

A maximal curve which is not a Galois subcover of the Hermitian curve

Arnaldo Garcia* and Henning Stichtenoth

Abstract. We present a maximal curve of genus 24 defined over \mathbb{F}_{q^2} with q = 27, that is not a Galois subcover of the Hermitian curve.

Keywords: rational points, finite fields, maximal curves, Galois coverings, Hermitian curves.

Mathematical subject classification: 11G20, 11D45, 14H25.

1 Introduction

Let $K = \mathbb{F}_{q^2}$ denote the finite field with q^2 elements. By a curve over \mathbb{F}_{q^2} we will mean a projective nonsingular algebraic curve defined over K, and irreducible over the algebraic closure $\overline{\mathbb{F}}_q$. A curve \mathcal{C} over \mathbb{F}_{q^2} is said to be *K*-maximal if the cardinality of the set $\mathcal{C}(\mathbb{F}_{q^2})$ of its \mathbb{F}_{q^2} -rational points attains the Hasse-Weil upper bound; i.e.,

$$#\mathcal{C}(\mathbb{F}_{q^2}) = q^2 + 1 + 2q \cdot g(\mathcal{C}),$$

where $g(\mathcal{C})$ denotes the genus of \mathcal{C} .

Maximal curves are interesting in connection with Coding Theory, automorphism groups, finite geometries, Stöhr-Voloch theory of Frobenius-orders, etc. (see for example [14], [15], [16], [17]).

Ihara [8] showed that if \mathcal{C} is \mathbb{F}_{q^2} -maximal, then its genus satisfies:

$$g(\mathcal{C}) \le \frac{q(q-1)}{2}.$$

Received 30 November 2005.

^{*}The author was partially supported by CNPq-Brazil (470193/03-4) and by PRONEX (CNPq-FAPERJ).

The most interesting maximal curve over \mathbb{F}_{q^2} is the so-called Hermitian curve \mathcal{H} which can be given by the following affine equation:

$$Z^q + Z = X^{q+1}$$
 over $K = \mathbb{F}_{q^2}$.

The genus of $\mathcal H$ satisfies

$$g(\mathcal{H}) = \frac{q(q-1)}{2},$$

and it is the unique maximal curve over \mathbb{F}_{q^2} with the genus given as above (see [12]).

We say that a curve \mathcal{Y} covers another curve χ over \mathbb{F}_{q^2} if we have a surjective map

$$\varphi \colon \mathcal{Y} \to \chi$$

where both curves and the map are all defined over \mathbb{F}_{q^2} . Serre (see [10]) showed that if \mathcal{Y} is *K*-maximal, then the curve χ is also *K*-maximal.

Several classes of maximal curves have been investigated (see for example [1], [2], [5], [12]) and it turned out that they are all covered by the Hermitian curve. Also, Korchmáros and Torres (see [9]) showed that all maximal curves lie on Hermitian varieties. So a basic question is the following:

Question. Is any maximal curve \mathbb{C} over \mathbb{F}_{q^2} a subcover of the Hermitian curve \mathcal{H} ; i.e., is there always a surjective map $\varphi \colon \mathcal{H} \to \mathbb{C}$ defined over K?

The aim here is to present a maximal curve \mathcal{C}_3 of genus 24 over \mathbb{F}_{q^2} (with q = 27) which is not a Galois subcover of \mathcal{H} ; i.e., there is no surjective Galois map φ defined over K (see Theorem 3)

$$\varphi \colon \mathcal{H} \to \mathcal{C}_3$$

The curve C_3 above is the curve given by the affine equation

$$y^9 - y = x^7$$
 over \mathbb{F}_{27^2} . (1.1)

This curve C_3 is inside a family of \mathbb{F}_{q^2} -maximal curves, where $q = \ell^3$ is a cubic power (see Theorem 1).

2 Certain maximal curves

In his lecture at AGCT-10, J.-P. Serre has introduced the following affine equation for a maximal curve \mathcal{C}_2 over \mathbb{F}_{q^2} with q = 8:

$$y^4 + y = x^3$$
 over \mathbb{F}_{64} . (2.1)

The Hermitian curve \mathcal{H} over \mathbb{F}_{64} is given by

$$Z^8 + Z = X^9,$$

and the substitutions $z = Z^2 + Z$ and $x = X^3$ give us the following subcover of the Hermitian curve:

$$z^4 + z^2 + z = x^3. (2.2)$$

The curves in (2.1) and (2.2) are both of genus 3 and they are not isomorphic to each other. This raises the question whether the Hermitian \mathcal{H} covers the curve \mathcal{C}_2 ? Surprisingly enough it is shown in [7] that there is a Galois covering map $\mathcal{H} \rightarrow \mathcal{C}_2$ of degree 9 and moreover we have an intermediate curve \mathcal{Y} such that

$$\mathcal{H} \stackrel{\psi}{\longrightarrow} \mathcal{Y} \stackrel{\varphi}{\longrightarrow} \mathcal{C}_2$$

with deg $\psi = 3$ and deg $\varphi = 3$, and the map φ above is unramified.

First we generalize the curve C_2 given by Equation (2.1) as follows:

Theorem 1. Consider the curve \mathcal{C}_{ℓ} over \mathbb{F}_{q^2} with $q = \ell^3$ given by

$$y^{\ell^2} - y = x^{\ell^2 - \ell + 1}$$

Then the curve C_{ℓ} is \mathbb{F}_{q^2} -maximal with genus $g(C_{\ell}) = \frac{(\ell^2 - 1)(\ell^2 - \ell)}{2}$.

Proof. The assertion about the genus is trivial. We have only to show that

$$#\mathcal{C}_{\ell}(\mathbb{F}_{q^2}) = 1 + \ell^6 + (\ell^2 - 1)(\ell^2 - \ell) \cdot \ell^3.$$

We rewrite the equality above as follows:

$$#\mathcal{C}_{\ell}(\mathbb{F}_{q^2}) = (1+\ell^2) + \ell^2 \cdot (\ell^2 - 1)(\ell^2 - \ell + 1) \cdot (\ell + 1).$$

The number $(1 + \ell^2)$ above comes from the unique point at infinity and the points on \mathcal{C}_{ℓ} with x = 0. So we have to show that there are exactly

$$\ell^2 \cdot (\ell^2 - 1)(\ell^2 - \ell + 1) \cdot (\ell + 1)$$

rational points on \mathcal{C}_{ℓ} with a nonzero first coordinate. Since $\mathbb{F}_{\ell^2} \subseteq \mathbb{F}_{\ell^6} = \mathbb{F}_{q^2}$ we see that each such first coordinate gives rise to ℓ^2 rational points on \mathcal{C}_{ℓ} (i.e., gives rise to ℓ^2 corresponding second coordinates). So we have to show that

$$#\{x \in \mathbb{F}_{q^2}^* \mid \exists \ y \in \mathbb{F}_{q^2} \text{ with } (x, y) \in \mathbb{C}_{\ell}\} = (\ell^2 - 1)(\ell^2 - \ell + 1) \cdot (\ell + 1).$$

By Hilbert's Satz 90 we are led to consider the trace of the extension \mathbb{F}_{q^2} over \mathbb{F}_{ℓ^2} ; i.e., we have to look for solutions $x \in \mathbb{F}_{q^2}^*$ of the trace

$$(x^{\ell^2-\ell+1})^{\ell^4} + (x^{\ell^2-\ell+1})^{\ell^2} + x^{\ell^2-\ell+1} = 0.$$

Since $x \neq 0$, we must have

$$\left(x^{(\ell^2-\ell+1)(\ell^2-1)}\right)^{\ell^2+1} + x^{(\ell^2-\ell+1)(\ell^2-1)} + 1 = 0.$$

Let *H* denote the multiplicative subgroup of $\mathbb{F}_{q^2}^*$ with order

$$|H| = \ell^2 + \ell + 1.$$

For $x \in \mathbb{F}_{q^2}^*$ and $w = x^{(\ell^2 - \ell + 1)(\ell^2 - 1)}$, we must have that $w \in H$. So we have to show that

$$#\{w \in H ; w^{\ell^2 + 1} + w + 1 = 0\} = \ell + 1.$$

Since $w \in H$ we have $w^{\ell^2+1} = \frac{1}{w^{\ell}}$ and hence for $w \in H$, we get that

$$w^{\ell^2+1} + w + 1 = \frac{w^{\ell+1} + w^{\ell} + 1}{w^{\ell}}.$$

Now one checks that $w^{\ell+1} + w^{\ell} + 1 = 0$ implies that $w \in H$.

Remark 1. The curves given by Eqs. (1.1) and (2.1) are the particular cases given by $\ell = 3$ and $\ell = 2$ in Theorem 1, respectively.

We show in the next section that the curve C_3 with genus g = 24 given by the affine equation $y^9 - y = x^7$ is not a Galois subcover of the Hermitian curve \mathcal{H} over \mathbb{F}_{q^2} with q = 27. For the proof of this claim we will need the following result:

Theorem 2. Let \mathcal{H} denote the Hermitian curve over $K = \mathbb{F}_{q^2}$ and let p = Char(K). Suppose that $\varphi \colon \mathcal{H} \to \chi$ is a Galois cover over K, denote by H the corresponding Galois group and write

$$|H| = \deg \varphi = m \cdot p^u$$
 with $gcd(m, p) = 1$.

If there is a fully ramified point for the map φ and

$$q^2 - q + 1 \not\equiv 0 \pmod{\deg \varphi},$$

then the genus of the quotient curve χ is given by

$$g(\chi) = \frac{q - p^w}{2m \cdot p^u} (q - (d - 1) \cdot p^v),$$

where d = gcd(m, q + 1) and where v and w are natural numbers attached to the group H and v + w = u. Moreover if m = 1, then there is exactly one fully ramified point for the morphism φ .

Proof. The case m = 1 follows from Proposition 2.2 and Section 3 of [6] and the case m > 1 follows from Theorem 4.4 of [6].

3 Maximal curves C with genus 24

The Hermitian curve \mathcal{H} over \mathbb{F}_{q^2} with q = 27 has genus $g(\mathcal{H}) = 351$ and it can be given by the equation:

$$Z^{27} + Z = X^{28}.$$

Let C be any maximal curve of genus 24 over \mathbb{F}_{q^2} with q = 27. Suppose we have a Galois covering map φ of degree d:

$$\varphi \colon \mathcal{H} \xrightarrow{d} \mathcal{C}$$

We must have that $d \le 15$ since

$$2g(\mathcal{H}) - 2 \ge d \cdot (2g(\mathcal{C}) - 2).$$

We have also that $d \ge 10$, as follows from the bound

$$#\mathcal{H}(\mathbb{F}_{27^2}) \le d \cdot #\mathcal{C}(\mathbb{F}_{27^2}).$$

We are therefore left with the possibilities:

$$d = 10, 11, 12, 13, 14, 15.$$

Cases d = 11 or d = 13. These possibilities for the degree d of the Galois covering φ are easily discarded. Since d is a prime number, we should have from Hurwitz genus formula:

$$2g(\mathcal{H}) - 2 = d \cdot (2g(\mathcal{C}) - 2) + N \cdot (d - 1), \tag{3.1}$$

where N denotes the number of ramified points of the Galois covering. But Equation (3.1) leads to a value of N which is not a natural number in both cases d = 11 and d = 13.

Cases d = 10 or d = 15. These cases are also easily discarded, since the prime number 5 does not divide the order of A, where A denotes the automorphism group of the Hermitian. We have (see [6] and [15]):

$$|\mathcal{A}| = q^3(q^3 + 1)(q^2 - 1)$$
 and hence $|\mathcal{A}| \neq 0 \mod 5$, for $q = 27$.

Remark 2. Notice that d = 11 also does not divide $|\mathcal{A}|$ and this shows again that we can discard the case d = 11. In case d = 13, we have that a 13-Sylow subgroup H of \mathcal{A} has order equal to 13 and Equation (3.1) shows in particular that the quotient curve \mathcal{H}/H is not a curve with genus 24. From Theorem 2 we have the genus formula $g(\mathcal{H}/H) = 27$.

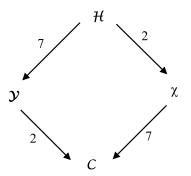
We are left with the two following possibilities for the degree $d := \deg \varphi$

Case
$$d = 14$$
 and Case $d = 12$.

Case d = 14. We have a Galois covering map (with Galois group denoted by *G*):

 $\varphi \colon \mathcal{H} \to \mathcal{C} \quad \text{over } K = \mathbb{F}_{q^2} \quad \text{with} \quad q = 27,$

where deg $\varphi = |G| = 14$ and \mathcal{C} is a maximal curve over *K* of genus 24. Let *H* denote the unique subgroup of *G* with order |H| = 7 and denote by $\mathcal{Y} = \mathcal{H}/H$ the corresponding quotient curve. We have the following picture:



where χ is the unique curve (up to isomorphisms) having index 2 in the Hermitian (see [4] and [5]). An equation and the genus of the curve χ are given by:

 $Z^{27} + Z = x^{14}$ and $g(\chi) = 169$.

Notice that $g(\chi) = 169$ can also be obtained from Theorem 2. For that one uses the fact that the automorphisms of order 2 of the Hermitian curve have fixed points.

The degree 7 map $\chi \xrightarrow{7} C$ is not Galois. Otherwise we would have

$$336 = 2g(\chi) - 2 = 7 \cdot (2g(\mathcal{C}) - 2) + 6N = 322 + 6N,$$

which is not possible.

This shows that $G = D_7$ is the dihedral group of order 14 generated by two elements σ and τ with order (σ) = 2, order (τ) = 7 and the relations $\sigma \tau^i = \tau^{-i} \sigma$ for i = 1, 2, ..., 6. We have $H = \langle \tau \rangle$ and the elements of order 2 in *G* are the elements in the set below

$$G \setminus H = \{\sigma \tau^i \mid i \in \mathbb{N} \text{ and } 0 \le i \le 6\}.$$

We now consider two subcases:

Subcase 1. The map $\mathcal{H} \xrightarrow{7} \mathcal{Y}$ is ramified.

Since for q = 27 we have

$$703 = q^2 - q + 1 \not\equiv 0 \pmod{7},$$

we get from Theorem 2 the following genus formula:

$$g(\mathcal{Y}) = \frac{27 - 1}{2 \times 7}(27 - 6) = 39.$$

This is not possible since we would then have

$$76 = 2g(\mathcal{Y}) - 2 \ge 2 \cdot (2g(\mathcal{C}) - 2) = 92.$$

Subcase 2. The map $\mathcal{H} \xrightarrow{7} \mathcal{Y}$ is unramified.

In this case every point $P \in \mathcal{H}$ that is ramified under the Galois morphism $\varphi \colon \mathcal{H} \to \mathcal{C}$ must have ramification index e(P) = 2. Hurwitz genus formula for the map φ gives that we have exactly 56 ramified points *P* as above. Indeed

$$700 = 2g(\mathcal{H}) - 2 = 14(2g(\mathcal{C}) - 2) + 56.$$

Each element $\sigma \tau^i$ (for i = 0, 1, ..., 6) of order 2 has exactly 28 fixed points on the Hermitian curve \mathcal{H} . This follows from Hurwitz formula applied to the double covering $\mathcal{H} \xrightarrow{2} \chi$. But since $\mathcal{H} \xrightarrow{7} \mathcal{Y}$ is unramified we have that the involutions $\sigma \tau^i$ and $\sigma \tau^j$ for $0 \le i < j \le 6$, do not have a common fixed point. Indeed suppose $Q \in \mathcal{H}$ satisfies

$$\sigma\tau^i(Q) = Q = \sigma\tau^j(Q).$$

Then applying σ , we get in particular

$$\tau^i(Q) = \tau^j(Q)$$
 and $\tau^{j-i}(Q) = Q$.

This is impossible since τ^{j-i} generates the same group *H* as the element τ and hence it cannot have a fixed point *Q* on \mathcal{H} .

But then we would have:

 7×28 ramified points for the map φ .

So we have also discarded the case d = 14.

Remark 3. For each odd divisor n of (q + 1) there exists a Galois and unramified covering of degree n

$$\mathcal{H} \xrightarrow{n} \mathcal{Y}.$$

This covering is associated to a Hilbert class field of the curve \mathcal{Y} (see [7], [11] and [13]).

In our situation above (Subcase 2) we have

$$n = 7$$
, $q = 27$ and $g(\mathcal{Y}) = 51$.

Suppose we have a double covering $\mathcal{Y} \xrightarrow{2} \mathcal{Y}_1$ making \mathcal{H} a Galois covering of \mathcal{Y}_1 with degree 14. From the arguments in Subcase 2 above we have

$$700 = 2g(\mathcal{H}) - 2 \ge 14(2g(\mathcal{Y}_1) - 2) + 7 \times 28$$

and hence we get $g(\mathcal{Y}_1) \leq 19$.

Case d = 12. From [4] we have just two Galois subcovers of the Hermitian \mathcal{H} (up to isomorphisms) with index 3. They are:

• The curve \mathcal{C}_0 with $g(\mathcal{C}_0) = 108$ given by

$$Y^9 - Y^3 + Y = X^{28}. (3.2)$$

Here the automorphism of $\mathcal H$ of order 3 can be chosen as

$$\sigma(X) = X$$
 and $\sigma(Z) = Z + a$ with $a^{27} + a = 0$.

• The curve C_1 with $g(C_1) = 117$ given by

$$y^{27} + y = (x^9 + x^3 + x)^2.$$
 (3.3)

Here the automorphism of \mathcal{H} of order 3 can be chosen as

$$\sigma(X) = X + 1$$
 and $\sigma(Z) = Z + X - 1$.

One can also derive the genus possibilities g = 108 (case v = 0 and w = 1) and g = 117 (case v = 1 and w = 0) from Proposition 3.1 of [6]. (See also Theorem 2 here with m = 1).

Let *G* denote the Galois group of the Galois covering $\varphi \colon \mathcal{H} \to \mathbb{C}$. So the order of *G* satisfies $|G| = 12 = 4 \times 3$. We consider two subcases:

Subcase 1. *G* has a normal subgroup *H* of order 3.

We have here two possibilities:

Subcase 1.1. The quotient curve \mathcal{H}/H is isomorphic to the curve \mathcal{C}_0 above (see Equation (3.2)) with genus 108.

Since H is normal in G, then the covering below of degree 4

$$\mathcal{C}_0 \xrightarrow{4} \mathcal{C}$$

is a Galois covering. We can then go from C_0 to the curve C by inserting an intermediate curve \mathcal{Y} :

 $\mathcal{C}_0 \xrightarrow{2} \mathcal{Y} \xrightarrow{2} \mathcal{C}.$

The unique automorphism σ of order 2 on the curve \mathcal{C}_0 satisfies

 $\sigma(X) = -X$ and $\sigma(Y) = Y$.

Hence the inserted curve \mathcal{Y} above is given by the equation below

$$Y^9 - Y^3 + Y = x^{14}.$$

Again the unique automorphism σ_1 of order 2 on the curve \mathcal{Y} satisfies

 $\sigma_1(x) = -x$ and $\sigma_1(Y) = Y$.

Hence the curve C of genus 24 can be given by the equation

$$Y^9 - Y^3 + Y = x_1^7$$
 over \mathbb{F}_{27^2} .

The assertions concerning the uniqueness of the automorphisms σ and σ_1 above can be proved with arguments similar to the ones in the proof of Theorem 3 at the end of this paper.

Subcase 1.2. The quotient curve \mathcal{H}/H is isomorphic to the curve \mathcal{C}_1 above (see Equation (3.3)) with genus 117.

It is easily seen that the point at infinity of the Hermitian (see Section 3 of [6]) is the only ramified point of the cover $\mathcal{H} \xrightarrow{3} \mathcal{C}_1$.

Since $\mathcal{C}_1 \xrightarrow{4} \mathcal{C}$ is a Galois covering we conclude that the degree 12 Galois map $\varphi \colon \mathcal{H} \xrightarrow{12} \mathcal{C}$ has a fully ramified point. Now Theorem 2 with v = 1 and w = 0 gives the genus formula:

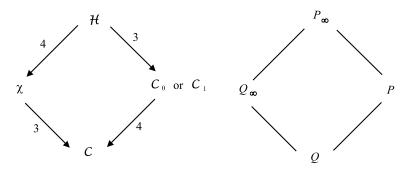
$$g(\mathcal{C}) = \frac{27 - 1}{8 \times 3}(27 - 3 \times 3) = \frac{26 \times 18}{24} = 19,5$$

which is not possible. So this Subcase 1.2 does not occur.

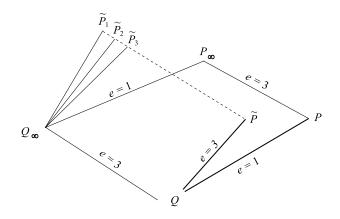
Subcase 2. A subgroup *H* of order 3 is not normal in *G*.

It follows from Hilbert's different formula (higher ramification groups) that there is no fully ramified point for the Galois covering $\varphi \colon \mathcal{H} \xrightarrow{12} \mathcal{C}$. Indeed, if *P* is fully ramified then $G_1(P) \triangleleft G_0(P) = G$ and $|G_1(P)| = 3$, where $G_i(P)$ denotes the *i*-th ramification group.

The group G in this case is isomorphic to the alternating group A_4 . Consider the following diagram (where χ denotes the quotient curve by the Klein subgroup of A_4):



where P_{∞} is the only ramified point of \mathcal{H} over \mathcal{C}_i (i = 0 or i = 1) and Q_{∞} , P and Q denote its images in χ , \mathcal{C}_i and \mathcal{C} . It follows that Q_{∞} is also the only ramified point of χ over \mathcal{C} . Note that $\chi \to \mathcal{C}$ is a Galois map since the Klein subgroup is normal in A_4 . One can now see that the only possibility for the ramification structure over the point Q on \mathcal{C} is the one in the following picture (see Abhyankar's lemma; i.e., Proposition III.8.9 in [14]).



This picture above means that Q has two points \tilde{P} and P on the curve C_i (i = 0 or i = 1) above it and the ramification index of \tilde{P} is $e(\tilde{P}|Q) = 3$. If d(R|S) denotes the different of the point R over the point S, we then get

$$d(P_{\infty}|P) = d(Q_{\infty}|Q).$$

We now consider again the two subcases:

Subcase 2.1. The index 3 curve is isomorphic to \mathcal{C}_0 (see Equation (3.2)).

In this case we have (Hurwitz formula for $\mathcal{H} \to \mathcal{C}_0$)

$$d(Q_{\infty}|Q) = d(P_{\infty}|P) = 58.$$

It then follows that $g(\chi) = 99$ (Hurwitz formula for $\chi \to \mathbb{C}$).

Applying Hurwitz formula for the covering $\mathcal{H} \to \chi$ we get

$$700 = 2g(\mathcal{H}) - 2 \ge 4 \cdot (2 \times 99 - 2) = 784,$$

which is impossible.

Subcase 2.2. The index 3 curve is isomorphic to C_1 (see Equation (3.3)).

In this case we have (as in Subcase 2.1)

$$d(Q_{\infty}|Q) = d(P_{\infty}|P) = 4$$
 and $g(\chi) = 72$.

Looking at the covering $\mathcal{H} \xrightarrow{4} \chi$ of degree 4 and noticing that

 $#\mathcal{H}(\mathbb{F}_{27^2}) = 1 + 27^3 = 19.684$ rational points,

$$\#\chi(\mathbb{F}_{27^2}) = 1 + 27^2 + 2 \times 72 \times 27 = 4.618$$
 rational points

and moreover that $4 \times 4.618 = 18.472 < 19.684$, we can also discard this subcase.

We have then proved:

Proposition 1. Suppose that a maximal curve \mathbb{C} over \mathbb{F}_{q^2} with q = 27, has genus 24 and that it is a Galois subcover of the Hermitian curve \mathcal{H} . Then this curve \mathbb{C} is isomorphic to the curve given by the equation

$$Y^9 - Y^3 + Y = X^7$$
 over \mathbb{F}_{27^2} .

Moreover the degree of the Galois covering $\varphi \colon \mathcal{H} \to \mathcal{C}$ satisfies deg $\varphi = 12$.

Proof. The only possibility occurs in Subcase 1.1 of the Case d = 12 above.

We can now state our main result:

Theorem 3. Let C_3 denote the \mathbb{F}_{q^2} -maximal curve where q = 27, with genus 24, which is given by the equation

$$Y^9 - Y = X^7 \quad over \quad \mathbb{F}_{27^2}.$$

Then the curve \mathfrak{C}_3 is not a Galois subcover of the Hermitian curve \mathfrak{H} .

Proof. From Proposition 1 we just have to prove that the following curves over $K = \mathbb{F}_{q^2}$ with q = 27, which are given by the equations:

$$\mathcal{C} := (Y^9 - Y^3 + Y = X^7)$$
 and $\mathcal{C}_3 := (y^9 - y = x^7)$

are not isomorphic to each other. Let P_{∞} be the point at infinity on the first curve and Q_{∞} be the point at infinity on the second curve. If we have an isomorphism $\sigma: \mathbb{C} \to \mathbb{C}_3$ we must have that $\sigma(P_{\infty}) = Q_{\infty}$ because these points are the only ones with Weierstrass semigroup $\langle 7, 9 \rangle$ generated by the pole-orders 7 and 9 (see Satz 6 in [15]).

Since we have the following pole-divisors

$$\operatorname{div}_{\infty}(X) = 9P_{\infty}$$
, $\operatorname{div}_{\infty}(Y) = 7P_{\infty}$

and

$$\operatorname{div}_{\infty}(x) = 9Q_{\infty}$$
, $\operatorname{div}_{\infty}(y) = 7Q_{\infty}$

we must have nonzero constants a and c such that

$$\sigma(y) = aY + b$$
 and $\sigma(x) = cX + dY + e$

Since $y^9 - y - x^7 = 0$ we get

$$(aY + b)^9 - (aY + b) - (cX + dY + e)^7 = 0.$$

The equation above should be a constant multiple of the equation

$$Y^9 - Y^3 + Y - X^7 = 0,$$

and this is impossible.

Remark 4. Consider the maximal curves C_{ℓ} over \mathbb{F}_{q^2} with $q = \ell^3$ as in Theorem 1. We know that:

For $\ell = 2$, it is Galois covered by the Hermitian.

For $\ell = 3$, it is not Galois covered by the Hermitian.

- What is the situation for other values of ℓ ?
- Is the curve C_3 covered by the Hermitian ?

References

- M. Abdón and A. Garcia. On a characterization of certain maximal curves. Finite Fields Appl. 10 (2004), 133–158.
- M. Abdón and F. Torres. On maximal curves in characteristic two. Manuscripta Math. 99 (1999), 39–53.
- [3] A. Cossidente, G. Korchmáros and F. Torres. On curves covered by the Hermitian curve. J. Algebra 216 (1999), 56–76.
- [4] A. Cossidente, G. Korchmáros and F. Torres. *Curves of large genus covered by the Hermitian curve*. Comm. Algebra **28** (2000), 4707–4728.
- [5] R. Fuhrmann, A. Garcia and F. Torres. *On maximal curves*. J. Number Theory 67 (1997), 29–51.
- [6] A. Garcia, H. Stichtenoth and C.P. Xing. *On Subfields of the Hermitian Function Field*. Compositio Math. **120** (2000), 137–170.
- [7] A. Garcia and F. Torres. *On unramified coverings of maximal curves*, preprint (2005).
- [8] Y. Ihara. Some remarks on the number of rational points of algebraic curves over finite fields. J. Fac. Sci. Tokio **28** (1981), 721–724.

 \square

- [9] G. Korchmáros and F. Torres. *Embedding of a maximal curve in a Hermitian variety*. Compositio Math. **128** (2001), 95–113.
- [10] G. Lachaud. Sommes d'Eisenstein et Nombre de points de certaines courbes algébriques sur les corps finis. C.R. Acad. Sci. Paris 305, Serie I (1987), 729– 732.
- [11] M. Rosen. The Hilbert class field in function fields. Expo. Math. 5 (1987), 365– 378.
- [12] H.G. Rück and H. Stichtenoth. A Characterization of Hermitian Function Fields over Finite Fields. J. Reine Angew. Math. 457 (1994), 185–188.
- [13] J.-P. Serre. *Algebraic groups and class fields*. Graduate Texts in Math. **117**, Springer, New York, 1988.
- [14] H. Stichtenoth. Algebraic Function Fields and Codes, Springer, Berlin, 1993.
- [15] H. Stichtenoth. Über die Automorphismengruppe eines algebraischen Funktionenkörpers von Primzahlcharakteristik I, II. Archiv der Math. **24**(1973), 524–544 and 615–631.
- [16] K.O. Stöhr and J.F. Voloch. Weierstrass points and curves over finite fields. Proc. London Math. Soc. 52 (1986), 1–19.
- [17] M. Tsfasman and S. Vladut. Algebraic Geometric Codes, Kluwer, Dordrecht, 1991.

Arnaldo Garcia

IMPA – Estrada Dona Castorina 110 22460-320 – Rio de Janeiro BRAZIL

E-mail: garcia@impa.br

Henning Stichtenoth

Universität Duisburg – Essen Campus Essen, FB Mathematik 45117 Essen GERMANY

E-mail: stichtenoth@ uni-essen.de

and

Sabanci University MDBF, Orhanli 34956 Tuzla/Istanbul TURKEY

E-mail: henning@ sabanciuniv.edu