y) if and only if ordy y(f) = 400, and f
does not belong tdy if and only if ords v(f) = 0. A priori, the map org v
depends on the set of generators choseiMipr We are going to see that it only
depends orf. Let{ds, ..., ds} be another set of generators #dr-, and define
in an analogous way the map g(d corresponding to this set. By assumption
there exist some elemerds; of Ox such that:

s
d = Zaudj .
j=1

By Leibniz rule, it is easy to check via an induction |df that there exist some
elementsy ; in Ox such that:

0 = Z a|,JdJ.

i<

Let f be an element ax such that org v (f) = n. Then there exists an index
| of lengthn such that:

a(f)="> ayds(f) ¢ ly.

[J]=n
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6 PHILIPPE BONNET

Sincely is an ideal, this means there exists an indexf length < n such
thatd; (f) does not belong tby. By definition we get that or‘p’Y(f) <n=
ordr v (f) forany f. By symmetry we find thatoqu(f) = ords y(f)forany
f, and the maps coincide.

Proposition 2.3. If Y is irreducible, the contact order enjoys the following
properties:

e ordy y(f + g) > inf{ords y(f), ords v(g)} with equality ifordy v (f)
# ordr v(Q),

» ordy y(fg) = ords y(f) 4+ ords y(g) forall f,gin Ox.

Proof of the first assertion. If ord s y(f) = ords y(g) = 400, then f, g both
belong tol (‘F,Y), f + gbelongs td (/F, Y) and the result follows. So assume
that ordy v () is finite and for simplicity thah = ords vy (f) < ords v(g). For
any index! of length< n, 9, (f) andd, (g) both belong taly. Sod, (f + g)
belong toly for any| with |I| < n, and ord- y(f 4+ g) > n. Therefore we have
forall f, g:

ordg y(f + @) > inf{ords v(f), ords v(9)} .

Assume now thatorgdy (f) < ords v(g). Thenthere exists an indéof length
n such thaw, (f) does not belong tdy. Since|l | < ords v(9), 9, (9) belongs
to Iy. Therefored, (f + g) does not belong tdy and ordr v(f + g) < n, so
thatordy v(f +g) =n. O

For the second assertion, we will need the following lemmas. The first one is
easy to get via Leibniz rule, by an induction on the length.of

Lemma 2.4.Letdy, ..., 3 a system of generators M. Then there exist some
elementsy,, |, of C, depending on and such that for allf, g:

a(fe =D a,,dn(Hi,g).

[al+I12]=[1]

Lemma 2.5. Let f be an element oDx such thatordz v(f) > n. Letl =
(i1, ...,in) be any index. For any rearrangemeft = (s, ..., jn) Of theiy,
d;(f) — 9,(f) belongs taly.

Proof. Every rearrangement of thig can be obtained after a composition of
transpositions on two consecutive terms. So we only need to check the lemma
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FIRST INTEGRALS FOR ALGEBRAIC FOLIATIONS 7

in the casel = (iq, ..., 141,11, ..., In). If we denote byl4, I, the indicesl; =
(i1, ..., ij—1) @andly = (ij42, ..., in), then we find:

0y — 01 = 9y, 0[3,0,,]00,.

SinceMy is stable by Lie bracket] = [9;, 9;,,,] belongs toM ». Thend; — 9,
is a composite ofn — 1) derivations that spal ». Since ord- vy is independent
of the set of generators and grd(f) = n, 9;(f) — 9, (f) belongstaly. O

Proof of the second assertion of Proposition 2.3.Let f, g be a couple of
elements of9y. If either f or g has infinite contact order, then one of them
belongs tol (‘F, Y) and fg belongs tol (F,Y), so that org- y(fg) = 400 =
ordr v(f) 4 ords y(g). Assume now that orgly(f) = nand ord: y(g) = m
are finite. By lemma 2.4, we have:

a(fe =D a,,dn(H)i,g).
Nal+121=I1|
Since|l1] 4 [12] < n+m, either|l1| < nor|l2| < m, andd,(f)d,,(g) belongs
to ly. S0d, (fg) belongs toly and we obtain:
ordry(fg) > n+m.

Conversely, consider the following polynomials Q in the indeterminates
X, tl, ceey tr

P(X,ty, ..nt) = (t101 4+ ... + )" (F)(X),
QX ty, .ont) = (t201 + ... + t9)™@)(X) .

By lemma 2.5, we get that; (f) = 9;(f) [Iy] for any rearrangement of |
if I has lengtn. Idem ford, (g) andd;(g) if | has lengthm. Therefore in
the expressions dP, Q, everything happens modulg as if the derivations;
commuted. We then obtain the following expansions modiyio

P= ) T O o0 g () (V]
. ceee r.

= D e oqr(@ vl
1eeeely e

Since ord-y(f) = n and ord: y(g) = m, both P and Q have at least one
coefficient that does not belong te by lemma 2.5. So neither of them belong

Bull Braz Math Soc, Vol. 37, N. 1, 2006



8 PHILIPPE BONNET

to the ideally[ty, ..., t;], which is prime becausk, is prime. SoP Q does not
belong toly[ty, ..., t,]. If 8 =t101 + ... + t; 3, then we have by Leibniz rule:

n
3n+m( fg) — Z Cr|:+mak( f )8n+m—k(g) )
k=0

Since org-v(f) = n and ordrv(g) = m, 3%(f)a™M*(g) belongs to
Iy[ty, ..., t;] except fork = n. Sod"™™(fg) = CJ,,,P Q does not belong to

ly[ty, ..., ]. Choose a pointy, zi, ..., z) in Y x C" such thatP Q(y, zi, ..., )
# 0 and setl = 210, + ... + z d;. By construction we have:

d™M(fo)(y) = Cl,,PQ(Y, 21, ... %) # 0.

Sod"t™M(fg) does not belong tdy and fg has contact ordex n + m with
respect to the system of generatfis ..., d;, d}. Since the contact order does
not depend on the system of generators, we find:

ordrv(fg) =n+m=ordsy(f)+ordsv(9). O

Corollary 2.6. LetY be an irreducible subvariety of. Then the ideal (‘F,Y)
is prime. In particular, the minimal invariant variety (F, Y) is irreducible.

Proof. Let f, g be two elements abx such thatfg belongs tal (F, Y). Then
fg has infinite contact order. By proposition 2.3, eittier g has infinite contact
order. So one of them belongstof, Y), and this ideal is prime. O

3 Behaviour of the functionn

In this section we are going to establish theorem 1.3 about the measurability of
the functionn for the Zariski topology. Recall that a function: X — N is

lower semi-continuous for the Zariski topology if the det([0, r]) is closed

for anyr. Note that such a function is continuous for the constructible topology.
We begin with the following lemma.

Lemma 3.1.Let F be afinite dimensional vector subspac®gf. Then the map
¢ : X > N, x — dimg F —dim¢ | (F, x) N F is lower semi-continuous
for the Zariski topology.

Proof. For any fixed finite-dimensional vector spaEe consider the affine
algebraic set:

Te={(x, f) e X x F, ¥y, ...,dn € Mg, dio...odn(f)(x) =0} .
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FIRST INTEGRALS FOR ALGEBRAIC FOLIATIONS 9

together with the projectiodl : X — X, (X, f) — X. SinceXg is
affine, there exists a finite collection of linear operatass ..., A,, obtained by
composition of elements d¥ , such that:

Sr={X, f) e Xx F, Ai(F)(X) =... = A (F)(X) =0} .

By lemma 2.1, the fibré1—1(x) is isomorphic tol (¥, x) N F for any pointx
of X. Since eveny,; is linear,A; can be considered as a linear formemwith
coefficients in0x. Sothe map\ = (Ay, ..., A;) isrepresented by a matrix with
entries inOx. We therefore have the equivalence:

fel(F,XYXNF << f eker AX).

By the rank theorem, we havg: (x) = rk A(x). But the rank of this matrix is

a lower semi-continuous function because it is given as the maximal size of the
minors of A that do not vanish at. Thereforepe is lower semi-continuous for

the Zariski topology. O

Proof of theorem 1.3. Since X is affine, we may assume thAtis embedded
in C* for somek. We provideC[Xy, ..., Xk] with the filtration {F,} given by
the polynomials of homogeneous degre@. By Hilbert-Samuel theorem (see
[E]), for any ideall of C[Xy, ..., X], the function:

hy(n) =dim¢ F,—dim¢ | N F,.

is equal to a polynomial fan large enough, and the degrpef this polynomial
coincides with the dimension of the varie(l). It is therefore easy to show

that: loach
p= lim og( .(n))'

n— 400 n

LetIT : Q[xl, ..., X¢] = Ox be the morphism induced by the inclusirn— CX,
and set~, = IT(F,). For any ideal of O, consider the function:

h,(n) = dime F, —dime | N Fy.

Sincell is onto, we havéﬂ (nN) = hp-1(,(n), so thaﬁ (n) coincides fom large
enough with a polynomial of degrgeequal to the dimension &f (). With the
notation of lemma 3.1, we obtain for= | (/F, x):

p=ny(x) = lim logthi (M) _ iy 1090 00)

n—4o00 n n— 400 n

Bull Braz Math Soc, Vol. 37, N. 1, 2006



10 PHILIPPE BONNET

Bylemma 3.1, everyg is lower semi-continuous for the Zariskitopology, hence
measurable. Since a pointwise limit of measurable functions is measurable, the
functionny is measurable for the Zariski topology. Moreover sipgeis lower
semi-continuous, there exist a real numbeand an open sét, on X such that:

. log(pg ()
n

. log(pg ()

<ryforanyxin X,

=ryforanyxin U,.

Denote byJ the intersection of all,. Since this intersection is not empty, there
exists arx in X for which log(gg (X))/n = rp for anyn, so that, converges to
a limit p. By passing to the limit, we obtain that:

* ng(x) < pforanyxin X,
* ng(x) = pforanyxinU.

Note thatp has to be an integer. The theorem is proved. O

4 The family of minimal invariant varieties

In this section, we are going to study the set of minimal invariant varieties
associated to the points &f The result we will get will be the first step towards
the proof of theorem 1.4. Leé¥l be the following set:

M={X,y)e Xx X, ye V(F,x)}

together with the projectioll : M — X, (X, y) —> X. Note that for any

X, the preimagdl—1(x) is isomorphic toV (‘F, x), so that the coupléM, IT)
parametrizes the set of all minimal invariant varieties. Our purpose is to show
that:

Proposition 4.1. The Zariski closug M is an irreducible affine set of dimension
dim X+ p, wherep is the maximum of the function-. Moreover, for every
very generic poink in X, M N TT-%(x) is equal to{x} x V (F, X).

The proof of this proposition is a direct consequence of the following lemmas.
Lemma 4.2. The Zariski closug M is irreducible.

Proof. Foranyg; in /F, consider the neW-derivationAj onOx,x = Ox ¢ Ox
given by the following formula:

Vi, ge Ox, A(fTX)®9(y) = f(X)®ad4(9)(y).

Bull Braz Math Soc, Vol. 37, N. 1, 2006
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Itis easy to check that; is a well-defined derivation. Denote Igithe collection
of the Aj, by D the diagona{(x, x), X € X}in X x X and setMy = V (G, D).
By corollary 2.6,Mg is irreducible. We are going to proweatM = M.

First let us check thaly C M. Let f be a regular function oiX x X that
vanisheson M. Then f(x, y) = O for any couple(x, y) wherey belongs to
V(F, x). If ¢ (y) is the flow ofg; aty, thenyr (X, y) = (X, ¢ (y)) is the flow
of Aj at(x, y). Sincey liesinV (F, X), ¢ (y) belongs tov (F, x) for any small
value oft, and we obtain:

f(x, y) = f(X, u(y)) =0.

By derivation with respect tb, we get thatA; (f)(x, y) = 0 for any(x, y) in
M. SoA;(f) vanishesalongM, and the ideal (M) is stable by the familyg.
Since it is contained i (D), we have the inclusion:

(M) < 1(G, D).

which implies thatVlo € M.

Second let us shothatM € M. Let f be a regular function that vanishes
alongMg. Fix x in X and consider the functiofy (y) = f(x, y) on X. Then
foranyAq, ..., Ay in G, we have:

Aro..oAn(f)(X,y) =010...00h(f)(Y).

SinceMg = V (G, D), D is contained inMg and fy(x) = 0. Sof(x,x) =0
and for anyo, ..., 3, in F and anyx in X, we get that:

910..09(f)X) =0.

In particular, fx belongs tol (F, x) and f, vanishes alony/ (F, x). Thus f
vanishes or{x} x V(F, x) = II"1(x) for anyx in X. This implies thatf is
equal to zero oM andon M, so thatl (G, D) € | (M). As a consequence, we
find M C Mg and the result follows. O

Lemma 4.3. Thevariety M has dimensio dim X + p.

Proof. Consider the projectiofl : M — X, (X,Y) — Xx. SinceM contains
the diagonaD, the mapIl is onto. By the theorem on the dimension of fibres,
there exists a non-empty Zariski openein X such that:

vx € U, dim M =dim X +dim I Y(x) N M.

Bull Braz Math Soc, Vol. 37, N. 1, 2006



12 PHILIPPE BONNET

By theorem 1.3, there exists a countable intersectiohZariski open sets iX
such thahy(x) = pforall x in X. In particularU N é is non-empty. For any
inU No, II-1(x) N M contains the variety (F, x) whose dimension ig, and
this yields:

dim M > dim X + p. O

Lemma 4.4. Thevariety M has dimensiorc dim X + p.

Proof. Let {F,} be afiltration of© x by finite-dimensionaC-vector spaces, and
set:
Mn:{(xay)exx Xs Vf € I(f,x)an, f(Y):O} .

The sequencéM,} is decreasing for the inclusion, abl = Npeny My, More-
over everyM, is constructible for the Zariski topology by Chevalley’s theorem
(see [Ei]). Indeed its complement i x X is the image of the constructible set:

Tho= {(Xy, f) e Xx X x Fpn, Vo, ..., 0 € T,
do..od(f)(y) =0 and f(y) #0}.

under the projectionix, y, f) — (x, y). SinceD is contained in everi,, the
projectionIT : M, — X is onto. By the theorem on the dimension of fibres
applied to the irreducible componerttM,,, there exists a non-empty Zariski
open set,, in X such that:

vx € U,, dim M, <dim X +dim II73(x) N M,.
SinceM € M, for anyn, andIT~%(x) N M, ~ V(I (F, x) N F,), we obtain:
vx € Uy, dim M <dim X +dim V(I (F,x) N Fn).

Since evenJ, is open, the intersectigh = Ny Un is Non-empty. Led be an
intersection of Zariski open sets &f such thainz(x) = p for anyx of 6. For
any fixedx in 6 N 0’, we have:

vheN, dim M <dim X+dim V(I (F,x) N Fy).
SinceOx is noetherian, there exists an oragrsuch thatl (F, x) is generated
by I (F, x) N F, for anyn > ng. In this contextV (F, x) = V(I (F, X) N Fy)

for all n > ng, andV (F, xX) has dimensiorp, which implies that:

dim M <dim X+ p. O

Bull Braz Math Soc, Vol. 37, N. 1, 2006
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Lemma 4.5. For every very generic point in X, M N IT~%(x) is equal to
{X} x V(F, x).

Proof. Considerthe constructible séik, introduced inlemma4.4. By construc-
tion their intersection is equal td. The{M,} form a decreasing sequence which
convergeso M. Since these are algebraic sets, there exists an mggxch that
for anyn > ng, we hae M, = M. We consider the sequené¢®ly}nn, and
denote byG, the Zariski closuref M — M,,. By the theorem on the dimension
of fibres, there exists a Zariski open $&ton X such that for any in V,, either
II~1(x)NG, is empty or has dimensioa p. Sincell *(x)NM = {x}xV (F, X)
for anyx in X, we have the following decomposition:

1) NM = {x} x V(F, X) UUnsn,ITH(x) N G

For allx in & = NV,, the setlT~(x) N G, has dimensiorx p for anyn > n,
hence its Hausdorff dimension is no greater thiap — 2) (see [Ch]). Con-
sequently the countable uniehn,I1-1(x) N G, has an Hausdorff dimension
< 2p. Let H; 4 be the irreducible components bf-(x) N M distinct from
{x} x V(F, x). TheseH; x are covered by the uni(mnznol'[‘l(x) N Gy, hence
their Hausdorff dimension does not exca@gp — 2). Therefore the Krull di-
mension ofH; x is strictly less tharp for anyi and anyx in 6. If Hy denotes the
union of theH; , then we have for any in 6:

O NM={x} xV(F,x)UHy and dimH, < p.

Now by Stein factorization theorem (see [Ha]), the mapM — X isacompos-
ite of a quasi-finite map with a map whose generic fibres are irreducible. In partic-
ularIT-1(x) N M is equidimensionnal of dimensignfor genericx in X. There-
fore the varietyH, should be contained ifx} x V (F, x), and we have for any
Xino:

I Yx)NM = {x} x V(F, X). O

5 Proof of theorem 1.4

Let X be an irreducible affine variety ové&r of dimensionn, endowed with an
algebraic foliationF. Let p be the integer given by theorem 1.3. In this section
we will establish theorem 1.4. We begin with a few lemmas.

Lemma 5.1. Let F : X — Y be a dominant morphism of irreducible affine
varieties. Then for any Zariski open d¢tin X, F(U) is dense iri.

Proof. Suppose on the contrary thatU) is not dense ity. Then there exists a
non-zero regular functiof onY that vanishealongF (U). The functionf o F
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vanishes oJ, hence orX by density. Sd~(X) is contained inf ~1(0), which
is impossible since this set is denseYin O

Lemma 5.2. Let M be the variety defined in section 4. Then there exists an
irreducible varietyH in X suchthat M N X x H has dimensiom and the
morphismIl : M N X x H — X induced by the projection is dominant.

Proof. Let (x, y) be a smooth poirdf M such thak is a smooth point oK. By
the generic smoothness theorem, we may assumeIhay, is onto. Consider
the second projectiofr (x, y) = y. Since the mapIl, ¥) defines an embedding
of M into X x X, anddIT v, is onto, there exist some regular functians..., g,
on X such that(dIT y), dgl(y), dgp(y)) is an isomorphism frorﬁ'(x,y)ﬁ to
Ty X & CP.

LetG : M — CP be the maggy, ..., gp), and denote by the set of points
(X, y) in M whereeitherM is singular or(IT, G) is not submersive. By con-
structionE is a closed set distinétom M. Sinced Gy, has rankp on T )M,
the mapG : M — CP is dominant. So its generic fibres have dimengion
Fix a fibreG~1(z) of dimensiom that is not contained ifE. Then there exists
a smooth pointx, y) in G~1(z) such thad(I1, G)(x,y) Is onto. The morphism
IT: G2 — X is asubmersion aix, y), hence it is dominant. Moreover
G 1(2) is of the form X x F~1(z) N M, whereF : X — CP is the map
(91, .- gp)-

Choose anirreducible componétiof F~1(z) suchthafl : Xx HOAM — X
is dominant. By constructioX x H N M has dimensiorx n. Since the latter
map is dominant, its dimension is exactly equahto O

Proof of theorem 1.4.Let H be an irreducible variety of codimensignin X
satisfying the conditions of lemma 5.2. Denote lythe union of irreducible
component®f M N X x H that are mapped dominantly ofiby I1. By con-
structionN has dimension dimX and the morphisril : N — X is quasi-finite.
So there exists an open 4¢tin X such that:

m:mYU)nN —U.

is a finite unramified morphism. Letbe the degree of this map. For any point
xinU, there exist pointsys, ..., y; in H suchthafl=%(x) = {yi, ..., y}. LetS,
actonH" by permutation of the coordinates, &gy, ..., ¥r) = (Yo@), ---» Yorr))-
Since this action is algebraic arg is finite, the algebraic quotieri’ //&;
exists and is an irreducible affine variety (see [Mu]). et H — H"//&, be
the corresponding quotient morphism. Consider the mapping:

p:U— H'//S, X+ Q(Y1, ..., V).
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Note that its graph is constructiblelihx H" //&,. Indeed it is given by the set:

L= {(Y), IV ... o) € H, Vi £, i #j,
(X’ yl) € Ma'ndQ(yl’ ceey yr) = y/} .

By Serre’s theorem (see [Lo}p, is a rational map otJ. Sincell is unramified,
¢ is also holomorphic olJ, hence it is regular ol. Denote byY the Zariski
closure ofp(U) in H" //&,. Sincel is irreducible)Y is itself irreducible.

By construction, for anx in U, {x} x ¢~ X(¢(x)) is equal tol1~-%(x) " M. For
every very generic point in X, IT-1(x) N M corresponds t¢x} x V (’F, X) by
proposition 4.1. S@~1(p(x)) = V (F, x) for every generic point in X, hence
it has dimensiorp. By the theorem on the dimension of fibr&shas dimension
(n - p).

Sincep~(p(x)) = V (F, x) for every generic point in X, this fibre is tangent
to the foliationF. Since tangency is a closed condition, all the fibreg afre
tangent toF. Let f be a rational function oiY. In the neighborhood of any
smooth poink whereF is regular andf o ¢ is well-defined, the functiorf o ¢
is constant on the leaves gf. So f o ¢ is a rational first integral off. Via
the morphismy* induced byg, K is clearly isomorphic taC(Y) which has
transcendence degrée— p) overC. O

6 Anexample

Inthis last section, we introduce an example thatillustrates both theorems 1.3 and
1.4. Consider the affine spa€é with coordinatesu, v, X, y), and the algebraic
foliation /7 induced by the vector field:

9 = ux 0 + 0
= — 4+ vy—.

X yay
For any(x, ) in C?, the planeV (u — A, v — w) is tangent tgf. Denote byo,. .
the restriction ofd to that plane parametrized gy, y). Then two cases may
occur:

« If [A; n] does not belong tB1(Q), thend, ,, has no rational first integrals.
The only algebraic curves tangentdp, are the linex = 0 andy = 0.
There is only one singular point, namgly, 0).

« If [A; u] belongs tdP(Q), choose a couple of coprime integéfs q) #
(0, 0) such thatpAr + qu = 0. The functionf (x, y) = xPy% is a rational
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first integral ford, ,. The algebraic curves tangentdp, are the lines
x = 0,y = 0 and the fibred ~1(z) for z # 0. There is only one singular
point, namely(0, 0).

From those two cases, we can get the following values for the funation

* ny(u, v, X, y) = 2if [A; u] ¢ PH(Q) andxy # 0,
* Nr(U,v,X,y)=0ifx=y=0,

* ns(U, v, X, y) = 1 otherwise.

In particular, this function is measurable but not constructible for the Zariski
topology, as can be easily seen from its fihgé(Z). Moreover sincep = 2,

its field Kz has transcendence degree 2 cllerin fact it is easy to check that
Ky = C(u, v).
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