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The Rovella attractor is a homoclinic class

Roger J. Metzger* and Carlos A. Morales**

Abstract. Rovella proved the existence of measure-persistent attractors for flows
exhibiting a unique singularity with three real eigenvalues satisfyingλ2 < λ3 < 0 <

λ1 < −λ3 ([Ro]). In this paper we prove thatmostof them are in fact homoclinic
classes.
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1 Introduction

Let Xt be aC1 flow on a manifold. A compact invariant set ofXt is anattractor
if it is transitive and maximal invariant in a positively invariant neighborhood of
it. A homoclinic classof Xt is the closure of the transverse homoclinic orbits
associated to a hyperbolic periodic orbit ofXt . One can easily find examples of
attractors which are not homoclinic classes as, for instance, the ambient manifold
of a minimal flow. Examples which are homoclinic classes are the non-trivial
hyperbolic, geometric Lorenz and Henon-like attractors ([KH], [B], [C]). The
last two examples are not hyperbolic. In general it is known that a non-trivial
attractor of aC1 generic flow is a homoclinic class.

In this paper we provide more examples of non-hyperbolic attractors which are
homoclinic classes. Precisely we shall consider the attractors found by Rovella in
his thesis [Ro]. These attractors are measure-persistent and exhibit a unique sin-
gularity with real eigenvalues{λ1, λ2, λ3} satisfyingλ2 < λ3 < 0 < λ1 < −λ3.
By this reason we shall call themRovella attractorsalthough some authors use the
term contracting Lorenz attractor in opposite to the classical geometric Lorenz
attractor which satisfies the eigenvalue relationλ2 < λ3 < 0 < −λ3 < λ1. It
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turns out that the Rovella attractors are neither hyperbolic (since they display
regular and singular orbits in the same transitive set) nor singular-hyperbolic
(since they are transitive and display non-Lorenz-like singularities [BDV]). In
this paper we prove however that most Rovella attractors are homoclinic classes.

Let us state our result in a precise way. Anattracting setof Xt is a compact
invariant set3 for which there is a neighborhoodU such that

3 =
⋂

t≥0

Xt(U ).

The setU above can be chosen positively invariant, i.e.Xt(U ) ⊂ U . Hereafter
we shall call such a neighborhoodisolating block. An isolating block can be
chosen arbitrarily close to3 as well. IfU is an isolating block andYt is a flow
close toXt then the set

3Y =
⋂

t≥0

Yt(U )

is an attracting set ofYt . This attractor is often called the continuation of3.
An invariant set istransitiveif it is ω(q) for someq on it. Recall thatω(q), the
omega-limit set ofq, is the accumulation point set of the positive orbit ofq under
Xt . An attractor is a transitive attracting set.

Given a subsetS in a BanachE we say thatx ∈ S is apoint ofk-dimensional
full densityof S if there is a codimensionk submanifoldN ⊂ E containingx
such that ifM is ak-dimensional submanifold ofE intersectingS transversally,
then every pointy ∈ N ∩ M satisfies

lim
r →0+

m(Br (y) ∩ S)

m(Br (y))
= 1,

wherem is the Lebesgue measure inM andBr (y) is ther -ball centered aty in
M .

We say that an attractor3 of X is persistent in an almostk-persistent wayif
there is an isolating blockU of 3 such thatX is a k-dimensional full density
point of

S = {Y : Y is close toX and3Y is an attractor ofY}.

In his thesis A. Rovella proved the following result (see part (b) of the Theorem
in [Ro] p. 235).

Theorem 1.1. There is aC∞ vector field X0 in R3 having an attractor3
containing a singularity with eigenvalues satisfyingλ2 < λ3 < 0 < λ1 < −λ3

such that3 is persistent in an almost2-persistent way.
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Motivated by the above definitions and result we introduce the following def-
inition: We say that an attractor3 of X is a homoclinic class in an almostk-
persistent wayif there is an isolating blockU of 3 such thatX is ak-dimensional
full density point of the set

S = {Y : Y is close toX and3Y is a homoclinic class ofY}.

In this paper we improve Theorem 1.1 in the following way.

Theorem 1.2. There is aC∞ vector field X0 in R3 having an attractor3
containing a singularity with eigenvalues satisfyingλ2 < λ3 < 0 < λ1 < −λ3

such that3 is ahomoclinic classin an almost2-persistent way.

Although the unperturbed vector fieldX0 and its corresponding attractor3 in
Theorem 1.2 are exactly the ones in Theorem 1.1 the attractors obtained in our
theorem are not so. Actually, to prove our theorem, we shall prove that the set of
vector fields for which the attractor in Theorem 1.1 is a homoclinic class is large
enough to obtain homoclinic classes in an almost 2-persistent way. Observe that
Theorem 1.2 implies Theorem 1.1 by the Birkhoff-Smale Theorem [KH].

This paper is organized as follows. In Section 2 we introduce the Rovella
attractor and in Section 3 we prove that the corresponding one-dimensional maps
are LEO (locally eventually onto). In Section 4 we prove Theorem 1.2.

2 Construction of X0 and 3

We just recall Section 1 p. 237 in [Ro].
Start with aC∞ vector fieldX0 in R3 such thatO = (0, 0, 0) is a singularity.

The eigenvalues ofO are real numbersλ1, λ2, λ3 satisfyingλ2 < λ3 < 0 <

λ1 < −λ3. The corresponding eigenspaces will be the coordinate axis. We will
also assume thatX0 is linear in the cube{(x, y, z) : |x|, |y|, |z| ≤ 1}. Both
trajectories of the unstable manifold ofO intersect the top rectangleQ of the
cube.

This rectangle is divided by the stable manifold of 0 in two subrectangles
the union of which is denoted byQ∗. There are two return maps5loc,5 f ar

induced by the flow fromQ∗ to {x = ±1} and from{x = ±1} back toQ. The
composition50 = 5 f ar ◦ 5loc is the return map associated toQ and its image
50(Q∗) consists of two cusp triangles as in Figure 1-(a). We also assume that
5 has the form

50(x, y) = ( f0(x), g0(x, y))

so50 preserves the constant vertical foliation{x = cnt} in Q. We assume that
this foliation is contracted by50. We further assume the following hypotheses:

Bull Braz Math Soc, Vol. 37, N. 1, 2006
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(H1) The order off ′
0 at x = 0 is s − 1 wheres > 1 is a fixed constant.

(H2) f0 has a discontinuity atx = 0 with f0(0+) = −1, f0(0−) = 1.

(H3) f ′
0(x) > 0 for x 6= 0.

(H4) maxx>0 f ′
0(x) = f ′

0(1) and maxx<0 f ′
0(x) = f ′

0(−1).

(H5) 1 and−1 are preperiodic repelling, that is, there are positive integers
k−, k+, n−, n+ such that

f k++n+

0 (1) = f k+

0 (1), ( f n+

0 )′( f k+

0 (1)) > 1

and
f k−+n−

0 (−1) = f k−

0 (−1), ( f n−

0 )′( f k−

0 (−1)) > 1.

(H6) f0 has negative schwarzian derivative.
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The construction implies that there is a compact positively invariant neighbor-
hoodU of the cube above. Define

3 =
⋂

t≥0

Xt
0(U ).

This ends the construction ofX0 and3.

3 Proofs

In this section we prove that the attractor3 previously defined is a homoclinic
class in a 2-parameter almost persistent way. By definition we need to prove that
X0 is a 2-dimensional full density point of

S = {Y : Y is close toX and3Y is a homoclinic class ofY}.

For this we need to define a codimension two submanifoldN. By the Proposition
in [Ro] p. 241 we have that for everyX in a neighborhoodU of X0 there is
a one-dimensional foliation in the isolating blockU of 3 which is stable and
varies continuously withX. With this we can define a one-dimensional mapfX

which is the continuation of the mapf0 in the previous section. As in [Ro] p.
246 we defineN as the set ofX ∈ U such that

f k+

X (1) and f k−

X (−1)

are preperiodic of periodsn+ andn−.
Now, let M be aC3 2-dimensional submanifold ofU intersectingN transver-

sally. To prove the limit in the definition of ak-dimensional full density point,
we only need to consider, as in [Ro] p. 247, a one-parameter family{Ya}a≥0 in M
such that the mapsa → fYa(±1) has derivative 1 at 0. We will prove thata = 0
is a full density point of the set of parameters for which3Ya is a homoclinic class
of Ya. According to the arguments in [Ro] p. 247 this suffices. Previously we
shall prove that the associated familyfa = fYa of one-dimensional maps satisfy
the following theorem.

Theorem 3.1. There is a positive Lebesgue measure subsetE of the parameter
space such that

1. lima→0
m(E∩[0,a))

a = 1.

2. If a ∈ E, then fa is LEO.
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We will use three properties of the one-dimensional Lorenz-like maps studied
by [Ro]. More precisely, letI ⊂ [−1, 1] be a compact interval andf : I → I
be a map such thatf (I ) ⊂ I with a discontinuity at the origin. Setc±

k =
limx→0± f k(x) for k ≥ 0, so the properties can be stated as follows:

A0) Outside the originf is of classC3 and with negative Schwarzian derivative,
and also satisfies

K2|x|s−1 ≤ f
′
(x) ≤ K1|x|s−1.

For some constantsK1, K2 ands with s > 1.

A1) ( f n)
′
(c±

1 ) > λn
c, for someλc > 1, and forn ≥ 1.

A2) | f n−1(c±
1 )| > e−αn someα small enough, and alln ≥ 1.

In [Ro], section IV, it is proved that for the associated one-parameter family
of maps{ fa}a∈[0,2) obtained as specified at the beginning of this section there is
a positive Lebesgue measure subsetE ⊂ [0, 2) with 0 ∈ E as a Lebesgue full
density point such that the map

f = fa, ∀a ∈ E

satisfies A0-A2. So, we only need to prove that iffa satisfies A0-A2 then it is
LEO, redefining the setE to E ∩ [0, r ) for small enoughr if necessary.

The basic strategy is to reduce the non-uniform hyperbolicity of the dynam-
ics of our maps to that of piecewise uniformly expanding maps. That is what
conditions A1-A2 are for, which express a kind of expansiveness. Our proof
follows closely the arguments in section 4 of [M] which in turns is based on the
arguments by L.-S. Young in [Yo] for unimodal maps.

Before the proof we need the following lemmas the first of which corresponds
to (P1) in [Yo].

Lemma 3.2. There existsr > 0 such that for everya ∈ [0, r ] the map f = fa

satisfies the following property: There are constantsσ0 > 1, b > 0 andδ0 > 0
such that for any0 < δ ≤ δ0 there isc(δ) > 0 such that, given anyx ∈ I and
n ≥ 1

1) If x, f (x), . . . , f n−1(x) 6∈ (−δ, δ) then( f n)
′
(x) ≥ c(δ)σ n

0 .

2) If in addition, f n(x) ∈ (−δ, δ) then( f n)
′
(x) ≥ bσ n

0 .
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Proof. This was proved in other form by Rovella in [Ro], see lemmas 1, 1.1,
1.2 and their proofs, in the mentioned article. �

Now, let Im = (e−m−1, em) for m > 0, let Im = −I−m for m < 0, and
I +
m = Im−1 ∪ Im ∪ Im+1, δ = e−1, with 1 ∈ N and chooseβ such that
s

s−1α > β > s+1
s α, wheres is the fixed constant in (H1).

Let p(m) be the largest integerp such that for everyx ∈ I +
m and j = 1, . . . , p:

| f j (x) − f j −1(c+
1 )| = | f j (x) − c+

j | ≤ e−β j if m > 0 and

| f j (x) − f j −1(c−
1 )| = | f j (x) − c−

j | ≤ e−β j if m < 0 .

The time interval 1, . . . , p(m) is called the bound period forI +
m .

The following lemma corresponds to (P2) in [Yo], Lemma 2.2 in [BC2] and
Lemma 1 and 2 in [BC1] for quadratic maps. Indeed, you can find part (b) inside
the proofs of the latter mentioned lemmas. The main difference is the point of
discontinuity and also that we are not dealing with exactly a “quadratic” map but
with some maps that “looks like” a quadratic map in the sense of Property A0.

The proof is essentially contained in [M] and we included it here for complete-
ness.

Lemma 3.3.For each|m| > 1, p(m) has the following properties.

a) There is a constantC(α, β) such that:

i)

1

C
≤

( f j )′(y)

( f j )′(c+
1 )

≤ C if y ∈ [−1, f (e−|m|+1)] ,

ii)

1

C
≤

( f j )′(y)

( f j )′(c−
1 )

≤ C if y ∈ [ f (−e−|m|+1), 1] .

for j = 0, . . . , p(m).

b)
s|m|

β + log 4
− K ≤ p(m) ≤

s + 1

β + logλc
|m|

where K =
β + log(K1/s) + s

β + log 4
.

Bull Braz Math Soc, Vol. 37, N. 1, 2006



“main” — 2006/5/4 — 0:17 — page 96 — #8

96 R. METZGER and C. MORALES

c) If z ∈ I +
m then

( f p)
′
( f (z)) ≥

1

C
λp

c

and

( f p+1)
′
(z) ≥

1

C
(λ1/s

c )pM ,

whereM = e−α(s/(C K1))
(s−1)/s ∙ K2 and p = p(m).

d) ( f p+1)′(x) ≥ exp

((
1 − β

s + 2

β + C

)
|m|

)

wherep = p(m) and forx ∈ I +
m .

Proof. Supposey ∈ [c+
1 , f (e−|m|+1)] (for y ∈ [ f (e−|m|+1), c−

1 ] the proof is
similar).

First of all note that

( f k)
′
( f (z))

( f k)
′
(c−

1 )
=

k∏

j =1

f
′
( f j (z))

f ′
(c−

j )
=

k∏

j =1

(

1 +
f

′
( f j (z)) − f

′
(c−

j )

f ′
(c−

j )

)

so we only have to get a uniform bound for

k∑

j =1

∣
∣
∣
∣
∣

f
′
( f j (z)) − f

′
(c−

j )

f ′
(c−

j )

∣
∣
∣
∣
∣
.

Now, f has negative Schwarzian derivative inB−
j since 0 6∈ B−

j = [c−
j −

e−β j , c−
j + e−β j ], and as long asf j (z) ∈ B−

j we have that

∣
∣
∣
∣
∣

f
′
( f j (z)) − f

′
(c−

j )

f ′
(c−

j )

∣
∣
∣
∣
∣
≤ | f

′′
(y)|

∣
∣
∣
∣
∣

f j (z) − c−
j

f ′
(c−

j )

∣
∣
∣
∣
∣
≤ A|y|s−2

∣
∣
∣
∣
∣

f j (z) − c−
j

f ′
(c−

j )

∣
∣
∣
∣
∣
.

Then from condition A0 we obtain:

k∑

j =1

∣
∣
∣
∣
∣

f
′
( f j (z)) − f

′
(c−

j )

f ′
(c−

j )

∣
∣
∣
∣
∣
≤

A

K2

k∑

j =1

e−β j

e−α j
.

The right side is bounded becauseβ > α from the condition impose onβ
immediately after the proof of Lemma 3.2. Now part (a) follows makingy =
f (z) with z ∈ (0, e−|m|+1).
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To prove (b).
For x ∈ I +

m we have, assumingm ≥ 0 to fix ideas,

e−βp ≥ | f p(x) − c+
p | = | f p−1( f (x)) − f p−1(c+

1 )| = ( f p−1)′(y)| f (x) − (c+
1 )|

for somey ∈ [c+
1 , f (x)] ⊂ [−1, f (e−|m|+1)] so,

| f p(x) − f p−1(c+
1 )| = ( f p−1)′(y)| f (x) − (c+

1 )| ≥ ( f p−1)′(y)K2
|x|s

s

≥
( f p−1)′(c+

1 )

C1

K2

s
e(−|m|−2)s

e−βp ≥
λ

(p−1)
c

C1

K2

s
e−|m|se−2s .

So we have the following bound forp,

log

(
K2

C1s

)
− |m|s − 2s + logλc p − logλc ≤ −βp

that is,

p ≤
s|m|

logλc + β
+

logλc + 2s − log K2
C1s

logλc + β
.

If |m| is large enough we can write,

p ≤
(s + 1)|m|

logλc + β
.

For the other inequality, from the definition ofp, there must exists az ∈ I +
m

such that

e−β(p+1) ≤
∣
∣ f p( f (z)) − f p(c+

1 )
∣
∣ ≤ ( f p)′(y)

∣
∣ f (z) − (c+

1 )
∣
∣ .

Supposing thatf ′ ≤ 4, we obtain,

e−β(p+1) ≤ 4pK1
zs

s
≤ 4p K1

s
e(−|m|+1)s

so
−β(p + 1) ≤ p log 4+ log(K1/s) + (−|m| + 1)s

which implies that

p ≥
s|m|

β + log 4
−

log(K1/s) + s + β

β + log 4
.
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Now, to prove part (c), first observe that the first claim in (c) is a direct con-
sequence of part (a) and A1. The second one can be obtained as follows. Let
z ∈ I +

m and p = p(m), then

( f p+1)
′
(z) = ( f p)

′
( f (z)). f

′
(z) ≥ K2|z|

s−1( f p)
′
( f (z))

≥
K2

C
|z|s−1( f p)

′
(c−

1 ) .
(1)

We can estimate the value of|z| from the inequality

e−β(p+1) ≤
∣
∣
∣ f p+1(z) − c−

p+1

∣
∣
∣ = ( f p)

′
(ξ)

∣
∣ f (z) − c−

1

∣
∣

≤ K1C( f p)
′
(c−

1 )
|z|s

s

(2)

for someξ ∈ ( f (z), c−
1 ) from the Mean Value Theorem. For thisξ there existsy

satisfying the conditions in part (a) and such thatf (y) = ξ . The last inequality is
due to A0. So the inequality above is a consequence of the Mean Value Theorem
and part (a).

Rewriting the equation, it stands that:

|z|s ≥
s

C K1

∣
∣
∣( f p)

′
(c−

1 )

∣
∣
∣
−1

e−β(p+1).

Combining this last inequality with (1) we obtain

( f p+1)
′
(z) ≥

K2

C

(
e−βs

C K1

) s−1
s

(λ1/s
c )k ∙ e−βk( s−1

s ) .

Since β < s
s−1α we have

( f p+1)
′
(z) ≥

K2

C

(
e−βs

C K1

) s−1
s (

λ1/s
c e−α

)p
,

leading to

( f p+1)
′
(z) ≥

1

C

(
λ1/s

c e−α
)p

M ,

whereM = e−α(s/(C K1))
(s−1)/s ∙ K2 . So part (c) is proved.

This ends the proof of Lemma 3.3, because part (d) is an easy consequence of
the second assertion in part (c). �
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Proof of Theorem 3.1. As we said before, it is enough to proof that fora in a
small neighborhood of 0 conditions A0, A1 and A2 implies thatfa is LEO. The
proof is based on an argument in [Yo].

In [Yo] it was used the fact that the the initial mapf0 has a fixed point with
dense backward orbit in[−1, 1]. Here we don’t have such fixed point forf0 but
we can constructf0 in the following way. First we consider a mapF with all
the properties off0 except that it fixes both1 and−1 (note however thatF does
not come from the return map of an attractor). We can chooseF conjugated to
1−2x (modZ) so it has a periodic pointz ∈ (−1, 1) whose unstable manifold is
the whole[−1, 1]. Sincez ∈ (−1, 1) the conjugation implies that the backward
orbit of z underF is dense in[−1, 1]. In particular,z hasF-preimages in both
I1 andI−1. Afterward we obtainf0 by perturbingF in a way thatf0(−1) > −1
and f0(1) < 1. We choosef0 close toF enough such that thef0-continuation
z0 of z still has f0-preimages in bothI1 andI−1. This finish the construction of
f0.

As to be inI1 and I−1 is an open condition in the parameter space we have
that the fa-continuationza of z0 still has preimages in bothI1 and I−1 for all
a > 0 close to 0. So, the conclusion remains valid only reducingE to E ∩ [0, r )

for small enoughr > 0.
Next we follow [Yo], pag. 127. Letf = fa, a ∈ E. First we prove that

for all I ⊂ [−1, 1], there existsn0 = n0(I ) such that f n0(I ) ⊃ I1 or I−1.
According to Lemma 3.2, if the iterates ofI do not intersect(−δ, δ) the length
of the iterates increases, so there is somef j (I ) that intersects(−δ, δ). If f j (I )
does not contain someIk, keep iterating, and note that using Lemma 3.3 we have
| f p( f j (I ))| � | f j (I )|, p = p(x) for x ∈ f j I . After finitely many returns to
(−δ, δ), there must existj1 andk1 ∈ Z+ such thatf j1(I ) ⊃ Ik1 or I−k1. Consider
f j (Ik1), j = 1, 2, . . . , and let j2 be the first time (after the bound period of some
x ∈ Ik1) such thatf j (Ik1) ⊃ someIk. Since| f j2(Ik1)| � |Ik1|, f j2(Ik1) must
contain someIk2 or I−k2 with 0 < k2 < k1. We then considerf j (Ik2) and repeat
the argument until somef j (Ikn) ⊃ I1 or I−1.

To finish, since there is ann1 ∈ Z+ such thatza ∈ f n1(I1) or f n1(I−1),
whereza is the aforementioned continuation ofz0. Observe that for anyf = fa,
a ∈ E, and Î some interval containingza there existsn2 = n2( Î ) such that
f n2( Î ) ⊃ [ f (0+), f (0−)], i.e. f is LEO.

So Theorem 3.1 follows. �
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4 Proof of Theorem 1.2

Theorem 3.1 in the previous section implies that the vector field associated to the
Rovella attractor originates a LEO one dimensional map in an almost 2-persistent
way.

That is, in order to prove Theorem 1.2 it is left to prove that a vector field
with a periodic orbit that originates a LEO one dimensional map is a homoclinic
class. For this we use the argument in [B].

Consider the two-dimensional map5 : Q∗ → Q∗, the return map associated
to the Rovella attractor. Define

A∞
5 =

∞⋂

n=1

An
5

the attractor for this return map, where

An
5 = {x = 5n(z) : z,5(z), . . . ,5n−1(z) 6∈ 0},

and0 is the intersection ofQ with the local stable manifold of the singularity.
It suffices to prove thatA∞

5 is a homoclinic class of5.
Now, since there exists a periodic pointp of period two for the one dimensional

map associated to this return map, so there is a periodic pointp of period two
for the return map (recall that we have a contracting foliation for5).

So we are going to prove that the homoclinic class ofp, H5(p), is A∞
5 .

ObviouslyH5(p) ⊂ A∞
5 so we only need to proveA∞

5 ⊂ H5(p).

Takey ∈ A∞
5 andε > 0, we need to proveH5(p) ∩ Bε(y) 6= ∅. Taken large

enough so that ifz ∈ Q satisfies that5i (z) is defined for all 0≤ i ≤ n − 1 and
5n(z) ∈ Bε/2(y), then5n carries the component of the stable manifoldWs(z)
containingz inside Bε(y), i.e., 5n(Ws(z)) ⊂ Bε(y). For such ann we have
y ∈ An

5 by definition, so there isxn ∈ Bε(y) ∩ An
5. Again by definition there is

zn such thatxn = 5n(zn) with zn,5(zn), . . . ,5
n−1(zn) well defined. The LEO

property of the one-dimensional map associated to5 implies thatWs(p) is dense
in Q and thatWu(p) intersectsWs(zn). Then, there ishn ∈ H5(p) arbitrarily
close toWs(zn). In particular, we have5i (hn) stays close to5i (Ws(zn)) for
all i = 0, . . . , n, so 5n(hn) ∈ Bε(y) by the property ofn. SinceH5(p) is
5-invariant we get the result. �
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