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Abstract. Let G be a compact Lie group. Let, Y be freeG-spaces. In this paper,
we consider the question of the existencezefmapsf: X — Y. As a consequence,
we obtain a theorem about the existencé&gfcoincidence points.
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1 Introduction

One formulation of the Borsuk-Ulam Theorem [2] is that there is no map from
S" to S" equivariant with respect to the antipodal map, wher- n (see, for
example, [1,7.2]). In[13], it was proved thatifandY are Hausdorff, pathwise
connected and paracompact spaces equipped with free involdtioXs— X
andS: Y — Y suchthatforsome natunad > 1,H9(X;Z,) =0forl<q<m
andH™L(Y/S; Z,) = 0, whereY/Sis the orbit space of by S, then there
is no equivariant magd : (X, T) — (Y, S). Our objective, in this paper, is to
generalize this result for free actions of a compact Lie gréup

Let R be a PID ands a compact Lie group. LeX, Y be freeG-spaces. We
denote byg; (X; R) thei-th Betti number ofX. Specifically, we prove

Theorem 1.1. LetG be a compact Lie group anH, Y free G-spaces, Haus-
dorff, pathwise connected and paracompact. Suppose that for some natural
m> 1, HY(X;R) = 0for0 < q < mand H™(Y/G; R) = 0. Then, if
Bm(X; R) < Bmi1(BG; R), there is noG-equivariant mapf : X — V.
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Letus observe thatif is a topological manifold with a free action of a compact
Lie groupG, then dim(Y/G) = dim(Y) — dim(G), where dim denote the usual
topological dimension. Thus, if di6®) > 1, one hasthatdigY/G) < dim(Y).
We have the following Corollary of Theorem 1.1.

Corollary1.2. LetGbeacompactLiegroup ofdimensipnLetX be afrees-
space, Hausdorff, pathwise connected and paracompact suchiti@at; R) =
0, for0 < g < mand letY be a(m+ p)-dimensional topological manifold with
afree action ofG. If Bn(X; R) < Bmi1(BG; R), then there is n&-equivariant
mapf: X — Y.

Proof of Corollary 1.2. SinceY is a(m + p)-dimensional manifold with a
free action ofG, dim(Y/G) = m and therefored™1(Y/G; R) = 0. It follows
from Theorem 1.1 that there is ®-equivariant mapf : X — Y. O

The following examples illustrate Corollary 1.2.

Example 1.3. LetR=7,G = S'x S, X = S x S andY = S x &,
which admit free action of G. One has thdfi(X;Z) = 0,for0< g < m =
5 andH8(Y/G;Z) = 0, since dinfY/G) = 4. Moreover,B(S' x S =
CP® x CP*, which impliesgs(X; Z) = 2 < Bs(BG; Z) = 4. It follows from
Corollary 1.2 that there is no G-equivariant map X — Y.

Example 1.4. LetR=17,G =7, x S, X =S x Y = F x S, which
admit free action of G. One has thBIt%(X;Z,) = 0,for0 < g < m = 4
and H3(Y/G; Z,) = 0, since dinfY/G) = 4. Moreover,B(Z, x S') =
RP*® x CP*, which impliesg4(X; Zy) = 1 < Bs(BG; Z,) = 3. It follows
from Corollary 1.2 that there is no G-equivariant map X — Y.

Remark 1.5. The referee pointed us that Example 1.3 can be obtained by using
results in [9].

WhenG = Z4, whereq > 1 is an integer, another consequence of Theorem
1.1 is the following

Corollary 1.6. Let X,Y be freeZqy-spaces, Hausdorff, pathwise connected
and paracompact, wherg > 1is an integer. Leip be a prime which divides.
Suppose that" (X; Zq) =0, for1 <r < mand Hm“(Y/Zp; Zp) = 0. Then
there is noZqy-equivariant mapf : X — Y.
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Proof of Corollary 1.6.  SinceZ,, is a subgroup o¥, we have thakX, Y are
free Zp-spaces. The hypothesi$' (X; Zq) = 0, for 1 < r < mimplies that
H"(X;Zp) = 0, for 1 <r < m. In particular,H™(X; Z,) = 0 implies that
Bm(X; Zp) < Pm+1(BZp; Zp) = 1. In this way, the assumptions of Theorem
1.1 are satisfied fo6 = Zp, then there is n@& p-equivariant mapf : X — Y.
Consequently, there is rig;-equivariant mapf : X — Y. O

Remark 1.7. Corollary 1.6 extends for fregq-actions,q > 2, Theorem 1
proved in [13].

Remark 1.8. Suppose that in Corollary 1., is am-dimensional manifold,
thusH™ (Y /Zp; Zp) = 0. Then there is n@q-equivariant mapf : X — Y.
This particular case of Corollary 1.6 extends the following result proved by T.
Kobayashiin[11, Theorem 1]: X is a Hausdorff and pathwise connected space
such thatH, (X; Zq) = 0, for 1 <r < m — 1, then there is n@q-equivariant
map f: X — S, wherem, n are oddm > n, S" with the standard action of
Zg,q > 1.

2 Preliminaries

We start by introducing some basic notions and notations. We assume that all
spaces under consideration are Hausdorff and paracompact spaces. Throughout
this paperH, andH * will always denote the singular homology and cohomology
groups. For a given spad® let G be a system of local coefficients f&. We
will denote by H, (B; G) the homology groups oB with local coefficients in
G. The symbol= will denote an appropriate isomorphism between algebraic
objects.

Suppose thaf is a compact Lie group which acts freely on a Hausdorff and
paracompact spack¥, thenX — X/G is a principalG-bundle [3, Theorem
11.5.8] and one can take

h: é — BG (2.1)
a classifying map for th&-bundleX — X/G.

Remark 2.1. Let us observe that ifi is another classifying mapAfor the
principal G-bundleX — X/G, then there is a homotopy betwel@ndh.
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Given theG-spaceX, consider the produdE G x X with the diagonal action
given byg(e, X) = (ge gx) and letEG xg X = (EG x X)/G be its orbit
space. The first projectioBG x X — EG induces a map

EG
Px: EG xg X — (G—):BG, (2.2)
which is a fibration with fibeiX and base spad®G being the classifying space
of G. This is called théBorel construction It associates to eadB-spaceX a
spaceEG xg X, which will be denoted byXg, over BG and to eachG-map
X — Y afiber preserving mapG xg X - EG x¢ Y overBG.

Remark 2.2. If G acts freely onX, then the map

X

induced by the second projecti®’G x X — X is a fibration with a contractible
fibre EG and therefore a homotopy equivalence (for details, see [7]).

Now, let us recall the following theorems of Leray-Serre for fibrations, as given
in [12, theorems 5.1, 5.2].

Theorem 2.3 [The homology Leray-Serre Spectral Sequence].LetG be an

abelian group. Given a fibratiok — E &£ B, whereB is pathwise connected,
there is a first quadrant spectral sequer{¢g ,, d'}, with

EZq = Ho(B: Hq(F: G)). (2.4)

the homology oB with local coefficients in the homology Bf, the fibre ofp,
and coverging tdH..(E; G). Furthermore, this spectral sequence is natural with
respect to fibre-preserving maps of fibrations.

Theorem 2.4 [The cohomology Leray-Serre Spectral Sequence]LetRbe a
commutative ring with unit. Given a fibratidh— E & BwhereBis pathwise
connected, there is a first quadrant spectral sequence of alg¢kyas d, }, with

ESY = HP(B; H{%(F;: R)). (2.5)

the cohomology oB with local coefficients in the cohomology Bf the fibre
of p, and coverging toH*(E; R) as an algebra. Furthermore, this spectral
sequence is natural with respect to fibre-preserving maps of fibrations.
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3 Proof of Theorem 1.1

The proof of Theorem 1.1 will follow from the following lemmas

Lemma 3.1. LetR be a PID andE > B a fibration with fiberF and base
spaceB pathwise connected. Suppose thit(F, R) = 0, for0 < g < m.
Then, there exists an exact sequence with coefficielRs in

Hmnt1(E) 5 Hmpa(B) > Ho(B, Him(F)) — Hmn(E) 5 Hm(B) — -
- = HoE) & Ha(B) 5 Ho(B, H1(F)) — Hi(E) & Hi(B) = O,

wherer is the transgression homomorphism ahl(F) denotes the system of
local coefficients oveB.

Proof. It follows from Theorem 2.3 that there exists a first quadrant spectral
sequenc¢E; ,, d"}, with

EZq = Hp(B: Hy(F)), (3.1)

the homology ofB with local coefficients in the homology &, the fibre ofp,
and coverging ta1, (E; R). SinceF is pathwise connected the local coefficients
system#H(F) over B is trivial and follows from [12, Proposition 5.18] that

E2 0 = Hp(B; Ho(F)) = Hp(B; Ho(F)) = Hy(B),  Vp. (3.2)

On the other handH,(F) = 0, for 0 < g < m and follows from (3.1) that
Eg’q = EJ%, = 0, for 0 < g < m. Furthermore, the spectral sequence is a first
guadrant spectral sequence, then we have

Hm1(B) = Efiio = Emiio = -~ = Emito (3.3)
Ho(B: Hm(F)) = E§, = Egp = -+ = Egiit (3.4)
Hp(B) = B3y = Ejg = -+ = Eby = E. Vp<m.  (35)

Consider the following exact sequences
0— Eg; » H(E) - Efg — O (3.6)

0> E%— EyS E) , > ES , — 0, (3.7)
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for anyr < m+ 1. Putting together these sequences, one obtains the exact
sequence

m+1 dm+l m+1 m dm m
Hni1(E) — Eer10 — Eo,m — Hn(E) — Em0 — EO,mfl — ..

2
.- > HyE) > E2, % EZ, — Hi(E) - E% — 0

whered': Ef , — Ej,_, is the transgression homomorphism [12, theorem 6.5].
If we replace in (3.8) the equalities (3.3), (3.4) and (3.5), one obtains the desired
sequence, that is,

Hmi1(E) —> Hm+1(B) 5 Ho(B, Hm(F)) — Hm(E) — * Hm(B) — ---
- Ho(E) —> Ho(B) 5 Ho(B, H1(F)) — Hy(E) —> Hi(B) — 0

This completes the proof. O

Lemma 3.2. LetR be a PID andE -5 B a fibration with fiberF and base
spaceB pathwise connected. Suppose thHt(F, R) = 0, for0 < q < m.
Then, there exists an exact sequence with coefficierRs in

0— HYB) B HYE) - HOB: HYF)) 5> HZB) & H2E) — -

— . H™B) & HME) - HOB; HM(F)) 5> H™L(B) & HM(E)

wherer is the transgression homomorphism akd (F) denotes the system of
local coefficients oveB.

Proof. The proof is analogous to Lemma 3.1, considering the cohomology
Leray-Serre Spectral Sequence (Theorem 2.4) associated to the fibration

E S B. 0

Lemma 3.3. Let X be a freeG-space, Hausdorff, pathwise connected and
paracompact. For a natural numben > 1, suppose thaH9(X; R) = 0, for

0 < g < mand thatBn(X; R) < Bmi1(BG; R). Then the homomorphism
h*: H™Y(BG; R) - H™1(X/G; R) is nontrivial, whereh: X/G — BGis

a classifying map for the princip&b-bundleX — X/G.
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Proof. Let EG — BG be the universaG-bundle andh: X/G — BG a
classifying map for the principab-bundle X — X/G. Let px: Xg — BG
the Borel-fibration associated to ti&spaceX, where Xg is the Borel space,
asin (2.2). It follows from Remark 2.2 that the mAp — X/G is a homotopy
equivalence. Lat: X/G — Xg beitshomotopy inverse. Therxor: X/G —
BG also classifies the principdb-bundle X — X/G, and it follows from
Remark 2.1 that the majpx o r) is homotopic tch. Since

r*: H™(Xg; R) > H™?! (é R)

isanisomorphism, it suffices to prove thgt: H™(BG; R) - H™(Xg; R)
is nontrivial. In fact, sinceH%(X; R) = 0, for 0 < q < m, it follows from
Lemma 3.2 that there exists an exact sequence with coefficieRs in

0— - = HM(Xg) — -

PX

T (3.9)
.o > HYBG; HM(X)) > H™LBG) 2 H™(Xg)

Suppose thap} : H™(BG; R) - H™1(Xg; R) is the zero homomorphism.
From (3.9), we have that: HY(BG; H™(X)) — H™1(BG) is a surjective
homomorphism, which implies that

rank HO(BG; H™(X)) > Bm+1(BG; R). (3.10)

On the other hand, sincd®(BG; H ™M(X)) is isomorphic to a submodule of
H™(X; R) [14, theorem 3.2] and by hypothedls(X; R) < Bmi1(BG; R),

rank HO(BG; H™M(X)) < rank H™(X; R) = Bm(X; R) < Bmy1(BG; R),

which contradicts 3.10. O

Remark 3.4. A similar result to Lemma 3.1 has been proved in [10, Lemma
2], whenG is a finite group.

Proof of Theorem 1.1. Suppose thaff : X — Y is a G-equivariant map.
SinceY is a Hausdorff paracompact space, one can take a classifying map
g: Y/G — BG for the principal G-bundle Y — Y/G. Then the map

h =go f: X/G — BG can be taken as a classifying map for the prin-
cipal G-bundle X — X/G, where f: X/G — Y/G is the map induced

by f between the orbit spaces. Since by hypothé$i&(Y/G; R) = 0
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one has thagy*: H™1(BG; R) — H™(Y/G; R) is trivial and consequently
h*: H"Y(BG; R) — H™1(X/G; R) is the zero homomorphism, which
contradicts Lemma 3.3. O

SupposeX equipped with a free action of the cyclic grotip generated by a
periodic homeomorphisnii : X — X of period p, wherep is a prime. We set
Y* =TI",Y' — A, where

A=Y, Y2 Y €M Y yi=y = =yp)}

is the usual diagonal ifl”_,Y'. Then,Y* admits a free action ¢t ,,, generated
by a periodic homeomorphistp: Y* — Y* of period p given by

tY(yl’ y25 R yp) - (yZa y3» R ypa yl)

Under these conditions, we obtain the following

Theorem 3.5. For a natural numbem > 1, suppose that" (X; Z,) = 0,
for 1 <r < mand thatH™(Y* /ty; Zp) = 0, wherep is a prime. Then every
continuous magpf : X — Y has aZp-coincidence, that is, there exists a point
X € X such thatf (x) = f(gx) foranyg € Z,.

Proof. Letf: X — Y beamap withoukZ,-coincidences. Then we can define
the Z,-equivariant mag-: X — Y* by

FOo = (F00, F(TX)), -+, FTPH0).

The existence of such a map contradicts Corollary 1.6. O

Remark 3.6. Let us observe that Theorem 3.5 extends for ffgeactions,
p > 2, Theorem 3 proved in [13].

Remark 3.7. Suppose that in Theorem 3.8,is a finite connecte#-dimen-
sional CW-complex. TheN*/Z, admits apk-dimensional structure of a CW-
complex, thusH pI‘+1(Y*/Zp, Zp) = 0. Then, every continuous mafp: X —

Y has aZp-coincidence, iin > pk (this also follows from Theorem 1 of [10];
in fact, Theorem 1 of [10] gives additionally that the result is also valid for
n = pk).
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Remark 3.8. Let X be a Hausdorff space which supports a ffggaction,
wherep > 2 is a prime. In [4], F. Cohen and J.E. Connett obtained a Borsuk-
Ulam result for continuous maps: X — R", with n > 2. The following
statement was proved: X is (n — 1)(p — 1)-connected, then there existe X
andg € Zp, g # identity, such thaff (x) = f(g(x)). Inthe following Theorem,

we replace the hypothesiX“is (n — 1)(p — 1)-connected" by a cohomological
condition onX.

Theorem 3.9. Let X be a Hausdorff, pathwise connected and paracompact
space, equipped with a free action of the cyclic gréigmenerated by a periodic
homeomorphisnT : X — X of period p, wherep is a prime. Suppose that
H"(X,Zp) =0,forl <r < (n—1)(p — 1). Then for every continuous map
f: X > R" there existx € X and1 <i < p—1suchthatf (x) = f(T'(x)).

Remark 3.10. It is interesting to note that Theorem 3.9 is stronger than the
result proved in [4], since @ — 1) (p— 1)-connected space hés (X, Zp) equal
tozeroforl<r <(n—1(p—1).

To prove Theorem 3.9, we recall the definition of #enfiguration space
of a manifold M, studied by Fadell and Neuwirth [8] in 1962. The ordered
configuration spacés the space of the all orderdetuples of distinct points in
M defined by

F(M,K) = {(Xg, X2, - -+ , %) € M: % #£x;, forall i #j}. (3.11)

WhenM = R", the spacd-(R", k) is the complement of a linear arrangement
of subspaces of codimensionin R*". The cohomology of these spaces was
obtained by Cohen [5, 6]. It is again torsion free, with generators of degree
(n — 1) corresponding to individual subspaces, and relations corresponding to
triples with the same pairwise intersection.

The symmetric group , onk letters acts freely of (M, k) by permutation of
coordinates. IfS is any finite group, there exists an inte¢gesuch thaG c ) ,.
ThusZy, the cyclic group of ordep, acts freely or- (R", p), viathe action given
by a homomorphisri, — Zp which sends E Z, to the cycle(l, 2, - - -, p).

In [4], Cohen and Connett proved the following result

Lemma3.11. H"(F(R", p)/Zy; Zp) =0, for r > (n—1)(p—1).
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Proof of Theorem 3.9. Suppose thaf (x) # f(T'(x)), for anyx € X and
1<i < p—1. Thus, we can definey,-mapF: X — F(R", p) given by

F(x) = (f(x), f(TX),---, f(TPx)).

SinceH"(X,Zp) = 0, for1 <r < (n—1)(p — 1) and by Lemma 3.11,
H"(F(R", p)/Zp; Zp) is zero, forr > (n — 1)(p — 1), one has thaK and
F(R", p) satisfy the hypotheses of Corollary 1.6 and the existence of such a
Zp-equivariant map is a contradiction.

Acknowledgements. The authors express their thanks to Professor Pedro Luiz
Queiroz Pergher of the Federal University of S&o Carlos for their helpful com-
ments and important suggestions which led to this present version. Also we are
grateful to the referee for his careful reading and helpful comments concerning
the presentation of this article.

References

[1] M.K. Agoston,Algebraic TopologyNew York (1976).

[2] K. Borsuk,Drei Séatze liber die-dimensionale euklidische SphdFaind. Math.,
20(1933) 177-190.

[3] G. Bredon,Introduction to Compact Transformation Groyupgsademic Press,
INC., New York and London (1972).

[4] F. Cohen and J.E. Connet, coincidence theorem related to the Borsuk-Ulam
theoremProc. Amer. Math. Soc44 (1) (1974) 218-220.

[5] F.R. CohenCohomology of braid spaceBull. Amer. Math. Soc79 (4) (1973)
763-766.

[6] F.R. Cohen,The homology ofC11-spacesn > 0 in F.R. Cohen, T. Lada and
P. May (Eds.),The homology of iterated loop spacésctures Notes in Math.,
533(1976), Springer-Verlag, Berlin, 207-351.

[7] T. Tom Dieck, Transformation GroupsWalter de Gruyter, Berlin-New York
(1987).

[8] E.Fadelland L. NeuwirthConfiguration spacédath. Scand10(1962) 111-118.

[9] E.Fadelland S. Husseimin ideal-valued cohomological index theory with appli-
cations to Borsuk-Ulam and Bourgin-Yang theoreErgodic Theory Dynamical
Systemsg (1988) 73-85.

[10] D.L.Gongalves, J. Jaworowski, P.L.Q. Pergher and A.Y. Volovikinincidences
for maps of spaces with finite group actipispology and its Applicationd,45
Number 1-3 (2004) 61-68.

[11] T.KobayashiThe Borsuk-Ulam Theorem forZ,-map from d.q-space >+l
Proc. Amer. Math. So@7 Number 4 (1986) 714-716.

Bull Braz Math Soc, Vol. 37, N. 1, 2006



A BORSUK-ULAM THEOREM FOR COMPACT LIE GROUP ACTIONS 137

[12] J. McCleary,User’s Guide to Spectral Sequencikkathematics Lectures Series,
Publish or Perish, Inc., Wilmington, Delaware (U.S.A.) (1985).

[13] P.L.Q. Pergher, D. de Mattos and E.L. dos Sanid& Borsuk-Ulam Theorem for
General Space#érch. Math.,81 (1) (2003) 96-102.

[14] G.W. Whitehead Elements of Homotopy Theongpringer Verlag, New York,
Heidelberg, Berlin (1978).

Carlos BiasiandDenise de Mattos
Departamento de Matematica-ICMC
Universidade de Sao Paulo

Caixa Postal 668

13560-970 Sao Carlos, SP

BRAZIL

E-mails: biasi@icmc.usp.br /
demattos@ibilce.unesp.br, deniseml@icmc.usp.br

Bull Braz Math Soc, Vol. 37, N. 1, 2006



