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Introduction

LetL be a lamination: a space modeled on a “deck of cards”Rn×T, whereT is a
topological space and overlap homeomorphisms take cards to cards continuously
in the deck directionT. One thinks ofL as a family of manifolds, the leaves,
bound by a transversal topology prescribed locally byT. Using this picture, many
constructions familiar to the theory of manifolds can be extended to laminations
via the ansatz:

Replace manifold objectA by a family of manifold objects{AL} existing
on the leaves ofL and respecting the transverse topology.

For example, one defines a smooth structure to be a family of smooth structures
on the leaves in which the card gluing homeomorphisms occurring in a pair of
overlapping decks vary transversally in the smooth topology. Continuing in this
way, constructions overR, such as tensors, de Rham cohomology groups,etc.
may be defined.

Identifying those constructions classically defined overZ is not as straightfor-
ward, especially if one wishes to follow tradition and define them geometrically.
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To see why this is true, consider the case of an exceptionally well-behaved lam-
ination: an inverse limit̂M = lim←− Mα of manifolds by covering maps. Such
a system induces a direct limit of de Rham cohomology groups, and there is a
canonical map from this limit into the tangential cohomology groupsH ∗(M̂; R)
with dense image. In fact, here one may use the system to define – by completion
of limits – tangential homology groupsH∗(M̂; R) as well. If one endeavors to
use this point of view to define the groupsπ1, H∗(∙ Z), H ∗(∙ Z), the result is
failure since the systems they induce have trivial limits. The purpose of this pa-
per is to introduce for certain classes of laminationsL a construction[[π ]]1(L, x)
called the fundamental germ, a generalization ofπ1 which represents an attempt
to address this omission in the theory of laminations.

The intuition which guides the construction is that of the lamination as irra-
tional manifold. Recall that for a pointed manifold(M, x), the deck group of
the universal cover(M̃, x̃)→ (M, x) – which may be identified withπ1(M, x)
– reveals through its action how to make identifications within(M̃, x̃) so as to
recover(M, x) by quotient. Let us imagine that we have disturbed the process of
identifyingπ1 orbits, so that instead, points in an orbit merely approximate one
another through some auxiliary transversal spaceT. The result is that(M̃, x̃)
does not produce a quotient manifold but rather coils upon itself, perhaps form-
ing a leaf(L , x) of a laminationL. The germ of the transversalT aboutx may
be interpreted as the failed attempt of(L , x) to form an identification topology
at x. The fundamental germ[[π ]]1(L, x) is then a device which records alge-
braically the dynamics of(L , x) as it approachesx through the topology ofT.
See Figure 1.

One might define an element of[[π ]]1(L, x) as a tail equivalence class of a
sequence of approaches{xα}, whereL 3 xα → x throughT. In this paper, the
laminations under consideration (see §2) have the property that there is a group
G acting onL in such a way that every approach is asymptotic to one of the
form {gαx}, for gα ∈ G. We then define[[π ]]1(L, x) as the set of tail equiva-
lence classes of sequences of the form{gαh−1

α }, wheregαx, hαx → x in T. A
groupoid structure on[[π ]]1(L, x) is defined by component-wise multiplication
of sequences, andπ1(L , x) is contained in[[π ]]1(L, x) as a subgroup. In practice,
[[π ]]1(L, x) has no additional structure; but for reasonably well-behaved lami-
nations such as inverse limit solenoids and linear foliations, it is a group. And
in certain instances when the fundamental germ is not a group –e.g.the Reeb
foliation and the Sullivan solenoid – the groupoid structure is easily computed.
See §§3–7 for definitions and examples.

WhenL = M is a manifold (a lamination with one leaf),[[π ]]1(M, x) is equal to
∗π1(M, x), the nonstandard version ofπ1(M, x): the group of tail equivalence
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Figure 1: The Lamination as Irrational Manifold.
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classes ofall sequences inπ1(M, x). WhenL is a lamination contained in a
manifold M , under certain circumstances, §7, there is a map[[π ]]1(L, x) →
∗π1(M, x) whose image consists of those classes of sequences inπ1(M, x) that
correspond to the holonomy ofL. Thus, in expandingπ1 to its nonstandard
counterpart, it is possible to detect – algebraically – sublaminations invisible
to π1.

One can profitably think of[[π ]]1(L, x) as made from sequences of “G-dio-
phantine approximations”. In the case of an irrational foliationFr of the torus
T2 by lines of sloper ∈ R \ Q, §4.4, this is literally true: the elements of
[[π ]]1(Fr , x) are the equivalence classes of diophantine approximations ofr .
More generally, in[[π ]]1 one finds an algebraic-topological tool which enables
systematic translation of the geometry of laminations into the algebra of (non-
linear) diophantine approximation.

One can extend the definition of the fundamental germ to include accumu-
lations of L on points of other leaves. Thus ifx̂ is any point ofL, we define
[[π ]]1(L, x, x̂) as the set of classes of sequences of the form{gα ∙ h−1

α } where
gαx, hαx → x̂. We suspect that, together with the topological invariants of the
leaves, the fundamental germs[[π ]]1(L, x, x̂) will play an important role in the
topological classification of laminations.

By unwrapping the accumulations ofL implied by the fundamental germ
[[π ]]1(L, x), one obtains the germ universal cover[[ L̃ ]], §9, which is a kind
of nonstandard completion of̃L. If [[π ]]1(L, x) is a group, then under certain
circumstances one may associate lamination coveringsLC := C\[[ L̃ ]] of L to
every conjugacy class of subgroupC < [[π ]]1(L, x), and whenC is a normal
subgroup, the quotient[[π ]]1(L, x)/C may be identified with the automorphism
group ofLC → L. These considerations give rise to the beginnings of a Galois
theory of laminations, §10.

This first paper on the fundamental germ is foundational in nature. One should
not expect to find in it hard theorems, but rather the description of a complex and
mysterious object which reveals the explicit connection between the geometry of
laminations and the algebra of diophantine approximation. Due to its somewhat
elaborate construction, we shall confine ourselves here to the following themes:

• Basic definitions: §§1–3.

• Examples: §§4–7.

• Functoriality: §8.

• Covering space theory: §§9,10.
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The focus will be on laminations which arise through group actions: suspen-
sions, quasi-suspensions, double coset foliations and locally-free Lie group ac-
tions. The exposition will be characterized by a careful exploration of a number
of concrete examples which serve not only to illustrate the definitions in action
but also to indicate the richness of the algebra they produce. In a second install-
ment [5], to appear elsewhere, the construction of[[π ]]1 will be extended to any
lamination whose leaves admit a smooth structure.

1 Nonstandard Algebra

All ideas and statements in this section – with the exception of the notion of
ultrascope – are classical and can be found in the literature. References: [8],
[12].

LetN = {0, 1, 2, . . . }, U ⊂ 2N an ultrafilter all of whose elements have infinite
cardinality. GivenS = {Si } a sequence of sets andX ∈ U, write SX =

∏
j∈X Sj .

Theultraproductis the direct limit

[Si ] := lim
−→

SX,

where the system maps are the cartesian projections. IfSi = S for all i , the
ultraproduct is called theultrapowerof S, denoted∗S.

If S consists of nested sets, denote by}S the set of sequences which converge
with respect toS. For eachX ∈ U, define a mapPX : }S→ }S by restriction
of indices: PX

(
{xα}

)
= {xα}|α∈X. Theultrascopeis the direct limit

⊙
Si := lim

−→
PX

}S.

There is a canonical inclusion[Si ] ↪→
⊙

Si , and whenSi = S for all i , the
ultrascope coincides with the ultrapower. In general, we have

⊙
Si =

⋂
∗Si ⊇

∗
(⋂

Si

)
,

where the inclusion is an equality if and only ifSi is eventually equal to a fixed
set.

If S is a (nested) sequence of groups or rings, the induced component-wise
operations on sequences descend to operations making the ultraproduct (the
ultrascope) a group or ring. This is also true ifS is a (nested) sequence of fields:
we remark here that the maximality property of ultrafilters is required to rule out
zero divisors.

Bull Braz Math Soc, Vol. 37, N. 1, 2006
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If one uses a different ultrafilterU′ and ifS is a (nested) sequence of groups,
rings or fields, then assuming the continuum hypothesis, it is classical [2] that
the resulting ultraproduct is isomorphic to that formed fromU. The same can
shown for the ultrascope, however we shall not pursue this point here.

The ultrapower∗R is callednonstandardR. There is a canonical embedding
R ↪→ ∗R given by the constant sequences, and we will not distinguish between
R and its image in∗R. For ∗x, ∗y ∈ ∗R, we write∗x < ∗y if there existsX ∈ U
and representative sequences{xi }, {yi } such thatxi < yi for all i ∈ X. The
non-negative nonstandard reals are defined∗R+ = {∗x ∈ ∗R | ∗x ≥ 0}. The
Euclidean norm| ∙ | onR extends to a∗R+-valued norm on∗R. An element∗x
of ∗R is calledinfinite if for all r ∈ R, |∗x| > r , otherwise∗x is calledfinite.
∗R is a totally-ordered, non-archimedian field.

Here are two topologies that we may give∗R:

• The enlargement topology∗τ , generated by sets of the form∗A, where
A ⊂ R is open.∗τ is 2nd-countable but not Hausdorff.

• Theinternal topology[τ ], generated by sets of the form[Ai ]whereAi ⊂ R
is open for alli . [τ ] is Hausdorff but not 2nd-countable.

We have∗τ ⊂ [τ ], the inclusion being strict. It is not difficult to see that[τ ] is
just the order topology.

Proposition 1. (∗R, [τ ]) is a real, infinite dimensional topological vector space.

We note however that(∗R,+) is not a topological group with respect to∗τ .
Let ∗Rfin be the set of finite elements of∗R.

Proposition 2. ∗Rfin is a topological subring of∗R with respect to both the∗τ
and[τ ] topologies.

The set ofinfinitesimalsis defined∗Rε = {∗ε | |∗ε| < M for all non-zeroM ∈
R+}, a vector subspace of∗R. If ∗x−∗y ∈ ∗Rε , we write∗x ' ∗y and say that
∗x is infinitesimalto ∗y.

Proposition 3. ∗Rfin is a local ring with maximal ideal∗Rε and

∗Rfin

∗Rε
∼= R,

a homeomorphism with respect to the quotient∗τ -topology.

Bull Braz Math Soc, Vol. 37, N. 1, 2006
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We note that∗Rε is clopen in the[τ ]-topology; the quotient[τ ]-topology on
∗Rfin/

∗Rε is therefore discrete.∗Rε is not an ideal in∗R. The vector space

•R :=
∗R
∗Rε

,

is called theextended reals. By Proposition 3,•R contains a subfield isomorphic
toR.

Neither ∗τ nor [τ ] induce a satisfactory topology on•R. Indeed,•R is not
a topological vector space with respect to the topology induced by∗τ , and the
topology induced by[τ ] makesR ⊂ •R discrete. In §9 we will show that•R
may be viewed as the universal cover of a host of 1-dimensional laminations,
each one giving•R the structure of a topological vector space in whichR has its
usual topology.

Now letG be any complete topological group. Some of the properties satisfied
by ∗R also hold for∗G. If τ denotes the topology ofG, then the topologies∗τ and
[τ ] are defined exactly as above.∗G is a topological group in the[τ ] topology,
but not in the∗τ topology. Denote by∗Gε the classes of sequences converging
to the unit element 1.∗Gε is a group since a product of sequences converging
to 1 in a topological group is again a sequence converging to 1. Let∗Gfin be
the subgroup of∗G all of whose elements are represented by sequences which
converge to an element ofG. We have the following analogue of Proposition 3:

Proposition 4. ∗Gε is a normal subgroup of∗Gfin and

∗Gfin

∗Gε

∼= G,

a homeomorphism with respect to the quotient∗τ -topology.

The left coset space
•G :=

∗G
∗Gε

,

is called theextendedG. It containsG as a subgroup. IfG is compact or abelian,
then•G is a group, though in general it need not be. We will avail ourselves of
its natural structure as a∗G-set with respect to the left multiplication action.

2 Laminations associated to group actions

The laminations for which we shall define the fundamental germ arise from
actions of groups: we review them here as a way of fixing notation. References:
[1], [6], [7], [10].

Bull Braz Math Soc, Vol. 37, N. 1, 2006



“main” — 2006/5/4 — 0:08 — page 56 — #8

56 T.M. GENDRON

Let us begin by reviewing the definitions and terminology surrounding the
concept of a lamination. Adeck of cardsis a productRn × T, whereT is a
topological space. Acard is a subset of the formC = O × {t}, whereO ⊂ Rn

is open andt ∈ T. A laminationof dimensionn is a spaceL equipped with a
maximal atlasA = {φα} consisting of charts with range in a fixed deck of cards
Rn × T, such that each transition homeomorphismφαβ = φβ ◦ φ−1

α satisfies the
following conditions:

(1) For every cardC ∈ Dom(φαβ), φαβ(C) is a card.

(2) The family of homeomorphisms{φαβ(∙, t)} is continuous int.

If T is totally disconnected, we say thatL is asolenoid.
An open (closed)transversalin L is a subset of the formφ−1

α ({x}×T′) where
T′ is open (closed) inT. Note that an open (closed) transversal need not be
open (closed) inL i.e. if L is a manifold (viewed as a lamination with point
transversals) then every point is an open transversal. An open (closed)flow box
is a subset of the formφ−1

α (O×T′), whereO is open andT′ ⊂ T is open (closed).
A plaquein L is a subset of the formφ−1

α (C) for C a card in the deckRn×T. A
leaf L ⊂ L is a maximal continuation of overlapping plaques inL. Note thatL
is the disjoint union of its leaves; we denote byLx the leaf containing the point
x. A lamination isweakly minimalif it has a dense leaf; it isminimalif all of its
leaves are dense. A transversal which meets every leaf is calledcomplete. Unless
we say otherwise, all transversals in this paper will be complete and open. Two
laminationsL andL′ are said to behomeomorphicif there is a homeomorphism
f : L → L′ mapping leaves homeomorphically onto leaves and transversals
homeomorphically onto transversals.

2.1 Suspensions

Let B be a manifold,F a topological space andρ : π1B → Homeo(F) a
representation. Thesuspensionof ρ is the space

Lρ = B̃×ρ F

defined by quotienting̃B × F by the diagonal action ofπ1B , α ∙ (x̃, t) =
(α ∙ x̃, ρα(t)). The suspension is a fiber bundle overB with model fiberF .
Conversely, ifE→ B is a fiber bundle with model fiberF a compact manifold,
then any foliation ofE transverse to the fibers is a suspension.

If F = G is a topological group andϕ : π1B → G a homomorphism, then
the representationρ : π1B → Homeo(G) definedργ (g) = g ∙ ϕ(γ −1) gives
rise to what we call aG-suspension, denotedLϕ, a principleG-bundle overB.

Bull Braz Math Soc, Vol. 37, N. 1, 2006
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The action ofπ1B used to defineLρ is properly discontinuous and leaf preserv-
ing, henceLρ is a lamination modeled on the deck of cardsB̃×F . If K = ker(ρ)
andL is a leaf, we haveK E π1L. Lρ is minimal (weakly-minimal) if and only
if every (at least one)ρ(π1B) orbit is dense.

The restrictionp|L of the projectionp : Lρ → B to a leafL is a covering
map. Suppose thatpL is a Galois covering (we say thatL is Galois). The deck
groupDL of p|L has the property that

DL ∙ x = L ∩ Fx,

whereFx is the fiber ofp throughx. In particular, if we give(L ∩ Fx) ⊂ Fx the
subspace topology, we have an inclusion

DL ↪→ Homeo(L ∩ Fx).

A manifold B is a suspension withF a point andρ : π1B → F trivial. The
following subsections discuss examples which are more interesting.

2.1.1 Inverse limit solenoids

Let C =
{
ρα : Mα → M

}
be an inverse system of pointed manifolds and finite

Galois covering maps with initial objectM ; denote by

M̂ = M̂C := lim
←−

Mα

the limit. By definitionM̂ ⊂
∏

Mα , so elements of̂M are denoted̂x = (xα),
wherexα ∈ Mα. The natural projection onto the base surface is denotedp : M̂ →
M . We may identify the universal covers̃Mα with M̃ and choose the universal
covering maps̃M → Mα to be compatible with the systemC. By universality,
there exists a canonical mapi : M̃ −→ M̂ .

Let Hα = (ρα)∗(π1Mα) < π1M . Associated toC is the inverse limit of deck
groups

π̂1M := lim
←−

π1M/Hα,

a Cantor group since theπ1M/Hα are finite. By universality of inverse limits,
the projectionsπ1M → π1M/Hα yield a canonical homomorphismι : π1M →
π̂1M with dense image. The closures of the imagesι(Hα) are clopen, and give
a neighborhood basis about 1. LetLι be the associated̂π1M-suspension.

Proposition 5. M̂ is homeomorphic toLι. In particular, M̂ is a solenoid.

Proof. Let ϒ : M̃ × π̂1M → M̂ be the map defined(x̃, ĝ) 7→ ĝ ∙ i (x̃). ϒ is
invariant with respect to the diagonal action ofπ1M , and descends to a homeo-
morphismM̃ ×ρ π̂1M → M̂ . �

Bull Braz Math Soc, Vol. 37, N. 1, 2006
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2.1.2 Linear foliations of torii

Let V be ap-dimensional subspace ofRn. Denote byF̃V the foliation ofRn by
cosetsv + V . The imageFV of F̃V in the torusTn = Rn/Zn gives a foliation
of the latter by euclidean manifolds. SinceF is transverse to the fibers of some
fibrationTn → Tp, it is itself a suspension. This suspension structure may be
made explicit as follows. Letq = n− p, and displayV as the graph of aq× p
matrix map,

R : Rp→ Rq,

whose columns are independent. Fory ∈ Rq, denoteby y its image inTq. Let
ϕR : Zp→ Tq be the homomorphism defined

ϕR(n) = Rn,

and denote byLϕR the correspondingTq-suspension. ThenFV ≈ LϕR . We note
that the closure of any leaf ofFV is isomorphic to the closure of the image of
V in FV , which is a torus of dimensionm with p ≤ m ≤ n. In particular,FV

consists of noncompact leaves if and only ifm> p.

2.1.3 Anosov foliations

Let6 = H2/0 be a hyperbolic surface and letρ : 0→ Homeo(S1) be defined
by extending the action of0 onH2 to ∂H2 ≈ S1. The suspension

F0 = H
2×ρ S

1

is called anAnosov foliation. Note thatF0 is not anS1-suspension. It is classical
that the underlying space ofF0 is homeomorphic to the unit tangent bundle T1

∗6.

2.2 Quasisuspensions

Let Lρ = B̃ ×ρ F be a suspension over a manifoldB. We say thatLρ is
Galoisif every leaf ofLρ is Galois. Throughout this section,Lρ will be a Galois
suspension. For each leafL pick a basepointxL lying over the basepoint ofB.
This allows us to define an action ofπ1B onLρ by

x 7−→ γ̄ ∙ x,

where, forx contained in the leafL, γ̄ is the image ofγ ∈ π1B in

π1B/(pL)∗(π1L) ∼= DL = the deck group ofp|L .

Bull Braz Math Soc, Vol. 37, N. 1, 2006
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LetX ⊂ Lρ be any closed subset withX∩L discrete for each leafL, and which
is invariant with respect to the action ofπ1B (note that this does not depend on
the choice of basepointsxL ). LetL0 := Lρ \X, which is a lamination mapping
to B. If Lρ is minimal, for anyx ∈ X the orbitπ1B ∙ x is dense in the fiberFx

containingx, henceFx ⊂ X. It follows in this case thatX is the union of fibers
over a subsetX ⊂ B andL0 is a fiber bundle overB0 = B \ X. In general, we
shall define the fibers ofL0 overx ∈ B to be the preimages of the mapL0→ B.

A lamination homeomorphismf : L0→ L0 is weakly fiber-preservingif for
every fiberFx over B,

f (Fx) =
n⋃

i=1

Exi , (1)

whereEy denotes a subset of the fiberFy. The collectionHomeoω−fib(L0) of
weakly fiber-preserving homeomorphisms is clearly a group. Since the fibers are
disjoint, eachExi occurring in (1) must be open inFxi . In particular, if the fibers
are connected, a weakly fiber-preserving homeomorphism is fiber-preserving.
Thus, the concept of a weakly fiber-preserving homeomorphism differs from
that of a fiber-preserving homeomorphism when the fibers are disconnectede.g.
whenL0 is a solenoid.

Definition 1. Let L0 be as above and supposeH < Homeoω−fib(L0) is a
subgroup acting properly discontinuously onL0. The quotient

Q = H\L0

is a lamination called aquasisuspension(over B).

We consider now two examples.

2.2.1 The Reeb foliation

Let R+ = [0,∞), consider the trivial suspensionC × R+ overC, and denote
(C × R+)∗ = C × R+ \ {(0, 0)}. (Thus we are takingX = {(0, 0)}.) Fix
(μ, λ) ∈ (C × R+)∗ with |μ|, λ > 1, μ 6= λ. Then multiplication by(μ, λ)
in (C×R+)∗ is a fiber-preserving lamination homeomorphism giving rise to an
action byZ. The resulting quasisuspension

FReeb = Z\(C× R+)
∗

has underlying space a solid torus, and is called theReeb foliation.
Let P : (C×R+)∗ → FReeb denote the projection map. The leaves ofFReeb

are of the form:

Bull Braz Math Soc, Vol. 37, N. 1, 2006
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(1) Lt = P(C× {t}) ∼= C, for t > 0.

(2) L0 = P(C∗ × {0}) ∼= C∗/ < μ >.

The fiber tranversals ofFReeb are of the form:

(1) Tz = P({z} × R+) ≈ R+, z> 0. Every leaf ofFReeb intersectsTz.

(2) T0 = P({0} × (0,∞)) ≈ S1. Every leaf exceptL0 intersectsT0.

There is an action ofZ onFReeb induced by the map(z, t) 7→ (μnz, t). For
x ∈ FReeb, we write this actionx 7→ n ∙ x. For everyt we haven ∙ Lt = Lt and
for all z, n ∙ Tz = Tz. Note that this action is the identity onL0.

2.2.2 The Sullivan solenoid

The following important example comes from holomorphic dynamics. Let
U,V ⊂ C be regions conformal to the unit disc,with U ⊂ V . Recall that
a polynomial-like mapis a proper conformal mapf : U → V . The conjugacy
class of f is uniquely determined by a pair(p, ∂ f ), wherep is a complex poly-
nomial of degreed and∂ f : S1 → S1 is a smooth, expanding map of degreed
[3]. The space

Ŝ = lim
←−

(
S1 ∂ f
←− S1 ∂ f

←− S1 ∂ f
←− ∙ ∙ ∙

)
(2)

is an inverse limit solenoid which may be identified with theẐd-suspension
Lι = R×ι Ẑd, whereẐd is the group ofd-adic integers andı : Z ↪→ Ẑd is the
canonical inclusion. Every leaf of̂S is homeomorphic toR. ∂ f defines a self
map of the inverse system in (2), inducing a homeomorphism∂ f̂ : Ŝ→ Ŝ.

Consider the suspension

D̂ = H2×ι Ẑd

obtained by extending toH2×Ẑd the identification used to defineLι e.g.(z, n̂) ∼
(γm(z), n̂−m) for m ∈ Z, whereγ (z) = z+ 1. The base of the suspensionD̂
is the punctured hyperbolic discD∗ = 〈γ 〉\H2, and its ideal boundary may be
identified withŜ.

The map∂ f̂ extends to a weakly fiber-preserving homeomorphismf̂ : D̂→ D̂
which acts properly discontinuously on̂D. The quotient

D̂ f := 〈 f̂ 〉\D̂

is a quasisuspension called theSullivan solenoid[13], [6].
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2.3 Double coset foliations

Let G be a Lie group,H a closed Lie subgroup,0 < G a discrete subgroup. The
foliation of G by right cosetsHg descends to a foliationFH,0 of G/0, called a
double coset foliation.

For example, it is easy to see that if we takeG = Rn, H = V a p-dimensional
subspace and0 = Zn, then the resulting double coset foliation is the linear
foliationFV of the torusTn.

Examples of double coset foliations which are not suspensions may be con-
structed as follows. Let0 be a co-finite volume Fuchsian group. Denote by
6 = H2/0 and by T1

∗6 the unit tangent bundle of6. Recall that every
v ∈ T1

∗H
2 determines three oriented, parametrized curves: a geodesicγ and

two horocyclesh+, h− tangent to, respectively,γ (∞) andγ (−∞). By paral-
lel translatingv along these curves, we obtain three flows on T1

∗H
2. The three

flows are0-invariant, and define flows on T1
∗6. The corresponding foliations

are denotedGeod0, Hor+0 andHor−0 .
Now let G = SL(2,R) and takeH to be one of the 1-parameter subgroups

H+ = {A+r }, H− = {A−r } andG = {Br }, where

A+r =
(

1 r
0 1

)
, A−r =

(
1 0
r 1

)
and Br =

(
er/2 0
0 e−r/2

)

for r ∈ R. Then it is classical that the foliationsFG,0 andFH±,0 are homeo-
morphic toGeod0 andHor±0 , respectively. Note also that the Anosov foliation
F0 is homeomorphic to the sumGeod0 ⊕ Hor+0 .

2.4 Locally-free lie group actions

Let B be a Lie group of dimensionk, Mn ann-manifold,n > k, X a subspace
of Mn. A continuous representationθ : B → Homeo(X) is called locally
free if for all x ∈ X, the isotropy subgroupIx < B is discrete. If for any pair
x, y ∈ X, theirB-orbits are either disjoint or coincide, thenX has the structure
of a laminationLB whose leaves are theB-orbits.

Once again, the linear foliationFV fits into this framework: takeB = L0 = the
leaf containing the identity,Mn = X = Tn andθ the map induced by addition
in Tn.

Here is an example which is neither a suspension nor a double coset. LetMn

be a Riemannian manifold. Fix a tangent vectorv ∈ Tx Mn. Let l ⊂ Mn be the
complete geodesic determined byv, X its closure (itself a union of geodesics).
Then there is a locally free action ofR given by geodesic flow alongX, andX
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is a lamination whenl is simple. WhenMn = 6 is a hyperbolic surface andl
is simple, we obtain a geodesic lamination in6 in the sense of [14], a solenoid
since its transversals are totally-disconnected.

3 The fundamental germ

LetL be any of the laminations considered in the previous section and letL ⊂ L
be a fixed leaf. IfL = H\L0 is a quasisuspension letL0 ⊂ L0 be a leaf lying
overL. Thediophantine groupGL of L with respect toL is

• π1B if L is a suspension.

• The group generated byπ1B, HL = {h ∈ H | h(L0) = L0} andπ1L
(viewed as groups acting oñB ≈ L̃) if L is a quasisuspension.

• The group̃H if L is a double coset.

• The group̃B if L is a locally free Lie group action.

Note that in every case,π1L < GL .
Let x̂ ∈ L andT a transversal containinĝx. Denote byT̃L ⊂ L̃ the set of

points lying overT ∩ L. ThenT is said to be adiophantine transversalif for
every leafL and x̃ ∈ T̃L , any ỹ ∈ T̃L may be written in the form̃y = g ∙ x̃
for someg ∈ GL . For x̃ ∈ T̃L fixed, we call{gα} ⊂ GL a GL-diophantine
approximationof x̂ alongT based at̃x if {gα ∙ x̃} projects inL to a sequence
converging tox̂ in T . The image of all suchGL-diophantine approximations in
∗GL is denoted

∗D(x̃, x̂, T),

and whenx̃ projects tox̂, we write ∗D(x̃, T). If there are noGL -diophantine
approximations of̂x alongT based at̃x, we define∗D(x̃, x̂, T) = 0. Note that
if x̃′ = γ ∙ x̃ for γ ∈ π1L < GL then

∗D(x̃′, x̂, T) ∙ γ = ∗D(x̃, x̂, T). (3)

Let ∗D(x̃, x̂, T)−1 consist of the set of inverses∗g−1 of classes belonging to
∗D(x̃, x̂, T).

Definition 2. LetL, L, x̂ andT be as above and letx ∈ L∩T. Thefundamental
germ ofL based at̂x alongx andT is

[[π ]]1(L, x, x̂, T) = ∗D(x̃, x̂, T) ∙ ∗D(x̃, x̂, T)−1

wherex̃ is any point inL̃ lying overx.
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By (3), [[π ]]1(L, x, x̂, T) does not depend on the choice ofx̃ over x. When
x = x̂ ∈ L, we write [[π ]]1(L, x, T). Observe in this case that[[π ]]1(L, x, T)
contains a subgroup isomorphic to∗π1(L , x).

We now describe a groupoid structure on[[π ]]1(L, x, x̂, T) . To do this, we
define a unit space on which it acts: let•D(x̃, x̂, T) be the image of∗D(x̃, x̂, T)
in •GL , for any x̃ over x. We say that∗u ∈ [[π ]]1(L, x, x̂, T) is defined on
•g ∈ •D(x̃, x̂, T) if ∗u∙•g ∈ •D(x̃, x̂, T). Here we are using the left action of∗GL

on •GL . Having defined the domain and range of elements of[[π ]]1(L, x, x̂, T),
it is easy to see that[[π ]]1(L, x, x̂, T) is a groupoid, as every element has an
inverse by construction. This groupoid structure does not depend on the choice
of x̃ overx.

4 The fundamental germ of a suspension

In the case of a suspensionLρ = B̃×ρF , any fiber over the baseB is a diophantine
transversal. Conversely, any diophantine transversal is an open subset of a fiber
transversal. It follows that any two diophantine transversalsT, T ′ through points
x, x̂ define the same set ofGL -diophantine approximations. Thus

Proposition 6. If T and T ′ are diophantine transversals containingx and x̂
then

[[π ]]1(Lρ, x, x̂, T) = [[π ]]1(Lρ, x, x̂, T ′).

Accordingly for suspensions we drop mention of the transversal and write
[[π ]]1(L, x, x̂). We note that since the diophantine groupGL = π1B is discrete,
∗GL = •GL and the unit space for the groupoid structure is just∗D(x̃, x̂).

4.1 Manifolds

A manifold is a lamination with just one leaf, which can be viewed as the sus-
pension of the trivial representation of its fundamental group on a point. We
have immediately

Proposition 7. If M is a manifold then

[[π ]]1(M, x) = ∗D(x̃) = ∗π1(M, x).

4.2 G-suspensions

Let ϕ : π1B → G be a homomorphism,Lϕ the correspondingG-suspension.
Let {Ui } be a neighborhood basis about 1 inG and define a collection of nested
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sets{Gi } by Gi = ϕ−1(Ui ). Then the ultrascope
⊙

Gi is a subgroup of∗π1B.
In fact, if ∗ϕ : ∗π1B→ ∗G is the nonstandard version ofϕ, then

⊙
Gi =

∗ϕ−1(∗Gε).

Theorem 1. For any pair x, x̂ belonging to a diophantine transversal,
[[π ]]1(Lϕ, x, x̂) is a group isomorphic to

•
⊙

Gi if x̂ belongs to the closure of the leaf containingx.

• 0 otherwise.

Proof. Suppose that̂x belongs to the closure of the leaf containingx and let
∗g ∈ ∗D(x̃, x̂). Then any other element∗g′ ∈ ∗D(x̃, x̂) may be written in the
form ∗g ∙ ∗h where∗h ∈

⊙
Gi . It follows immediately that

[[π ]]1(Lϕ, x, x̂) = ∗g ∙
( ⊙

Gi
)
∙ ∗g−1 ∼=

⊙
Gi .

Because the unit space∗D(x̃, x̂) is invariant under left-multiplication by any
element of the fundamental germ, it follows that[[π ]]1(Lϕ, x, x̂) is a group, its
composition law coinciding with multiplication in

⊙
Gi . If x̂ does not belong

the the closure of the leaf containingx, then∗D(x̃, x̂) = 0 by definition. �

For minimalG-suspensions we can thus reduce our notation to[[π ]]1(Lϕ).
Denote by∗π1Bfin the subgroup∗ϕ−1(∗Gfin). The following theorem can

be used to display many familiar topological groups as algebraic quotients of
nonstandard versions of discrete groups.

Theorem 2. If ϕ has dense image, then[[π ]]1(Lϕ) is a normal subgroup of∗π1Bfin

with
∗π1Bfin

/
[[π ]]1(Lϕ) ∼= G.

Proof. Since ϕ has dense image, the composition of homomorphisms
∗π1Bfin → ∗Gfin → G – where the first arrow is∗ϕ – is surjective with ker-
nel ∗ϕ−1(∗Gε) = [[π ]]1(Lϕ). �

4.3 Inverse limit solenoids

Let M̂ be an inverse limit solenoid over the baseM , and let{Hi } be a sequence of
subgroups ofπ1M cofinal in the collection of subgroups in the defining inverse
system. By the discussion in §2.1.1, the collection of closures{Ĥi } ⊂ π̂1M
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defines a neighborhood basis about 1. SinceM̂ is a π̂1M-suspension in which
ϕ is dense, it follows from Theorem 1 that[[π ]]1(M̂, x, x̂) is a group isomorphic
to

⊙
Hi .

For example, consider a solenoid̂S overS1. Here, eachHi is an ideal inZ,
hence[[π ]]1̂S is an ideal in the ring∗Z = nonstandardZ. WhenHi = (di ) for
d ∈ Z fixed, we denote the resulting germ∗Zε̂ (d) and whenHi = (i ) we write
∗Zε̂ . Being uncountable, these ideals are not principal, so∗Z, unlikeZ, is not a
PID. By Theorem 2, we have∗Z/∗Zε̂ ∼= Ẑ and∗Z/∗Zε̂ (d) ∼= Ẑd.

4.4 Linear foliations of torii and classical diophantine approximation

LetFV be the linear foliation ofTn associated to the subspaceV ⊂ Rn. As in
§ 2.1.2, we regardV as the graph of theq × p matrix R. LetϕR : Zp→ Tq be
the homomorphism used to defineFV . Let {Ui } be a neighborhood basis inTq

about0̄. We define a nested set{Gi } ⊂ Zp by Gi = ϕ
−1
R (Ui ). Denote

∗Zp
R :=

⊙
Gi =

∗ϕ−1
R (∗Tq

ε ),

a subgroup of∗Zp. If p = q = 1 andR = r ∈ R, we write instead∗Zr . Since
FV is aTq-foliation, we have by Theorem 1 that[[π ]]1(FV , x, x̂) = ∗Zp

R when
x̂ belongs to the closure of the leaf containingx, and is 0 otherwise. Apply-
ing Theorem 2 we have that every finite dimensional torusTq is algebraically
isomorphic to a quotient of∗Z.

Theorem 3. ∗Zp
R is an ideal in∗Zp if and only ifR ∈ Mq,p(Q).

Proof. Suppose thatR ∈ Mq,p(Q) and letak = the l.c.d. of the entries ofr k =
thekth column ofR. Write

a = (a1)⊕ ∙ ∙ ∙ ⊕ (ap)

where(ak) is the ideal generated byak. Note that∗a ⊂ ∗Zp
R. On the other hand,

rationality of the entries of ther k implies that a sequence{nα} ⊂ Zp defines an
element of∗Zp

R if and only if there existsX ∈ U such thatϕR(nα) = 0̄ for all
α ∈ X. This is equivalent tonα ∈ a for all α ∈ X. Thus∗Zp

R =
∗a which is an

ideal in∗Zp.
Suppose now thatr = r k /∈ Qq for somek, 1≤ k ≤ p. Let {nα} represent an

element∗n ∈ ∗Zp
R, and denote by{nα} the sequence ofk-th coordinates of the

nα. Notethatnαr 6= 0̄ for all α sincer is not rational. In fact, for anyδ > 0 we
may find a sequence of integers{mα} suchthatmαnαr is not within δ of 0̄. Let
mα ∈ Zp be the vector whosekth coordinate ismα and whose other coordinates
are 0. Then the sequence{mα ∙ nα} does not converge with respect to{Gi } i.e.
∗m ∙ ∗n 6∈ ∗Zp

R, so∗Zp
R is not an ideal. �
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Theorem 3 draws another sharp distinction betweenZ and∗Z: every subgroup
of the former is an ideal, while this is false for the latter.

We spend the rest of this section studying∗Zp
R, in and of itself a complicated and

intriguing object. Let us begin with the following alternate description of∗Zp
R:

∗Zp
R =

{
∗n ∈ ∗Zp

∣
∣ ∃ ∗n⊥ ∈ ∗Zq such thatR(∗n)− ∗n⊥ ∈ ∗Rq

ε

}
. (4)

Given∗n ∈ ∗Zp
R, the corresponding element∗n⊥ ∈ ∗Zq is called thedual of ∗n;

it is uniquely determined. From (4), it is clear that the set

(∗Zp
R)
⊥ :=

{
∗n⊥

∣
∣ ∗n⊥ is the dual of∗n ∈ ∗Zp

R

}

is a subgroup of∗Zq, called thedual of ∗Zp
R. Note that whenR ∈ Mq,p(R \Q)

has a left-inverseS, we have(∗Zp
R)
⊥ = ∗Zq

S.
Similarly, the set

∗Rq
R,ε =

{
∗ε ∈ ∗Rq

ε

∣
∣ ∃∗n ∈ ∗Zp

R such thatR(∗n)− ∗n⊥ = ∗ε
}

is a subgroup of∗Rq
ε , called thegroup of ratesof R.

The following proposition is an immediate consequence of (4).

Proposition 8. The maps∗n 7→ ∗n⊥ and∗n 7→ ∗ε define isomorphisms

∗Zp
R
∼= (∗Zp

R)
⊥ and ∗Zp

R
∼= ∗Rq

R,ε .

Note 1 (A.Verjovsky). Using formulation (4) of∗Zp
R, it follows that every triple

(∗n, ∗n⊥, ∗ε)

represents a diophantine approximation ofR. Thus we may regard∗Zp
R as the

group of diophantine approximationsof R.
For example, whenp = q = 1 andr ∈ R \ Q, ∗n and∗n⊥ are equivalence

classes of sequences{xα} and{yα} ⊂ Z, and∗ε an equivalence class of sequence
{εα} ⊂ R, εα → 0, such that

∣
∣
∣
∣r −

yα
xα

∣
∣
∣
∣ =

∣
∣
∣
∣
εα

xα

∣
∣
∣
∣ −→ 0.

Conversely, every diophantine approximation ofr defines uniquely a triple

(∗n, ∗n⊥, ∗ε).
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Recall that two irrational numbersr, s ∈ R \Q areequivalentif there exists

A =
(

a b
c d

)
∈ SL(2,Z)

such thats= A(r ) = (ar + b)/(cr + d).

Proposition 9. If r ands are equivalent irrational numbers, then∗Zr
∼= ∗Zs.

Proof. Given ∗n ∈ ∗Zr , observe that(cr + d)∗n ' c∗n⊥ + d∗n ∈ ∗Z. Write
∗m= c∗n⊥ + d∗n. Then∗m ∈ ∗Zs, since

s∗m ' (ar + b)∗n ' a∗n⊥ + b∗n ∈ ∗Z.

The association∗n 7→ ∗m defines an injective homomorphismψ : ∗Zr → ∗Zs,
with inverse definedψ−1(∗m) ' (−cs+ a)∗m. �

Note 2. Two irrational numbersr, s are calledvirtually equivalentif there ex-
ists A ∈ SL(2,Q) such thatA(r ) = s. In this case, there exists a pair of
monomorphisms

ψ1 :
∗Zr ↪→

∗Zs and ψ2 :
∗Zs ↪→

∗Zr ,

defined as in Proposition 9. In other words,∗Zr and∗Zs arevirtually isomorphic.
These maps are mutually inverse to each other if and only ifA ∈ SL(2,Z).

We are led to make the following conjecture.

Conjecture 1. If ∗Zr
∼= ∗Zs for irrational numbersr , s, thenr and s are

equivalent.

A verified Conjecture 1 would augur a group theoretic approach to diophantine
approximation.

4.5 Anosov foliations and hyperbolic diophantine approximation

Let 0 be a discrete subgroup ofPSL(2,R) with no elliptics,6 = 0\H2 the
corresponding Riemann surface. Letρ : 0→ Homeo(S1) be the representation
of 0 on S1 ≈ ∂H2 and denote as in § 2.1.3 the associated Anosov foliation by
F0. Fix t, ξ ∈ S1, consider a neighborhood basis{Ui (ξ)} aboutξ , and define
the nested set{Gi (t; ξ)} ⊂ 0 by

Gi (t; ξ) =
{

A ∈ 0
∣
∣ ρA(t) ∈ Ui (ξ)

}
.
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Theorem 4. Let x̂ ∈ F0 be contained in a leaf covered byH× {ξ } and letx be
contained in a leaf covered by byH× {t}. Then

[[π ]]1(F, x, x̂) =
⊙ (

Gi (t; ξ) ∙ Gi (t; ξ)
−1

)

if x̂ is contained in the closure of the leaf containingx, and is0 otherwise.

Proof. Immediate from the definition of[[π ]]1. �

Classically [11], givenξ ∈ S1 in the limit set of0 andt ∈ S1, a0-hyperbolic
diophantine approximationof ξ based att is a sequence{Aα} ⊂ 0 such that
|ξ − Aα(t)| → 0, where| ∙ | is the norm induced by the inclusionS1 ⊂ R2.
It follows from our definitions that∗D(x̃, x̂) consists precisely of equivalence
classes of0-hyperbolic diophantine approximations.

5 The fundamental germ of a quasisuspension

LetLρ be a Galois suspension,X ⊂ Lρ aπ1B invariant closed set,L0 = Lρ \X.
Let H < Homeoω−fib(L0) be a subgroup acting properly discontinuously and let
Q = H\L0 be the resulting quasisuspension. See §2.2. We have the following
analogue of Proposition 6:

Proposition 10. If T and T ′ are diophantine transversals containingx and
x̂ then

[[π ]]1(Q, x, x̂, T) = [[π ]]1(Q, x, x̂, T ′).

Proof. The transversalsT and T ′ lift to π1B transversals inL0, which by
Proposition 6 yield equivalent sets ofπ1B-diophantine approximations. This
implies that∗D(x̃, x̂, T) = ∗D(x̃, x̂, T ′). �

Accordingly, we drop mention ofT and write[[π ]]1(Q, x, x̂).

Note 3. Note that∗π1(L) is a subgroup of[[π ]]1(Q, x, x̂). In addition, there is a
monomorphism

[[π ]]1(Lρ, x, x̂) ↪→ [[π ]]1(Q, x, x̂),

an isomorphism ifHL = {1} andX = ∅.

5.1 The Reeb foliation

Let [[Z]] be the groupoid whose morphisms are elements of∗Z, with the compo-
sition ∗m ◦ ∗n := ∗m+ ∗n defined if and only if∗m+ ∗n = 0 modZ. Recall
thatL0 is the torus leaf.
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Theorem 5. For any pairx, x̂ ∈ FReeb contained in a diophantine transversal
with x ∈ L,

[[π ]]1(FReeb, x, x̂) ∼=






∗Z2 if x = x̂ ∈ L0 = L

[[Z]] if x̂ ∈ L0 6= L

0 otherwise

Proof. Suppose first thatx = x̂ ∈ L0. Then[[π ]]1(FReeb, x, x̂) = ∗π1L0 = ∗Z2.
Now if x ∈ L, x̂ ∈ L0 6= L are contained in a diophantine transversal, then a
sequence{nα} ⊂ Z is a diophantine approximation if and only if it is infinite.
Thus∗D(x̃, x̂) = ∗Z∞ := ∗Z \ ∗Zfin, the infinite nonstandard integers. Then as
a set

[[π ]]1(FReeb, x, x̂) = ∗Z∞ −
∗Z∞ = ∗Z.

The domain of an element∗n consists of those∗a ∈ ∗Z∞ for which ∗n+ ∗a ∈
∗Z∞. It is then clear that the law of composition is that of the groupoid[[Z]]. If
x 6= x̂ andL = L0, there is no diophantine transversal containing the two points
hence the fundamental germ is 0. Ifx̂ ∈ L ′ 6= L0, there are no accumulations of
L on L ′ so the fundamental germ is 0. �

Intuitively, when x̂ ∈ L0 6= L, [[π ]]1(FReeb, x, x̂) records the approxima-
tion by L of the circumferential cyclec ⊂ L0 throughx̂. On the other hand,
[[π ]]1(FReeb, x, x̂) does not predict the meridian cyclec′ ⊂ L0. Instead,c′ is
approximated by a sequence of inessential loops inL that move off to infinity,
and such sequences are not the stuff of[[π ]]1.

5.2 The Sullivan solenoid

Consider the Baumslag-Solitar group

GBS = GBS(d) =
〈
f, x : f x f−1 = xd

〉
.

Observe by induction that

xrdα f = f xrdα−1
and f −1xrdα = xrdα−1

f −1 (5)

for all α > 0 andr ∈ Z. Define a nested set about 1 by

Gi =
{

f mxrdi
∣
∣
∣ m, r ∈ Z

}
. (6)
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Theorem 6.
⊙
(Gi ∙ G

−1
i ) is a group.

Proof. To see that
⊙
(Gi ∙G

−1
i ) is a group, it suffices to check thatGi ∙G

−1
i is a

group for alli . Write a generic elementg ∈ Gi ∙G
−1
i in the formg = f l xrdi

f m

for l ,m, r ∈ Z. Then an elementgh−1, g, h ∈ Gi ∙G
−1
i may be written (using (5))

gh−1 = f l xrdi
f mxsdi

f n =






f l x(r+sdm)di
f m+n if m> 0

f l+mx(rdm+s)di
f n if m ≤ 0

,

wherel ,m, n, r, s ∈ Z. It follows thatgh−1 ∈ Gi ∙ G
−1
i . �

Note 4. The ultrascope
⊙

Gi is not even a groupoid as elements do not have
inverses. Indeed, consider the sequence{gα} =

{
f −mαxdα

}
, wheremα > α > 0,

α = 1, 2, . . . . Note that{gα} defines an element of
⊙

Gi . Using (5), we may
write the inverse sequence

{g−1
α } =

{
x−dα f mα

}
=

{
f αx−1 f mα−α

}
.

Sincemα > α, we cannot use the defining relation ofGBS to move the remaining
f mα−α to the left of thex-term. It follows that{g−1

α } does not define an element
of

⊙
Gi , so the latter does not have the structure of a groupoid.

Let [[GBS]] be the groupoid defined by the action of
⊙
(Gi ∙ G

−1
i ) on

⊙
Gi .

Thus, we define the domain of∗g ∈
⊙
(Gi ∙ G

−1
i ) to be the set of∗a ∈

⊙
Gi

for which ∗g ∙ ∗a ∈
⊙

Gi , where∙ is multiplication in∗GBS.

Theorem 7. For all x, x̂ ∈ D f with x ∈ L,

[[π ]]1(D̂ f , x, x̂) ∼=

{
[[GBS]] if L is an annulus

∗Zε̂ (d) if L is a disk

Proof. First supposeL is an annulus and thatx = x̂. The action ofπ1D∗ ∼= Z
on D̂ is generated by(z, n̂) 7→ (z, n̂ + 1), where(z, n̂) ∈ H2 × Ẑd. Then
if γ is the generator ofπ1D∗, we have f̂ γ f̂ −1 = γ d. It follows that the
diophantine group is isomorphic toGBS. The set of diophantine approximations
∗D(x̃, x̂) is equal to

⊙
Gi , whereGi is the nested set (6). The result now

follows by definition of[[π ]]1. If x̂ 6= x, let x̂0, x0 be lifts to D̂ contained in
a diophantine transversal and let{γ si } be a diophantine approximation ofx̂0

based atx0. Then ∗D(x̃, x̂) =
⊙
(Gi ∙ γ si ) and therefore[[π ]]1(D̂ f , x, x̂) is

once again the groupoid[[GBS]]. Now suppose thatL is a disk: then by Note 3,
[[π ]]1(D̂ f , x, x̂) = [[π ]]1(D̂, x0, x̂0) where(x0, x̂0) covers(x, x̂). By the results
of § 4.3 we have[[π ]]1(D̂, x0, x̂0) = ∗Zε̂ (d). �
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The example of̂D f illustrates the advantage of the “nonabelian Grothendieck
group” type construction used in Definition 2: by Note 4, the naive choice
“ [[π ]]1 = ∗D” would not even have produced a groupoid.

We now describe the groupoid structure of[[GBS]]. Given∗n ∈ ∗Z and y ∈
GBS, let y

∗n ∈ ∗GBS denote the sequence class of{ynα }, where{nα} represents
∗n. For ∗g ∈ [[GBS]], we may write

∗g = f
∗l x
∗rd
∗u

f
∗m

where∗l , ∗m, ∗r ∈ ∗Z and∗u ∈ ∗N∞ = the infinite nonstandard naturals. We
assume here thatd does not divide∗r , so that the exponent∗u is optimal. Define
the left and right degreesof ∗g by

ldeg (∗g) = ∗l + ∗u and rdeg (∗g) = ∗u− ∗m.

We note that the left and right degrees are invariant with respect to moving factors
of f to the left or right of thex term using (5). In fact, we can always write

∗g = f ldeg (∗g)x
∗r f −rdeg (∗g).

For ∗a = f
∗nx

∗sd
∗v
∈

⊙
Gi , define thedegreeas

deg (∗a) = ∗n.

By (5) and the definition of
⊙

Gi it follows that

Dom(∗g) = {∗a| rdeg (∗g)− deg (∗a) ∈ ∗N∞}.

Indeed we have

∗g ∙ ∗a = f (ldeg (∗g)−rdeg (∗g)+deg (∗a))x(
∗rdrdeg (∗g)−deg (∗a)+∗sd

∗v) (7)

if and only if rdeg (∗g)− deg (∗a) ≥ 0, and in this event, the right hand side of
(7) belongs to

⊙
Gi if and only if rdeg (∗g)− deg (∗a) is infinite.

Now let ∗h be another element of[[GBS]].

Theorem 8. The composition∗h ◦ ∗g is defined if and only if

rdeg (∗h) = ldeg (∗g) modZ, (8)

and in this event, is equal to∗h ∙ ∗g.
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Proof. Assume condition (8) and writec = rdeg (∗h)− ldeg (∗g) ∈ Z. Let ∗a
be in the domain of∗g. Then by (7),∗g ∙ ∗a is in the domain of∗h if and only if

rdeg (∗h)− (ldeg (∗g)− rdeg (∗g)+ deg (∗a)) = rdeg (∗g)− deg (∗a)+ c

belongs to∗N∞, which is true since∗a ∈ Dom(∗g). On the other hand, suppose

that∗b = f deg (∗b)x
∗s′d

∗v′

∈ Dom(∗h). Let ∗a = f deg (∗a)x
∗sd
∗v

where

deg (∗a) = deg (∗b)− ldeg (∗g)+ rdeg (∗g)

and where∗v is defined according to the following cases:

• If ∗v′ ≤ ldeg (∗g)− deg (∗b), take

∗v = ∗v′ and ∗s= ∗s′ − ∗rd ldeg (∗g)−deg (∗b)−∗v′ .

• If ∗v′ ≥ ldeg (∗g)− deg (∗b), take

∗v = ldeg (∗g)− deg (∗b) and ∗s= ∗s′d
∗v′−(ldeg (∗g)−deg (∗b)) − ∗r.

It follows that ∗a is in the domain of∗g and∗g ∙ ∗a = ∗b. ThusRan(∗g) =
Dom(∗h), so that the composition is defined. One can easily check that (8)
implies thatDom(∗h ∙ ∗g) = Dom(∗g), so that this composition coincides with
∗h ∙ ∗g as a morphism. Now assume that condition (8) does not hold so that
∗c = rdeg (∗h)− ldeg (∗g) ∈ ∗Z∞. If ∗c < 0, choose∗a in the domain of∗g
such that

rdeg (∗g)− deg (∗a) = −∗c.

Then∗g ∙ ∗a is not in the domain of∗h. Likewise, if∗c > 0, pick∗b ∈ Dom(∗h)
so thatrdeg (∗h)−deg (∗b) = ∗c. Then∗b is in the domain of∗h but not in the
range of∗g. �

Note 5. Let ∗Z2
jux be the groupoid whose morphisms consist of pairs(∗m, ∗n) ∈

∗Z2 and an identity 1, and where the composition(∗m′, ∗n′) ◦ (∗m, ∗n) is de-
fined when∗m − ∗n′ = c ∈ Z, equal to(∗m′, ∗n − c) or (∗m′ − c, ∗n) de-
pending on whetherc is positive or negative. Then the association∗g 7→
(ldeg (∗g), rdeg (∗g)) if ∗g 6= 1 and 1 7→ 1 defines a surjective groupoid
homomorphism[[GBS]] → ∗Z2

jux.
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6 The fundamental germ of a double coset foliation

Let G be a Lie group,H < G a closed Lie subgroup,0 < G a discrete subgroup
andFH,0 the associated double coset foliation. The situation is considerably
more subtle here due to the fact that the diophantine group is no longer discrete.
Thus two choices of diophantine transversalT1, T2 throughx, x̂ yield distinct sets
of diophantine approximations, in contrast with the case of a (quasi)suspension.
Note on the other hand thateverytransversal is diophantine, since the univer-
sal covers of the leaves are homogeneous with respect to the left action of the
diophantine group̃H. In fact, if x1 andx2 are contained in the same leaf, then
ã ∙ x̃1 = x̃2 for someã ∈ H̃. This yields a bijection of diophantine sets

∗D(x̃1, x̂, T1) −→
∗D(x̃2, x̂, T2)

defined∗g1 7→ ∗g2 if •g1 = •g2 ∙ ã in •H̃. That is, the bijection is given by
the equality•D(x̃1, x̂, T1) = •D(x̃2, x̂, T2) ∙ ã. However, it is not clear that the
following prescription for a map of fundamental germs:

∗u1 7→
∗u2 iff ∗u1 =

∗g1
∗h−1

1 , ∗u2 =
∗g2
∗h−1

2 and
•g1 =

•g2 ∙ ã,
•h1 =

•h2 ∙ ã
(9)

is well-defined since there might be, say, another representation∗u1 =
∗g′1(

∗h′1)
−1 which leads to a different assignment. Even if (9) were well-defined,

there is no reason to expect that it should respect the groupoid structure. When
•H̃ is a group, one can say more:

Lemma 1. If •H̃ is a group then∗u ◦ ∗v = ∗w in [[π ]]1(FH,0, x, x̂, T) implies
•u ∙ •v = •w in •H̃.

Proof. This follows immediately since the groupoid structure of the fundamental
germ is defined in terms of left multiplication on the unit space•D(x̃, x̂, T). �

Proposition 11. If •H̃ is a group andT1 and T2 are diophantine transver-
sals throughx1, x̂ and x2, x̂, respectively, wherex1, x2 belong to the same leaf
L, then

[[π ]]1(FH,0, x1, x̂, T1) ∼= [[π ]]1(FH,0, x2, x̂, T2).

Proof. It is clear now that the bijection (9) is well-defined: in fact, since•H̃ is a
group, we have•u1 = •u2. From this it follows thatDom(∗u1) = Dom(∗u2) ∙ ã,
and that the bijection (9) defines a groupoid isomorphism. �
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Let us return to the case of the linear foliationFV . Viewed as a double
coset foliation, it is easy to see that if we choose transversals that are fibers, the
fundamental germ so obtained is identical to that obtained using the suspension
definition in §4.4. On the other hand, the definition of[[π ]]1 available for double
cosets allows us to use nonfiber transversals. As•H̃ = •Rp is indeed a group, it
follows from Proposition 11 that these different possible choices of transversal
will yield a fundamental germ that agrees up to isomorphism with that defined
in §4.4.

We shall assume from this moment on that•H̃ is a group. We will then not
mention the base pointx and the transversalT and write[[π ]]1(FH,0, L , x̂)where
L is the leaf along which diophantine approximations are taking place. Ifx̂ ∈ L
we write simply[[π ]]1(FH,0, L).

We now give a “diophantine” description of∗D(x̃, x̂, T), similar in spirit to
that of ∗Zp

R appearing in (4). Denote byp : H̃ → H the universal cover ofH.
Suppose thatL is covered by a cosetHg and ĝ ∈ G is an element coverinĝx.
A subsetT ĝ ⊂ G is called alocal sectionat ĝ for the quotient mapG→ H\G
if T ĝ maps homeomorphically onto an open subset containingHĝ. We may
assume without loss of generality that the transversalT throughx̂ lifts to a local
sectionT ĝ throughĝ. As our interest is in sequences which converge toĝ in
T ĝ, we may assume also thatT ĝ = ĝ ∙T for some local sectionT about 1. Let
∗Tε ⊂ ∗Gε denote the set of infinitesimals which are represented by sequences
in T .

Now let ∗h̃ be a diophantine approximation ofx̂ based at̃x alongT , which is
characterized by the property that{p(∗h̃) ∙ g} lies in ĝ ∙ ∗Tε ∙ ∗0. This gives the
following diophantine description of∗D(x̃, x̂, T):

∗D(x̃, x̂, T) =
{
∗h̃ ∈ ∗H̃

∣
∣ ∃ ∗γ ∈ ∗0, ∗ε ∈ ∗Tε such that

ĝ−1 ∙ p(∗h̃) ∙ g ∙ ∗γ = ∗ε
}
.

(10)

The element∗h̃⊥ := ∗γ associated to∗h̃ in (10) is called thedualof ∗h̃. When
ĝ = g, we let ∗H̃g := ∗D(x̃, T) denote the set of diophantine approximations
and let∗H̃⊥g denote the set of duals. Thus ifσg denotes the conjugation map
a 7→ g−1ag,

∗H̃g =
{
∗h̃ ∈ ∗H̃

∣
∣
∣ σg(p(

∗h̃)) ∈ ∗Tε ∙
∗0

}
. (11)

In general, whetherg = ĝ or not, it follows that

[[π ]]1(FH,0, L , x̂) ⊂
{
∗ũ ∈ ∗H̃

∣
∣ σĝ(p(

∗ũ)) ∈ ∗Tε ∙
∗0 ∙ ∗Tε

}
.
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Note 6. Sincep−1(e) ∼= π1H, we have∗π1H < [[π ]]1(FH,0, L , x̂).

One can understand the description of∗H̃g appearing in (11) as a nonlinear
version of (4). In fact, ifG is a linear group ofp×pmatrices andg ∈ G, then one
can think of∗Zp

g as defined in (4) as the set of linear diophantine approximations
of g (approximations ofg by pairs of vectors with respect to linear algebra),
whereas∗H̃g can be thought of as a set of nonlinear diophantine approximations
of g (approximations ofg by pairs of matrices with respect to matrix algebra).

We now consider the horocyclic and geodesic flows on the unit tanget bundle
of a riemannian surface, which are, as is widely appreciated, deep mathematical
objects. It should come as no suprise that this deepness is reflected in their
fundamental germs, which present the most complex and intractable diophantine
algebra we have encountered thus far. In the remainder of this section, we will
attempt to give the reader a feel for the complexity of these fundamental germs
by walking through a sample calculation.

We restrict to the caseG = SL(2,R) and0 = SL(2,Z). See § 2.3 for
the relevant notation. Consider first the case of the (positive) horocyclic flow
Hor = Hor+SL(2,Z), that is,H = H = H+. If D is the subgroup of matrices of
the form (

es/2 0
t e−s/2

)

s, t ∈ R, then D defines a local section about 1 so we takeT = D. Finally,
sinceH ∼= (R,+), we shall simplify notation by identifyingr with the matrix
Ar and write∗Rg = ∗Hg for the set of diophantine approximations.

Let us consider the relatively simple choice

g =
( √

2 1
1
√

2

)
.

The right coset ofg is

Hg =
{(

r +
√

2
√

2r + 1
1

√
2

) ∣
∣
∣
∣ r ∈ R

}
.

SinceHg does not define a cycle inSL(2,R)/SL(2,Z) it must be dense by a
theorem of Hedlund [9], so we can expect fromg a nontrivial set of diophantine
approximations. The conjugate ofH by g is

σg(H) =
{(

1+
√

2r 2r
−r 1−

√
2r

) ∣
∣
∣
∣ r ∈ R

}
.
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In order to characterize the elements of∗Rg, we shall need the following
generalization of∗Zr . Let O be the ring of integers of a number field. For
∗r ∈ ∗R, define

∗O∗r = {
∗n ∈ ∗O | ∃ ∗n⊥ ∈ ∗O such that∗r ∙ ∗n− ∗n⊥ ∈ ∗Rε}.

Clearly∗O∗r is a subgroup of∗O.

Theorem 9. LetO be the ring of integers inQ(
√

2). Then∗r ∈ ∗Rg if and only

if there exists∗γ =
(
∗a ∗b
∗c ∗d

)
∈ SL(2, ∗Z) for which

•
√

2∗a+ 2∗c,
√

2∗b+ 2∗d ∈ ∗O∗r and (
√

2∗a+ 2∗c)⊥ = 1− ∗a,
(
√

2∗b+ 2∗d)⊥ = −∗b.

• ∗c, ∗d ∈ ∗Z√2 and ∗c⊥ = 1− ∗a, ∗d⊥ = 1− ∗b.

• ∗b = −(
√

2∗b+2∗d)∗r and (∗a+(
√

2∗a+2∗c)∗r )(∗d−(∗b+
√

2∗d)∗r )
= 1.

Proof. From (11),∗r ∈ Rg if and only if there exists∗γ ∈ ∗0 and∗ε, ∗δ ∈ ∗Rε
with
( ∗a(1+

√
2∗r )+ 2∗c∗r ∗b(1+

√
2∗r )+ 2∗d∗r

−∗a∗r + ∗c(1−
√

2∗r ) −∗b∗r + ∗d(1−
√

2∗r )

)

=

(
1+ ∗ε 0

∗δ (1+ ∗ε)−1

)

.

The first and third items follow immediately. The second item follows upon
noting that we may eliminate∗r by multiplying the second row equations by

√
2

and adding them to the first row equations. �

Theorem 9 illustrates why it is so difficult to say anything about the algebraic
structure of∗Rg or [[π ]]1(Hor, L). In order to determine whether the sum∗r +∗s
defines an element of∗Rg, we must find a way to “compose” the corresponding
duals∗r⊥, ∗s⊥ ∈ R⊥g to obtain one for their sum, and it is not even clear what
this operation on matrices should be. One could reverse the logic and ask if the
product∗r⊥ ∙ ∗s⊥ defines an element ofR⊥g , however this seems just as hopeless
since the diophantine conditions spelled out in the statement of Theorem 9 are
not stable with respect to matrix multiplication.

As for the geodesic flow, we leave it to the reader to formulate the appropriate
analogue of Theorem 9e.g.using the local sectionT for which

∗Tε =
{(

1 ∗δ
∗δ′ 1+ ∗δ∗δ′

) ∣
∣
∣
∣
∗δ, ∗δ′ ∈ ∗Rε

}
.

The result would be a set of diophantine conditions at least as daunting as that
obtained for the horocyclic flow.
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7 The fundamental germ of a locally free lie group action

The discussion here is very similar to that for a double coset, so we will be
brief. Let B be a Lie group of dimensionk, Mn an n-manifold,n > k, X ⊂
Mn. Let θ : B → Homeo(X) be a locally-free representation whose orbits
either coincide or are disjoint and letLB be the associated lamination onX.
Any diophantine transversal throughx, x̂ may be obtained as the intersection of
LB with a submanifoldT of Mn of dimensionn − k such thatx, x̂ ∈ T and
T ∩ (θ(B) ∙ x) is discrete inθ(B) ∙ x. As in the case of a double coset foliation,
when•B̃ is group,

(1) Groupoid multiplication in the fundamental germ corresponds to multipli-
cation in•B̃.

(2) If T1, T2 are transversals throughx1, x̂ andx2, x̂ wherex1, x2 belong to
the same leafL then

[[π ]]1(LB, x1, x̂, T1) ∼= [[π ]]1(LB, x2, x̂, T2).

Accordingly we shorten to[[π ]]1(LB, L , x̂). We note also that when the lin-
ear foliationFV is viewed as arising from a locally free Lie group action, the
fundamental germ so obtained agrees with that of § 4.4.

Theorem 10.Let6 = 0\H2 be a compact hyperbolic surface,l ⊂ 6 a geodesic
lamination,x̂ ∈ l andl ⊂ l a leaf. Then

[[π ]]1(l, l , x̂) = [[π ]]1(Geod0, L , v̂)

whereL is a leaf coveringl and v̂ is a tangent vector tol at x̂.

Proof. This follows immediately from the fact that any diophantine approxi-
mation ofv̂ alongL canonically defines a diophantine approximation ofx̂ along
l andvice verca. �

8 Functoriality

We begin by recalling the notion of morphism in the category of laminations.
A lamination mapF : L→ L′ is a map satisfying the following conditions:

(1) For every leafL ⊂ L, there exists a leafL ′ ⊂ L′ with F(L) ⊂ L ′.

(2) For allx ∈ L, there exist open transversalsT 3 x, T ′ 3 F(x), such that
F(T) ⊂ T ′.
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The projectionP : L→ B of a suspension onto its base is a lamination map.
On the other hand, letF be a foliation,M the underlying manifold. Then the
canonical inclusionı : F → M is a map which maps leaves into the unique leaf
M , yet is not a lamination map since no open transversal ofF is mapped into
a point, an open transversal ofM .

Let
F : (L, x, x̂) −→ (L′, x′, x̂′)

be a lamination map. We say thatF is diophantineif there exist diophantine
transversalsT 3 x, x̂ and T ′ 3 x′, x̂′ such thatF(T) ⊂ T ′. Note that this
condition is always satisfied if eitherL orL′ are laminations defined by double
cosets or locally free Lie group actions. Denote byL andL ′ the leaves containing
x, x′ and letF̃ : L̃ → L̃ ′ be the lift of the restrictionF |L . Let T̃ ⊂ L̃, T̃ ′ ⊂ L̃ ′ be
the pre-images ofT ∩ L, T ′ ∩ L ′. Then forF diophantine there is a well-defined
map

∗DF : ∗D(x̃, x̂, T) −→ ∗D(x̃′, x̂′, T ′)

of diophantine approximations. If the assigment

∗u = ∗g ∙ ∗h−1 7−→ ∗DF(∗g) ∙ (∗DF(∗h))−1

leads to a well-defined map

[[F]] : [[π ]]1(L, x, x̂) −→ [[π ]]1(L
′, x′, x̂′),

we say thatF is germ.

Proposition 12. LetL = B̃×ρ F be a suspension withx, x̂ lying overx0 ∈ B.
Then the projectionξ : (L, x, x̂)→ (B, x0) is germ, and the induced map[[ξ ]]
is a groupoid monomorphism.

Proof. It is clear from the definitions that∗Dξ is the inclusion

∗D(x̃, x̂) ⊂ ∗π1(B, x).

In particular, it follows that [[ξ ]] is well-defined. Since the product in
[[π ]]1(L, x̂, L) is induced by multiplication in∗π1(B, x), [[ξ ]] is a groupoid
homomorphism as well. �

Unfortunately, we cannot assert in general that the map[[F]] induced by a germ
lamination mapF defines a groupoid homomorphism. We now introduce a class
of lamination maps which is sufficiently well-behaved so as to allow us to say
more.
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Let F be a foliation,M the underlying space ofF , and ı : F → M the
inclusion. Althoughı is not a lamination map, we may nevertheless define a
map of diophantine approximations as follows. An element∗g ∈ ∗D(x̃, x̂, T),
represented say by{gα}, may be regarded as made up from an equivalence class
of sequence{γgα } where theγgα are homotopy classes of curves lying within
L whose endpoints converge tox̂. One may assume that there is an open disc
O ⊂ M aboutx̂ such that the endpoints of these sequences lie entirely inO. By
connecting their endpoints tôx by a paths contained inO, we obtain a sequence
of homotopy classes of curves{ηgα } ⊂ 51(M, x, x̂) = the set of homotopy
classes of paths fromx andx̂, hence a map

∗Dı : ∗D(x̃, x̂, T) −→ ∗51(M, x, x̂), ∗g 7−→ η∗g

which depends neither onO nor on the choice of connecting paths. More gen-
erally, givenL a lamination andı : L→ X a map into a path-connected space,
we may define a map∗Dı : ∗D(x̃, x̂, T)→ ∗51(X, ı(x), ı(x̂)). We say that the
mapı is germif ∗Dı induces a well-defined map

[[ı]] : [[π ]]1(L, x, x̂, T) −→ ∗π1(X, ı(x)),

∗u = ∗g∗h−1 7−→ ∗Dı(∗g) ∙ (∗Dı(∗h))−1.

Definition 3. Let L be a lamination arising from a group action,X a path
connected space. A mapı : (L, x, x̂)→ (X, ı(x), ı(x̂)) is called afidelity if it
is germ and[[ı]] is a groupoid monomorphism. We say thatL is faithful if it has
a fidelity.

For example, by Proposition 12 any suspension is faithful, however if the
underlying space of a suspensionL is a manifoldM , we shall see that it is much
more useful to be able to assert that the inclusionL ↪→ M is a fidelity.

For the remainder of the section, the base pointsx andx̂ will be supressed in
order to simplify notation.

Proposition 13. LetFV be the foliation ofTn induced by thep-planeV ⊂ Rn.
Then the inclusionı : FV → Tn is a fidelity.

Proof. Recall that for someq × p matrix R, [[π ]]1(FV ) = ∗Zp
R. Then for

∗n ∈ ∗Zp
R, the map[[ı]] is

[[ı]]
(
∗n

)
=

(
∗n, ∗n⊥

)
∈ ∗Zp ⊕ ∗Zq = ∗π1T

n,

where∗n⊥ is the dual to∗n. [[ı]] is then clearly an injective homomorphism.�
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The problem of the existence of fidelities for laminations arising from group
actions is interesting but seems difficult.

Conjecture 2. Every lamination arising from a group action is faithful.

Definition 4. A germ lamination mapF : L → L′ is trained if L and L′

are faithful, and there exist fidelitiesı : L → X, ı ′ : L′ → X′ and a map
f : X→ X′ such that

∗ f ◦ [[ı]] = [[ı ′]] ◦ [[F]], (12)

where∗ f = ∗π1( f ) is the nonstandard version of the map onπ1 induced byf .
The triple(ı, ı ′, f ) is called atraining for F.

Theorem 11. Let F : L→ L′ be a trained lamination map. Then the induced
map[[F]] is a groupoid homomorphism.

Proof. Let (ı, ı ′, f ) be a training forF . Then for all∗u, ∗v ∈ [[π ]]1(L) such
that∗u ∙ ∗v is defined we have

[[ı ′]] ◦ [[F]]
(
∗u ∙ ∗v

)
= [[ı ′]]

(
[[F]]∗u ∙ [[F]]∗v

)
.

Since[[ı ′]] is injective,[[F]]
(
∗u ∙ ∗v

)
= [[F]]∗u ∙ [[F]]∗v. �

Corollary 1. Let F : (F, x)→ (F ′, x′) be a germ map of foliations. Suppose
that the inclusions into the underlying manifoldsı : F → M, ı ′ : F ′ → M ′ are
fidelities. Then[[F]] is a groupoid homomorphism.

Proof. Take f : M → M ′ to beF , viewed as a map on underlying manifolds.
Then(ı, ı ′, f ) is a training. �

Corollary 2. Any mapF : FV → FV ′ of linear foliations of torii induces a
homomorphism[[F]] of fundamental germs.

9 The germ universal cover

We assume throughout this section that

(1) L is a weakly-minimal lamination arising from a group action.

(2) x = x̂ ∈ L a fixed dense leaf.
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We abreviate the associated fundamental germ to[[π ]]1(L). An ultrafilter U is
fixed throughout.

Let p : L̃ → L be the universal cover. A sequence{x̃α} ⊂ L̃ is calledL-
convergentif it projects to a sequence inL converging to somêx ∈ L. Two
L-convergent sequences{x̃α} and {x̃′α} ⊂ L̃ are calledL-asymptoticif their
projections converge to the same pointx̂ and if for every flowboxO in L about
x̂, there existsX ∈ U such thatx̃α and x̃′α lie in a common lift of a plaque of
O, for all α ∈ X. The asymptotic class corresponding to{x̃α} is denoted•x̃;
we refer tox̂ as thelimit of •x̃ and write lim•x̃ = x̂. The set of•x̃ with limit x̂
is denotedLimx̂.

Definition 5. Thegerm universal coverofL with respect toL is

[[ L̃ ]] =
{
classes•x̃ of L-convergent sequences iñL

}
.

Note that for anyx̂ ∈ L, everyGL -diophantine approximation∗g of x̂ de-
termines an element of[[ L̃ ]], and the setsLimx̂ and∗D(x̃, x̂, T) are in bijective
correspondence, for any diophantine transversalT throughx, x̂.

Proposition 14. Let L be compact and suppose thatL = G is a topological
group for which∗b̃, ∗c̃ ∈ ∗G̃ areL-asymptotic if and only if∗b̃ ∙ ∗c̃−1 ∈ ∗G̃ε .
Then[[ L̃ ]] = •G̃.

Proof. Suppose that there is some•b̃ ∈ •G̃ represented by a sequence{b̃α}which
is notL-convergent. Thus if{bα} is the projection of this sequence toG ⊂ L,
then for all x̂ ∈ L, x̂ has a neighborhoodUx̂ ⊂ L for which there is noX ∈ U
with {bα}|X ⊂ Ux̂. TheUx̂ coverL so that there is a subcoverUx̂1, . . . ,Ux̂n ;
this implies that there exists a partitionX1 t ∙ ∙ ∙ t Xn of N with {bα}|Xi ⊂ Ux̂i .
SinceU is an ultrafilter, one of theXi belongs toU, contradiction. Thus every
element•b̃ ∈ •G̃ defines an element of[[ L̃ ]]. Since the relation of beingL-
asymptotic coincides with differing by an infinitesimal, we are done. �

For example, ifFV is a linearp-foliation of a torus,[[ F̃V ]] = •Rp.
Denote by

•p : [[ L̃ ]] −→ L

the natural projection defined•x̃ 7→ lim •x̃. Theleaf L• x̃ through•x̃ is defined to
be the set of• ỹ such that the following is true: there are representative sequences
{x̃α}, {ỹα}, and paths̃ηα connectingx̃α to ỹα so thatp(η̃α) converges to a path
connectingx̂ = lim •x̃ to ŷ = lim • ỹ. Note that in particular we haveL ŷ = Lx̂.

Theorem 12. [[ L̃ ]]may be given the structure of a lamination whose leaves are
nowhere dense and for which•p is an open lamination map.
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Proof. Denote by[[T]] ⊂ [[ L̃ ]] the pre-image of a transversalT ⊂ L and well-
order eachLimx̂ for x̂ ∈ T . Note that the cardinalities of theLimx̂ are the same:
that of the continuum, sinceL is dense andL ∩ T is countable. We define a
decomposition

[[T]] =
⊔

Tα (13)

whereTα is the section overT defined byx̂ 7→ theαth element ofLimx̂. By
definition of the leaves of[[ L̃ ]], given x̂, ŷ ∈ T ,




⋃

• x̃∈Limx̂

L• x̃




⋂




⋃

• ỹ∈Limŷ

L• ỹ



 6= ∅ (14)

if and only if Lx̂ = L ŷ, and in the latter event the two unions of leaves appearing
in (14) are equal. Since for anŷx, T ∩ Lx̂ is countable, we may choose the
ordering of eachLimŷ, ŷ ∈ T ∩ Lx̂, so that all of theαth elements lie on distinct
leaves. In this way we may asume that the associated sectionTα intersects any
leaf of [[ L̃ ]] no more than once. We topologize each sectionTα through its
identification withT , and give[[ L̃ ]] the associated product lamination structure.
By construction of this topology,•p becomes an open lamination map. �

The topology constructed in Theorem 12 is called agerm universal cover
topology: it is not unique and depends on the choice of decomposition (13).
From now on, we assume that[[ L̃ ]] has been equipped with such a topology.

There is a canonical simply connected leaf corresponding to the inclusion
L̃ ↪→ [[ L̃ ]]. In particular,

[[π ]]1([[ L̃ ]], x) = 0

for any x ∈ L̃. Thus[[ L̃ ]] can be thought of as the ordinary universal cover
L̃ surrounded by a nonstandard cloud of leaves corresponding to the laminar
accumulations ofL; since these leaves are nowhere dense, one might say that
on passing to[[ L̃ ]] all of the diophantine approximations withinL have been
“unwrapped”.

We now posit[[ L̃ ]] as the unit space of an enhanced groupoid structure for
[[π ]]1(L). Let ∗u ∈ [[π ]]1(L) and •x̃ ∈ [[ L̃ ]]. We say that∗u acts on •x̃ if
there exist representative sequences such that{uα ∙ x̃α} defines anL-convergent
sequence∗u ∙ •x̃ with

lim(∗u ∙ •x̃) = lim •x̃.

Defining the domainDom(∗u) and rangeRan(∗u) of ∗u through this notion
of action, we see that[[ L̃ ]] yields a new groupoid structure on[[π ]]1(L), called
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the geometric groupoid structure. It is clear that bothDom(∗u) andRan(∗u)
are sublaminations of[[ L̃ ]], since•x̃ ∈ Dom(∗u) implies thatL• x̃ ⊂ Dom(∗u).
Thus we may view[[π ]]1(L) as a groupoid of bijections between sublaminations
of [[ L̃ ]]. Note that the unit space for the old groupoid structure,•D(x̃, T), maps
into the new unit space[[ L̃ ]] via its bijection withLimx. There is a canonical
inclusion of the old groupoid structure into the geometric groupoid structure,
given by extension of domain and range, however in general this map need not
be a groupoid homomorphism.

Assumption. For the remainder of the paper, we will assume that[[π ]]1(L)
is endowed with the geometric groupoid structure.

Definition 6. We say that[[π ]]1(L) is tame if wheneverlim •x̃ = lim • ỹ, there
exists∗u ∈ [[π ]]1(L) such that∗u ∙ •x̃ = • ỹ.

Proposition 15. If [[π ]]1(L) is tame, then the quotient

[[π ]]1(L)
∖
[[ L̃ ]]

is homeomorphic toL.

Proof. The equivalence relation enacted by the action of[[π ]]1(L) identifies
precisely those points of[[ L̃ ]] which map to the same pointx̂ ∈ L by •p. Since
•p is open, it follows that quotient topology is that the ofL. �

Theorem 13. If [[π ]]1(L) is tame and a group, then there is a germ universal
cover topology on[[ L̃ ]] for which[[π ]]1(L) acts as a group of homeomorphisms.

Proof. Let [[T]] be the preimage of a transversalT of L. As [[π ]]1(L) is a group,
Dom(∗u) = [[ L̃ ]] for every element∗u ∈ [[π ]]1(L), and moreover∗u([[T]]) =
[[T]]. Let i : T → [[T]] be a section so that for all•x̃ ∈ [[ L̃ ]], i (T)∩ L• x̃ contains
at most one point. Since[[π ]]1(L) acts without fixed points and is tame, we have
a decomposition as disjoint union

[[T]] =
⊔

∗u∈[[π ]]1(L)

∗u(i (T)).

Now construct as in Theorem 12 a lamination structure on[[ L̃ ]] based on this
decomposition. It follows then that each∗u ∈ [[π ]]1(L) acts homeomorphically
on [[ L̃ ]]. �

Proposition 16. Let F : (L, L)→ (L′, L ′) be a lamination map, whereL and
L ′ are dense leaves. ThenF induces a map

[[ F̃ ]] : [[ L̃ ]] −→ [[ L̃′ ]],
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continuous with respect to appropriate choices of germ universal cover topolo-
gies.

Proof. Denote byp′ : L̃ ′ → L ′ the universal cover. The map[[ F̃ ]] is defined
by representing•x̃ by a sequence{x̃α} and taking[[ F̃ ]](•x̃) to be the asymptotic
class of{F̃(x̃α)}. Now let [[τ ′]] be any germ universal cover topology on[[ L̃′ ]],
say constructed from a transversalT ′. SinceF is a lamination map, there exists
a transversalT with F(T) ⊂ T ′. We may thus find a decomposition[[T]] = tTα
compatible with that of[[T ′]] i.e. so that[[ F̃ ]](Tα) ⊂ T ′α for all α. Let [[τ ]] to
be the associated germ universal cover topology. Then[[ F̃ ]] is continuous with
respect to[[τ ]] and[[τ ′]]. �

We now return to the question of functoriality, which we must address in view
of our adoption of a new groupoid structure. If we reconsider the notions of
fidelities and trainings with regard to the geometric groupoid structure, then the
analogue of Theorem 11 – as well as its corollaries – remain true with identical
proofs. For the remainder of the paper, the concepts of fidelity and training will
be understood in the context of the geometric groupoid structure.

The classical universal cover enjoys the property that the liftf̃ : X̃ → Ỹ of a
map f : X → Y is π1X-equivariant. We now describe conditions under which
the same can be said for a lamination map. A germ lamination mapF : L→ L′ is
said to begeometricif for all ∗u ∈ [[π ]]1(L), [[ F̃ ]](Dom(∗u)) ⊂ Dom

(
[[F]](∗u)

)
,

[[F]] : [[π ]]1(L)→ [[π ]]1(L′) is a homomorphism and

[[ F̃ ]](∗u ∙ •x̃) = [[F]](∗u) ∙ [[ F̃ ]](•x̃).

Examples of geometric maps are the projectionLρ → B of a suspension onto
its base and any map of manifoldsf : M → M ′.

We say that a laminationL is geometrically faithfulif it has a geometric
fidelity: a fidelity ı : L → X which is geometric and for which[[ ı̃ ]] : [[ L̃ ]] →
[[ X̃ ]] is injective. In additionF : L→ L′ is said to begeometrically trainedif
it possesses a training(ı, ı ′, f ) whereı, ı ′ are geometric fidelities. For example,
the fidelity ı : FV → Tn of a linear foliation of a torus is geometric, as well as
the projection of a suspension onto a compact base.

Theorem 14.Let F : L→ L′ be geometrically trained. ThenF is geometric.

Proof. Let (ı, ı ′, f ) be a geometric training. Then we have

[[ ı̃ ]] ◦ [[ F̃ ]](∗u ∙ •x̃) = [[ ı̃ ]]
(
[[F]](∗u) ∙ [[ F̃ ]](•x̃)

)

which implies the result as[[ ı̃ ]] is injective. �
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Corollary 3. SupposeF : F → F ′ is a lamination map of foliations such that
the inclusions into the underlying manifolds are geometric fidelities. ThenF
is geometric. In particular any lamination map of linear foliations of torii is
geometric.

10 Covering space theory

A surjective lamination mapP : L→ L′ is called alamination coveringif P|L
is a covering map for every leafL ⊂ L. A lamination map which is a covering
map in the classical sense is a lamination covering but not all lamination coverings
occur this waye.g.the projectionξ : L→ B of a suspension onto its base. We
say thatP is cover trainedif it has a training(ι, ι′, p) in which p : X→ X′ is a
covering map.

Theorem 15. Let P : L → L′ be a germ lamination covering that is cover
trained. Then

(1) The induced map of fundamental germs

[[P]] : [[π ]]1(L) −→ [[π ]]1(L
′)

is a groupoid monomorphism.

(2) The induced map of germ universal covers

[[ P̃ ]] : [[ L̃ ]] −→ [[ L̃′ ]]

is an open, injective map with respect to appropriate choices of germ
universal cover topologies.

Proof. The first statement follows from the definition of training and the fact that
∗p is injective on∗π1. Let L, L ′ be dense leaves inL, L′ containingx, x′. Then
the lift of the restrictionP|L , P̃|L : L̃ → L̃ ′, is a homeomorphism. It follows
that the induced map[[ P̃ ]] is injective. [[ P̃ ]] is automatically open with respect
to the germ universal cover topologies constructed as in Proposition 16.�

Note 7. Here is an example when the map[[ P̃ ]] is not surjective. TakeL = R,
L′ = S1 andP : R→ S1 the universal cover. Then[[ L̃ ]] ≈ R but [[ L̃′ ]] ≈ •R.

Thus whenP is a cover trained, the image

C = [[P]]
(
[[π ]]1(L)

)
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is a subgroupoid of[[π ]]1(L′). We shall now construct lamination coverings from
subgroups, restricting attention to the case where[[π ]]1(L) is tame and a group.
Assume that[[ L̃ ]] has been given a germ universal cover topology[[τ ]] of the
type guaranteed by Theorem 13. Consider a subgroupC < [[π ]]1(L) and denote
byLC the quotientC\[[ L̃ ]].

Theorem 16.LC is a lamination and the mapLC → L is a lamination covering.

Proof. The first statement follows immediately from the fact thatC is a sub-
group of[[π ]]1(L). By construction,LC → L is surjective and a covering when
restricted to any leaf. �

Two lamination coveringsPi : Li → L, i = 1, 2, areisomorphicif there
exists a geometric homeomorphismF : L1→ L2 such thatP1 = P2 ◦ F . The
group of automorphisms of a lamination coverP is denotedAut(P).

Proposition 17. Let ∗u ∈ [[π ]]1(L, x) andC′ = ∗u ∙ C ∙ ∗u−1. ThenLC → L
andLC′ → L are isomorphic.

Proof. The bijection•x̃ 7→ ∗u ∙ •x̃ defines a homeomorphism[[ L̃ ]] → [[ L̃ ]]
which descends to an isomorphism of covers. �

Now supposeC C [[π ]]1(L, x) is a normal subgroup andPC : LC → L the
associated covering.

Theorem 17.Aut(PC) is isomorphic to the quotient[[π ]]1(L, x)/C. The quotient
ofLC by [[π ]]1(L, x)/C isL.

Proof. Every element ofLC is a classC ∙ •x̃, for •x̃ ∈ [[ L̃ ]]. The action of
[[π ]]1(L, x) /C on such classes is well-defined and yields a subgroup of
Aut(PC). On the other hand, the setLimx̂ is a [[π ]]1(L)-set on which any geo-
metric automorphism acts automorphically. However the automorphism group
of Limx̂ is [[π ]]1(L, x)/C, so it follows thatAut(PC) ⊂ [[π ]]1(L, x)/C. It is clear
that the quotient ofLC by [[π ]]1(L, x)/C isL. �
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