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The Rovella attractor is a homoclinic class
Roger J. Metzger* and Carlos A. Morales**

Abstract. Rovella proved the existence of measure-persistent attractors for flows
exhibiting a unique singularity with three real eigenvalues satisfying: 13 < 0 <

A1 < —A3 ([Ro]). In this paper we prove thahostof them are in fact homoclinic
classes.
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1 Introduction

Let X' be aC* flow on a manifold. A compact invariant set ¥f is anattractor

if it is transitive and maximal invariant in a positively invariant neighborhood of

it. A homoclinic clasof X! is the closure of the transverse homoclinic orbits
associated to a hyperbolic periodic orbitXf. One can easily find examples of
attractors which are not homoclinic classes as, for instance, the ambient manifold
of a minimal flow. Examples which are homoclinic classes are the non-trivial
hyperbolic, geometric Lorenz and Henon-like attractors ([KH], [B], [C]). The
last two examples are not hyperbolic. In general it is known that a non-trivial
attractor of aC* generic flow is a homoclinic class.

In this paper we provide more examples of non-hyperbolic attractors which are
homoclinic classes. Precisely we shall consider the attractors found by Rovellain
his thesis [Ro]. These attractors are measure-persistent and exhibit a unique sin-
gularity with real eigenvaluei.i, Ay, A3} satisfyingi, < A3 < 0 < A3 < —As.

By this reason we shall call thelRovella attractoralthough some authors use the
term contracting Lorenz attractor in opposite to the classical geometric Lorenz
attractor which satisfies the eigenvalue relatign< A3 < 0 < —A3 < Aq. It
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90 R. METZGER and C. MORALES

turns out that the Rovella attractors are neither hyperbolic (since they display
regular and singular orbits in the same transitive set) nor singular-hyperbolic
(since they are transitive and display non-Lorenz-like singularities [BDV]). In
this paper we prove however that most Rovella attractors are homoclinic classes.

Let us state our result in a precise way. aftracting setof X! is a compact
invariant setA for which there is a neighborhoadl such that

A:ﬂWwy

t>0

The setJ above can be chosen positively invariant, ¥(U) c U. Hereafter
we shall call such a neighborhod@blating block An isolating block can be
chosen arbitrarily close ta as well. IfU is an isolating block anttt is a flow
close toX! then the set

Ay =[Y'U)

t>0

is an attracting set of'. This attractor is often called the continuation /of
An invariant set idransitiveif it is w(q) for someq on it. Recall thatv(q), the
omega-limit set of, is the accumulation point set of the positive orbitjafnder
Xt. An attractoris a transitive attracting set.

Given a subse®in a BanachE we say thak € Sis apoint ofk-dimensional
full densityof Sif there is a codimensiok submanifoldN C E containingx
such that ifM is ak-dimensional submanifold d intersectingStransversally,
then every poinyy € N N M satisfies

mEB NS _
0t m(Br ()

9

wherem is the Lebesgue measurelif and B, (y) is ther -ball centered ay in
M.

We say that an attractax of X is persistent in an almo¥t-persistent wayf
there is an isolating blockl of A such thatX is ak-dimensional full density
point of

S={Y : Yisclose toX andAy is an attractor o¥'}.

In his thesis A. Rovella proved the following result (see part (b) of the Theorem
in [Ro] p. 235).

Theorem 1.1. There is aC*> vector field Xp in R® having an attractorA
containing a singularity with eigenvalues satisfying< A3 < 0 < A1 < —A3
such thatA is persistentin an almost2-persistent way.
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THE ROVELLA ATTRACTOR IS A HOMOCLINIC CLASS 91

Motivated by the above definitions and result we introduce the following def-
inition: We say that an attractax of X is ahomoclinic class in an almot
persistent waif there is anisolating block of A such thaiX is ak-dimensional
full density point of the set

S={Y : Yisclose toX andAy is a homoclinic class of}.

In this paper we improve Theorem 1.1 in the following way.

Theorem 1.2. There is aC*> vector field X, in R® having an attractorA
containing a singularity with eigenvalues satisfyig< 13 < 0 < 11 < —A3
such thatA is ahomoclinic classin an almost2-persistent way.

Although the unperturbed vector fiekh and its corresponding attractarin
Theorem 1.2 are exactly the ones in Theorem 1.1 the attractors obtained in our
theorem are not so. Actually, to prove our theorem, we shall prove that the set of
vector fields for which the attractor in Theorem 1.1 is a homoclinic class is large
enough to obtain homoclinic classes in an almost 2-persistent way. Observe that
Theorem 1.2 implies Theorem 1.1 by the Birkhoff-Smale Theorem [KH].

This paper is organized as follows. In Section 2 we introduce the Rovella
attractor and in Section 3 we prove that the corresponding one-dimensional maps
are LEO (locally eventually onto). In Section 4 we prove Theorem 1.2.

2 Construction of Xg and A

We just recall Section 1 p. 237 in [RoO].

Start with aC> vector fieldXg in R® such thatO = (0, 0, 0) is a singularity.
The eigenvalues oD are real numberaq, A,, A3 satisfyingi, < A3 < 0 <
A1 < —Az. The corresponding eigenspaces will be the coordinate axis. We will
also assume thaXy is linear in the cubd(x,y, 2 : |x|,|yl, |zl < 1}. Both
trajectories of the unstable manifold 6f intersect the top rectangl@ of the
cube.

This rectangle is divided by the stable manifold of O in two subrectangles
the union of which is denoted b@*. There are two return magdSqc, Tfar
induced by the flow fromQ* to {x = +1} and from{x = +1} back toQ. The
compositionly = ¢4 o e is the return map associated@and its image
Ip(Q*) consists of two cusp triangles as in Figure 1-(a). We also assume that
IT has the form

Mo(X, y) = (fo(X), Go(X, ¥))

so I, preserves the constant vertical foliatipn= cnt} in Q. We assume that
this foliation is contracted bjl,. We further assume the following hypotheses:
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(b)

©

Figure 1:

(H1) The order offjatx = 0 iss — 1 wheres > 1 is a fixed constant.
(H2) fo has a discontinuity at = 0 with fo(0+) = —1, fo(0—) = 1.
(H3) f3(x) > 0forx # 0.

(H4) max.o f3(x) = f3(1) and max_o fi(x) = fy(=1).

(H5) 1 and—1 are preperiodic repelling, that is, there are positive integers
k=, k™, n™, n™ such that

fE @) = 1@, By @) > 1

and o ) ) )
fM (- = (=D, (f)(fE (=) > 1

(H6) fo has negative schwarzian derivative.
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The construction implies that there is a compact positively invariant neighbor-
hoodU of the cube above. Define

A:(]%wy

t>0

This ends the construction &f; andA.

3 Proofs

In this section we prove that the attractompreviously defined is a homoclinic
classin a 2-parameter almost persistent way. By definition we need to prove that
Xo is a 2-dimensional full density point of

S={Y : Yisclose toX andAy is a homoclinic class of}.

For this we need to define a codimension two submani¥bldy the Proposition
in [Ro] p. 241 we have that for every in a neighborhoodU of Xq there is
a one-dimensional foliation in the isolating blotk of A which is stable and
varies continuously wittX. With this we can define a one-dimensional nfgp
which is the continuation of the mafy in the previous section. As in [Ro] p.
246 we defineN as the set oK € ‘U such that

(1) and f£ (-1

are preperiodic of periods"™ andn~.

Now, letM be aC3 2-dimensional submanifold dfl intersectingN transver-
sally. To prove the limit in the definition of ke-dimensional full density point,
we only need to consider, as in [Ro] p. 247, a one-parameter fgWily-o in M
such that the maps — fv,(£1) has derivative 1 at 0. We will prove that= 0
is a full density point of the set of parameters for whitc{) is a homoclinic class
of Ya. According to the arguments in [Ro] p. 247 this suffices. Previously we
shall prove that the associated family= fy, of one-dimensional maps satisfy
the following theorem.

Theorem 3.1. There is a positive Lebesgue measure subsgitthe parameter
space such that

1. limg_o ™EDCA) — 7,

2. Ifae E, thenf,is LEO.
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94 R. METZGER and C. MORALES

We will use three properties of the one-dimensional Lorenz-like maps studied
by [Ro]. More precisely, let c [—1, 1] be a compact interval anfl: | — |
be a map such that (1) c | with a discontinuity at the origin. Sef: =
limy_ot f(x) fork > 0, so the properties can be stated as follows:

A0) Outside the origirf is of clas<C2 and with negative Schwarzian derivative,
and also satisfies

Kalx[®™ < /(%) < Ka|x|*™.
For some constants;, K, andswith s > 1.
AL) (f")'(c¥) > D, for somek. > 1, and fom > 1.

A2) | f"1(cy)| > e " somex small enough, and afl > 1.

In [Ro], section 1V, it is proved that for the associated one-parameter family
of maps{ fa}ac(o0,2) Obtained as specified at the beginning of this section there is
a positive Lebesgue measure suliSet [0, 2) with 0 € E as a Lebesgue full
density point such that the map

f:fa, VaEE

satisfies A0-A2. So, we only need to prove thafifsatisfies A0-A2 then it is
LEO, redefining the sdt to E N [0, r) for small enoughr if necessary.

The basic strategy is to reduce the non-uniform hyperbolicity of the dynam-
ics of our maps to that of piecewise uniformly expanding maps. That is what
conditions A1-A2 are for, which express a kind of expansiveness. Our proof
follows closely the arguments in section 4 of [M] which in turns is based on the
arguments by L.-S. Young in [Yo] for unimodal maps.

Before the proof we need the following lemmas the first of which corresponds
to (P1) in [Yo].

Lemma 3.2. There exists > 0 such that for evera < [0, r] the mapf = f,
satisfies the following property: There are constasgs> 1,b > 0andéy > 0
such that for any < § < &g there isc(§) > 0 such that, given any € | and
n>1

1) If x, f(x),..., f"5x) & (=8, 8) then(f") (x) > c(8)ay.

2) If in addition, f"(x) € (-8, §) then(f") (x) > bay.
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Proof. This was proved in other form by Rovella in [Ro], see lemmas 1, 1.1,

1.2 and their proofs, in the mentioned article. O
Now, letl, = (™1 e™ form > O, letl, = —I_, form < 0, and

IF = ImaUlpU lme1, 8 = €2, with A € N and choose3 such that

2a > B> o, wheresis the fixed constant in (H1).

Let p(m) be the largest integgrsuch thatforeverx € I andj = 1,..., p:

1100 — f17%chH = |fl—cfl<e? if m>0 and

1100 — 17t epl = 1Tl —cl<e? if m<o.
The time interval 1..., p(m) is called the bound period fdy} .

The following lemma corresponds to (P2) in [Yo], Lemma 2.2 in [BC2] and
Lemma 1 and 2 in [BC1] for quadratic maps. Indeed, you can find part (b) inside
the proofs of the latter mentioned lemmas. The main difference is the point of
discontinuity and also that we are not dealing with exactly a “quadratic” map but
with some maps that “looks like” a quadratic map in the sense of Property AO.

The proofis essentially contained in [M] and we included it here for complete-
ness.

Lemma 3.3.For eachim| > A, p(m) has the following properties.

a) There is a constar€ («, 8) such that:

)

1_ ey - L1t elmit

Cf(fi)/(q)fc if yel-1 f(e )],
i)

1_dhy - it

Ci(fj),(cl_)ic if yel[f(—e ). 1].

forj =0,..., p(m).
b)
B+log4 B+ logic
B +10g(K1/s) +s
B+ log4

Im|

where K =
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c) If ze I} then

/ 1
p P
(T (1@) = =Ac

and 1
(FPY (2 > E(A?S)PM :

whereM = e %(s/(CKy))S~V/s. Ky and p = p(m).

d) (FP*Y(x) zexp(( ﬂ;+2) |m|)

wherep = p(m) and forx € 1 }.

Proof. Supposey € [c], f(e ™*™)] (fory e [f(e"™*1), c; ] the proof is
similar).
First of all note that

(Y@ i@ ¢ t'(fl@) - ')
e 1_[f(c> H(” )

j=1 j=1

so we only have to get a uniform bound for
k
j=1

Now, f has negative Schwarzian derivative 8] since 0 ¢ B;” = [c¢] —
el ¢ + e Pil,and aslong agi(z) e B;” we have that

f'(fl2) - f'(c))
f(c;) '

f'(fi2) — f'(c)) J
fiicpH) |~

f(c)

"

slf(y)l'

Then from condition AO we obtain:

i f'(fi@2) - ')
j=1

f(c)
The right side is bounded becauge> « from the condition impose ¢gh
immediately after the proof of Lemma 3.2. Now part (a) follows makng
f (2) with z € (0, e IMI+1y,

A & efi
SO Ir=rE

j=1
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To prove (b).
Forx € 1} we have, assuming > 0 to fix ideas,

e P> 1P — i = [P (F ) — FPHeD = (FP DY (I f (0 — ()]

for somey e [cf, f(x)] c [—1, f(e”!M+1)] so,

/ —1\/ Xs
[P — FPiehH = (FPYWIfx) — () = (FPh (y)KZ%
- (fpfl)/(cf)_rgge(__lml__z)S
o Cl S
-1
ehr > &&eﬁmlseﬂs
- C, s '

So we have the following bound fqg,

K2
log (_) —Im|s —2s+logAcp — logic < —Bp

C]_S
that is,
__sim . log A + 2s — log {2
P= loghc+ 0ge + B
If |m| is large enough we can write,
§@+nmy
logic + B

For the other inequality, from the definition pf there must existsae |}
such that

e PP < | P(f(2)) — fPEhH| = (FP'(y | f@ — (c)] -
Supposing thaf’ < 4, we obtain,
ZS

K
e PP+D < 4PK1§ < 4p?1e<—|m|+1>s

SO
—B(p+ 1) < plog4+ log(Ki/s) + (—|m| + D)s

which implies that

_ _SIm_log(Ki/s) +s+p
~ B+log4 B+logd -
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98 R. METZGER and C. MORALES

Now, to prove part (c), first observe that the first claim in (c) is a direct con-
sequence of part (a) and Al. The second one can be obtained as follows. Let
ze |1 andp = p(m), then

(FP (2 = (P (F(2).T (2 > KalzI* 2 (FP) (f (2)

Ko s - (1)
N UICYR
We can estimate the value (@ from the inequality
e P < [ 191 — oy = (1) @) [1@) - |
ES @

< KaC(fP) ()~
for somet € (f(2), c;) from the Mean Value Theorem. For tifishere existy
satisfying the conditions in part (a) and such thay) = £. The lastinequality is
due to AO. So the inequality above is a consequence of the Mean Value Theorem
and part (a).

Rewriting the equation, it stands that:

s S by (cy| e BpD
2° 2 g | (P )| e,

Combining this last inequality with (1) we obtain

s—1

_ﬁ -
e s) s (kg/s)k-e*ﬁk(isl).

’ K2
p+1 =
(") @ = o (CKl

H S
Since B < ;o we have

s—1

: Ky (eFs) 5
(P (2) > 62 (CKl) (k];/se*“)p ’

leading to
/ 1
("™ @ = 2 (\se™)’ M,
whereM = e %(s/(CKy))S /5. K, . So part (c) is proved.

This ends the proof of Lemma 3.3, because part (d) is an easy consequence of
the second assertion in part (c). O
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Proof of Theorem 3.1. As we said before, it is enough to proof that foin a
small neighborhood of 0 conditions AO, Al and A2 implies tiiats LEO. The
proof is based on an argument in [YO].

In [Yo] it was used the fact that the the initial mdp has a fixed point with
dense backward orbit in-1, 1]. Here we don’t have such fixed point fég but
we can construcfty in the following way. First we consider a mdp with all
the properties off, except that it fixes bothand —1 (note however thaf does
not come from the return map of an attractor). We can chéosenjugated to
1—2x (modZ) so it has a periodic poirte (—1, 1) whose unstable manifold is
the whole[—1, 1]. Sincez € (—1, 1) the conjugation implies that the backward
orbit of z underF is dense if—1, 1]. In particular,z hasF-preimages in both
I andl_,. Afterward we obtainfy by perturbingr in away thatfo(—1) > —1
and fg(1) < 1. We choosefy close toF enough such that th&-continuation
Z, of z still has fg-preimages in bott, andl _,. This finish the construction of
fo.

As to be inl, andl_, is an open condition in the parameter space we have
that the f5-continuationz, of z; still has preimages in bothy, and|1_, for all
a > Ocloseto 0. So, the conclusion remains valid only redu&rng E N[O, r)
for small enought > 0.

Next we follow [Yo], pag. 127. Letf = fy,a € E. First we prove that
forall | c [—1, 1], there existsg = ng(l) such thatf™(l) D I, or l_4.
According to Lemma 3.2, if the iterates bfdo not intersect—34, §) the length
of the iterates increases, so there is sdmé ) that intersects—s, 8). If fi(l)
does not contain somg, keep iterating, and note that using Lemma 3.3 we have
[FPCEI())] > |fI()], p= px) for x € fil. After finitely many returns to
(=38, 8), there must exist; andk; € Z* such thatf 11(1) > Iy, orl_y,. Consider
fi(ly), j =1, 2,..., and letj, be the first time (after the bound period of some
X € ly,) such thatf ) (ly,) D somely. Since| fi2(ly,)| > |ly,], fl2(l,) must
contain soméy, or |_y, with 0 < ky < k;. We then considef j (l,) and repeat
the argument until soméj(lkn) Dlaorl_a.

To finish, since there is an; € Z* such thatz, € " (1) or f"(1_,),
wherez, is the aforementioned continuationaf Observe that forany = f,,

a € E, andl some interval containing, there exista1, = ny(I') such that
f2() o [f(01), f(07)],i.e. fisLEO.

So Theorem 3.1 follows. O
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4  Proof of Theorem 1.2

Theorem 3.1 in the previous section implies that the vector field associated to the
Rovella attractor originates a LEO one dimensional map in an almost 2-persistent
way.

That is, in order to prove Theorem 1.2 it is left to prove that a vector field
with a periodic orbit that originates a LEO one dimensional map is a homoclinic
class. For this we use the argument in [B].

Consider the two-dimensional map: Q* — Q*, the return map associated
to the Rovella attractor. Define

g —
AY =AY
n=1
the attractor for this return map, where

Al ={x=T"2) :2z2,....1"Y(2) ¢TI},

andT is the intersection of) with the local stable manifold of the singularity.

It suffices to prove thaf\% is a homoclinic class offl.

Now, since there exists a periodic popwf period two for the one dimensional
map associated to this return map, so there is a periodic padfifperiod two
for the return map (recall that we have a contracting foliationtpr

So we are going to prove that the homoclinic classpofHn(p), is Af.
ObviouslyHr (p) C A so we only need to provay C Hr(p).

Takey € AY ande > 0, we need to provélr (p) N B:(y) # 4. Taken large
enough so that it € Q satisfies thafl' (z) is defined forall0<i <n—1and
[1"(2) € Be2(y), thenII" carries the component of the stable maniféid(z)
containingz inside B.(y), i.e., [1"(W3(2)) C B.(y). For such am we have
y € AT by definition, so there ig, € B,(y) N Al. Again by definition there is
z, such that, = I1"(z,) with z,, [1(z,), . .., I1""*(z,) well defined. The LEO
property of the one-dimensional map associatdd implies thatWs(p) is dense
in Q and thatW"(p) intersectsW3(z,). Then, there i, € H(p) arbitrarily
close toWs(z,). In particular, we havél' (h,)) stays close tdl' (W3(z,)) for

alli =0,...,n, soll"(h,) € B.(y) by the property ofn. SinceHp(p) is
[T-invariant we get the result. O
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