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Introduction

Let £ be alamination: a space modeled on a “deck of caRiist T, whereT is a
topological space and overlap homeomorphisms take cards to cards continuously
in the deck directiorm. One thinks off as a family of manifolds, the leaves,
bound by atransversal topology prescribed locallf¥ byJsing this picture, many
constructions familiar to the theory of manifolds can be extended to laminations
via the ansatz:

Replace manifold objecA by a family of manifold object$A } existing
on the leaves of and respecting the transverse topology.

Forexample, one defines a smooth structure to be a family of smooth structures
on the leaves in which the card gluing homeomorphisms occurring in a pair of
overlapping decks vary transversally in the smooth topology. Continuing in this
way, constructions oveR, such as tensors, de Rham cohomology grogfis,
may be defined.

Identifying those constructions classically defined d&és not as straightfor-
ward, especially if one wishes to follow tradition and define them geometrically.
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50 T.M. GENDRON

To see why this is true, consider the case of an exceptionally well-behaved lam-
ination: an inverse limiM = lim . M, of manifolds by covering maps. Such

a system induces a direct limit of de Rham cohomology groups, and there is a
canonical map from this limit into the tangential conomology groltlrbsﬁ; R)

with dense image. Infact, here one may use the system to define — by completion
of limits — tangential homology groupﬂ*(ﬁ; R) as well. If one endeavors to

use this point of view to define the groups, H.(- Z), H*(- Z), the result is
failure since the systems they induce have trivial limits. The purpose of this pa-
per is to introduce for certain classes of laminatigresconstructiorfz (£, X)

called the fundamental germ, a generalizationpfvhich represents an attempt

to address this omission in the theory of laminations.

The intuition which guides the construction is that of the lamination as irra-
tional manifold. Recall that for a pointed manifoli, x), the deck group of
the universal covefM, X) — (M, x) — which may be identified withr; (M, x)

— reveals through its action how to make identifications wimﬁh X) so as to
recoverM, x) by quotient. Let us imagine that we have disturbed the process of
identifying rr; orbits, so that instead, points in an orbit merely approximate one
another through some auxiliary transversal sphcdhe result is thatM, %)

does not produce a quotient manifold but rather coils upon itself, perhaps form-
ing a leaf(L, x) of a lamination£. The germ of the transversalaboutx may

be interpreted as the failed attempt(tf, x) to form an identification topology
atx. The fundamental gerfir],(£, X) is then a device which records alge-
braically the dynamics ofL, x) as it approaches through the topology of .

See Figure 1.

One might define an element pf],(L, X) as a tail equivalence class of a
sequence of approachgs }, whereL > x, — x throughT. In this paper, the
laminations under consideration (see 82) have the property that there is a group
G acting onL in such a way that every approach is asymptotic to one of the
form {g,x}, for g, € G. We then defindx (L, X) as the set of tail equiva-
lence classes of sequences of the fggrh; !}, whereg,x, hy,x — xin T. A
groupoid structure ofir ] (L, X) is defined by component-wise multiplication
of sequences, and (L, x) is contained iffr]1 (£, X) as a subgroup. In practice,
[711(£, x) has no additional structure; but for reasonably well-behaved lami-
nations such as inverse limit solenoids and linear foliations, it is a group. And
in certain instances when the fundamental germ is not a graup.the Reeb
foliation and the Sullivan solenoid — the groupoid structure is easily computed.
See 8837 for definitions and examples.

When£ = M isamanifold (alamination with one leaf)r J,(M, x) isequalto
*1(M, X), the nonstandard version @f(M, x): the group of tail equivalence
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Figure 1: The Lamination as Irrational Manifold.
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classes ofill sequences i1 (M, x). When £ is a lamination contained in a
manifold M, under certain circumstances, 87, there is a 1frapy (£, X) —
*1(M, X) whose image consists of those classes of sequenegshih, x) that
correspond to the holonomy af. Thus, in expandingr; to its nonstandard
counterpatrt, it is possible to detect — algebraically — sublaminations invisible
to 1.

One can profitably think ofz1,(£, X) as made from sequences @-dio-
phantine approximations”. In the case of an irrational foliatjonof the torus
T? by lines of sloper € R\ Q, 84.4, this is literally true: the elements of
[71.(Fr, X) are the equivalence classes of diophantine approximatioms of
More generally, in[7]; one finds an algebraic-topological tool which enables
systematic translation of the geometry of laminations into the algebra of (non-
linear) diophantine approximation.

One can extend the definition of the fundamental germ to include accumu-
lations of L on points of other leaves. Thussfis any point of £, we define
[71.(L, X, X) as the set of classes of sequences of the fayn h;l} where
0. X, hyx — X. We suspect that, together with the topological invariants of the
leaves, the fundamental gerifrg], (L, x, X) will play an important role in the
topological classification of laminations.

By unwrapping the accumulations &f implied by the fundamental germ
[71.(£, X), one obtains the germ universal coef ], §9, which is a kind
of nonstandard completion af. If [71.(£, X) is a group, then under certain
circumstances one may associate lamination covetligs= C\[ £ ] of £ to
every conjugacy class of subgro@ < [7]1(£, X), and whenC is a normal
subgroup, the quotielftr (L, X)/C may be identified with the automorphism
group of £Lc — L. These considerations give rise to the beginnings of a Galois
theory of laminations, §10.

This first paper on the fundamental germ is foundational in nature. One should
not expect to find in it hard theorems, but rather the description of a complex and
mysterious object which reveals the explicit connection between the geometry of
laminations and the algebra of diophantine approximation. Due to its somewhat
elaborate construction, we shall confine ourselves here to the following themes:

* Basic definitions: §81-3.
e Examples: 884-7.
* Functoriality: 88.

» Covering space theory: §89,10.
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The focus will be on laminations which arise through group actions: suspen-
sions, quasi-suspensions, double coset foliations and locally-free Lie group ac-
tions. The exposition will be characterized by a careful exploration of a number
of concrete examples which serve not only to illustrate the definitions in action
but also to indicate the richness of the algebra they produce. In a second install-
ment [5], to appear elsewhere, the constructiofrdf;, will be extended to any
lamination whose leaves admit a smooth structure.

1 Nonstandard Algebra

All ideas and statements in this section — with the exception of the notion of
ultrascope — are classical and can be found in the literature. References: [8],
[12].

LetN = {0, 1, 2, ...}, 1 c 2V an ultrafilter all of whose elements have infinite
cardinality. GivenS = {§} a sequence of sets aXde I, write Sy =[], S
The ultraproductis the direct limit

[S] = lim &,

where the system maps are the cartesian projectionS. # Sfor all i, the
ultraproduct is called theltrapowerof S, denoted S.

If S consists of nested sets, denote®lsythe set of sequences which converge
with respect taS. For eachX e 11, define a mafPx : ©S — ©S by restriction
of indices: Px ({X,}) = {X«}laex. Theultrascopeis the direct limit

@s = lim ©s.
Px

There is a canonical inclusidi§] — (S , and whenS = Sfor all i, the
ultrascope coincides with the ultrapower. In general, we have

Os=N's2*(Ns).

where the inclusion is an equality if and onlySfis eventually equal to a fixed
set.

If Sis a (nested) sequence of groups or rings, the induced component-wise
operations on sequences descend to operations making the ultraproduct (the
ultrascope) a group or ring. This is also trug i a (nested) sequence of fields:
we remark here that the maximality property of ultrafilters is required to rule out
zero divisors.
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If one uses a different ultrafiltdt’ and if S is a (nested) sequence of groups,
rings or fields, then assuming the continuum hypothesis, it is classical [2] that
the resulting ultraproduct is isomorphic to that formed frimThe same can
shown for the ultrascope, however we shall not pursue this point here.

The ultrapowerR is callednonstandardR. There is a canonical embedding
R — *R given by the constant sequences, and we will not distinguish between
R and its image irfR. For*x, *y € *R, we write*x < *y if there existsX € U
and representative sequendgs, {y;} such that;, < y; foralli € X. The
non-negative nonstandard reals are defitied = {*x € *R| *x > 0}. The
Euclidean norm - | onR extends to &R, -valued norm orfR. An elementx
of *R is calledinfinite if for all r € R, |*xX| > r, otherwise*x is calledfinite.

“R is a totally-ordered, non-archimedian field.

Here are two topologies that we may gitie:

» The enlargement topologyz, generated by sets of the forfi\, where
A C Ris open.*t is 2"9-countable but not Hausdorff.

» Theinternal topologyft], generated by sets of the fof#y; ] whereA; ¢ R
is open for alli. [t] is Hausdorff but not 2-countable.

We have*t C [t], the inclusion being strict. It is not difficult to see thai is
just the order topology.
Proposition 1. (*R, [t])isareal, infinite dimensional topological vector space.

We note however that'R, +) is not a topological group with respectte.
Let *Rsin be the set of finite elements tR.

Proposition 2. *Rgp, is a topological subring of R with respect to both thér
and[z] topologies.

The set oinfinitesimalds defined'R. = {*¢ | |*¢| < M for all non-zeroM <
R, }, avector subspace tR. If *x —*y € *R,, we write*x =~ *y and say that
*X is infinitesimalto *y.

Proposition 3. *Ry, is a local ring with maximal idealR, and
*Riin

~ R,
R,

a homeomorphism with respect to the quotiantopology.
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We note thatR, is clopen in thg t]-topology; the quotientr]-topology on
*Rin/*R. is therefore discreteé R, is not an ideal in'R. The vector space

R

R = —,
*R,

is called theextended realsBy Proposition 3;R contains a subfield isomorphic
to R.

Neither*t nor [t] induce a satisfactory topology of®. Indeed,"R is not
a topological vector space with respect to the topology inducet pgind the
topology induced byr] makesR c °R discrete. In 89 we will show thaiR
may be viewed as the universal cover of a host of 1-dimensional laminations,
each one givingR the structure of a topological vector space in whitchas its
usual topology.

Now let® be any complete topological group. Some of the properties satisfied
by *R also hold for®. If r denotes the topology &, then the topologies and
[t] are defined exactly as abové$ is a topological group in ther] topology,
but not in the*r topology. Denote by®, the classes of sequences converging
to the unit element 1*®, is a group since a product of sequences converging
to 1 in a topological group is again a sequence converging to 1*&gt be
the subgroup of ® all of whose elements are represented by sequences which
converge to an element 6. We have the following analogue of Proposition 3:

Proposition 4. *®, is a normal subgroup &y, and

*®fin

S0
*Gje ’

a homeomorphism with respect to the quotiantopology.

The left coset space
*©
is called theextended. It containd® as a subgroup. [# is compact or abelian,
then*® is a group, though in general it need not be. We will avail ourselves of
its natural structure as*&$-set with respect to the left multiplication action.

‘® =

2 Laminations associated to group actions

The laminations for which we shall define the fundamental germ arise from
actions of groups: we review them here as a way of fixing notation. References:
[1], [6], [7], [10].

Bull Braz Math Soc, Vol. 37, N. 1, 2006



56 T.M. GENDRON

Let us begin by reviewing the definitions and terminology surrounding the
concept of a lamination. Aleck of cardss a productR" x T, whereT is a
topological space. A&ardis a subset of the forr@ = O x {t}, whereO C R"
is open and € T. A laminationof dimensionn is a space’ equipped with a
maximal atlasA = {¢,} consisting of charts with range in a fixed deck of cards
R" x T, such that each transition homeomorphisgp = ¢ o ¢, * satisfies the
following conditions:

(1) Forevery carcC € Dom(dag), ¢ap(C) is a card.
(2) The family of homeomorphismg,s (-, t)} is continuous ir.

If T is totally disconnected, we say thats asolenoid

An open (closedjransversaln £ is a subset of the form; 1 ({x} x T’) where
T’ is open (closed) irm. Note that an open (closed) transversal need not be
open (closed) it i.e. if £ is a manifold (viewed as a lamination with point
transversals) then every point is an open transversal. An open (climedjox
is a subset of the forg; (O x T’), whereO is open and”’ C T is open (closed).
A plaquein £ is a subset of the form; *(C) for C a card in the decR" x T. A
leafL C £ is a maximal continuation of overlapping plague<inNote that”
is the disjoint union of its leaves; we denote by the leaf containing the point
X. A lamination isweakly minimalf it has a dense leaf; it iminimalif all of its
leaves are dense. Atransversal which meets every leaf is caltedlete Unless
we say otherwise, all transversals in this paper will be complete and open. Two
laminationsL and £’ are said to bédomeomorphid there is a homeomorphism
f : £ — £’ mapping leaves homeomorphically onto leaves and transversals
homeomorphically onto transversals.

2.1 Suspensions

Let B be a manifold,F a topological space and : 7;B — Homeo(F) a
representation. Theuspensiowf p is the space

£, = Bx,F

defined by quotientingd x F by the diagonal action of1B, o - (X, t) =
(o - X, pe(t)). The suspension is a fiber bundle omwith model fiberF.
Conversely, ifE — B is a fiber bundle with model fibdf a compact manifold,
then any foliation ofE transverse to the fibers is a suspension.

If F = & is atopological group and : m3:B — & a homomorphism, then
the representatiop : ;B — Homeo(®) definedp, (g9) = g- ¢(y 1) gives
rise to what we call &-suspensiondenoted”,, a principle®-bundle overB.
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The action ofr; B used to definé , is properly discontinuous and leaf preserv-
ing, henceL, is alamination modeled on the deck of caRisF. If K = ker(p)
andL is a leaf, we havé&K < L. £, is minimal (weakly-minimal) if and only
if every (at least onep) (;r1 B) orbit is dense.

The restrictionp|, of the projectionp : £, — B to a leafL is a covering
map. Suppose that, is a Galois covering (we say thhtis Galois). The deck
group D, of p|_ has the property that

DL-x = LNk,

whereFy is the fiber ofp throughx. In particular, if we give(L N Fx) C Fx the
subspace topology, we have an inclusion

D, — Homeo(L N Fy).

A manifold B is a suspension witk a point ando : 7B — F trivial. The
following subsections discuss examples which are more interesting.

2.1.1 Inverse limit solenoids

LetC = {,00, My — M} be an inverse system of pointed manifolds and finite
Galois covering maps with initial objedt; denote by

M = M¢ := limM,

the limit. By definitonM [ My, so elements of are denote® = (X)),
wherex, € M,. The natural projection onto the base surfaceis deqmtdﬁ —
M. We may identify the universal coveld, with M and choose the universal
covering mapsx/l — M, to be compatlble with the syste@ By universality,
there exists a canonical map M —> M.

Let H, = (p)«(m1My) < w1 M. Associated ta is the inverse limit of deck
groups

ﬁ'lM = |(|I'_n 7T1M/Ha,

a Cantor group since the;M/H, are finite. By universality of inverse limits,
the projectionsr;M — 71 M/H, vield a canonical homomorphism 7;M —

1M with dense image. The closures of the image$,) are clopen, and give
a neighborhood basis about 1. L&tbe the associatet M-suspension.

Proposition 5. M is homeomorphic td,. In particular, M is a solenoid.

Proof. Let T: M x #1M — M be the map definetk, §) — §-i(X). Y is
invariant with respect to the diagonal actiongM, and descends to a homeo-
morphlsmM X, TIM — M. O
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2.1.2 Linear foliations of torii

LetV be ap-dimensional subspace Bf'. Denote by7y the foliation ofR" by
cosetsy + V. The imageFy of Fy in the torusT" = R"/Z" gives a foliation
of the latter by euclidean manifolds. Singeis transverse to the fibers of some
fibrationT" — TP, it is itself a suspension. This suspension structure may be
made explicit as follows. Lej = n — p, and displayV as the graph of g x p
matrix map,

R :RP - RY,

whose columns are independent. or RY, denotebyy its image inT9. Let
@R : ZP — T9 be the homomorphism defined

gr(N) = RN,

and denote by, the correspondin@9-suspension. Thefiy ~ £L,,. We note
that the closure of any leaf gfy is isomorphic to the closure of the image of
V in Fy, which is a torus of dimensiom with p < m < n. In particular, Fyv
consists of noncompact leaves if and onlynif> p.

2.1.3 Anosov foliations

Let © = H?/T be a hyperbolic surface and let I' — Homeo(S?) be defined
by extending the action df onH? to H? ~ S'. The suspension

fr:Hz ngl

is called amAnosov foliation Note thatFr is not anSt-suspension. Itis classical
that the underlying space @ is homeomorphic to the unit tangent bundiesT.

2.2 Quasisuspensions

Let £, = B x, F be a suspension over a manifotl We say that, is
Galoisif every leaf of £, is Galois. Throughout this sectiofi, will be a Galois
suspension. For each lelafpick a basepoink, lying over the basepoint dB.
This allows us to define an action @B on £, by

X — ¥y X,
where, forx contained in the lealf, y is the image ofy € 7;B in
m1B/(pL)«(mL) = D, = the deck group ofp|,.
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LetX C £, beany closed subsetwitnL discrete for each leaf, and which
is invariant with respect to the action ®f B (note that this does not depend on
the choice of basepoints ). Let Lo := £, \ X, which is a lamination mapping
to B. If £, is minimal, for anyx € X the orbitz,B - X is dense in the fibeFy
containingx, henceF, C X. It follows in this case thaX is the union of fibers
over a subseX C B and/y is a fiber bundle oveBy = B\ X. In general, we
shall define the fibers ofy overx € B to be the preimages of the m#p — B.

A lamination homeomorphisnh : £, — Lg is weakly fiber-preserving for
every fiberF, overB,

n
f(Fx) = U Exi ’ (1)
i=1

whereEy denotes a subset of the fibEy. The collectionrHomeo,,_i,(Lo) of
weakly fiber-preserving homeomorphisms is clearly a group. Since the fibers are
disjoint, eachE,, occurring in (1) must be open iR . In particular, if the fibers
are connected, a weakly fiber-preserving homeomorphism is fiber-preserving.
Thus, the concept of a weakly fiber-preserving homeomorphism differs from
that of a fiber-preserving homeomorphism when the fibers are disconreegted
when Ly is a solenoid.

Definition 1. Let £, be as above and suppost < Homeo, _fn(Lo) is a
subgroup acting properly discontinuously dg. The quotient

Q = H\Lo

is a lamination called ajuasisuspensior{over B).

We consider now two examples.

2.2.1 The Reeb foliation

Let R, = [0, c0), consider the trivial suspensidh x R, overC, and denote
(CxRY* = C xRy \{(0,0}. (Thus we are takingd = {(0,0)}.) Fix
(n, A) € (Cx R*with |u|, 2 > 1, © # A. Then multiplication by(u, 1)

in (C x Ry)* is a fiber-preserving lamination homeomorphism giving rise to an
action byZ. The resulting quasisuspension

Freeb = Z\(C x Ry)*

has underlying space a solid torus, and is calledRbeb foliation
Let P : (C x Ry)* — Freeb denote the projection map. The leavesfagen
are of the form:
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(1) Ly = P(C x {t) = C, fort > 0.
) Lo=PC*x{0h=C*/ < u >.
The fiber tranversals gfreen are of the form:
Q) T, =Pz} x Ry) =Ry, z> 0. Every leaf of freep intersectsl;.
(2) To = P({0} x (0, 00)) &~ S'. Every leaf excepl g intersectsTy.

There is an action df. on Freen induced by the mafe, t) — (u"z, t). For
X € Freeh, We write this actiorx — n - x. For everyt we haven - L; = L; and
forall z, n - T, = T,. Note that this action is the identity drp.

2.2.2 The Sullivan solenoid

The following important example comes from holomorphic dynamics. Let
U,V c C be regions conformal to the unit diswjth U c V. Recall that
apolynomial-like maps a proper conformal map : U — V. The conjugacy
class off is uniquely determined by a paip, of), wherep is a complex poly-
nomial of degreel andaf : St — S!is a smooth, expanding map of degoke
[3]. The space

’s*:nm(shishiguim) @)

is an inverse limit solenoid which may be identified with fﬁ@xsuspension

L, =R x, Zd, WhereZd is the group ofd-adic integers and: Z — % is the

canonical inclusion. Every leaf &is homeomorphic t@R. af defines a self

map of the inverse system in (2), inducing a homeomorpl@ifmg - S.
Consider the suspension

ﬁ = HZ XlZd

obtained by extending fi? de the identification used to defing e.g. (z, ) ~
(y™(2), i—m) form e Z, wherey(z) = z+ 1. The base of the suspensﬂﬁn
is the punctured hyperbolic dise* = (y)\H?, and its ideal boundary may be
identified withS.

The map f extends to aweakly fiber-preserving homeomorphi%niﬁ) —-D
which acts properly discontinuously @& The quotient

D¢ = (f)\D
is a quasisuspension called tBellivan solenoid13], [6].
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2.3 Double coset foliations

Let® be a Lie group$ a closed Lie subgroup; < & a discrete subgroup. The
foliation of (% by right cosets>g descends to a foliatioff, - of &/ T, called a
double coset foliation

For example, it is easy to see that if we tafe= R", $H = V a p-dimensional
subspace an@ = Z", then the resulting double coset foliation is the linear
foliation ‘Fy of the torusT".

Examples of double coset foliations which are not suspensions may be con-
structed as follows. Ler be a co-finite volume Fuchsian group. Denote by
¥ = H?/T and by T X the unit tangent bundle of. Recall that every
v € TIH? determines three oriented, parametrized curves: a geogdesn
two horocycled),, §_ tangent to, respectively, (co) andy (—oc0). By paral-
lel translatingv along these curves, we obtain three flows giiif. The three
flows arel'-invariant, and define flows on!T=. The corresponding foliations
are denoteéeodr, Hor: andHor.

Now let® = SL(2, R) and take to be one of the 1-parameter subgroups
H* = {Af},H™ = (A"} andG = {B,}, where

11 _ (10 g2 0
ve(oa) A= (7 7) men=(G )

forr € R. Then it is classical that the foliationgs r and Fy=+  are homeo-
morphic toGeodr andHor?, respectively. Note also that the Anosov foliation
Fr is homeomorphic to the suf@eodr & Hor}L.

2.4 Locally-free lie group actions

Let B be a Lie group of dimensiok, M" ann-manifold,n > k, X a subspace
of M". A continuous representatiah : 8 — Homeo(X) is calledlocally
freeif for all x € X, the isotropy subgroup, < 3 is discrete. If for any pair
X,y € X, theirB-orbits are either disjoint or coincide, thehihas the structure
of a laminationLy whose leaves are thg-orbits.

Once again, the linear foliatiofy fits into this framework: tak& = L, =the
leaf containing the identityM" = X = T" andé the map induced by addition
in T".

Here is an example which is neither a suspension nor a double coséfl"Let
be a Riemannian manifold. Fix a tangent veatar Ty M". Letl ¢ M" be the
complete geodesic determined byX its closure (itself a union of geodesics).
Then there is a locally free action &f given by geodesic flow alony, and X
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is a lamination whet is simple. WhenrM" = X is a hyperbolic surface ard
is simple, we obtain a geodesic laminationdnn the sense of [14], a solenoid
since its transversals are totally-disconnected.

3 The fundamental germ

Let £ be any of the laminations considered in the previous section ahdder’
be a fixed leaf. If£ = H\ Ly is a quasisuspension ley C Ly be a leaf lying
overL. Thediophantine groups, of £ with respect td_ is

» m1Bif £is a suspension.

» The group generated bleN, H|_~= {th € H| h(Lg) = Lo} andm;L
(viewed as groups acting dd~ L) if £ is a quasisuspension.

* The group§ if £is a double coset.
* The group% if £ is alocally free Lie group action.

Note that in every case; L < G_.

Let® € £ andT a transversal containing. Denote byT, c L the set of
points lying overT N L. ThenT is said to be aliophantine transversatf for
every leafL and% € T, anyy € T, may be written in the forny = g - %
for someg € G,.. ForX ¢ :I:L fixed, we call{g,} ¢ G_ a G_-diophantine
approximationof X alongT based ak if {g, - X} projects inL to a sequence
converging taX in T. The image of all sucls, -diophantine approximations in
*G_ is denoted

DX, X, T),

and whenX projects tox, we write*D(X, T). If there are nd5_-diophantine
approximations ok alongT based ak, we define'D(X, X, T) = 0. Note that
if X =y .Xfory e mL < G| then

DX, X, T)-y = *DX X, T). ©)

Let *D(X, X, T)~* consist of the set of inverseég ! of classes belonging to
*D(X, X, T).

Definition 2. Let£, L, XandT be as above and lete LNT. Thefundamental
germ of £ based ak alongx andT is

[71.(L, X, %, T) = *DX, X, T)-*DX, X, T)?!

whereX is any point inC lying overx.
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By (3), [711(L, X, X, T) does not depend on the choicesobverx. When
X =X € L, we write[7]:(L, X, T). Observe in this case th@tr],(L, X, T)
contains a subgroup isomorphic*te, (L, X).

We now describe a groupoid structure pn];(£, X, X, T) . To do this, we
define a unit space on which it acts: 1BX(X, X, T) be the image ofD(X, X, T)
in *G_, for any X over x. We say that'u € [7]:(£, x, X, T) is defined on
‘g e DX, X, T)if *u-*g € *D(X, X, T). Here we are using the left action’d®
on*G_. Having defined the domain and range of elemenfsrdf (£, X, X, T),
it is easy to see thdtr],(L, X, X, T) is a groupoid, as every element has an
inverse by construction. This groupoid structure does not depend on the choice
of X overx.

4 The fundamental germ of a suspension

Inthe case of asuspensigp = Exp F, anyfiberoverthe bad®is a diophantine
transversal. Conversely, any diophantine transversal is an open subset of a fiber
transversal. It follows that any two diophantine transver$alb’ through points

X, X define the same set &, -diophantine approximations. Thus

Proposition 6. If T and T’ are diophantine transversals containinxgand X
then
[[n]ll(ﬁp’ X’ )2’ T) = ﬂ:n]ll(£pv X’ ),z’ T,)

Accordingly for suspensions we drop mention of the transversal and write
[71:(£, X, X). We note that since the diophantine grdap = 1B is discrete,
*GL = *G_ and the unit space for the groupoid structure is jlXiX, X).
4.1 Manifolds

A manifold is a lamination with just one leaf, which can be viewed as the sus-
pension of the trivial representation of its fundamental group on a point. We
have immediately

Proposition 7. If M is a manifold then

[71:(M,x) = "D(X) = "m(M,x).

4.2 &-suspensions

Letg : 1B — & be a homomorphisny, the correspondings-suspension.
Let {U;} be a neighborhood basis about 1$mand define a collection of nested
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sets{G;} by G; = ¢~1(U;). Then the ultrascop€) G; is a subgroup ofr;B.
In fact, if *¢ : *7:B — *@ is the nonstandard version @f then

G = "o ' Go.

Theorem 1. For any pair x, X belonging to a diophantine transversal,
[71:1(L,, X, X) is a group isomorphic to

* () G; if X belongs to the closure of the leaf containixg

» 0 otherwise.

Proof. Suppose thak belongs to the closure of the leaf containin@gnd let
*g € *D(X, X). Then any other elemeny € *D(X, X) may be written in the
form*g - *h where*h € (©) G;. It follows immediately that

[, x, % = *g-((DGi) "¢ = (DG

Because the unit spac®(X, X) is invariant under left-multiplication by any
element of the fundamental germ, it follows tifat], (£,, X, X) is a group, its

composition law coinciding with multiplication i¢) G;. If X does not belong
the the closure of the leaf containirgthen*D (X, X) = 0 by definition. O

For minimal®-suspensions we can thus reduce our notatidmra(£,).

Denote by*m1 By, the subgroup'e~1(*G,). The following theorem can
be used to display many familiar topological groups as algebraic quotients of
nonstandard versions of discrete groups.

Theorem 2. If ¢ has dense image, th¢n ],(L,) is anormal subgroup dtr; Byin
with
*11Biin /[ ]1(L,) = 6.

Proof. Since ¢ has dense image, the composition of homomorphisms
*11Bin = *Gsn — & — where the first arrow i8¢ — is surjective with ker-
nel*op=1(*G.) = [ 11(Ly). g

4.3 Inverse limit solenoids

Let M be an inverse limit solenoid over the badeand let{H; } be a sequence of
subgroups ofr; M cofinal in the collection of subgroups in the defining inverse
system. By the discussion in §2.1.1, the collection of closyg$ c 7, M
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defines a neighborhood basis about 1. Siktés a#; M-suspension in which
¢ is dense, it follows from Theorem 1 thipt 1, (M, x, X) is a group isomorphic
to @ H;.

For example, consider a solen@dver St Here, eact; is an ideal inZ,
hence[[n]]1§ is an ideal in the ringZ = nonstandard.. WhenH; = (d') for
d € Z fixed, we denote the resulting geri#. (d) and whenH; = (i) we write
*Z¢. Being uncountable, these ideals are not principaf/Zainlike Z, is not a
PID. By Theorem 2, we haveZ,/*Z: = Z and*Z/*Z(d) = Zq

4.4 Linear foliations of torii and classical diophantine approximation

Let Fv be the linear foliation off" associated to the subspa¢ec R". Asin
§2.1.2, we regar¥ as the graph of thg x p matrixR. Letyg : ZP — T9 be
the homomorphism used to defifig . Let {U;} be a neighborhood basis Tf
about0. We define a nested sgb;} C ZP by G; = ¢5'(U;). Denote

Zf = (DG = "gg'C'TH,
a subgroup of ZP. If p=q =1andR =r € R, we write insteadZ,. Since
Fv is aT9-foliation, we have by Theorem 1 tht ], (Fv, X, X) = *Zg when
X belongs to the closure of the leaf containingand is 0 otherwise. Apply-
ing Theorem 2 we have that every finite dimensional tarfiss algebraically
isomorphic to a quotient ofZ.

Theorem 3. *Zg is an ideal in*ZP if and only ifR € Mg x(Q).

Proof. Suppose thaR € Mg ,(Q) and leta, = the |.c.d. of the entries af; =
thekth column ofR. Write

a= ()@ - & @)

where(ay) is the ideal generated kag. Note that'a C *Z§. On the other hand,
rationality of the entries of thg, implies that a sequende,} C ZP defines an
element of*ZQ if and only if there existsX e 11 such thatpr(n,) = 0 for all
a € X. Thisis equivalent ta, € a for all « € X. Thus*Zp *a which is an
ideal in*ZP.

Suppose now that = ry ¢ Q% for somek, 1 < k < p. Let{n,} represent an
element'n e *Zg, and denote byn,} the sequence d&-th coordinates of the
n,. Notethatn,r # 0 for all « sincer is not rational. In fact, for any > 0 we
may find a sequence of integdrs,} suchthatm,n, is notwithin § of 0. Let
m, € ZP be the vector whoskth coordinate isn, and whose other coordinates
are 0. Then the sequengm, - n,} does not converge with respect{iG;} i.e.

m-*n ¢ *Z, so*Z§ is not an ideal. O
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Theorem 3 draws another sharp distinction betw&and*Z: every subgroup
of the former is an ideal, while this is false for the latter.

We spend the rest of this section studyifig, in and of itself a complicated and
intriguing object. Let us begin with the following alternate descriptithﬁ:

*Z§ = {*ne*ZP| 3*n* € *Z% such thaR(*n) — *n*- € *RY}.  (4)
Given*n € *Zg, the corresponding element* e *Z4 is called thedual of *n;
it is uniquely determined. From (4), it is clear that the set

(ZR)* = {*n' | *n"is the dual of'n € *Z{}

is a subgroup ofZ9, called thedual of *Z§. Note that wherR € Mq p(R \ Q)
has a left-invers&, we have(*Z8)* = *Z..
Similarly, the set

Ry, = {*e € "RY| 3'n € *Zf such thaR(*n) — *n* = *e}

is a subgroup ofR, called thegroup of ratesof R.
The following proposition is an immediate consequence of (4).

Proposition 8. The mapgn — *n* and*n — *e define isomorphisms

‘Zp = (ZRHT  and  *Z§ = PR

Note 1 (A.Verjovsky). Using formulation (4) of Zp, it follows that every triple
(*n, *nJ_’ *6)

represents a diophantine approximatiorRof Thus we may regarﬂzg as the
group of diophantine approximatiorns R.

For example, whep = g = 1 andr € R\ Q, *n and*n' are equivalence
classes of sequencps,} and{y,} C Z, and*e an equivalence class of sequence
{eo) C R, e, — 0, such that

L]

Xa

€y

Xa

Conversely, every diophantine approximation afefines uniquely a triple

(*n’ *nJ_’ *6).
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Recall that two irrational numberss € R \ Q areequivalentf there exists

a b
A = (c d)eSL(Z,Z)

such thas = A(r) = (ar + b)/(cr + d).

Proposition 9. If r ands are equivalent irrational numbers, théi, = *Zs.
Proof. Given*n e *Z,, observe thatcr + d)*n ~ c*nt 4+ d*n € *Z. Write
*m = c*nt + d*n. Then*m e *Zs, since

s'm ~ (ar +b)*n ~ a*nt +b*n e *Z.

The associatiofin — *m defines an injective homomorphisgn: *Z, — *Zs,
with inverse definedy ~1(*m) ~ (—cs+ a)*m. O

Note 2. Two irrational numbers, s are calledvirtually equivalentif there ex-
ists A € SL(2,Q) such thatA(r) = s. In this case, there exists a pair of
monomorphisms

Y1 ¥l — *Zs and vy : *Zg — *Zy,
defined as in Proposition 9. In other wortl&, and*Zs arevirtually isomorphic
These maps are mutually inverse to each other if and oflydfSL(2, 7).
We are led to make the following conjecture.

~

Conjecture 1. If *Z, = *Zs for irrational numbersr, s, thenr and s are
equivalent.

A verified Conjecture 1 would augur a group theoretic approach to diophantine
approximation.

4.5 Anosov foliations and hyperbolic diophantine approximation

Let I be a discrete subgroup &SL(2, R) with no elliptics, = = I'\H? the
corresponding Riemann surface. letI’ — Homeo(S?) be the representation

of I' on S ~ 3H? and denote as in § 2.1.3 the associated Anosov foliation by
Fr. Fixt, £ € St, consider a neighborhood basls; (¢£)} aboutz, and define

the nested s€G; (t; £)} C T by

Gi(t;§) = [AeTl | palt) € Ui(5)}.
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Theorem 4. LetX € Fr be contained in a leaf covered B/ x {£} and letx be
contained in a leaf covered by ¥ x {t}. Then

[rL(F.x. % = ()(Git:&) Git:&)™

if X is contained in the closure of the leaf containingand isO otherwise.
Proof. Immediate from the definition dfr ;. O

Classically [11], giver§ e St in the limit set ofl" andt e St, aI'-hyperbolic
diophantine approximationf & based at is a sequencé¢A,} C I' such that
|€ — A, ()] — 0, where| - | is the norm induced by the inclusig@t c R?.

It follows from our definitions thatD(X, X) consists precisely of equivalence
classes of"-hyperbolic diophantine approximations.

5 The fundamental germ of a quasisuspension

Let £, be a Galois suspensiaoN, C £, amBinvariant closed set;o = £, \ X.

LetH < Homeo,,_sih(Lo) be a subgroup acting properly discontinuously and let
9 = H\ Ly be the resulting quasisuspension. See §2.2. We have the following
analogue of Proposition 6:

Proposition 10. If T and T’ are diophantine transversals containingand
X then

[n]ll(Q,’ X, )z’ T) = [n]ll(Q’ X, )}Z’ T/)

Proof. The transversal§ and T’ lift to 71B transversals iny, which by
Proposition 6 yield equivalent sets of B-diophantine approximations. This
implies that'D(X, X, T) = *D(X, X, T). O

Accordingly, we drop mention of and write[7]4(2, X, X).

Note 3. Note that*wy (L) is a subgroup of 7 ],(2, X, X). In addition, there is a
monomorphism
[[ﬂ]]l(£pa X, )}Z) — |[7T]]1('Qs X, )A(),

an isomorphism iH, = {1} andX = @.

5.1 The Reeb foliation

Let [Z] be the groupoid whose morphisms are elementZotvith the compo-
sition*m o *n := *m + *n defined if and only ifm + *n = 0 modZ. Recall
thatLg is the torus leaf.
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Theorem 5. For any pairx, X € Freep COntained in a diophantine transversal
withx € L,

72 ifx=%elo=L
[ 11(Freeb, X, X) = [Z] ifxelo#L

0 otherwise

Proof. Suppose firstthat = R € L. Then[7 11(Freeb, X, X) = *m1Lo = *Z2,
Now if X € L, X € Lo # L are contained in a diophantine transversal, then a
sequencén,} C Z is a diophantine approximation if and only if it is infinite.
Thus*D(X, X) = *Ze, := *Z \ *Zsn, the infinite nonstandard integers. Then as
a set

[[n]]l(fReeb’ X, )A() = >kZoo - *Zoo = *Z.

The domain of an elemerih consists of thoséa € *Z, for which*n + *a €
*Zoso- Itis then clear that the law of composition is that of the groudd@d. If

X # X andL = Lo, there is no diophantine transversal containing the two points
hence the fundamental germ is OXIE L’ # Lo, there are no accumulations of

L on L’ so the fundamental germis O. O

Intuitively, whenX € Lo # L, [7]1(FRreeb, X, X) records the approxima-
tion by L of the circumferential cycle c L, throughX. On the other hand,
[711(Freeb, X, X) does not predict the meridian cyate C Lo. Insteadc is
approximated by a sequence of inessential loofds that move off to infinity,
and such sequences are not the stuffrof;.

5.2 The Sullivan solenoid
Consider the Baumslag-Solitar group
Gps = Gps(d) = (f,x : fxf~t=xd)
Observe by induction that
x4 f = x99 and fIxd = xdf-l (5)
forall« > 0 andr € Z. Define a nested set about 1 by
G = {fmxfd‘ ) m, r ez}. (6)
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Theorem 6. O(G; - G 1) is a group.

Proof. To see tha()(G; - G; %) is a group, it suffices to check that - G ' is a

group for alli. Write a generic elemeigf € G; -Gi‘l inthe formg = f'x™¥ fm

forl, m,r € Z. Thenanelememh,g,h € G -Gi‘l may be written (using (5))
]clx(r+sd””)di fM ifm>0

gh—l _ fIeri fmxsdi fno—
1:I+mx(rdm+s)di f" ifm<0 ’

wherel, m, n,r, s € Z. It follows thatgh™ € G; - Gi‘l. O

Note 4. The ultrascop&-) G; is not even a groupoid as elements do not have
inverses. Indeed, consider the sequeiage = { f "™x%}, wherem, > & > 0,

a =1,2,.... Note that{g,} defines an element @) G;. Using (5), we may
write the inverse sequence

(gl = (x ™) = {foxtEmee)

Sincem, > «, we cannot use the defining relation®s to move the remaining
f M= to the left of thex-term. It follows that{g,*} does not define an element
of (© Gi, so the latter does not have the structure of a groupoid.

Let [Ggs] be the groupoid defined by the action@(G; - G;™*) on (© G;.
Thus, we define the domain 6§ € (O(G; - Gi‘l) to be the set ofa € (O G;
for which*g - *a € () Gj, where- is multiplication in*Ggs.

Theorem 7. For all x, X € D¢ withx € L,
[Gges] if L is an annulus

*Ze(d) if L is adisk

[7].(D¢, x, R) =

Proof. First supposé. is an annulus and that= X. The action otr,D* = Z
onD is generated byz, A) — (z,h + 1) where(z n) e H? x Zd Then

if y is the generator ofr,D*, we havefy f~1 = y 9. It follows that the
diophantine group is isomorphic @gs. The set of diophantine approximations
*D(X, X) is equal to(>) G;, whereG; is the nested set (6). The result now
follows by definition of[z];. If X # X, let Xq, X be lifts toD contained in

a diophantine transversal and lgt®} be a diophantine approximation &§
based atx,. Then*D(X,X) = (O(G; - ¥%) and therefore[n]ll(ﬁf,x X) is
once agaln the groupo[tGBS]l Now suppose thdt is a disk: then by Note 3,
|[7r]]1(}D>f, X, X) = |[n]|1(ﬂ)> Xo, Xo) Where(Xg, Xg) covers(x, X). By the results
of § 4.3 we havqn]ll(]D) Xo, Xo) = *Z:(d). ([
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The example ob; illustrates the advantage of the “nonabelian Grothendieck
group” type construction used in Definition 2: by Note 4, the naive choice
“[=1. = *D” would not even have produced a groupoid.

We now describe the groupoid structure[@gs]. Given*n € *Z andy €
Ggs, lety™ e *Ggs denote the sequence class gt }, where{n,} represents
*n. For*g € [Ggs], we may write

*g — .':*I)(*rd*LJ f*m

where*l, *m, *r € *Z and*u € *N,, = the infinite nonstandard naturals. We
assume here thdtdoes not dividér, so that the exponefiti is optimal. Define
theleft and right degreesf *g by

Ideg (*g) =*1+*u and rdeg (*g) = *u—*m.

We note that the left and right degrees are invariant with respect to moving factors
of f to the left or right of thex term using (5). In fact, we can always write

*g = fldeg ("g)y*r §—rdeg (“g)
For*a= fx™sd"’ ¢ (O Gj, define thedegreeas
deg (fa) = *n.
By (5) and the definition of-) G; it follows that
Dom(*g) = {*al rdeg (*g) — deg (*a) € "Ny }.
Indeed we have

*g.*a = f(deg (g—rdeg (‘g)+deg (*a)) y (rdres CO-dea (") xsgy) 7)

if and only ifrdeg (*g) — deg (*a) > 0, and in this event, the right hand side of
(7) belongs ta») G; if and only ifrdeg (*g) — deg (*a) is infinite.
Now let*h be another element ¢fcgs].

Theorem 8. The compositiorih o *g is defined if and only if
rdeg (*h) =Ideg (fg) modZ, (8)

and in this event, is equal td - *g.
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Proof. Assume condition (8) and wrie= rdeg (*h) —Ideg (*g) € Z. Let*a
be in the domain ofg. Then by (7);*g - *ais in the domain ofh if and only if

rdeg (*h) — (Ideg (*g) —rdeg (*g) +deg(*a)) = rdeg (*g) —deg(*a)+c

belongs to'N,,, which is true sincéa € Dom(*g). On the other hand, suppose
that*b = fdeaCx*sd" c Dom(*h). Let*a = fde9Cax’sd’ ywhere

deg (“a) = deg (*b) —Ideg (“g) + rdeg (“g)
and wher€e v is defined according to the following cases:
o If *v' <ldeg (*g) — deg (*b), take

v =*y and *s=*s — *rdldeg (*g)—deg(*b)—*v/'

o If *v' > Ideg (*g) — deg (*b), take

*v =Ideg (*g) —deg(*b) and *s=*sd’V-(deg CO—deg(b) _

It follows that*a is in the domain of g and*g - *a = *b. ThusRan(*g) =
Dom(*h), so that the composition is defined. One can easily check that (8)
implies thatDom(*h - *g) = Dom(*g), so that this composition coincides with
*h - *g as a morphism. Now assume that condition (8) does not hold so that
*c =rdeg (*h) —ldeg (*g) € *Z. If *¢ < 0, choos€&a in the domain of'g
such that

rdeg (*g) — deg (*a) = —*c.

Then*g- *ais not in the domain ofh. Likewise, if*c > 0, pick*b € Dom(*h)
so thatrdeg (*h) — deg (*b) = *c. Then*bis in the domain ofh but not in the
range of*g. O

Note 5. Let*Zl?ux be the groupoid whose morphisms consist of péing, *n)
*72 and an identity 1, and where the compositidm’, *n’) o (*m, *n) is de-
fined when*m — *n" = ¢ € Z, equal to(*m’, *n — ¢) or (*m’ — ¢, *n) de-
pending on whethec is positive or negative. Then the associatign —
(Ideg (*g),rdeg (*g)) if *g # 1 and 1+ 1 defines a surjective groupoid

homomorphisniGgs] — *ZJ?UX.
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6 The fundamental germ of a double coset foliation

Let® be a Lie group$) < & a closed Lie subgroup; < & a discrete subgroup
and Fy r the associated double coset foliation. The situation is considerably
more subtle here due to the fact that the diophantine group is no longer discrete.
Thus two choices of diophantine transverEalT, throughx, X yield distinct sets

of diophantine approximations, in contrast with the case of a (qQuasi)suspension.
Note on the other hand thaterytransversal is diophantine, since the univer-
sal covers of the leaves are homogeneous with respect to the left action of the
diophantine groug. In fact, if x; andx; are contained in the same leaf, then

a - X, = X, for somea € $. This yields a bijection of diophantine sets

*D(X1, X, T1) — *D(X2, X, Tp)

defined*g; — *go if *g1 = g2 -&ain 379 That is, the bijection is given by
the equality’D(Xy, X, T1) = *D(Xo, X, T,) - &. However, it is not clear that the
following prescription for a map of fundamental germs:

*Up > *up  iff fup =*gi*hit fu; =*gp*h,t and
‘01="02-a *hy="hy-a

(9)

is well-defined since there might be, say, another representétipn=
*g,(*h))~* which leads to a different assignment. Even if (9) were well-defined,
there is no reason to expect that it should respect the groupoid structure. When
*$ is a group, one can say more:

Lemma 1. If '35~is a group therfu o *v = *w in [7]1.(Fe.r. X, X, T) implies
‘U-*v="win*H.

Proof. This follows immediately since the groupoid structure of the fundamental
germ is defined in terms of left multiplication on the unit spaBéx, X, T). O

Proposition 11. If 55 is a group andT; and T, are diophantine transver-
sals throughxy, X and x,, X, respectively, wherg,, x, belong to the same leaf
L, then

[711(For, X1, X, To) = [7]i(Fer, X2, X, T2).

Proof. Itis clear now that the bijection (9) is well-defined: in fact, sinéds a
group, we haveu; = *u,. From this it follows thaDom(*u;) = Dom(*uy) - &,
and that the bijection (9) defines a groupoid isomorphism. O
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Let us return to the case of the linear foliatighy,. Viewed as a double
coset foliation, it is easy to see that if we choose transversals that are fibers, the
fundamental germ so obtained is identical to that obtained using the suspension
definition in 84.4. On the other hand, the definitioref]; available for double
cosets allows us to use nonfiber transversals:$As *RP is indeed a group, it
follows from Proposition 11 that these different possible choices of transversal
will yield a fundamental germ that agrees up to isomorphism with that defined
in 84.4. _

We shall assume from this moment on th@tis a group. We will then not
mention the base pointand the transversal and write[ ], (Fe.r, L, X) where
L is the leaf along which diophantine approximations are taking placecIt
we write simply[z ], (Fe.r, L).

We now give a “diophantine” description 06D(X, X, T), similar in spirit to
that of *ZF appearing in (4). Denote by : § — $ the universal cover a.
Suppose that is covered by a cosgtg and§ € & is an element covering.

A subsetT 9 c & is called docal sectiorat § for the quotient ma — H\G

if 79 maps homeomorphically onto an open subset contaifligg We may
assume without loss of generality that the transvershiroughx lifts to a local
section7 9 throughg. As our interest is in sequences which converg§ o

79, we may assume also that = §- 7 for some local sectiod” about 1. Let

*T. C *©&, denote the set of infinitesimals which are represented by sequences
in7T.

Now let*h be a diophantine approximation ®based ak alongT, which is
characterized by the property that(*h) - g} lies ing - *7. - *T". This gives the
following diophantine description dD(X, X, T):

DX, %, T) = {*he*H|3*y €T, *e € *T. such that 10)
gt pChy-g- Ty =€},

The elementh* := *y associated toh in (10) is called thelualof *h. When
=g, we Iet*§>@J := *D(X, T) denote the set of diophantine approximations
and Iet”‘g)gL denote the set of duals. Thusdf denotes the conjugation map
ar g lag,

B = [he® | oypchn e 7T} (11)
In general, whetheg = § or not, it follows that
[Th(For. L% C ['0eD | og(pC®) € T T T},
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Note 6. Sincep1(e) = 719, we have'r1H < [r11(For, L, X).

One can understand the descriptiorf"éfg appearing in (11) as a nonlinear
version of (4). Infact, if$ is alinear group op x p matrices andg € &, thenone
can think of*Z§ as defined in (4) as the set of linear diophantine approximations
of g (approximations ofy by pairs of vectors with respect to linear algebra),
whereas g can be thought of as a set of nonlinear diophantine approximations
of g (approximations oy by pairs of matrices with respect to matrix algebra).

We now consider the horocyclic and geodesic flows on the unit tanget bundle
of a riemannian surface, which are, as is widely appreciated, deep mathematical
objects. It should come as no suprise that this deepness is reflected in their
fundamental germs, which present the most complex and intractable diophantine
algebra we have encountered thus far. In the remainder of this section, we will
attempt to give the reader a feel for the complexity of these fundamental germs
by walking through a sample calculation.

We restrict to the cas® = SL(2,R) andI” = SL(2,7Z). See 8§ 2.3 for
the relevant notation. Consider first the case of the (positive) horocyclic flow
Hor = Horg, , ), thatis, = H = H™. If D is the subgroup of matrices of

the form
es/? 0
( t es? )

s,t € R, thenD defines a local section about 1 so we take= D. Finally,
sinceH = (R, +), we shall simplify notation by identifying with the matrix
A, and write*Ry = *Hg for the set of diophantine approximations.

Let us consider the relatively simple choice

(7 4)
The right coset of) is
Hg = {(r+1\/§ ﬁ\r/g—l) 'reR}.

SinceHg does not define a cycle IBL(2, R)/SL(2, Z) it must be dense by a
theorem of Hedlund [9], so we can expect frgra nontrivial set of diophantine
approximations. The conjugate bif by g is

_ 1+V2r 2
og(H) = {( —r 1—ﬁr>
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In order to characterize the elements*®f;, we shall need the following
generalization ofZ,. Let O be the ring of integers of a number field. For
*r € *R, define

O = {*n € *0 | 3*nt € *O such thatr - *n — *n* € *R.}.
Clearly*Qx, is a subgroup ofQ.
Theorem 9. Let O be the ring of integers i@(v/2). Then*r € *Ry if and only

*a *b . )
e *d ) € SL(2, *7Z) for which

o J/2*a + 2*c, V/2*b+ 2*d € *Os, and (v/2*a + 2*c)t =1 —*a,
(V2'b + 2*d)L = —*h,

« *c,*d € *Z ; and *¢t =1—*a, *d* =1—*b.

o *b = —(v/2*b+2*d)*r and (*a+ (v/2*a+2*c)*r)(*d — (*b+~/2*d)*r)
= 1

if there exists'y = (

Proof. From (11),"r € Ry if and only if there exist$y € *I" and*e, *6 € *R.
with

( *a(l4 +/2%1) + 25c*r *b(1+ /2%r) + 2¢d*r ) <1~|—*e 0 )
_rafr 4 re(l— V2 —brr4rdl—v2ry ) \ 8 @d+re )’
The first and third items follow immediately. The second item follows upon

noting that we may eliminate by multiplying the second row equations k{2
and adding them to the first row equations. O

Theorem 9 illustrates why it is so difficult to say anything about the algebraic
structure ofRq or [ ], (Hor, L). In order to determine whether the stimi-*s
defines an element 6Ry, we must find a way to “compose” the corresponding
duals*rt, *st e }RQL to obtain one for their sum, and it is not even clear what
this operation on matrices should be. One could reverse the logic and ask if the
product’r+ - *s* defines an element dﬁé, however this seems just as hopeless
since the diophantine conditions spelled out in the statement of Theorem 9 are
not stable with respect to matrix multiplication.

As for the geodesic flow, we leave it to the reader to formulate the appropriate
analogue of Theorem&.g. using the local sectiofi” for which

o 1%

The result would be a set of diophantine conditions at least as daunting as that
obtained for the horocyclic flow.

8,78 € *Re} .

Bull Braz Math Soc, Vol. 37, N. 1, 2006



THE ALGEBRAIC THEORY OF THE FUNDAMENTAL GERM 77

7 The fundamental germ of a locally free lie group action

The discussion here is very similar to that for a double coset, so we will be
brief. LetB be a Lie group of dimensiok, M" ann-manifold,n > k, X C

M". Letd : B — Homeo(X) be a locally-free representation whose orbits
either coincide or are disjoint and lgt; be the associated lamination oh

Any diophantine transversal throughx may be obtained as the intersection of
Ly with a submanifoldT of M" of dimensionn — k such thatx, X € T and

T N(@EB) - x) is discrete irg (V) - x. As in the case of a double coset foliation,
when*$5 is group,

(1) Groupoid multiplication in the fundamental germ corresponds to multipli-
cation in**B.

(2) If T1, T, are transversals through, X andx,, X wherexz, X, belong to
the same leak then

|[7T]Il(£%a X1, )?7 Tl) = ﬂ:n]ll('ﬁgbv X2, )}za T2)

Accordingly we shorten tdz],(Lg, L, X). We note also that when the lin-
ear foliation_fy is viewed as arising from a locally free Lie group action, the
fundamental germ so obtained agrees with that of § 4.4.

Theorem 10.LetX = I'\H? be a compact hyperbolic surfadeC * a geodesic
lamination,X € [ andl c [ aleaf. Then

[z1.(,1,%X) = [7].(Geodr, L, 9)

wherelL is a leaf coverind and v is a tangent vector tbat X.

Proof. This follows immediately from the fact that any diophantine approxi-
mation ofv alongL canonically defines a diophantine approximatiot along
| andvice verca O

8 Functoriality

We begin by recalling the notion of morphism in the category of laminations.
A lamination mapF : £ — £’ is a map satisfying the following conditions:

(1) Foreveryleal c £, there exists a ledf’ ¢ £ with F(L) c L'.

(2) For allx € L, there exist open transversdlss x, T’ > F(x), such that
F(T)cCT.
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The projectionP : £ — B of a suspension onto its base is a lamination map.
On the other hand, leF be a foliation,M the underlying manifold. Then the
canonical inclusiom : F — M is a map which maps leaves into the unique leaf
M, yet is not a lamination map since no open transversgl & mapped into
a point, an open transversal bf.

Let

F: (L, x,X)— (L, X,X)

be a lamination map. We say thgtis diophantineif there exist diophantine
transversalsl > x,X andT’ > X/, X such thatF(T) c T’. Note that this
condition is always satisfied if either or £’ are laminations defined by double
cosets or locally free Lie group actions. DenotdlgndL’ the leaves containing
x, x’and letF : L — L’ be the lift of the restrictior|_. LetT c L, T' c L' be
the pre-images of NL, T'NL’. Then forF diophantine there is a well-defined
map

DF : "D(X, X, T) — DX, X', T')

of diophantine approximations. If the assigment
*U = *g X *hfl — *DF(*g) . (*DF(*h))71
leads to a well-defined map
[F1: [7]u(L, X, %) — [7]a (L, X, %),

we say thaf is germ

Proposition 12. Let £ = B x, F be a suspension witk, X lying overx, € B.
Then the projectiol§ : (£, X, X) — (B, Xo) is germ, and the induced mdg]
is a groupoid monomorphism.

Proof. Itis clear from the definitions th&dDé is the inclusion
DX, %) C *mi(B, x).

In particular, it follows that[¢] is well-defined. Since the product in
[71.(L, X, L) is induced by multiplication in‘z1(B, x), [£] is a groupoid
homomorphism as well. O

Unfortunately, we cannot assert in general that the pfrdjinduced by a germ
lamination magF defines a groupoid homomorphism. We now introduce a class
of lamination maps which is sufficiently well-behaved so as to allow us to say
more.
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Let F be a foliation,M the underlying space of, andi : F — M the
inclusion. Althoughi is not a lamination map, we may nevertheless define a
map of diophantine approximations as follows. An elemignt *D(X, X, T),
represented say Hyg,}, may be regarded as made up from an equivalence class
of sequencdyy, } where theyy, are homotopy classes of curves lying within
L whose endpoints converge £0 One may assume that there is an open disc
O ¢ M aboutx such that the endpoints of these sequences lie entiréy By
connecting their endpoints toby a paths contained i@, we obtain a sequence
of homotopy classes of curvdgy,} C I11(M, X, X) = the set of homotopy
classes of paths fromandX, hence a map

*Di:*D(X, X, T) — *II1(M, X, X), g > 1g

which depends neither 0@ nor on the choice of connecting paths. More gen-
erally, givenL a lamination and : £ — X a map into a path-connected space,
we may define a maiD1 : *D(X, X, T) — *I11(X, 1(X), 1(X)). We say that the
map! is germif *Di induces a well-defined map

|[|]I . I[T[]Il(L’ X, )29 T) e *711()(, I(X))’

U = *g*h—l —> *DJ (*g) X (*DI(*h))—l

Definition 3. Let £ be a lamination arising from a group actiorX a path
connected space. Amap (£, X, X) — (X, 1(X), 1(X)) is called afidelity if it
is germ and[1] is a groupoid monomorphism. We say tifas faithful if it has
a fidelity.

For example, by Proposition 12 any suspension is faithful, however if the
underlying space of a suspensifiis a manifoldM, we shall see that it is much
more useful to be able to assert that the inclugior> M is a fidelity.

For the remainder of the section, the base potrasndX will be supressed in
order to simplify notation.

Proposition 13. Let Fy be the foliation off" induced by thep-planeV c R".
Then the inclusiom : Fy — T" is a fidelity.

Proof. Recall that for some& x p matrix R, [71.(Fv) = *Zg. Then for
*n € *Zk, the map[i] is

Di¢n) = (*n,*n*) e *ZP@*2% = *mT"
where*n' is the dual to'n. [1] is then clearly an injective homomorphisnil
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The problem of the existence of fidelities for laminations arising from group
actions is interesting but seems difficult.

Conjecture 2. Every lamination arising from a group action is faithful.

Definition 4. A germ lamination mag- : £ — £’ is trained if £ and £’
are faithful, and there exist fidelities: £ — X, ' : £ — X’ and a map
f : X = X’ such that

“folll = N'leIFI, (12)

where* f = *m1(f) is the nonstandard version of the mapmninduced byf .
The triple(1,1’, f) is called atraining for F.

Theorem 11.LetF : £ — £’ be atrained lamination map. Then the induced
map[F] is a groupoid homomorphism.

Proof. Let (1,1’, f) be a training forF. Then for all*u, *v € [7].(£) such
that*u - *v is defined we have

|[|’]|o|[F]]<*u-*v) — |[|’]]<|[F]|*u.[[F]]*v>.
Since[1'] is injective,[F1(*u - *v) = [F1*u - [F]*v. O

Corollary 1. LetF : (‘F,x) — (F/, X)) be a germ map of foliations. Suppose
that the inclusions into the underlying manifolds ¥ — M, 1’ : 7' — M’ are
fidelities. Therf F] is a groupoid homomorphism.

Proof. Takef : M — M’ to beF, viewed as a map on underlying manifolds.
Then(, 1’, f) is atraining. O

Corollary 2. Any mapF : Fy — Fv of linear foliations of torii induces a
homomorphisnj F] of fundamental germs.

9 The germ universal cover

We assume throughout this section that
(1) £ is aweakly-minimal lamination arising from a group action.

(2) x = X € L afixed dense leaf.
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We abreviate the associated fundamental gerifrth (£). An ultrafilter1l is
fixed throughout.

Letp: L — L be the universal cover. A sequenge} C L is called £-
convergenif it projects to a sequence ibh converging to som& € £. Two
L-convergent sequencgX,} and {X} C L are called£-asymptoticif their
projections converge to the same potrand if for every flowboxO in £ about
X, there existsX € 1 such that, andX/, lie in a common lift of a plaque of
O, for all @ € X. The asymptotic class corresponding{fQ} is denotedX;
we refer toxX as thelimit of *X and write lim*X = X. The set ofX with limit X
is denoted_imy.

Definition 5. Thegerm universal coverof £ with respect td_ is
[£] = {classesf( of L£-convergent sequencesﬁ"} .

Note that for anyx € £, everyG_-diophantine approximatiotg of X de-
termines an element ¢f£ ], and the setkim; and*D(X, X, T) are in bijective
correspondence, for any diophantine transverstiroughx, X.

Proposition 14. Let £ be compact and suppose that= i~s a topological
group for which*b, *C € *® are L-asymptotic if and only ifb - 1 e *©,.
Then[ L] =®.

Proof. Suppose that there is sonfee - represented by a sequerjbg} which
is not £-convergent. Thus ifb,} is the projection of this sequence® C £,
then for allx € £, X has a neighborhoddy c £ for which there is noX € U
with {b,}|x C Ugz. TheUg cover L so that there is a subcovek,, ..., Uy,;
this implies that there exists a partitiofy L - - - U X, of N with {b,}|x, C Uy,.
Sincell is an ultrafilter, one of th&X; belongs tall, contradiction. Thus every
element'b € *® defines an element df£ ]. Since the relation of being-
asymptotic coincides with differing by an infinitesimal, we are done. [

For example, iffy is a linearp-foliation of a torus[ Fv 1 = *RP.
Denote by N
‘p:[£L] — £
the natural projection definedl — lim *X. TheleafL.x through*X is defined to
be the set ofy such that the following is true: there are representative sequences

{%.}, {V«}, and pathgj, connectingX, to ¥, so thatp(#,) converges to a path
connectingk = lim *X to ¥ = lim *y. Note that in particular we have; = L.

Theorem 12.[ £ ] may be given the structure of a lamination whose leaves are
nowhere dense and for whicp is an open lamination map.
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Proof. Denote by[T] C [ £]the pre-image of a transversblc £ and well-
order eachLimg for X € T. Note that the cardinalities of thémy are the same:
that of the continuum, sinck is dense and. N T is countable. We define a
decomposition

Tl = | |7 (13)

whereT, is the section over defined byX — theath element ofLimg;. By
definition of the leaves df L], givenX, y € T,

U L] N[ U Ly] #0 (14)

*XeLimg 'yéLimy

ifand only if Ly = Ly, and in the latter event the two unions of leaves appearing
in (14) are equal. Since for am¥; T N Ly is countable, we may choose the
ordering of eacl.img, y € T N L, so that all of thexth elements lie on distinct
leaves. In this way we may asume that the associated séktimiersects any
leaf of [ £] no more than once. We topologize each secfiprthrough its
identification withT, and give[ £ ] the associated product lamination structure.
By construction of this topologyp becomes an open lamination map. O

The topology constructed in Theorem 12 is calledeaim universal cover
topology it is not unique and depends on the choice of decomposition (13).
From now on, we assume thgL ] has been equipped with such a topology.

There is a canonical simply connected leaf corresponding to the inclusion
L < [L]. In particular,

[71.([£1,x) =0

for any x e L. Thus[Z£] can be thought of as the ordinary universal cover
L surrounded by a nonstandard cloud of leaves corresponding to the laminar
accumulations ot ; since these leaves are nowhere dense, one might say that
on passing td £ ] all of the diophantine approximations withifi have been
“unwrapped”.

We now posit[ £ as the unit space of an enhanced groupoid structure for
[71.(£). Let*u € [7].(L) and*X € |[£~]]. We say that‘'u actson °X if
there exist representative sequences such{thatx, } defines an.-convergent
sequencéu - *X with

imCu-*X) = lim*X.

Defining the domairbom(*u) and rangeRan(*u) of *u through this notion
of action, we see thdt/ | yields a new groupoid structure ¢n],(£), called
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the geometric groupoid structurelt is clear that bottbom(*u) andRan(*u)

are sublaminations c[ff]], since*X € Dom(*u) implies thatL.; ¢ Dom(*u).

Thus we may viewWn ]1(£) as a groupoid of bijections between sublaminations
of [ £]. Note that the unit space for the old groupoid structtD€g, T), maps

into the new unit spacEf]l via its bijection withLimy. There is a canonical
inclusion of the old groupoid structure into the geometric groupoid structure,
given by extension of domain and range, however in general this map need not
be a groupoid homomorphism.

Assumption. For the remainder of the paper, we will assume tfral; (L)
is endowed with the geometric groupoid structure.

Definition 6. We say thafrz],(£) is tame if wheneveldim *X = lim *y, there
exists*u € [7]1(£) such that'u - *X = V.

Proposition 15. If [7],(£) is tame, then the quotient

[l (DO\L L]
is homeomorphic td.

Proof. The equivalence Nrelation enacted by the actiorfof,(£) identifies
precisely those points df£ ] which map to the same poifite £ by *p. Since
*p is open, it follows that quotient topology is that theff O

Theorem 13. If [71.(D) is tame and a group, then there is a germ universal
cover topology ot £ ] for which[](£) acts as a group of homeomorphisms.

Proof. Let [T] be the preimage of a transver3abf £. As[x](£) is a group,
Dom(*u) = [[f]] for every elementu € [7]:(£), and moreovetu([T]) =
[T]. Leti : T — [T] be asection so that for alk |[£~]|, i (T)N L. contains

at most one point. Sinder],(£) acts without fixed points and is tame, we have
a decomposition as disjoint union

[T1 = | ] cudy.

*uelr]i(£)

Now construct as in Theorem 12 a lamination structurd ﬁr]l based on this
decomposition. It follows then that eath € [ ],(£) acts homeomorphically
on[L]. O

Proposition 16. LetF : (£, L) — (£, L") be a lamination map, where and
L" are dense leaves. Théninduces a map

[FI1:[£1—[Z'1.
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continuous with respect to appropriate choices of germ universal cover topolo-
gies.

Proof. Denote byp’ : L’ — L’ the universal cover. The ma[p?]l is defined
by representingX by a sequencéX, } and taking[ F ](*X) to be the asymptotic
class of{F (%,)}. Now let[t'] be any germ universal cover topology po' 1,
say constructed from a transver3al SinceF is a lamination map, there exists
atransversal with F(T) c T’. We may thus find a decompositigm ] = uT,
compatible with that of T'] i.e. so that[ FI(T, C T, for all . Let[r] to
be the associated germ universal cover topology. THen is continuous with
respect tdz] and[z’]. O

We now return to the question of functoriality, which we must address in view
of our adoption of a new groupoid structure. If we reconsider the notions of
fidelities and trainings with regard to the geometric groupoid structure, then the
analogue of Theorem 11 — as well as its corollaries — remain true with identical
proofs. For the remainder of the paper, the concepts of fidelity and training will
be understood in the context of the geometric groupoid structure.

The classical universal cover enjoys the property that theé lifik — ¥ of a
map f: X — Y is ry X-equivariant. We now describe conditions under which
the same can be said for alamination map. Agermlaminationfmap — £’is
said to begeometridffor all *u e [ 1,(£), [ F 1(Dom(*u)) C Dom([F1(*w)),

[F1: [711(L) — [7x1.(L) is a homomorphism and

[FICu-"%) = [FICu)-[FICX).

Examples of geometric maps are the projectipn— B of a suspension onto
its base and any map of manifolds: M — M’.

We say that a laminatio is geometrically faithfulif it has a geometric
fidelity. a fidelity1: £ — X which is geometric and for whicfi'] : |[£~]| —
[ X1is injective. In additionF: £ — £’ is said to begeometrically trainedf
it possesses a trainifg, 1/, f) wherel, I’ are geometric fidelities. For example,
the fidelity1: Fy — T" of a linear foliation of a torus is geometric, as well as
the projection of a suspension onto a compact base.

Theorem 14.LetF : £ — £’ be geometrically trained. Thel is geometric.

Proof. Let (1, 1’, f) be a geometric training. Then we have
[T1oLF1Cu-"0) = [TI([FICW - [FICX)
which implies the result afi’] is injective. O
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Corollary 3. Supposéd-: F — F'is alamination map of foliations such that
the inclusions into the underlying manifolds are geometric fidelities. Then
is geometric. In particular any lamination map of linear foliations of torii is
geometric.

10 Covering space theory

A surjective lamination ma : £ — £’ is called damination coveringf P|_

is a covering map for every leaf C £. A lamination map which is a covering
map inthe classical sense is alamination covering but not all lamination coverings
occur this waye.g.the projectiort : £ — B of a suspension onto its base. We
say thatP is cover trainedf it has a training(t, ¢/, p) inwhichp: X — X'isa
covering map.

Theorem 15. Let P : £ — £’ be a germ lamination covering that is cover
trained. Then

(1) The induced map of fundamental germs
[P]:[71i(£) — [7]u(L)
is a groupoid monomorphism.
(2) The induced map of germ universal covers
[P1:1L1 — [L]

is an open, injective map with respect to appropriate choices of germ
universal cover topologies.

Proof. The first statement follows from the definition of training and the fact that
*pisinjective on*mry. LetL, L’ be dense leaves i, £’ containingx, x’. Then

the lift of the restrictionP|., P|_ : L — L', is a homeomorphism. It follows
that the induced ma[)|3]] is injective. [ Plis automatically open with respect
to the germ universal cover topologies constructed as in Proposition 16.]

Note 7. Here is an example when the mp@ ] is not surjective. Tak& = R,
L' =S'andP : R — S*the universal cover. Thehl ] ~ R but[ £’ ] ~ °R.

Thus whenP is a cover trained, the image

¢ = IPI(I7h(0)
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is a subgroupoid dfz J,(£"). We shall now construct lamination coverings from
subgroups, restricting attention to the case wijetl (£) is tame and a group.
Assume thaf £ ] has been given a germ universal cover topolpgy of the
type guaranteed by Theorem 13. Consider a subgtup[]4(£L) and denote
by L the quotienC\[ £ ].

Theorem 16. L¢ is alamination and the mapc — £ is alamination covering.

Proof. The first statement follows immediately from the fact tRais a sub-
group of[7]1(£). By constructionLc — £ is surjective and a covering when
restricted to any leaf. O

Two lamination covering®, : £i — £, i = 1, 2, areisomorphicif there
exists a geometric homeomorphigm: £; — £, such thatP; = P, o F. The
group of automorphisms of a lamination coveis denotedAut(P).

Proposition 17. Let*u € [7],(£, x) andC’ = *u-C - *u~t. Thenfc — £
and L~ — £ are isomorphic.

Proof. The bijection*X +— *u-*X defines a homeomorphis[nf]l — [[f]]
which descends to an isomorphism of covers. O

Now supposeC < [ ]1(L, X) is a normal subgroup ané: : Lc — £ the
associated covering.

Theorem 17. Aut(Pc) is isomorphic to the quotielfitr 1 (£, X)/C. The quotient
of Lc by [71.(£, x)/C is L.

Proof. Every element off¢ is a classC - *X, for *X € |[f]|. The action of
[71:.(£,Xx)/C on such classes is well-defined and yields a subgroup of
Aut(Pc). On the other hand, the skimy is a[x],(£)-set on which any geo-
metric automorphism acts automorphically. However the automorphism group
of Limg is [ ]1(£, X)/C, soitfollows thatAut(Pc) C [7].(L, X)/C. Itis clear

that the quotient of ¢ by [7],(£, x)/C is L. O
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