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A Borsuk-Ulam Theorem for compact Lie
group actions
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Abstract. Let G be a compact Lie group. LetX, Y be freeG-spaces. In this paper,
we consider the question of the existence ofG-maps f : X → Y. As a consequence,
we obtain a theorem about the existence ofZp-coincidence points.
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1 Introduction

One formulation of the Borsuk-Ulam Theorem [2] is that there is no map from
Sm to Sn equivariant with respect to the antipodal map, whenm > n (see, for
example, [1,7.2]). In [13], it was proved that ifX andY are Hausdorff, pathwise
connected and paracompact spaces equipped with free involutionsT : X → X
andS: Y → Y such that for some naturalm ≥ 1, Hq(X;Z2) = 0 for 1 ≤ q ≤ m
and Hm+1(Y/S;Z2) = 0, whereY/S is the orbit space ofY by S, then there
is no equivariant mapf : (X, T) → (Y, S). Our objective, in this paper, is to
generalize this result for free actions of a compact Lie groupG.

Let R be a PID andG a compact Lie group. LetX, Y be freeG-spaces. We
denote byβi (X; R) the i -th Betti number ofX. Specifically, we prove

Theorem 1.1. Let G be a compact Lie group andX, Y freeG-spaces, Haus-
dorff, pathwise connected and paracompact. Suppose that for some natural
m ≥ 1, Hq(X; R) = 0 for 0 < q < m and Hm+1(Y/G; R) = 0. Then, if
βm(X; R) < βm+1(BG; R), there is noG-equivariant mapf : X → Y.
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Let us observe that ifY is a topological manifold with a free action of a compact
Lie groupG, then dim(Y/G) = dim(Y) − dim(G), where dim denote the usual
topological dimension. Thus, if dim(G) ≥ 1, one has that dim(Y/G) < dim(Y).
We have the following Corollary of Theorem 1.1.

Corollary 1.2. LetG be a compact Lie group of dimensionp. LetX be a freeG-
space, Hausdorff, pathwise connected and paracompact such thatHq(X; R) =
0, for 0 < q < m and letY be a(m+ p)-dimensional topological manifold with
a free action ofG. If βm(X; R) < βm+1(BG; R), then there is noG-equivariant
map f : X → Y.

Proof of Corollary 1.2. SinceY is a (m + p)-dimensional manifold with a
free action ofG, dim(Y/G) = m and thereforeHm+1(Y/G; R) = 0. It follows
from Theorem 1.1 that there is noG-equivariant mapf : X → Y. �

The following examples illustrate Corollary 1.2.

Example 1.3. Let R = Z, G = S1 × S1, X = S5 × S5 andY = S3 × S3,
which admit free action of G. One has thatHq(X;Z) = 0, for 0 < q < m =
5 and H6(Y/G;Z) = 0, since dim(Y/G) = 4. Moreover,B(S1 × S1) =
CP∞ ×CP∞, which impliesβ5(X;Z) = 2 < β6(BG;Z) = 4. It follows from
Corollary 1.2 that there is no G-equivariant mapf : X → Y.

Example 1.4. Let R = Z2, G = Z2 × S1, X = S4 × S5, Y = S2 × S3, which
admit free action of G. One has thatHq(X;Z2) = 0, for 0 < q < m = 4
and H5(Y/G;Z2) = 0, since dim(Y/G) = 4. Moreover,B(Z2 × S1) =
RP∞ × CP∞, which impliesβ4(X;Z2) = 1 < β5(BG;Z2) = 3. It follows
from Corollary 1.2 that there is no G-equivariant mapf : X → Y.

Remark 1.5. The referee pointed us that Example 1.3 can be obtained by using
results in [9].

WhenG = Zq, whereq > 1 is an integer, another consequence of Theorem
1.1 is the following

Corollary 1.6. Let X, Y be freeZq-spaces, Hausdorff, pathwise connected
and paracompact, whereq > 1 is an integer. Letp be a prime which dividesq.
Suppose thatHr (X;Zq) = 0, for 1 ≤ r ≤ m and Hm+1(Y/Zp;Zp) = 0. Then
there is noZq-equivariant mapf : X → Y.
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Proof of Corollary 1.6. SinceZp is a subgroup ofZq, we have thatX, Y are
freeZp-spaces. The hypothesisHr (X;Zq) = 0, for 1 ≤ r ≤ m implies that
Hr (X;Zp) = 0, for 1 ≤ r ≤ m. In particular,Hm(X;Zp) = 0 implies that
βm(X;Zp) < βm+1(BZp;Zp) = 1. In this way, the assumptions of Theorem
1.1 are satisfied forG = Zp, then there is noZp-equivariant mapf : X → Y.
Consequently, there is noZq-equivariant mapf : X → Y. �

Remark 1.7. Corollary 1.6 extends for freeZq-actions,q > 2, Theorem 1
proved in [13].

Remark 1.8. Suppose that in Corollary 1.6,Y is am-dimensional manifold,
thusHm+1(Y/Zp;Zp) = 0. Then there is noZq-equivariant mapf : X → Y.
This particular case of Corollary 1.6 extends the following result proved by T.
Kobayashi in [11, Theorem 1]: ifX is a Hausdorff and pathwise connected space
such thatHr (X;Zq) = 0, for 1 ≤ r ≤ m − 1, then there is noZq-equivariant
map f : X → Sn, wherem, n are odd,m > n, Sn with the standard action of
Zq, q > 1.

2 Preliminaries

We start by introducing some basic notions and notations. We assume that all
spaces under consideration are Hausdorff and paracompact spaces. Throughout
this paper,H∗ andH∗ will always denote the singular homology and cohomology
groups. For a given spaceB, letG be a system of local coefficients forB. We
will denote byH∗(B;G) the homology groups ofB with local coefficients in
G. The symbol∼= will denote an appropriate isomorphism between algebraic
objects.

Suppose thatG is a compact Lie group which acts freely on a Hausdorff and
paracompact spaceX, then X → X/G is a principalG-bundle [3, Theorem
II.5.8] and one can take

h :
X

G
→ BG (2.1)

a classifying map for theG-bundleX → X/G.

Remark 2.1. Let us observe that if̂h is another classifying map for the
principalG-bundleX → X/G, then there is a homotopy betweenh andĥ.
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Given theG-spaceX, consider the productEG × X with the diagonal action
given byg(e, x) = (ge, gx) and letEG ×G X = (EG × X)/G be its orbit
space. The first projectionEG × X → EG induces a map

pX : EG ×G X →
(EG)

G
= BG, (2.2)

which is a fibration with fiberX and base spaceBG being the classifying space
of G. This is called theBorel construction. It associates to eachG-spaceX a
spaceEG ×G X, which will be denoted byXG, over BG and to eachG-map
X → Y a fiber preserving mapEG ×G X → EG ×G Y over BG.

Remark 2.2. If G acts freely onX, then the map

XG →
X

G
(2.3)

induced by the second projectionEG× X → X is a fibration with a contractible
fibre EG and therefore a homotopy equivalence (for details, see [7]).

Now, let us recall the following theorems of Leray-Serre for fibrations, as given
in [12, theorems 5.1, 5.2].

Theorem 2.3 [The homology Leray-Serre Spectral Sequence].LetG be an

abelian group. Given a fibrationF↪→E
p

→ B, whereB is pathwise connected,
there is a first quadrant spectral sequence{Er

∗,∗, dr }, with

E2
p,q

∼= Hp(B;Hq(F; G)), (2.4)

the homology ofB with local coefficients in the homology ofF , the fibre ofp,
and coverging toH∗(E; G). Furthermore, this spectral sequence is natural with
respect to fibre-preserving maps of fibrations.

Theorem 2.4 [The cohomology Leray-Serre Spectral Sequence].LetRbe a

commutative ring with unit. Given a fibrationF↪→E
p

→ B whereB is pathwise
connected, there is a first quadrant spectral sequence of algebras{E∗,∗

r , dr }, with

Ep,q
2

∼= H p(B;H q(F; R)), (2.5)

the cohomology ofB with local coefficients in the cohomology ofF , the fibre
of p, and coverging toH∗(E; R) as an algebra. Furthermore, this spectral
sequence is natural with respect to fibre-preserving maps of fibrations.
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3 Proof of Theorem 1.1

The proof of Theorem 1.1 will follow from the following lemmas

Lemma 3.1. Let R be a PID andE
p

→ B a fibration with fiberF and base
spaceB pathwise connected. Suppose thatHq(F, R) = 0, for 0 < q < m.
Then, there exists an exact sequence with coefficients inR,

Hm+1(E)
p∗
→ Hm+1(B)

τ
→ H0(B,Hm(F)) → Hm(E)

p∗
→ Hm(B) → ∙ ∙ ∙

∙ ∙ ∙ → H2(E)
p∗
→ H2(B)

τ
→ H0(B,H1(F)) → H1(E)

p∗
→ H1(B) → 0,

whereτ is the transgression homomorphism andHi (F) denotes the system of
local coefficients overB.

Proof. It follows from Theorem 2.3 that there exists a first quadrant spectral
sequence{Er

∗,∗, dr }, with

E2
p,q

∼= Hp(B;Hq(F)), (3.1)

the homology ofB with local coefficients in the homology ofF , the fibre ofp,
and coverging toH∗(E; R). SinceF is pathwise connected the local coefficients
systemH0(F) over B is trivial and follows from [12, Proposition 5.18] that

E2
p,0

∼= Hp(B;H0(F)) = Hp(B; H0(F)) = Hp(B), ∀p. (3.2)

On the other hand,Hq(F) = 0, for 0 < q < m and follows from (3.1) that
E2

p,q = E∞
p,q = 0, for 0 < q < m. Furthermore, the spectral sequence is a first

quadrant spectral sequence, then we have

Hm+1(B) = E2
m+1,0 = E3

m+1,0 = ∙ ∙ ∙ = Em+1
m+1,0 (3.3)

H0(B;Hm(F)) = E2
0,m = E3

0,m = ∙ ∙ ∙ = Em+1
0,m (3.4)

Hp(B) = E2
p,0 = E3

p,0 = ∙ ∙ ∙ = Ep
p,0 = E∞

p,0, ∀p ≤ m. (3.5)

Consider the following exact sequences

0 → E∞
0,r → Hr (E) → E∞

r,0 → 0 (3.6)

0 → E∞
r,0 → Er

r,0
dr

→ Er
0,r −1 → E∞

0,r −1 → 0, (3.7)
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for any r ≤ m + 1. Putting together these sequences, one obtains the exact
sequence

Hm+1(E) → Em+1
m+1,0

dm+1

→ Em+1
0,m → Hm(E) → Em

m,0
dm

→ Em
0,m−1 → ∙ ∙ ∙

∙ ∙ ∙ → H2(E) → E2
2,0

d2

→ E2
0,1 → H1(E) → E∞

1,0 → 0

wheredr : Er
r,0 → Er

0,r −1 is the transgression homomorphism [12, theorem 6.5].
If we replace in (3.8) the equalities (3.3), (3.4) and (3.5), one obtains the desired
sequence, that is,

Hm+1(E)
p∗
→ Hm+1(B)

τ
→ H0(B,Hm(F)) → Hm(E)

p∗
→ Hm(B) → ∙ ∙ ∙

→ ∙ ∙ ∙ H2(E)
p∗
→ H2(B)

τ
→ H0(B,H1(F)) → H1(E)

p∗
→ H1(B) → 0

This completes the proof. �

Lemma 3.2. Let R be a PID andE
p

→ B a fibration with fiberF and base
spaceB pathwise connected. Suppose thatHq(F, R) = 0, for 0 < q < m.
Then, there exists an exact sequence with coefficients inR,

0 → H1(B)
p∗

→ H1(E) → H0(B;H 1(F))
τ

→ H2(B)
p∗

→ H2(E) → ∙ ∙ ∙

→ ∙ ∙ ∙ Hm(B)
p∗

→ Hm(E) → H0(B;Hm(F))
τ

→ Hm+1(B)
p∗

→ Hm+1(E)

whereτ is the transgression homomorphism andH i (F) denotes the system of
local coefficients overB.

Proof. The proof is analogous to Lemma 3.1, considering the cohomology
Leray-Serre Spectral Sequence (Theorem 2.4) associated to the fibration

E
p

→ B. �

Lemma 3.3. Let X be a freeG-space, Hausdorff, pathwise connected and
paracompact. For a natural numberm ≥ 1, suppose thatHq(X; R) = 0, for
0 < q < m and thatβm(X; R) < βm+1(BG; R). Then the homomorphism
h∗ : Hm+1(BG; R) → Hm+1(X/G; R) is nontrivial, whereh : X/G → BG is
a classifying map for the principalG-bundleX → X/G.
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Proof. Let EG → BG be the universalG-bundle andh : X/G → BG a
classifying map for the principalG-bundleX → X/G. Let pX : XG → BG
the Borel-fibration associated to theG-spaceX, whereXG is the Borel space,
as in (2.2). It follows from Remark 2.2 that the mapXG → X/G is a homotopy
equivalence. Letr : X/G → XG be its homotopy inverse. ThenpX◦r : X/G →
BG also classifies the principalG-bundle X → X/G, and it follows from
Remark 2.1 that the map(pX ◦ r ) is homotopic toh. Since

r ∗ : Hm+1(XG; R) → Hm+1

(
X

G
; R

)

is an isomorphism, it suffices to prove thatp∗
X : Hm+1(BG; R) → Hm+1(XG; R)

is nontrivial. In fact, sinceHq(X; R) = 0, for 0 < q < m, it follows from
Lemma 3.2 that there exists an exact sequence with coefficients inR,

0 → ∙ ∙ ∙ → Hm(XG) → ∙ ∙ ∙

∙ ∙ ∙ → H0(BG;Hm(X))
τ

→ Hm+1(BG)
p∗

X→ Hm+1(XG)
(3.9)

Suppose thatp∗
X : Hm+1(BG; R) → Hm+1(XG; R) is the zero homomorphism.

From (3.9), we have thatτ : H0(BG;Hm(X)) → Hm+1(BG) is a surjective
homomorphism, which implies that

rank H0(BG;Hm(X)) ≥ βm+1(BG; R). (3.10)

On the other hand, sinceH0(BG;Hm(X)) is isomorphic to a submodule of
Hm(X; R) [14, theorem 3.2] and by hypothesisβm(X; R) < βm+1(BG; R),

rank H0(BG;Hm(X)) < rank Hm(X; R) = βm(X; R) < βm+1(BG; R),

which contradicts 3.10. �

Remark 3.4. A similar result to Lemma 3.1 has been proved in [10, Lemma
2], whenG is a finite group.

Proof of Theorem 1.1. Suppose thatf : X → Y is a G-equivariant map.
Since Y is a Hausdorff paracompact space, one can take a classifying map
g : Y/G → BG for the principal G-bundle Y → Y/G. Then the map
h = g ◦ f̄ : X/G → BG can be taken as a classifying map for the prin-
cipal G-bundle X → X/G, where f̄ : X/G → Y/G is the map induced
by f between the orbit spaces. Since by hypothesisHm+1(Y/G; R) = 0
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one has thatg∗ : Hm+1(BG; R) → Hm+1(Y/G; R) is trivial and consequently
h∗ : Hm+1(BG; R) → Hm+1(X/G; R) is the zero homomorphism, which
contradicts Lemma 3.3. �

SupposeX equipped with a free action of the cyclic groupZp generated by a
periodic homeomorphismT : X → X of period p, wherep is a prime. We set
Y∗ = 5

p
i =1Y

i − 1, where

1 = {(y1, y2, ∙ ∙ ∙ , yp) ∈ 5
p
i =1Y

i ; y1 = y2 = ∙ ∙ ∙ = yp)}

is the usual diagonal in5p
i =1Y

i . Then,Y∗ admits a free action ofZp, generated
by a periodic homeomorphismtY : Y∗ → Y∗ of period p given by

tY(y1, y2, ∙ ∙ ∙ , yp) = (y2, y3, ∙ ∙ ∙ , yp, y1).

Under these conditions, we obtain the following

Theorem 3.5. For a natural numberm ≥ 1, suppose thatHr (X;Zp) = 0,
for 1 ≤ r ≤ m and thatHm+1(Y∗/tY;Zp) = 0, wherep is a prime. Then every
continuous mapf : X → Y has aZp-coincidence, that is, there exists a point
x ∈ X such thatf (x) = f (gx) for anyg ∈ Zp.

Proof. Let f : X → Y be a map withoutZp-coincidences. Then we can define
theZp-equivariant mapF : X → Y∗ by

F(x) = ( f (x), f (T(x)), ∙ ∙ ∙ , f (T p−1(x)).

The existence of such a map contradicts Corollary 1.6. �

Remark 3.6. Let us observe that Theorem 3.5 extends for freeZp-actions,
p > 2, Theorem 3 proved in [13].

Remark 3.7. Suppose that in Theorem 3.5,Y is a finite connectedk-dimen-
sional CW-complex. ThenY∗/Zp admits apk-dimensional structure of a CW-
complex, thus,H pk+1(Y∗/Zp,Zp) = 0. Then, every continuous mapf : X →
Y has aZp-coincidence, ifn > pk (this also follows from Theorem 1 of [10];
in fact, Theorem 1 of [10] gives additionally that the result is also valid for
n = pk).
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Remark 3.8. Let X be a Hausdorff space which supports a freeZp-action,
wherep ≥ 2 is a prime. In [4], F. Cohen and J.E. Connett obtained a Borsuk-
Ulam result for continuous mapsf : X → Rn, with n ≥ 2. The following
statement was proved: ifX is (n − 1)(p − 1)-connected, then there existx ∈ X
andg ∈ Zp, g 6= identity, such thatf (x) = f (g(x)). In the following Theorem,
we replace the hypothesis “X is (n − 1)(p − 1)-connected" by a cohomological
condition onX.

Theorem 3.9. Let X be a Hausdorff, pathwise connected and paracompact
space, equipped with a free action of the cyclic groupZp generated by a periodic
homeomorphismT : X → X of period p, where p is a prime. Suppose that
Hr (X,Zp) = 0, for 1 ≤ r ≤ (n − 1)(p − 1). Then for every continuous map
f : X → Rn, there existsx ∈ X and1 ≤ i ≤ p−1 such thatf (x) = f (Ti (x)).

Remark 3.10. It is interesting to note that Theorem 3.9 is stronger than the
result proved in [4], since a(n−1)(p−1)-connected space hasHr (X,Zp) equal
to zero for 1≤ r ≤ (n − 1)(p − 1).

To prove Theorem 3.9, we recall the definition of theconfiguration space
of a manifold M , studied by Fadell and Neuwirth [8] in 1962. The ordered
configuration spaceis the space of the all orderedk-tuples of distinct points in
M defined by

F(M, k) = {〈x1, x2, ∙ ∙ ∙ , xk〉 ∈ Mk : xi 6= xj , for all i 6= j }. (3.11)

WhenM = Rn, the spaceF(Rn, k) is the complement of a linear arrangement
of subspaces of codimensionn in Rkn. The cohomology of these spaces was
obtained by Cohen [5, 6]. It is again torsion free, with generators of degree
(n − 1) corresponding to individual subspaces, and relations corresponding to
triples with the same pairwise intersection.

The symmetric group
∑

k onk letters acts freely onF(M, k) by permutation of
coordinates. IfG is any finite group, there exists an integerk such thatG ⊂

∑
k.

ThusZp, the cyclic group of orderp, acts freely onF(Rn, p), via the action given
by a homomorphismZp →

∑
p which sends 1∈ Zp to the cycle(1, 2, ∙ ∙ ∙ , p).

In [4], Cohen and Connett proved the following result

Lemma 3.11. Hr (F(Rn, p)/Zp;Zp) = 0, for r > (n − 1)(p − 1).
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Proof of Theorem 3.9. Suppose thatf (x) 6= f (Ti (x)), for any x ∈ X and
1 ≤ i ≤ p − 1. Thus, we can define aZp-mapF : X → F(Rn, p) given by

F(x) = 〈 f (x), f (T x), ∙ ∙ ∙ , f (T p−1x)〉.

Since Hr (X,Zp) = 0, for 1 ≤ r ≤ (n − 1)(p − 1) and by Lemma 3.11,
Hr (F(Rn, p)/Zp;Zp) is zero, forr > (n − 1)(p − 1), one has thatX and
F(Rn, p) satisfy the hypotheses of Corollary 1.6 and the existence of such a
Zp-equivariant map is a contradiction.
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