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A maximal curve which is not a Galois
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Abstract. We present a maximal curve of genus 24 defined Byewith q = 27, that
is not a Galois subcover of the Hermitian curve.
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1 Introduction

LetK = [F2 denote the finite field with? elements. By a curve OVEY2 we will
mean a projective nonsingular algebraic curve defined Kyeand irreducible
over the algebraiclosureFy. A curve € overF. is said to beK -maximalif
the cardinality of the sef(IF2) of its Fj.-rational points attains the Hasse-Weil
upper bound; i.e.,

#C(Fq2) = 9%+ 1+ 29 - g(©),

whereg(C) denotes the genus 6f

Maximal curves are interesting in connection with Coding Theory, automor-
phism groups, finite geometries, Stohr-Voloch theory of Frobenius-orders, etc.
(see for example [14], [15], [16], [17]).

Ihara [8] showed that i€ is [F.-maximal, then its genus satisfies:

a@Qq-1
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140 ARNALDO GARCIA and HENNING STICHTENOTH

The most interesting maximal curve oVi&p is the so-called Hermitian curve
H which can be given by the following affine equation:

Z94+Z=X%"" over K =Fg.

The genus ofH{ satisfies

_q@-1

and it is the unique maximal curve ov&p. with the genus given as above
(see [12]).

We say that a curvll covers another curvg overF. if we have a surjective

map

49— x
where both curves and the map are all defined Byer Serre (see [10]) showed
that if Y is K-maximal, then the curvg is alsoK -maximal.

Several classes of maximal curves have been investigated (see for example [1],
[2], [5], [12]) and it turned out that they are all covered by the Hermitian curve.
Also, Korchmaros and Torres (see [9]) showed that all maximal curves lie on
Hermitian varieties. So a basic question is the following:

Question. Is any maximal curv€ overF,. a subcover of the Hermitian curve
H; i.e., is there always a surjective map H — C defined oveK ?

The aim here is to present a maximal cuggof genus 24 oveF ;. (with
g = 27) which is not a Galois subcover 8f; i.e., there is no surjective Galois
mapg defined ovelK (see Theorem 3)

¢: H— Ca.
The curveC; above is the curve given by the affine equation
vy —y=x" over F,e. (1.1)

This curveCs is inside a family off,.-maximal curves, wherg = 23 is a cubic
power (see Theorem 1).

2 Certain maximal curves

In hislecture at AGCT-10, J.-P. Serre has introduced the following affine equation
for a maximal curvee; overF,. with q = 8:

vV'+y=x® over Fe. (2.1)
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NOT A GALOIS SUBCOVER OF THE HERMITIAN CURVE 141

The Hermitian curvé{ overFg, is given by
Z8+ 72 =X°,

and the substitutions= Z? 4+ Z andx = X2 give us the following subcover of
the Hermitian curve:
2+ +z2=x% (2.2)

The curves in (2.1) and (2.2) are both of genus 3 and they are not isomorphic to
each other. This raises the question whether the Hernfiiaovers the curve

©,? Surprisingly enough it is shown in [7] that there is a Galois covering map
H — C, of degree 9 and moreover we have an intermediate ¢jistech that

"Ly e,

with degyr = 3 and de@ = 3, and the map above is unramified.
First we generalize the cuné given by Equation (2.1) as follows:

Theorem 1. Consider the curv€, overFq. withq = ¢2 given by
iz zz—z+1‘

y —y=X

Then the curve, is F.-maximal with genug(C,) = (‘”ZLZ(ZZ‘”

Proof. The assertion about the genus is trivial. We have only to show that
#C(Fe) = 14+ £+ (% — 1)(€* — 0) - £°.
We rewrite the equality above as follows:
#C(Fg2) = (L4 £3) + €% (P = D(® - L+ 1) - (L + D).

The number1+ ¢2) above comes from the unique point at infinity and the points
on G, with x = 0. So we have to show that there are exactly

o212 —+1)-(C+1)

rational points or, with a nonzero first coordinate. Sinég. C F,e = Fg2
we see that each such first coordinate gives rige tational points or€, (i.e.,
gives rise to¢? corresponding second coordinates). So we have to show that

#{x € Fy, |3y € F with (x,y) € €) = 2 —12—0+1) - +1).
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By Hilbert's Satz 90 we are led to consider the trace of the extergjpover
F,2; i.e., we have to look for solutions e IF;Z of the trace

<X52@+1>e4 + (XZZZH)’Z2 L xP-t _ .
Sincex # 0, we must have
(X(ez—e+1)(22—1))62+1 4 x@—tD@?-0 4 1 _ .
Let H denote the multiplicative subgroup Egz with order
IH =0+ ¢+1.

Forx e F*, andw = x“~D¢-D e must have that € H. So we have to
show that ,
HweH; v +w+l1=0=¢+1

Sincew € H we havew®+! = ﬁ and hence fow € H, we get that

w41 YW +;”@ 1
w
Now one checks that‘*! + w’ + 1 = 0 implies thatw € H. O

Remark 1. The curves given by Egs. (1.1) and (2.1) are the particular cases
given by? = 3 and?¢ = 2 in Theorem 1, respectively.

We show in the next section that the cuRswith genusg = 24 given by the
affine equatiorny® — y = x” is not a Galois subcover of the Hermitian cufkie
overFq. with g = 27. For the proof of this claim we will need the following
result:

Theorem 2. Let 3 denote the Hermitian curve ové¢ = Fy. and letp =
Char(K). Suppose thap: H — x is a Galois cover oveK, denote byH the
corresponding Galois group and write

|H| = degp = m- p" with gcdm, p) = 1.
If there is a fully ramified point for the map and
q>—q+1£0 (moddegy),
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NOT A GALOIS SUBCOVER OF THE HERMITIAN CURVE 143

then the genus of the quotient curyés given by

q—p”
2m- p

g(x) = @—-@d-1-p",

whered = gcdm, g 4+ 1) and wherev andw are natural numbers attached to
the groupH andv + w = u. Moreover ifm = 1, then there is exactly one fully
ramified point for the morphism.

Proof. The casen = 1 follows from Proposition 2.2 and Section 3 of [6] and
the casan > 1 follows from Theorem 4.4 of [6]. ]

3 Maximal curves C with genus24

The Hermitian curvé{ overF,. with g = 27 has genug(H) = 351 and it can
be given by the equation:
227 + 7 — X28.

Let € be any maximal curve of genus 24 ovgp with g = 27. Suppose we
have a Galois covering mapof degreed:

0: H -5 e
We must have thad < 15 since
29(H) —2>d-(29(C) — 2).
We have also thad > 10, as follows from the bound
HH(Fop) < d - #C(Fap).
We are therefore left with the possibilities:
d=101112 13 14, 15
Casesd = 11or d = 13. These possibilities for the degreeof the Galois

coveringy are easily discarded. Sindeas a prime number, we should have from
Hurwitz genus formula:

20(H) —2=d- (29(€) —2) + N - (d — 1), (3.1)

where N denotes the number of ramified points of the Galois covering. But
Equation (3.1) leads to a value Nfwhich is not a natural number in both cases
d =11 andd = 13.
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144 ARNALDO GARCIA and HENNING STICHTENOTH

Cased = 10ord = 15. These cases are also easily discarded, since the prime
number 5 does not divide the order.4f whereA denotes the automorphism
group of the Hermitian. We have (see [6] and [15]):

A = 3@®+1)(@>—1) andhence |A| £ 0mod5 forq = 27.

Remark 2. Notice thatd = 11 also does not dividgd| and this shows again
that we can discard the cade= 11. In casal = 13, we have that a 13-Sylow
subgroupH of A has order equal to 13 and Equation (3.1) shows in particular
that the quotient curvé(/H is not a curve with genus 24. From Theorem 2 we
have the genus formulg(H/H) = 27.

We are left with the two following possibilities for the degree= degyp

Cased =14 and Casd =12
Cased = 14. We have a Galois covering map (with Galois group denoted

by G):
¢:H—C over K=Fp with q=27

where de@ = |G| = 14 andC is a maximal curve oveK of genus 24. LeH
denote the unique subgroup @fwith order|H| = 7 and denote by = H/H
the corresponding quotient curve. We have the following picture:

H
/ \2\4
y X
x /
C
wherey is the unique curve (up to isomorphisms) having index 2 in the Hermitian
(see [4] and [5]). An equation and the genus of the cynage given by:

27+ 7 =x¥ and g(x) =169

Notice thatg(x) = 169 can also be obtained from Theorem 2. For that one uses
the fact that the automorphisms of order 2 of the Hermitian curve have fixed
points.
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The degree 7 map ', @is not Galois. Otherwise we would have
336=29(x) —2=7-(29(C) —2) + 6N = 322+ 6N,

which is not possible.

This shows thaG = D- is the dihedral group of order 14 generated by two
elements andr with order(o) = 2, order(t) = 7 andtherelationst' = t 7o
fori =1,2,...,6. We haveH = (r) and the elements of order 2 @& are the
elements in the set below

G\H={o7'|i eNand0<i < 6}.

We now consider two subcases:

Subcase 1. The mapH BN Y is ramified.
Since forq = 27 we have
703=qg°>—-q+ 1 0(mod 7,

we get from Theorem 2 the following genus formula:

07
9(¥) = —(27 6) =
This is not possible since we would then have

76=29(Y) —2> 2. (29(C) — 2) = 92

Subcase 2. The mapH BN Y is unramified.

In this case every poinP € H that is ramified under the Galois morphism
¢: H — € must have ramification index(P) = 2. Hurwitz genus formula for
the mapy gives that we have exactly 56 ramified poiftss above. Indeed

700=2g(H) — 2 = 14(29(C) — 2) + 56.

Each elemensz' (fori = 0,1, ..., 6) of order 2 has exactly 28 fixed points
on the Hermitian curvé{. This follows from Hurwitz formula applied to the

double coveringH N x. But sinceH N Y is unramified we have that the
involutionsot' andot! for0 <i < j < 6, do not have a common fixed point.
Indeed suppos® € H satisfies

0t (Q =Q=07/(Q).
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Then applyingr, we get in particular
7(Q=7(Q and <7(Q=0Q.

This is impossible since! ~' generates the same grokpas the element and
hence it cannot have a fixed poi@ton K.
But then we would have:

7 x 28 ramified points for the map.

So we have also discarded the cdse 14.

Remark 3. For each odd divison of (q + 1) there exists a Galois and un-
ramified covering of degree
H -5 .

This covering is associated to a Hilbert class field of the cyrysee [7], [11]
and [13]).
In our situation above (Subcase 2) we have

n=7, q=27 and g{) =51

Suppose we have a double coverw]gi Y1 makingH a Galois covering of
Y, with degree 14. From the arguments in Subcase 2 above we have

700=29(H) — 2 > 1429(Y1) —2) + 7 x 28

and hence we gej(Y;) < 19.

Cased = 12. From [4] we have just two Galois subcovers of the Hermifian
(up to isomorphisms) with index 3. They are:

» The curveCy with g(Cg) = 108 given by
Yo —vY34Y = X%, (3.2)
Here the automorphism &1 of order 3 can be chosen as

o(X) = Xando(Z) = Z +awitha?’ +a=0.
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» The curveC; with g(€;) = 117 given by
Vi4+y=x+x34+x72 (3.3)
Here the automorphism & of order 3 can be chosen as
c(X)=X+lando(Z)=Z+ X — 1.

One can also derive the genus possibilities= 108 (casev = 0 and
w = 1) andg = 117 (case = 1 andw = 0) from Proposition 3.1 of [6].
(See also Theorem 2 here witth= 1).

Let G denote the Galois group of the Galois coveringX — €. So the
order of G satisfiedG| = 12 = 4 x 3. We consider two subcases:

Subcase 1. G has a normal subgroug of order 3.
We have here two possibilities:

Subcase 1.1. The quotient curvé{/H is isomorphic to the curv€, above
(see Equation (3.2)) with genus 108.

SinceH is normal inG, then the covering below of degree 4

Co — @

is a Galois covering. We can then go frdep to the curveC by inserting an
intermediate curvé:

Co -2 Y -2 e

The unique automorphism of order 2 on the curv€, satisfies
o(X)=-=X and o(Y)=Y.

Hence the inserted cuniabove is given by the equation below

YO - Y34y =xM

Again the unique automorphism of order 2 on the curvy satisfies
o1(X) =—x and o1 (Y)=Y.

Hence the curv€ of genus 24 can be given by the equation
YO-Y34Y=x{ over Fp.

The assertions concerning the uniqueness of the automorphiamdo;, above
can be proved with arguments similar to the ones in the proof of Theorem 3 at
the end of this paper.
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148 ARNALDO GARCIA and HENNING STICHTENOTH

Subcase 1.2. The quotient curvéH{/H is isomorphic to the curv€; above
(see Equation (3.3)) with genus 117.
It is easily seen that the point at infinity of the Hermitian (see Section 3 of [6])

is the only ramified point of the cové( R Cy.
SinceCy 2, ¢is a Galois covering we conclude that the degree 12 Galois

mape: H 2 Chasa fully ramified point. Now Theorem 2 with= 1 and
w = 0 gives the genus formula:

27—
g€ = —(27 3x3) = =195

which is not possible. So this Subcase 1.2 does not occur.

Subcase 2. A subgroupH of order 3 is not normal irG.

It follows from Hilbert’s different formula (higher ramification groups) that

there is no fully ramified point for the Galois coveripg H e Indeed, if
P is fully ramified thenG1(P) <« Go(P) = G and|G1(P)| = 3, whereG; (P)
denotes the-th ramification group.

The groupG in this case is isomorphic to the alternating groAyp Consider
the following diagram (wherg denotes the quotient curve by the Klein subgroup

N /\

Cy or C,

N A \/

where P, is the only ramified point of{ overC; (i = 0 ori = 1) andQ,

P and Q denote its images in, € andC. It follows that Q, is also the only
ramified point ofy overC. Note thaty — C is a Galois map since the Klein
subgroup is normal irA;. One can now see that the only possibility for the
ramification structure over the poi@ on € is the one in the following picture
(see Abhyankar’s lemma; i.e., Proposition 111.8.9 in [14]).

Bull Braz Math Soc, Vol. 37, N. 1, 2006



NOT A GALOIS SUBCOVER OF THE HERMITIAN CURVE 149

This picture above means th@thas two points’éanden thecurvee; (i =0
ori = 1) above it and the ramification index &fis e(P|Q) = 3. If d(R|S)
denotes the different of the poiR over the pointS, we then get

d(Px|P) = d(Qx Q).
We now consider again the two subcases:
Subcase 2.1. The index 3 curve is isomorphic &y (see Equation (3.2)).

In this case we have (Hurwitz formula féf — Cg)

d(Qx|Q) = d(Py|P) = 58

It then follows thatg(x) = 99 (Hurwitz formula fory — ©).
Applying Hurwitz formula for the coverin@{ — x we get

700=29(H) —2>4-(2x99—2) =784
which is impossible.
Subcase 2.2. The index 3 curve is isomorphic &y (see Equation (3.3)).
In this case we have (as in Subcase 2.1)
d(Qx|Q) =d(Px|P) =4 and g(x) =72
Looking at the covering{ 2, x of degree 4 and noticing that
#H(Fyz) = 1+ 27° = 19.684 rational points
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#x(Fop) = 14 27% + 2 x 72 x 27 = 4.618 rational points

and moreover that 4 4.618 = 18472 < 19.684, we can also discard this
subcase.
We have then proved:

Proposition 1. Suppose that a maximal curéeover F. with q = 27, has
genus24 and that it is a Galois subcover of the Hermitian cufie Then this
curveC is isomorphic to the curve given by the equation

YO—Y34+Y=X" over F,e.

Moreover the degree of the Galois coveripgd{ — C satisfieddegy = 12.

Proof. The only possibility occurs in Subcase 1.1 of the Gase 12 above.]

We can now state our main result:

Theorem 3. Let C3 denote thef.-maximal curve wherg = 27, with genus
24, which is given by the equation

Yo —Y=X" over Fye.

Then the curvé&; is not a Galois subcover of the Hermitian curie

Proof. From Proposition 1 we just have to prove that the following curves over
K = Fq2 with g = 27, which are given by the equations:

C=Y?'-Y3+Y=X") and C3:=(y’-y=x")

are notisomorphic to each other. LR be the point at infinity on the first curve
and Q. be the point at infinity on the second curve. If we have an isomorphism
o: C — C3we must have that (P,,) = Q. because these points are the only
ones with Weierstrass semigro(fy 9) generated by the pole-orders 7 and 9 (see
Satz 6 in [15]).

Since we have the following pole-divisors

diveo(X) = 9P ,  divee(Y) = 7P

and
diveo(X) = 9Q0 ,  diVeo(Y) = 7Qx
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we must have nonzero constaatandc such that
oy =a¥Y+b and o(X)=cX+dY+e
Sincey® — y — x” = 0 we get
@Y+hb®—@Y+b)y—cX+dY+e'=0.
The equation above should be a constant multiple of the equation
YO —Y34Y - X"=0,

and this is impossible. O

Remark 4. Consider the maximal curvés overF,. with q = ¢2 as in Theo-
rem 1. We know that:

For¢ = 2, it is Galois covered by the Hermitian.
For¢ = 3, itis not Galois covered by the Hermitian.

e What is the situation for other values 6f
e Is the curveC; covered by the Hermitian ?
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