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Abstract. Four new generalizations of the standard beta distribution are introduced.
Various properties are derived for each distribution, including its hazard rate function
and moments.
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1 Introduction

Beta distributions are very versatile and a variety of uncertainties can be use-
fully modeled by them. Many of the finite range distributions encountered in
practice can be easily transformed into the standard distribution. In reliability
and life testing experiments, many times the data are modeled by finite range
distributions, see for example Barlow and Proschan (1975).

A random variableX is said to have the standard beta distribution with param-
etersa andb if its probability density function (pdf) is:

f (x) =
xa−1(1 − x)b−1

B(a, b)
(1)

for 0 < x < 1, a > 0 andb > 0, where

B(a, b) =
∫ 1

0
ta−1(1 − t)b−1dt

denotes the beta function. Many generalizations of (1) involving algebraic, ex-
ponential and hypergeometric functions have been proposed in the literature; see
Chapter 25 in Johnson et al. (1995) and Gupta and Nadarajah (2004) for detailed
accounts. In this paper, we introduce four new generalizations of (1). We derive
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various properties for each distribution, including its pdf, cdf (cumulative distri-
bution function), moments and the hazard rate function. These results are given
in Sections 2, 3, 4 and 5. The calculations of this paper use the Anger function,
the Fresnel cosine integral, the Struve function, the incomplete gamma func-
tion, the Lerch function, the incomplete beta function, and the hypergeometric
functions defined by

Ja(x) =
1

π

∫ π

0
cos(at − x sint)dt,

C(x) =
2

√
2π

∫ x

0
cos

(
t2

)
dt,

Ha(x) =
∞∑

k=0

(−1)kx2k+a+1

0 (k + 3/2) 0 (a + k + 3/2)
,

γ (a, x) =
∫ x

0
ta−1 exp(−t)dt,

8(x, a, b) =
∞∑

k=0

(b + k)−axk,

Bx(a, b) =
∫ x

0
ta−1(1 − t)b−1dt,

1F1 (α; β; x) =
∞∑

k=0

(α)k

(β)k

xk

k!
,

1F2 (α; β, γ ; x) =
∞∑

k=0

(α)k

(β)k (γ )k

xk

k!
,

2F1 (α, β; γ ; x) =
∞∑

k=0

(α)k (β)k

(γ )k

xk

k!
,
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and

3F2 (α, β, γ ; λ,μ; x) =
∞∑

k=0

(α)k (β)k (γ )k

(λ)k (μ)k

xk

k!
,

where(c)k = c(c + 1) ∙ ∙ ∙ (c + k − 1) denotes the ascending factorial. A useful
relationship between the incomplete beta function and the2F1 function (also
known as the Gauss hypergeometric function) is that

Bx(a, b) =
xa

a
2F1 (a, 1 − b; a + 1; x) . (2)

The properties of these special functions can be found in Prudnikov et al. (1986)
and Gradshteyn and Ryzhik (2000).

2 Compound beta

This generalization is based on the characterization that ifX andY are indepen-
dent gamma random variables then the ratioX/(X + Y) has the pdf (1). Here,
we takeX andY to have the compound gamma distribution with the pdfs

f (x) =
xa−1(1 + x)−(a+b)

B(a, b)
(3)

and

f (y) =
yα−1(1 + y)−(α+β)

B(α, β)
(4)

for x > 0 and y > 0, respectively, and then consider the distribution of
W = X/(X + Y). We refer to this as thecompound betadistribution. A
practical example of the use ofW can be described as follows: suppose there are
two financial institutions A and B and that one is interested in quantifying their
relative performance. Assume that some financial indices for the two institutions
A and B are compound gamma distributed according to (3) and (4), respectively.
This assumption is very reasonable because the compound gamma distribution
(which is also known as the beta distribution of the second kind) has been heavily
applied in the areas of finance and economics. Under the assumption, it is clear
that the variableW = X/(X + Y) will reflect the relative performance of insti-
tution A with respect to institution B. Hence, measures of relative performance
can be based on the distribution ofW.

Bull Braz Math Soc, Vol. 37, N. 1, 2006
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The variable of interest isW = X/(X + Y). The cdf corresponding to (4) is

F(y) =

∫ y
0 tα−1(1 + t)−(α+β)dt

B(α, β)

=

∫ 1
1/(1+y)

wβ−1(1 − w)α−1dw

B(α, β)

= 1 −
B1/(1+y)(β, α)

B(α, β)
.

Thus, the cdf ofW can be written as

F(w) = Pr

(
X

X + Y
≤ w

)

= Pr

(
Y ≥

1 − w

w
X

)

= 1 − Pr

(
Y ≤

1 − w

w
X

)

= 1 −
∫ ∞

0

{
Bw/{w+(1−w)x}(β, α)

B(α, β)

}
xa−1(1 + x)−(a+b)

B(a, b)
dx

=
I (w)

B(a, b)B(α, β)
,

(5)

where

I (w) =
∫ ∞

0
xa−1(1 + x)−(a+b)Bw/{w+(1−w)x}(β, α)dx. (6)

Using the relationship (2), (6) can be rewritten as

I (w) =
1

β

∫ ∞

0
xa−1(1 + x)−(a+b)

(
1 +

1 − w

w
x

)β

2F1

(
β, 1 − α; β + 1;

w

w + (1 − w)x

)
dx.

(7)

Settingy = w/{w + (1 − w)x}, (7) can be further rewritten as

I (w) =
1

β
wa(1 − w)b(1 − 2w)−(a+b) J(w), (8)

Bull Braz Math Soc, Vol. 37, N. 1, 2006
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where

J(w) =
∫ 1

0
yb−β−1(1 − y)a−1

(
w

1 − 2w
+ y

)−(a+b)

2F1 (β, 1 − α; β + 1; y) dy.

(9)

Using the series representation

(1 + z)α =
∞∑

j =0

0 (α + 1)

0 (α − j + 1)

zj

j !
,

(9) can be expanded as

J(w) =
∞∑

k=0

(−1)k(a + b)k

k!

(
w

1 − 2w

)−(a+b+k)

Jk, (10)

where

Jk =
∫ 1

0
yk+b−β−1(1 − y)a−1

2F1 (β, 1 − α; β + 1; y) dy. (11)

By application of equation (2.21.1.5) in Prudnikov et al. (1986, volume 3),
(11) can be evaluated as

Jk = B (k + b − β, a) 3F2 (β, 1 − α, b − β; β + 1, b + a − β; 1) . (12)

Combining (5), (8), (10) and (12), one obtains the cdf ofW as

F(w) =

C

(
1 − w

w

)b ∞∑

k=0

(−1)k(a + b)k

k!

(
1 − 2w

w

)k

B (k + b − β, a) ,
(13)

where the constantC is given by

C = 3F2 (β, 1 − α, b − β; β + 1, b + a − β; 1)

βB(a, b)B(α, β)
. (14)

Differentiating (13) with respect tow, one obtains the corresponding pdf as

f (w) =
C(1 − w)b−1

wb+1(1 − 2w)

∞∑

k=0

(−1)k(a + b)k B (k + b − β, a)

k!

×
(

1 − 2w

w

)k

{(2b + k)w − b − k} .

(15)
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Figure 1: The pdf (15) for (a):(a, b) = (0.5, 0.5); (b): (a, b) = (4, 4); (c):
(a, b) = (2, 4); and, (d):(a, b) = (0.5, 4).

Figure 1 illustrates the shape of (15) for selected values of the parameters
(a, b, α, β).

Several particular cases of (13) can be obtained by using special properties
of the Gauss hypergeometric function (see Sections 9.10 to 9.13 of Gradshteyn
and Ryzhik (2000)). We consider two cases: ifb = 2β + 1 then (13) reduces to

F(w) =
0(β)0(a + α)

a0(a + α + β)B(a, b)B(α, β)

3F2

(
a, a + b, a + α; a + 1, a + α + β;

1 − 2w

1 − w

)
,

(16)
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and, ifb = 1 − a + β − α then

F(w) =

C

(
1 − w

w

)b ∞∑

k=0

(−1)k(a + b)k0(1 + k − a − α)

k!0(2a + b + 2α − k − 2)0(1 + k − α)

(
1 − 2w

w

)k

,

(17)
where the constantC is given by

C =
0(a)0(β)0(a + α) 2F1 (β, b − β; β + 1; 1)

B(a, b)B(α, β)
.

The hazard rate function defined byh(x) = f (x)/{1− F(x)} is an important
quantity characterizing life phenomena. It can be loosely interpreted as fol-
lows: if there is a large number of items (say,n(x)) in operation at timex, then
n(x) × h(x) is approximately equal to the number of failures per unit time (or
h(x) is approximately equal to the number of failures per unit time per unit at
risk). It is immediate from (13) and (15) that the hazard rate function is given by

h(x) =
∞∑

k=0

(−1)k(a + b)k B (k + b − β, a)

k!

(
1 − 2w

w

)k

{(2b + k)w − b − k}

1 − w(1 − w)(1 − 2w)

∞∑

k=0

(−1)k(a + b)k

k!

(
1 − 2w

w

)k

B (k + b − β, a)

.
(18)

Some possible shapes of (18) fora = b = 1/2 are shown in Figure 2. Ideally
one would like a “bathtub” shape forh(x) because most systems in real–life
capture the three distinct hazard regimes: the region of infant mortality (where
h(x) decreases withx), the random failure region (whereh(x) does not change
rapidly with x) and the wear-out region (whereh(x) increases withx due to
deterioration processes). It is pleasing to see that the shapes exhibited in Figure
2 are exactly of this type.

A series representation for thenth moment ofW can be obtained as follows.
Note from (13) that one can write

F(w) = C
∞∑

k=0

k∑

`=0

(
k
`

)
(−1)k+`2`(a + b)k

k!
B (k + b − β, a) w`−b−k(1−w)b,

whereC is given by (14). Thus, using the definition that

E
(
Wn

)
= n

∫ 1

0
wn−1 {1 − F(w)} dw,

Bull Braz Math Soc, Vol. 37, N. 1, 2006
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Figure 2: The hazard rate function (18) fora = b = 0.5.

one can obtain

E
(
Wn)

=

1 − nC
∞∑

k=0

k∑

`=0

(
k
`

)
(−1)k+`2`(a + b)k

k!
B (k + b − β, a) B(n + ` − b − k, b + 1).

(19)

One can also obtain simpler expressions than (19) by considering the special
cases (16) and (17).

3 Power beta

The generalization of this section is also based on the basic characterization
that if X andY are independent gamma distributed random variables with com-
mon scale parameter then the ratioX/(X +Y) has the pdf (1). More specifically,
if X andY have the pdfs

f (x) =
xa−1 exp(−x/β)

βa0(a)
(20)

Bull Braz Math Soc, Vol. 37, N. 1, 2006
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and

f (y) =
yb−1 exp(−y/β)

βb0(b)
(21)

for x > 0 and y > 0, respectively, then the ratioX/(X + Y) will have the
pdf (1). We consider the distribution ofW = Xc/(Xc + Yc), c > 0, which we
refer to aspower beta. A practical example of the use ofW can be described
as follows: suppose that a physical plant has two components A and B and
that one is interested in quantifying their relative performance. Assume that
the inter-failure times for the two components A and B are gamma distributed
according to (20) and (21), respectively. Assume further that the parameterc
reflects the physical process which leads to the failures, i.e. the number of ways
in which the failures can occur. Under these assumptions, it is clear that the
variableW = Xc/(Xc + Yc) will reflect the relative performance of component
A with respect to component B. Hence, measures of relative performance can
be based on the distribution ofW.

The variable of interest isW = Xc/(Xc + Yc), c > 0. The cdf corresponding
to (21) is

F(y) =
γ (b, x)

0(b)
.

Thus, the cdf ofW can be written as

F(w) = Pr

(
Xc

Xc + Yc
≤ w

)

= Pr

(

Y ≥
(

1 − w

w

)1/c

X

)

= 1 − Pr

(

Y ≤
(

1 − w

w

)1/c

X

)

= 1 −
∫ ∞

0

γ
(
b,

(
1−w
w

)1/c x
β

)

0(b)

xa−1 exp
(
− x

β

)

βa0(a)
dx

= 1 −
I (w)

βa0(a)0(b)
,

(22)
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where

I (w) =
∫ ∞

0
xa−1 exp

(
−

x

β

)
γ

(

b,

(
1 − w

w

)1/c x

β

)

dx. (23)

By direct application of equation (6.455.2) in Gradshteyn and Ryzhik (2000),
(23) can be evaluated as

I (w) =
βa0(a + b)

b

(
1 − w

w

)b/c

2F1

(

b, a + b; b + 1;−
(

1 − w

w

)1/c
)

.

Substituting this into (22), one obtains the cdf ofW as

F(w) = 1 −
1

bB(a, b)

(
1 − w

w

)b/c

2F1

(

b, a + b; b + 1;−
(

1 − w

w

)1/c
)

.

(24)

Differentiating (24) with respect tow, one obtains the corresponding pdf as

f (w) =
w

−
(
1+ b

c

)

(1 − w)
b
c −1

bcB(a, b)

{

b 2F1

(

b, a + b; b + 1;−
(

1 − w

w

)1/c
)

−
(

1 − w

w

)1/c

2F1

(

b + 1, a + b + 1; b + 2;−
(

1 − w

w

)1/c
)}

.

(25)

Figure 3 illustrates the shape of (25) for selected values of the parameters
(a, b, c). The effect of the parameterc can be clearly seen – higher values
of c have the effect of increasing the concentration of mass around the end
points 0 and 1.

Several particular cases of (24) can be obtained by using special properties
of the Gauss hypergeometric function (see Sections 9.10 to 9.13 of Gradshteyn
and Ryzhik (2000)). Ifc = 1 then (24) reduces to

F(w) =
Bw(a, b)

B(a, b)
, (26)

which is the cdf of (1). Ifa = 1 then

F(w) = 1 −
(

1 − w

w

)b/c
{

1 +
(

1 − w

w

)1/c
}−b

. (27)
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Figure 3: The pdf (25) for (a):(a, b) = (0.5, 0.5); (b): (a, b) = (1, 1);
(c): (a, b) = (4, 4); (d): (a, b) = (2, 4); (e): (a, b) = (0.5, 4); and, (f):
(a, b) = (4, 0.5).

If b is an integer then

F(w) = 1 −
(−1)bB(1 − a − b, b)

B(a, b)



1 +

{

1 +
(

1 − w

w

)1/c
}b

×
b∑

k=1

(−1)k0(b + k − 1)

0(b)0(k)

(
1 − w

w

) k−1
c

]

.

(28)
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If a + b = 1 then

F(w) = 1 −
(1 − w)b/c

0(a)0(1 − a)wb/c
8

(

−
(

1 − w

w

)1/c

, 1, b

)

. (29)

Finally, if a = b = 1/2 then

F(w) = 1 −
2

π i
tanh−1

(

i

(
1 − w

w

)1/(2c)
)

, (30)

where i =
√

−1 is the imaginary unit.
It is immediate from (24) and (25) that the hazard rate function is given by

h(x) =
b

cw(1 − w)

−
(1 − w)1/c−1

2F1

(
b + 1, a + b + 1; b + 2;−

(
1−w
w

)1/c
)

cw1/c+1
2F1

(
b, a + b; b + 1;−

(
1−w
w

)1/c
) .

(31)

Some possible shapes of (31) fora = b = 1/2 andc = 1, 2, 4, 10 are shown
in Figure 4. As with (18), it is pleasing to see that “bathtub” shapes are exhibited.
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Figure 4: The hazard rate function (31) fora = b = 0.5.
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Using (24) and the definition that

E
(
Wk

)
= k

∫ 1

0
wk−1 {1 − F(w)} dw,

one can write thekth moment ofW as

E
(
Wk

)
=

k

bB(a, b)

∫ 1

0
wk−1

(
1 − w

w

)b/c

2F1

(

b, a + b; b + 1;−
(

1 − w

w

)1/c
)

dw.

(32)

Settingx = ((1 − w)/w)1/c, (32) can be reduced to

E
(
Wk

)
=

ck

bB(a, b)

∫ ∞

0

xb+c−1

(1 + xc)k+1 2F1 (b, a + b; b + 1;−x) dx. (33)

The integral on the right of (33) is difficult to calculate for generalk. However,
if k ≤ −1 then on using the binomial expansion one can rewrite (33) as

E
(
Wk

)
=

ck

bB(a, b)

−(k+1)∑

`=0

(
−(k + 1)

`

)
I (`), (34)

where

I (`) =
∫ ∞

0
xc`+b+c−1

2F1 (b, a + b; b + 1;−x) dx.

By equation (7.511) in Gradshteyn and Ryzhik (2000),

I (`) =
b0(c` + b + c)0(−c` − c)0(a − c` − c)

0(a + b)0(1 − c` − c)
. (35)

Combining (34) and (35), one obtains thekth moment fork ≤ −1 as

E
(
Wk

)
=

ck

0(a)0(b)

−(k+1)∑

`=0

(
−(k + 1)

`

)
0(c` + b + c)0(−c` − c)0(a − c` − c)

0(1 − c` − c)
.

One can also obtain simpler expressions than (33) by considering the special
cases (26)–(30). For instance, ifa = 1 then one has

E
(
Wk

)
= ck

∫ ∞

0

xb+c−1(1 + x)−b

(1 + xc)k+1 dx.
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4 Hypergeometric beta

In this section, we introduce a generalization of (1) involving the Gauss hyper-
geometric function. We define its pdf by

f (x) =
bB(a, b)

B(a, b + γ )
xa+b−1

2F1 (1 − γ, a; a + b; x) (36)

for 0 < x < 1, a > 0, b > 0 andγ > 0. The corresponding cdf is:

F(x) =
bB(a, b)

B(a, b + γ )

∫ x

0
ya+b−1

2F1 (1 − γ, a; a + b; y) dy. (37)

By an application of equation (2.21.1.4) in Prudnikov et al. (1986, volume 3),
(37) can be reduced to

F(x) =
bB(a, b)

(a + b)B(a, b + γ )
xa+b

2F1 (1 − γ, a; a + b + 1; x) . (38)

Thenth moment associated with (36) is:

E
(
Xn

)
=

bB(a, b)

B(a, b + γ )

∫ 1

0
xn+a+b−1

2F1 (1 − γ, a; a + b; x) dx. (39)

Now, by an application of equation (2.21.1.5) in Prudnikov et al. (1986, vol-
ume 3), (39) can be reduced to

E
(
Xn

)
=

bB(a, b)

(n + a + b)B(a, b + γ )

3F2 (1 − γ, a, n + a + b; a + b, n + a + b + 1; 1) .

Note that in the particular caseb = 0, (36) reduces to the standard beta
pdf (1) with parametersa and γ . Figure 5 illustrates the shape of (36) for
selected values of(a, b, γ ). The effect of the parameterb can be clearly seen.

It is immediate from (36) and (38) that the hazard rate function is given by

h(x) =

b(a + b)B(a, b)xa+b−1
2F1 (1 − γ, a; a + b; x)

(a + b)B(a, b + γ ) − bB(a, b)xa+b
2F1 (1 − γ, a; a + b + 1; x)

.
(40)

Some possible shapes of (40) fora = γ = 1/2 and b = 0.1, 1, 2, 5 are
shown in Figure 6. As with (18) and (31), it is pleasing to see that “bathtub”
shapes are exhibited.
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Figure 5: The pdf (36) for (a):(a, γ ) = (4, 4); (b): (a, γ ) = (0.5, 0.5); (c):
(a, γ ) = (4, 0.5); and, (d):(a, γ ) = (0.5, 4).

Several particular cases of (36) can be obtained by using special properties of
the Gauss hypergeometric function (see Section 7.3 of Prudnikov et al. (1986)
and Sections 9.10 to 9.13 of Gradshteyn and Ryzhik (2000)). Some of these
cases are:

1. If a + b + γ = 1 then (36) reduces to

f (x) =
b0(b)xa+b−1(1 − x)−a

0(1 − a)0(a + b)
.

2. If a + b + γ = 2 then

f (x) =
b(a + b − 1)B(a, b)

B(a, 2 − a)
Bx(a + b − 1, 1 − a).

Bull Braz Math Soc, Vol. 37, N. 1, 2006



“main” — 2006/5/4 — 0:22 — page 118 — #16

118 SARALEES NADARAJAH and SAMUEL KOTZ

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80
10

0

x

H
az

ar
d 

R
at

e 
F

un
ct

io
n

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80
10

0

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80
10

0

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80
10

0

b=0.1
b=1
b=2
b=5

Figure 6: The hazard rate function (40) fora = γ = 0.5.

If in addition

(i) a + b − 1 is an integer then

f (x) =
b(a + b − 1)B(a, b)B(a + b − 1, 1 − a)

B(a, 2 − a)

×

{

1 −
a+b−1∑

`=1

0(` − a)

0(1 − a)0(`)
x`−1(1 − x)1−a

}

.

(ii) a = 1/2 andb = 1 then

f (x) =
4

π
arctan

√
x

1 − x
.

(iii) a = 1/2 andb = k then

f (x) =
k(2k − 1)B (1/2, k) B (1/2, k − 1/2)

π

×

{
2

π
arctan

√
x

1 − x
−

√
x(1 − x)

k−1∑

`=1

d`

}

.
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3. If γ = 0 then

f (x) = b(a + b − 1)(1 − x)b−1Bx(a + b − 1, 1 − b).

If in addition

(i) a + b − 1 is an integer then

f (x) = b(a + b − 1)B(a + b − 1, 1 − b)(1 − x)b−1

×

{

1 −
a+b−1∑

`=1

0(` − b)

0(1 − b)0(`)
x`−1(1 − x)1−b

}

.

(ii) a = 1 andb = 1/2 then

f (x) =
1

2
√

1 − x
arctan

√
x

1 − x
.

(iii) a = k andb = 1/2 then

f (x) =
(2k − 1)B (1/2, k − 1/2)

4
√

1 − x





2

π
arctan

√
x

1 − x
−

√
x(1 − x)

k−1∑

`=1

d`





.

4. If γ = 1 then

f (x) = (a + b)xa+b−1,

a power function pdf.

5. If a = 0 then

f (x) = bxb−1,

another power function pdf.

6. If b = 1 then

f (x) =
Bx(a, γ )

B(a, γ + 1)
.

If in addition
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(i) a is an integer then

f (x) =
(

a

γ
+ 1

) {

1 −
a∑

`=1

0(γ + ` − 1)

0(γ )0(`)
x`−1(1 − x)γ

}

.

(ii) γ is an integer then

f (x) =
(

a

γ
+ 1

) {
γ∑

`=1

0(a + ` − 1)

0(a)0(`)
xa(1 − x)`−1

}

.

(iii) a = γ = 1/2 then

f (x) =
4

π
arctan

√
x

1 − x
.

(iv) a = k − 1/2 andγ = j − 1/2 then

f (x) =
(

a

γ
+ 1

)




2

π
arctan

√
x

1 − x
−

√
x(1 − x)

k−1∑

`=1

d` +
j −1∑

`=1

c`





.

It should be noted above that the constantsc` andd` are given by

c` =
0(k + ` − 1)xk−1/2(1 − x)`−1/2

0 (k − 1/2) 0 (` + 1/2)

and

d` =
0(`)x`−1

0 (` + 1/2) 0 (1/2)
,

respectively.

5 Trigonometric beta

In this section, we introduce generalizations of (1) involving trigonometric
functions. We refer to them as the beta trigonometric beta (TB) distributions.
We propose four TB distributions in all: two of these involve the cosine function
and the other two are complementary distributions involving the sine function.

The first generalization is given by the pdf

f (x) = Cxν−1 (1 − x)μ−1 cos(ax) (41)
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for 0 < x < 1, ν > 0, μ > 0 and 0≤ a < π/2, where the constantC is
given by

1

C
=

1

2
B(ν, μ) { 1F1 (ν; ν + μ; ia) + 1F1 (ν; ν + μ;−ia)}

and i =
√

−1 is the imaginary unit. The standard beta pdf (1) arises as the
particular case of (41) fora = 0. Some other particular cases of (41) are:

f (x) = C1xμ−1(1 − x)μ−1 cos(ax)

for 0 < x < 1, μ > 0 and 0≤ a < π/2;

f (x) = C2(1 − x)ν cos(ax)

for 0 < x < 1, ν > −1 and 0≤ a < π/2; and,

f (x) = C3x−1/2 cos(ax)

for 0 < x < 1 and 0≤ a < π/2, where the constantsC1, C2 and C3 are
given by

1

C1
=

√
πa1/2−μ cos

(a

2

)
0(μ)Jμ−1/2

(a

2

)
,

1

C2
=

i

2
a−(1+ν)

[
γ (1 + ν, −ia) exp

{
(νπ − 2a)i

2

}

− γ (1 + ν, ia) exp

{
−

(νπ − 2a)i

2

}]

and

1

C3
=

√
2π

a
C

(√
a
)
,

respectively. The modes of (41) are the solutions of the equation:

a tan(ax) =
μ − 1

1 − x
−

ν − 1

x
.

Using equation (3.768.12) in Gradshteyn and Ryzhik (2000), thenth moment
associated with (41) can be derived as

E
(
Xn

)
=

B (μ, n + ν) { 1F1 (n + ν; n + ν + μ; ia) + 1F1 (n + ν; n + ν + μ;−ia)}

B (μ, ν) { 1F1 (ν; ν + μ; ia) + 1F1 (ν; ν + μ;−ia)}
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for n ≥ 1.
The complementary sine pdf associated with (41) is:

f (x) = Cxν−1 (1 − x)μ−1 sin(ax)

for 0 < x < 1, ν > −1 (ν 6= 0), μ > 0 and 0< a < π , where the constantC
is given by

1

C
= −

i

2
B(ν, μ) { 1F1 (ν; ν + μ; ia) − 1F1 (ν; ν + μ;−ia)} .

The modes of this pdf are the solutions of the equation:

a cot(ax) =
μ − 1

1 − x
−

ν − 1

x

while its nth moment turns out to be

E
(
Xn

)
=

B (μ, n + ν) { 1F1 (n + ν; n + ν + μ; ia) − 1F1 (n + ν; n + ν + μ;−ia)}

B (μ, ν) { 1F1 (ν; ν + μ; ia) − 1F1 (ν; ν + μ;−ia)}

for n ≥ 1. The latter result follows by using equation (3.768.11) in Gradshteyn
and Ryzhik (2000).

The second generalization is given by the pdf

f (x) = Cx2ν−1
(
1 − x2

)μ−1
cos(ax) (42)

for 0 < x < 1, ν > 0, μ > 0 and 0≤ a < π/2, where the constantC is
given by

1

C
=

1

2
B(ν, μ) 1F2

(
ν;

1

2
, ν + μ;−

a2

4

)
.

Settinga = 0 into (42), one obtains a simple transformation of the standard
beta pdf (1). Some other particular cases of (42) are:

f (x) = C1
(
1 − x2

)ν−1/2
cos(ax)

and

f (x) = C2x
(
1 − x2

)ν−1/2
cos(ax)
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for 0 < x < 1, ν > −1/2 and 0≤ a < π/2, where the constantsC1 andC2

are given by
1

C1
=

√
π

2

(
2

a

)ν

0

(
ν +

1

2

)
Jν(a)

and
1

C2
=

1

1 + 2ν
−

√
π

2

(
2

a

)ν

0

(
ν +

1

2

)
Hν+1(a),

respectively. The modes of (42) are the solutions of the equation:

a tan(ax) =
2(μ − 1)x

1 − x2
−

2ν − 1

x
.

By equation (3.771.4) in Gradshteyn and Ryzhik (2000), thenth moment
becomes

E
(
Xn

)
=

B
(
ν + n

2, μ
)

1F2

(
ν + n

2; 1
2, ν + μ + n

2;−a2

4

)

B (ν, μ) 1F2

(
ν; 1

2, ν + μ;−a2

4

)
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Figure 7: Plots of the pdf (41) witha = π/2.
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Figure 8: Plots of the pdf (42) witha = π/2.

for n ≥ 1.
The complementary sine pdf associated with (42) is:

f (x) = Cx2ν−1
(
1 − x2

)μ−1
sin(ax)

for 0 < x < 1, ν > −1/2, μ > 0 and 0< a < π , where the constantC is
given by

1

C
=

a

2
B

(
ν +

1

2
, μ

)

1F2

(
ν +

1

2
;

3

2
, ν + μ +

1

2
;−

a2

4

)
.

The modes of this pdf are the solutions of the equation:

a cot(ax) =
2(μ − 1)x

1 − x2
−

2ν − 1

x

while thenth moment takes the form

E
(
Xn

)
=

B
(
ν + n+1

2 , μ
)

1F2

(
ν + n+1

2 ; 3
2, μ + n+1

2 ;−a2

4

)

B
(
ν + 1

2, μ
)

1F2

(
ν + 1

2;
3
2, ν + μ + 1

2;−a2

4

)
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for n ≥ 1. The latter result follows by application of equation (3.771.3) in
Gradshteyn and Ryzhik (2000).

Figures 7 and 8 show some of the possible shapes of the pdfs (41) and (42).
The parametera is fixed ata = π/2. In Figures 7 and 8, the pdf appears
monotonically decreasing withx whenν < 1. Whenν > 1 the pdf appears
uni-modal with its tails exhibiting a left skew (μ < 1) or right skew (μ > 1).
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