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Ultraproducts of real interpolation spaces
betweenL p-spaces
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Abstract. Let {(L p0(�d, μd), L p1(�d, μd)), d ∈ D}, 1 ≤ p0 < p1 < ∞, be a
family of compatible couples ofL p-spaces. We show that, given a countably incomplete
ultrafilterU in D, the ultraproduct((L p0(�d, μd), L p1(�d, μd))θ,q)U, 0 < θ < 1, 1 ≤
q < ∞ of interpolation spaces defined by the real method is isomorphic to the direct sum
of an interpolation space of type(L p0(�1, ν1), L p1(�1, ν1))θ,q, an intermediate Köthe
space betweeǹp0(�2, ν2) and`p1(�2, ν2), (�2, ν2) being a purely atomic measure
space, and a Köthe function spaceK (�3) defined on some purely non atomic measure
space(�3, ν3) in such a way that�2 ∪ �3 6= ∅.
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1 Introduction

Ultraproducts were introduced in Banach space theory by Dacunha-Castelle
Krivine in [4] and are very suitable for the study of local theory of Banach
spaces and ideals of operators acting between them (see [5] and [18]). An im-
portant problem in ultraproducts theory is the study of permanence properties of
factor spaces in ultraproducts. The more easy result of this type is the known
fact that an ultraproduct ofL p spaces is again anL p space, 1≤ p < ∞. The
book [8] is almost entirely devoted to study the structure of ultraproducts of
Lebesgue-Bochner spacesL p[X]. The long paper [20] deals with this question
when the factor spaces are interpolation spaces of Banach lattices defined by the
Calderón-Lozanowski method. In [19] it is shown that an ultraproduct of Köthe
function spaces with a non trivial concavity is again a Köthe function space,
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although the resulting measure space has a very abstract character and has no
easy connection with the starting measure spaces.

In order to obtain more concrete descriptions, we have studied in [17] the
structure of ultraproducts of interpolation spaces of type(L p0(�), L p1(�))θ,q,

0 < θ < 1, 1 ≤ q < ∞. Unfortunately our results are based on some assump-
tions on factor spaces and moreover they do not give a complete description
of the full resulting ultraproduct.In this paper, and using different methods,
we improve the results of[17] by removing all assumptions and getting a more
accurate description of the full ultraproduct.

Section 2 of the paper introduces the basic specific notation in order to imple-
ment our methods and some preparatory technical results. Section 3 contains the
main theorems of the paper. General notation is standard. To specify the space
where a norm‖.‖ is computed, we write‖.‖E. If (�,M, μ) is a measure space
and f is aM-measurable scalar function, the support off is defined, except by
a set of zeroμ-measure asSupp( f ) := {t ∈ � | f (t) 6= 0}. L0(�,M, μ) will
denote the set of classes ofM-measurable real functions defined on� modulo
equalityμ-almost everywhere. SymbolsM or μ can be omitted if there is no
risk of confusion. The restriction to a measurable setA of the measureμ will
be denoted byμ also.

We use in an essential way results of Banach lattice theory and hencewe shall
deal only with real Banach spaces.A general reference for this material is [1].
We set some notation. Given a Banach latticeE andx ∈ E, the band generated
by x will be denoted byBx. If E is order complete andB is a band inE, PB will
be the band projection associated toB which is given by the formula (see [1])

∀ x ∈ E, x ≥ 0, PB(x) = sup{y ∈ B / 0 ≤ y ≤ x}.

In particular, in the case of the bandBx generated by a single elementx (a
principal band), to simplify we will writePx instead ofPBx and the equality

∀ z ∈ E, z ≥ 0, ∀ x ∈ E x ≥ 0 Pz(x) = sup
n∈N

x ∧ n z. (1)

holds.
Given a latticeE andx ∈ E, x > 0, every elementy ∈ E such thaty > 0

andy ∧ (x − y) = 0 is said to be acomponentof x. If E is order complete, the
set of all components ofx is Boole algebra (see theorem 3.15 in [1]) which will
be denoted byC(x). We recall that anatomin E is an elementx > 0 such that
y ∧ z = 0 and 0≤ y ≤ x, 0 ≤ z ≤ x imply eithery = 0 or z = 0.

A Banach latticeE of measurable real functions defined on the measure space
(�,M, μ) which is also a solid set inL0(�,M, μ) (i.e | f | ≤ |g| andg ∈ E
implies f ∈ E) is called a Köthe function space (defined) on(�,M, μ).
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Concerning interpolation spaces, we refer the reader to [2] for basic facts.
Given a compatible couple(A0, A1) of Banach spaces and numbers 0< θ < 1
and 1≤ q < ∞, in the interpolation space(A0, A1)θ,q we shall consider two
equivalent norms. The first one is

‖x‖ := inf max
j =0,1

(
∑

n∈Z

e( j −θ)nq‖x j
n‖q

Aj

) 1
q

,

taking the infimum over all sequences{x j
n}n∈Z, j = 0, 1 such thatx = x0

n + x1
n,

x0
n ∈ A0 andx1

n ∈ A1 for everyn ∈ Z. The second one is

|||x||| := inf max
j =0,1

(
∑

n∈Z

e( j −θ)nq‖xn‖
q
Aj

) 1
q

,

taking the infimum over all sequences{xn}n∈Z such thatxn ∈ A0 ∩ A1 for every
n ∈ Z andx =

∑
n∈Z xn in the spaceA0 + A1.

With respect to ultraproducts, our main references are [4] and [9]. We give
a brief account of the more relevant definitions and general facts. Given a non
void index setD and a Banach spaceEd for everyd ∈ D, we denote

`∞((Ed)) :=
{
(xd) ∈ 5d∈D Ed | sup

d∈D

‖xd‖ < ∞
}
.

Given an ultrafilterU on D, we putZU := {(xd) ∈ `∞((Ed)) | limd,U ‖xd‖ =
0}. Given (xd) ∈ `∞((Ed)), its class in the quotient set̀∞((Ed))/ZU is
denoted by(xd)U. Then the ultraproduct space(Ed)U is the quotient Banach
spacè ∞((Ed))/ZU whose canonical quotient norm equals the norm‖(xd)U‖ :=
limU ‖xd‖. To avoid trivialitiesall the used ultrafiltersU are assumed to be
countably incomplete,i. e. there is a sequence{Un}∞n=1 ⊂ U such that∩∞

n=1Un =
∅. Given a family{Td : Ed −→ Fd | d ∈ D} of continuous linear maps be-
tween Banach spacesEd and Fd such that supd∈D ‖Td‖ < ∞ we can define
the canonical ultraproduct map(Td)U : (Ed)U −→ (Fd)U by

∀ (xd)U ∈ (Ed)U (Td)U((xd)U) = (Td(xd))U. (2)

More generally, suppose we have a family{Td : Ed −→ Fd | d ∈ D} of
(non necessarily linear) continuous maps which arelocallyU-globally uniformly
continuous, i.e. for everyR > 0 andε > 0 there isδ > 0 andD ∈ U such that

sup{‖Td(xd) − Td(yd)‖ | ‖xd − yd‖ ≤ δ, ‖xd‖ < R, ‖yd‖ < R, d ∈ D} ≤ ε.

Bull Braz Math Soc, Vol. 37, N. 2, 2006
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Then definition (2) is meaningful still and produces a well defined (non linear)
continuous map(Td)U : (Ed)U −→ (Fd)U as it is easily seen. We shall use this
type of mappings in Section 2.

If every Ed, d ∈ D is a Banach lattice,(Ed)U also is a Banach lattice with
the canonical order given by(xd)U ≤ (yd)U if and only if there is(xd) ∈ (xi )U
and(yd) ∈ (yi )U suchthat xd ≤ yd for everyd ∈ D. Then(xd)U ∧ (yd)U =
(xd ∧ yd)U.

Remark 1. If (xd)U ∧ (yd)U = 0, we can choose representants(xd) ∈ (xd)U
and(yd) ∈ (yd)U suchthatxd ∧ yd = 0 for all d ∈ D.

Proof. Our assumption implies limU ‖xd ∧ yd‖ = 0 and hence

(xd − (xd ∧ yd))U = (xd)U, (yd − (xd ∧ yd))U = (yd)U ,

and(xd − (xd ∧ yd)) ∧ (yd − (xd ∧ yd)) = 0 for everyd ∈ D (see [7], chapter
1, theorem 1). �

Remark 2. Let x = (xd)U ≥ 0 in ∈ U. Let y = (yd)U be a component of
x. There are representants(xd) ∈ (xd)U and (yd) ∈ (yd)U suchthat yd is a
componentof xd for everyd ∈ D.

Proof. Since(x − y) ∧ y = 0 we can supposeyd ≥ 0 andxd ≥ yd for
everyd ∈ D. By remark 1, there are representations(zd) ∈ (xd − yd)U and
(yd) ∈ (yd)U such thatzd ∧ yd = 0 for everyd ∈ D. Then

lim
d,U

‖(zd − xd + yd)‖ = 0

Putxd := zd + yd for everyd ∈ D. Then

lim
d,U

‖(xd −xd)‖ = lim
d,U

‖(zd + yd −xd)‖ = lim
d,U

‖(zd −xd + (yd − yd)+ yd)‖ = 0

and hence(xd)U = (xd)U. Moreover (xd − yd) ∧ yd = zd ∧ yd = 0 for
all d ∈ D. Hence every yd is a componentof xd, d ∈ D and the proof is
complete. �

We fix now some notation concerning the specific ultraproducts we shall use
in this paper. Given fixed real numbers 1≤ p0, p1, q < ∞ and 0< θ < 1,

for everyd ∈ D we consider the spacesL pj (�d,Md, μd), (L pj (�d, μd) or

Bull Braz Math Soc, Vol. 37, N. 2, 2006
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L pj (�d) for short if there is no risk of confusion),j = 0, 1 and the interpolation
spaceλd := (L p0(�d, μd), L p1(�d, μd))θ,q. By a known result of Krée (see
[11]), every spaceλd, d ∈ D is isomorphic to a Lorentz spaceL p,q(�d, μd)

(where 1/p = (1 − θ)/p0 + θ/p1) with inequality constants independent on
�d. Hence, ifq < p0 < p1, definingr by the equality 1/p = (1 − θ)/q + θ/r
we obtain thatλd is isomorphic to(Lq(�d), Lr (�d))θ,q. A corresponding result
can be obtained ifp0 < p1 < q. As a consequence, since in this paper we shall
be concerned with ultraproducts of spacesλd, d ∈ D, we shall suppose always
p0 ≤ q ≤ p1 and p0 < p1. For everyd ∈ D we have the canonical inclusion
maps

I d
∩λ : L p0(�d) ∩ L p1(�d) −→ (L p0(�d), L p1(�d))θ,q,

I d
λ∪ : (L p0(�d), L p1(�d))θ,q −→ L p0(�d) + L p1(�d),

I d
∩pi

: L p0(�d) ∩ L p1(�d) −→ L pi (�d), i = 0, 1

and
I pi ∪ −→ L p0(�d) + L p1(�d), i = 0, 1.

All these maps have norm not greater than 1 and, moreover,

I d
p0∪ I d

∩p0
= I d

p1∪ I d
∩p1

= I d
λ∪ I d

∩λ .

We form now the ultraproducts

Upj := (L p0(�d))U, j = 0, 1,

U3 := ((L p0(�d), L p1(�d))θ,q)U,

UI := (L p0(�d) ∩ L p1(�d))U

and
US := (L p0(�d) + L p1(�d))U

and the canonical ultraproduct maps

I∩3 := (I d
∩λ)U : UI −→ U3,

I3∪ := (I d
λ∪)U : U3 −→ US,

I∩pj := (I d
∩pj

)U : UI −→ Upj , j = 0, 1

and
I pj ∪ := (I d

pj ∪)U : Upj −→ US, j = 0, 1

are well defined.
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It is known thatUpj , j = 0, 1 are order continuous (and hence order com-
plete) Banach lattices (they are actually abstractL pj -spaces and hence order
isometric to suitableL pj spaces). We also have

Lemma 3. U3 andUI are order continuous Banach lattices.

Proof. By the previously quoted result of Krée (see [11]), every spaceλd, d ∈
D, is isomorphic to the Lorentz spaceL p,q(�d, μd) (wherep is defined as above)
with inequality constants independent on�d. Thenλd has a max{p, q}-lower
estimate. HenceU3 also has a max{p, q}-lower estimate as a consequence of
the definition of its norm. By a result of Maurey (see [13]),U3 is h-concave
for everyh > max{p, q}. ThenU3 cannot containc0 as sublattice and hence its
norm is order continuous (see theorems 2.4.12 and 2.4.2 in [14]). The proof for
UI is similar. �

2 Preliminary technical results

Lemma 4. The mapHp0 p1 : Up0 −→ Up1 defined by

∀ f = ( fd)Up0
Hp0 p1( f ) :=

(
| fd|

p0
p1

)

Up1

is a (non linear) locally uniform homeomorphism which preserves disjointness
and sends components of positive elementsx ∈ Up0 into components ofHp0 p1(x)

and induces an isomorphism8p0 p1 between the respective boolean algebras of
band projections given by

8p0 p1(PB) = PHp0 p1(B).

Proof. It is clear thatHp0 p1 is a bijective map. We use the elementary inequal-
ities

∀ p ≥ 1, a, b ∈ R | |a|
1
p − |b|

1
p | ≤ |a − b|

1
p

and
∀ p ≥ 1, |a| ≥ |b| ≥ 0 |a|p − |b|p ≤ p |a − b| |a|p−1.

Let f = ( fd)Up0
, g = (gd)Up0

. For everyd ∈ D we have

‖| fd|
p0
p1 − |gd|

p0
p1 ‖L p1(�d) ≤ ‖| fd|

p0 − |gd|
p0‖

1
p1
L1(�d)

≤ p
1
p1

0 ‖( fd − gd)(| fd| ∨ |gd|)
p0−1‖

1
p1
L1(�d)

Bull Braz Math Soc, Vol. 37, N. 2, 2006
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and by Hölder’s inequality

≤ p
1
p1

0 ‖ fd − gd‖
1
p1
L p0(�d)

‖| fd| ∨ |gd|‖
p0−1

p1
L p0(�d)

. (3)

Hence we obtain easily that the familyhd
p0 p1

: L p0(�d) −→ L p1(�d) of (non

linear) maps defined byhd
p0 p1

( f ) = sg( f )| f |
p0
p1 is a set of locallyU-globally

uniformly continuous homeomorphisms (sg( f ) denotes the sign function of
f defined bysg( f )(t) = 1 if f (t) > 0, sg( f )(t) = 0 if f (t) = 0 and
sg( f )(t) = −1 if f (t) < 0). Everyhd

p0 p1
, d ∈ D sends open balls of center 0

and radiusr in L p0(�d) onto open balls of center 0 and radiusr
p0
p1 in L p1(�d).

Then the ultraproduct mapHp0 p1 := (hd
p0 p1

)U, is well defined. Taking limits
alongU in (3), we see thatHp0 p1 is an homeomorphism which is uniformly
continuous on bounded sets and has the same property about open balls inUp0

andUp1 that its component mappings.
It is now clear thatHp0 p1 preserves disjointness and, by Remark 2, sends com-

ponents of positive elements inUp0 onto components of its image because the
components of an element in a function lattice (which is endowed with its canon-
ical puntual order) are the product of such element by characteristic functions of
measurable sets. With the same proof of proposition 1.1.1 of Raynaud in [20] it
can be proved that the map defined by8p0 p1(PB) = PHp0 p1(B) is an isomorphism
between the corresponding boolean algebras of band projections. �

For everyd ∈ D let

Sd
pi

= {x ∈ L pi (�d) | ‖x‖ = 1}, i = 0, 1,

Sd
λ = {x ∈ λd | ‖x‖ = 1}, Sd

∩ = {x ∈ L p0(�d) ∩ L p1(�d) | ‖x‖ = 1}

be the unit spheres in the respective spaces. Next lemma is essentially due to
Raynaud [20] but we give a complete account of the more relevant details of
the proof for better understanding of the paper.

Lemma 5. There are (non linear) locally uniform isometries

H∩pi : UI −→ Upi , i = 0, 1

and H∩3 : UI −→ U3 which preserves disjointness, induces isomorphisms
8∩pi , i = 0, 1 and8∩3 between the boolean algebras of band projections in
the corresponding spaces and moreoverHp0 p1 H∩p0 = H∩p1.
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Proof. By the deep results of Chaatit given in propositions 2.8 and 2.9 of
[3], for eachd ∈ D there is a uniform surjective homeomorphism between the
corresponding unit spheres

hd
∩p0

: Sd
∩ −→ Sd

p0

which preserves the supports of the elementsand has a modulus of continuity
δ(ε) which depends on the modulus of uniform convexity ofL p0(�d) and the
modulus of uniform smoothness ofL p0(�d)∩ L p1(�d) exclusively. Henceδ(ε)
is indeed independent ofd ∈ D and it depends onp0 andp1 only. This isometry
can be extended to another support preserving surjective isometry (again denoted
by hd

∩p0
) defined in the whole spaceL p0(�d)∩ L p1(�d) settinghd

∩p0
(0) = 0 and

∀ fd 6= 0, fd ∈ L p0(�d) ∩ L p1(�d)

hd
∩p0

( fd) = ‖ fd‖L p0∩L p1 hd
∩p0

(
fd

‖ fd‖L p0∩L p1

)
.

Let us see thathd
∩p0

is uniformly continuous in bounded sets ofL p0(�d) ∩
L p1(�d). Let Bα denotes the closed ballBα := { fd | ‖ fd‖L p0∩L p1 ≤ α}, α > 0.

Fix M > 0. Givenε > 0, we have

‖ fd‖L p0(�d)∩L p1(�d) ≤
ε

2
=⇒ ‖hd

∩p0
( fd)‖ ≤

ε

2

sincehd
∩p0

is an isometry. On the other hand there is 1≥ ρ > 0 such that
0 < η ≤ ρ impliesδ(η) ≤ ε

4 M . Let fd ∈ L p0(�d) ∩ L p1(�d), fd 6= 0 be such
that ε

4 < ‖ fd‖ < M. If gd ∈ L p0(�d) ∩ L p1(�d) verifies‖ fd − gd‖ ≤ ρ ε

8 ,

having in mind that necessarily‖gd‖ > ε
8 > 0 and

∥
∥
∥
∥

fd

‖ fd‖
−

gd

‖gd‖

∥
∥
∥
∥ ≤

‖ fd − gd‖

‖ fd‖
+

| ‖gd‖ − ‖ fd‖ |

‖ fd‖

≤ 8
‖ fd − gd‖

ε

≤ ρ,

we have
∥
∥hd

∩p0
( fd) − hd

∩p0
(gd)

∥
∥

=

∥
∥
∥
∥‖ fd‖

(
hd

∩p0

(
fd

‖ fd‖

)
− hd

∩p0

(
gd

‖gd‖

))
+ (‖ fd‖ + ‖gd‖) hd

∩p0

(
gd

‖gd‖

)∥
∥
∥
∥

≤ ‖ fd‖ δ

(∥
∥
∥
∥

fd

‖ fd‖
−

gd

‖gd‖

∥
∥
∥
∥

)
+ ‖ fd − gd‖ ≤

ε

4
+

ε

4
=

ε

2
.
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Hence

fd, gd ∈ BM , fd − gd ∈ Bρ
8

=⇒ ‖hd
∩p0

( fd) − hd
∩p0

(gd)‖ ≤ ε (4)

as we claimed.
Noting that,by the independence ofd ∈ D on the modulus of continuity

of everyhd
∩p0

, (4) holds simultaneously for alld ∈ D (for fixed M > 0 and
ε > 0 given in advance), we see that the family{hd

∩p0
| d ∈ D} is locallyU-

globally uniformly continuous. Hence the ultraproduct mapH∩p0 := (hd
∩p0

)U :
UI −→ Up0 is well defined, continuous and by remark 1 preserves disjointness
of elements.

Then, sinceUI andUp0 are order complete Banach lattices, for each band
B in UI we have

H∩p0(B)⊥⊥ = (H∩p0(B)⊥)⊥ = H∩p0(B⊥)⊥ = H∩p0(B⊥⊥) = H∩p0(B),

that is,H∩p0(B) is also a band inUp0. In particular

∀ x ∈ UI H∩p0(Bx) = H∩p0(x
⊥⊥) = (H∩p0(x

⊥))⊥ = H∩p0(x)⊥⊥

and H∩p0(Bx) = BH∩p0(x), the band generated by the imageH∩p0(x). With
the same proof of proposition 1.1.1 of Raynaud in [20] it can be proved now
that the map defined by8∩p0(PB) = PH∩p0(B) is an isomorphism between the
corresponding boolean algebras of band projections.

Finally, definingH∩p1 := Hp0 p1 H∩p0 and8∩p1(B) = PH∩p1(B) for every band
B in UI , with a similar argumentation we obtain the second desired homeo-
morphism. ConcerningH∩3 and8∩3 the proof is analogous using moreover
proposition 2.4 in [3] and starting with Chaatit’s homeomorphismshd

∩λ between
the unit spheres of the spacesL p0(�d) ∩ L p1(�d) andλd. �

Set I∩∪ := I3∪ I∩3. Let D1 := {ev := (ev
d)UI , v ∈ V1} be a maximal

system of pairwise disjoint elements in the band(Ker(I∩∪))⊥ in UI and such
that ‖ev‖UI = 1 for everyv ∈ V1. As a consequence, for everyv ∈ V1 and
every componentx of ev we have necessarilyI∩∪(x) 6= 0. Let D2 := {ev :=
(ev

d)UI , v ∈ V2} be a maximal system ofatomsin the bandKer(I∩∪) such
that ‖ev‖UI = 1 for eachv ∈ V2. Remark thatD2 can be void. Finally,
let D3 := {ev := (ev

d)UI , v ∈ V3} be a maximal system of pairwise disjoint
elements in the bandKer(I∩∪) ∩ D⊥

2 such that, moreover,‖ev‖UI = 1 for each
v ∈ V3. By maximality ofD2 noev, v ∈ V3 has atomic components. As above,
perhapsD3 = ∅ but we have alwaysD2 ∪ D3 6= ∅ becauseI∩∪ is injective if
and only if everyI d

λ∪ I d
∩λ, d ∈ D is an isomorphism onto the image and the set

of norms ofI d
λ∪ I d

∩λ and its inverse mappings is uniformly bounded with respect
to d ∈ D.
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PutV0 := V1 ∪V2 ∪V3. ClearlyD0 := {ev | v ∈ V0} is a maximal system
of pairwise disjoint elements inUI sinceUI = B⊕ B⊥ for every bandB inUI .

With help ofD0 we select now some special sets of pairwise disjoint elements
in Upi , i = 0, 1 andU3. We define

uv :=

{
I∩p0(e

v) if v ∈ V1

H∩p0(e
v) if v ∈ V2 ∪V3,

wv :=

{
I∩p1(e

v) if v ∈ V1

H∩p1(e
v) if v ∈ V2 ∪V3

and

zv :=

{
I∩3(ev) if v ∈ V1

H∩3(ev) if v ∈ V2 ∪V3.

Remark that

∀ v ∈ V2 ∪V3 ‖uv‖Up0
= ‖wv‖Up1

= ‖zv‖U3
= 1 (5)

and
∀ v ∈ V1 ‖wv‖Up1

≤ ‖zv‖U3
≤ ‖uv‖Up0

≤ 1. (6)

Fix, for future work, the notationuv = (uv
d)Up0

, zv = (zv
d)U3

andwv = (wv
d)Up1

for everyv ∈ V0.

Lemma 6. {uv | v ∈ V0} and{wv | v ∈ V0} are maximal systems of pairwise
disjoint elements inUp0 andUp1 respectively.

Proof. Let x = (xd)Up0
∈ Up0 verifies |x| ∧ uv = 0 for everyv ∈ V0.

Set y := (yd)U := (H∩p0)
−1(|x|). Fix v ∈ V0. As |x| ∧ uv = 0 we can

suppose that|xd| ∧ uv
d = 0 for everyd ∈ D (Remark 1). Then, by Lemma 5

|yd| ∧ (hd
∩p0

)−1(uv
d) = 0 and consequently|yd| ∧ ev

d = 0 becausehd
∩p0

preserves
the support of functions. In this way we get|y| ∧ ev = 0. As v ∈ V0 is arbi-
trary, necessarilyy = 0 and hence|x| = H∩p0(y) = 0. The proof forUp1 is
similar. �

Lemma 7. For everyv ∈ V2, uv, zv andwv are atoms.

Proof. Assumex ∧ y = 0, 0 < x ≤ uv and 0< y ≤ uv. Thenx ∧ us = 0
andy ∧ us = 0 for eachs ∈ V0, s 6= v. As H∩p0 preserves disjointness,

|H−1
∩p0

(x)| ∧ |H−1
∩p0

(y)| = 0, |H−1
∩p0

(x)| ∧ es = 0 and |H−1
∩p0

(y)| ∧ es = 0
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for suchs ∈ V0. By the maximal property ofD0 necessarily

0 6= ev ∧ |H−1
∩p0

(x)| ≤ ev and 0 6= ev ∧ |H−1
∩p0

(y)| ≤ ev

since|H−1
∩p0

(x)| 6= 0 and|H−1
∩p0

(y)| 6= 0, H∩p0 being an isometry, a contradiction
with the atomic character ofev. The proof of the other statements is similar.�

For simplicity of notation, puthd
p0λ

:= hd
∩λ(h

d
∩p0

)−1 for everyd ∈ D and

Hp03 := (hd
p0λ

)U = H∩3H−1
∩p0

which still is a homeomorphism. For every
d ∈ D and everyxd ∈ C(uv

d), we put

gd
p0λ

(xd) =






I d
∩λ(I d

∩p0
)−1(xd) if v ∈ V1

Phd
p0λ(xd)(z

v
d) if v ∈ V2 ∪V3.

Clearly supd∈D ‖gd
p0λ

(xd)‖ = supd∈D ‖xd‖UI < ∞ if v ∈ V1. In other case we
have

sup
d∈D

‖gd
p0λ

(xd)‖ = sup
d∈D

‖ sup
n∈N

zv
d ∧ n hd

p0λ
(xd)‖ ≤ sup

d∈D

‖zv
d‖ < ∞. (7)

Then the map

∀ v ∈ V0, ∀ x ∈ C(uv) Gp03(x) := (gd
p0λ

(xd))U3

is well defined on
⋃

{C(uv) | v ∈ V0}.
We extendGp03 to the set

Fv
p0

:=
{ n∑

i =1

αi xi / αi ∈ R, xi ∈ C(uv), xi ∧ xj = 0

if i 6= j, i, j = 1, 2, ..., n; n ∈ N
}

putting

∀
n∑

i =1

αi xi ∈ Fv
p0

Gp03

(
n∑

i =1

αi xi

)

=
n∑

i =1

αi Gp03(xi ).

Finally, we extend the definition ofGp03 by linearity to the linear spanF p0
V0

of
∪v∈V0F

v
p0

. We have
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Lemma 8.

1) Gp03 is well defined onF p0
V0

andGp03(x) ∈ C(zv) for everyv ∈ V0 and
x ∈ C(uv).

2) Gp03 is continuos on the linear spanF p0
V1∪V2

of
⋃

{C(uv) | v ∈ V1∪V2}
and hence it can be extended by continuity to the band{uv | v ∈ V1 ∪
V2}⊥⊥ in Up0.

Proof. 1) If v ∈ V1, Gp03 is well defined onFv
p0

trivially. Let v ∈ V2 ∪V3.

Suppose
n∑

i =1

αi x
i =

m∑

j =1

β j y
j (8)

where{xi }n
i =1 and{y j }m

j =1 are sets of pairwise disjoint components ofuv. By well
known properties of vector lattices, (see for instance proposition 1.2.17 in [14]),
there is another set{zk}h

k=1 := {(zk
d)Up0

}h
k=1 of pairwise disjoint components of

uv such that

∀ i = 1, 2, ..., n xi =
h∑

k=1

γi kzk and

∀ j = 1, 2, ..., m yj =
h∑

k=1

ρ j kzk

(9)

and, moreoverγik = 0 orγik = 1 andρ jk = 0 orρ jk = 1 for everyi = 1, 2, ..., n
and j = 1, 2, ..., m. By remark 1 we can alsosupposezk

d ∧ zs
d = 0 for d ∈ D

and 1≤ k 6= s ≤ h. Then

n∑

i =1

αi x
i =

h∑

k=1

(
n∑

i =1

αi γik

)

zk

and
m∑

j =1

β j y
j =

h∑

k=1




m∑

j =1

β j ρ jk



 zk

and from (8) we obtain

∀ k = 1, 2, ..., h
n∑

i =1

αi γik =
m∑

j =1

β j ρ jk . (10)
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According to (9), for eachd ∈ D let

∀ i = 1, 2, ..., n xi
d =

h∑

k=1

γi kzk
d and

∀ j = 1, 2, ..., m yj
d =

h∑

k=1

ρ j kzk
d.

(11)

Clearly, by (9) we havexi = (xi
d)Up0

, i = 1, 2, ..., n and y j = (y j
d)Up0

,
j = 1, 2, ..., m. Furthermore, (11) implies

∀ d ∈ D, ∀ i = 1, 2, ..., n Supp(xi
d) =

⋃ {
Supp(zk

d) | γik = 1
}

and

∀ d ∈ D, ∀ j = 1, 2, ..., m Supp(y j
d) =

⋃ {
Supp(zk

d) | ρ jk = 1
}
.

Then we can suppose that for everyi = 1, 2, ..., n and everyt ∈ �d with
xi

d(t) 6= 0 there is 1≤ k ≤ h suchthatzk
d(t) 6= 0 and sincehd

p0λ
preserves the

supports,hd
p0λ

(xi
d)(t) 6= 0 andhd

p0λ
(zk

d)(t) 6= 0. As a consequence we get

Phd
p0λ(xi

d)(z
v
d) = sup

r ∈N
zv

d ∧ r hd
p0λ

(xi
d) = sup

r ∈N
zv

d ∧ r hd
p0λ

(
h∑

k=1

γi kzk
d

)

= sup
r ∈N

zv
d ∧ r

(
h∑

k=1

γikhd
p0λ

(zk
d)

)

=
h∑

k=1

γik

(
sup
r ∈N

zv
d ∧ r hd

p0λ
(zk

d)

)

=
h∑

k=1

γik Phd
p0λ(zk

d)(z
v
d)

having in mind that the supportsof zk
d’s are pairwise disjoint.

Then after a similar computation with the elements{y j
d}m

j =1, by (10) we get

∀ d ∈ D

n∑

i =1

αi Phd
p0λ(xi

d)(z
v
d) =

h∑

k=1

(
n∑

i =1

αi γik

)

Phd
p0λ(zk

d)(z
v
d)

=
h∑

k=1




m∑

j =1

β j ρ jk



 Phd
p0λ(zk

d)(z
v
d)

=
m∑

j =1

β j Phd
p0λ(y j

d )
(zv

d).
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That means thatGp03 is well defined onFv
p0

if v ∈ V2 ∪V3.

Since every element ofF p0
V0

can be written in a unique way as finite sum∑s
i =1 xi with everyxi ∈ Buvi , vi ∈ V0, i = 1, 2, ..., s, it is now clear thatGp03

is well defined onF p0
V0

.

On the other hand, for every projection bandB in a Banach latticeE and every
x ∈ E, x ≥ 0, PB(x) is a component ofx. Then, by Remark 2gd

p0λ
(xd) ∈ C(zv

d)

for everyv ∈ V0, x := (xd)Up0
∈ C(uv) andd ∈ D. ThenGp03(x) ∈ C(zv) for

everyx ∈ C(uv).

2) Again it is enough to do the proof for the linear spanF p0
V2

of
⋃

{C(uv) |
v ∈ V2}. Let v ∈ V2. By Lemma 7 everyuv is an atom and hence the unique
component ofuv is the sameuv. Then

Gp03(uv) = Gp03((uv
d)Up0

) = (Phd
p0λ(uv

d)(z
d
v ))U3

= (Pzd
v
(zd

v ))U3
= (zd

v )U3
= zv.

(12)

U3 having anr upper estimate, wherer = min{p, q}, (notation of Lemma 3),
Up0 being an abstractL p0-space and noticing thatp0 ≤ r, there isC > 0 such
that, for every finite set{uvn}t

n=1 ⊂ D2 and{αn}t
n=1 ⊂ R, by (12) and (6) we

have

∥
∥
∥
∥
∥

t∑

n=1

αnGp03(uvn)

∥
∥
∥
∥
∥
U3

≤ C

(
t∑

n=1

|αn|
r ‖Gp03(uvn)‖r

U3

) 1
r

≤ C

(
t∑

n=1

|αn|
p0‖zvn‖p0

U3

) 1
p0

≤ C

(
t∑

n=1

|αn|
p0‖uvn‖p0

Up0

) 1
p0

= C

∥
∥
∥
∥
∥

t∑

n=1

αnuvn

∥
∥
∥
∥
∥
Up0

which shows the continuity ofGp03 in F p0
V2

. By order continuity ofUp0 and
Freudenthal´s spectral theorem,Gp03 can be continuously extended to the band
{uv | v ∈ V2}⊥⊥. �

Now we do a similar work with the ultraproductsU3 andUp1. For every
d ∈ D we definehd

λp1
:= hd

∩p1
(hd

∩λ)
−1,

∀v ∈ V0, ∀xd ∈ C(zv
d) gd

λp1
(xd) :=






I d
∩p1

(I d
∩λ)

−1(xd) if v ∈ V1

Phd
λp1

(xd)(w
v
d) if v ∈ V2 ∪V3
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and, after similar computations to that (7), we define

∀v ∈ V0, ∀x = (xd)U3
∈ C(zv) G3p1(x) = (gd

λp1
(xd))Up1

.

We extendG3p1 by linearity to

Fv
3 :=

{
k∑

n=1

αnyn yn ∈ C(zv), n = 1, 2, ..., k, k ∈ N, yn ∧ ym = 0 if n 6= m

}

and in a further step to the linear spanF3
V0

of
⋃

{C(zv) | v ∈ V0}. Note that

∀ v ∈ V0 wv = G3p1(z
v). (13)

We have

Lemma 9.

1) G3p1 is well defined onF3
V0

andG3p1(x) ∈ C(wv) for everyv ∈ V0 and
x ∈ C(zv).

2) G3p1 is continuos on the linear spanF3
V1∪V2

of
⋃

{C(zv) | v ∈ V1 ∪V2}
and hence it can be extended by continuity to the band{ zv | v ∈ V1∪
V2}⊥⊥ in U3 generated by them.

Proof. The proof is analogous to the given one in Lemma 2 but using the fact
thatU3 verifies as-lower estimate, (wheres = max{p, q} ands ≤ p1). There
is now M > 0 such that given{vn}k

n=1 ⊂ V2 and{αn}k
n=1 ⊂ R, by (13) and (5),

Up1 being an abstractL p1-space, we have

∥
∥
∥
∥
∥

k∑

n=1

αnG3p1(z
vn)

∥
∥
∥
∥
∥
Up1

=

(
k∑

n=1

|αn|
p1‖G3p1(z

vn)‖p1
Up1

) 1
p1

≤

(
k∑

n=1

|αn|
s‖G3p1(z

vn)‖s
Up1

) 1
s

≤

(
h∑

n=1

|αn|
s‖zvn‖s

Up1

) 1
s

≤ M

∥
∥
∥
∥
∥

k∑

n=1

αnzvn

∥
∥
∥
∥
∥
U3

.

�

Consider now the linear mapGp0 p1 : Up0 −→ Up1 defined byGp0 p1 =
G3p1Gp03. We have
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Lemma 10. For everyv ∈ V0 and everyx ∈ C(uv) the equality

Gp0 p1(x) = Hp0 p1(x)

holds.

Proof. There is nothing to prove ifv ∈ V1. Let v ∈ V2 ∪ V3. Let x =
(xd)Up0

∈ C(uv). Since everyxd anduv
d are functions on the measure space

�d, d ∈ D, by Remark 2 we can suppose there are measurable setsAd in �d

such thatxd = χAduv
d for everyd ∈ D. For everyd ∈ D, let yd := gd

p0λ
(xd) and

sd := (hd
p0λ

)−1(yd). By known properties of band projections and the definition
of the homeomorphismHp0 p1,Up0 andUp1 being order continuous lattices we
obtain

gd
λp1

(yd) = Phd
λp1

(yd)(wd) = sup
n∈N

hd
p0 p1

(uv
d) ∧ n hd

λp1
(yd)

= sup
n∈N

hd
p0 p1

(uv
d) ∧ n hd

p0 p1
(hd

p0λ
)−1(yd)

= sup
n∈N

(uv
d)

p0
p1 ∧ n s

p0
p1

d .

(14)

By properties ofhd
p0λ

the equalities

Supp

(
x

p0
p1

d

)
= Supp(xd) = Supp(yd) = Supp(sd) = Supp

(
s

p0
p1

d

)
,

hold. Asxd = χAduv
d, we get as continuation of (14)

gd
λp1

(yd) = sup
n∈N

(χAduv
d)

p0
p1 ∧ n s

p0
p1

d = (χAduv
d)

p0
p1 = x

p0
p1

d = hd
p0 p1

(xd).

As a consequence

G3p1Gp03(x) = G3p1((g
d
p0λ

(xd))U3
) = (gd

λp1
(yd))Up1

= (hd
p0 p1

(xd))Up1
= Hp0 p1(x).

�

3 Main results

Theorem 11. There is a measure space(�U,MU, μU) and isometric order
isomorphisms

9pj : Upj −→ L pj ((�U,MU, μU), j = 0, 1

such that
∀x ∈ Up0 9p0(x) = 9p1(Gp0 p1(x)). (15)
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Proof. Let v ∈ V0 and letPp0(u
v) andPp1(w

v) be the boolean algebras of
principal band projections generated by the components ofuv andwv respec-
tively. By Lemma 10 we have

∀ x ∈ C(uv) ∀ f ∈ Up1 PHp0 p1(x)( f ) = PGp0 p1(x)( f )

and by lemmata 8 and 9Px(uv) = x and PGp0 p1(x)(w
v) = Gp0 p1(x). Then

by lemmata 4 and 10, the restriction to the set of principal band projections of
8p0 p1 given by

∀x ∈ C(uv) 8p0 p1(Px) = PHp0 p1(x) = PGp0 p1(x)

is an isomorphism between the respective boolean algebras of principal band
projections. By the Stone representation theorem there is an extremely discon-
nected compact spaceXv and isomorphisms of boolean algebras

H v
p0

: C(uv) −→ Ov, H v
p1

: C(wv) −→ Ov

onto the boolean algebraOv of clopen sets ofXv such that

∀x ∈ C(uv) H v
p0

(x) = H v
p1

(Hp0 p1(x)) ∈ Ov. (16)

Since everyUpi , i = 0, 1 is an abstractL pi -space, if we define

∀A ∈ Ov μv
i (A) := ‖(H v

pi
)−1(A)‖pi

Upi
i = 0, 1

we obtain measuresμv
i , i = 0, 1 in Ov such that, by (16) and the definition of

Hp0 p1

∀A ∈ Ov μv
1(A) := ‖(H v

p1
)−1(A)‖p1

Up1

= ‖Hp0 p1(H
v
p0

)−1(A)‖p1
Up1

= ‖(H v
p0

)−1(A)‖p0
Up0

= μv
0(A),

i.e. we have a unique measureμv defined onOv. By the standard Caratheodory
procedureμv can be extended to a measure (again denoted byμv,) defined in
theσ -algebraMv of μv-measurable sets ofXv. The map

9v
p0

: Fv
p0

−→ L p0(Xv, μv)

given by

9v
p0

(
n∑

i =1

αi xi

)

=
n∑

i =1

αi χH v
p0

(xi )
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is well defined by the same argumentation used in Lemma 8. AsUp0 is an
abstractL p0-space we have
∥
∥
∥
∥
∥
9v

p0

(
n∑

i =1

αi xi

)∥
∥
∥
∥
∥

p0

L p0(μv)

=
n∑

i =1

∫

H v
p0

(xi )

|αi |
p0dμv =

n∑

i =1

|αi |
p0μv(H

v
p0

(xi ))

=
n∑

i =1

|αi |
p0‖xi ‖

p0
Up0

= ‖x‖p0

and hence,9v
p0

is an isometry. Analogously, if

Fv
p1

=

{

y =
n∑

i =1

αi yi yi ∈ C(wv), i = 1, 2, ..., n, n ∈ N, yi ∧ yj = 0 if i 6= j

}

,

the map
9v

p1
: Fv

p1
−→ L p1(Xv, μv)

defined by

9v
p1

(
n∑

i =1

αi yi

)

=
n∑

i =1

αi χH v
p1

(yi )

is an isometry. SinceHp0 p1 sends components into components(Lemma 4), by
Lemma 10, for every finite set{xi }n

i =1 ⊂ C(uv) and{αi }n
i =1 ⊂ R we have

9v
p0

(
n∑

i =1

αi xi

)

=
n∑

i =1

αi χH v
p0

(Pxi )
=

n∑

i =1

αi χH v
p1

(PHp0 p1(xi ))

= 9v
p1

(
n∑

i =1

αi Hp0 p1(xi )

)

= 9v
p1

(
n∑

i =1

αi Gp0 p1(xi )

)

= 9v
p1

(

Gp0 p1

(
n∑

i =1

αi xi

))

.

To finish we only have to define the measure space(�U,MU, μU) where
�U :=

⋃
v∈V0

Xv,

MU :=





A :=

⋃

v∈V0

Av | A ∈ Mv ∀ v ∈ V0






and
∀ A :=

⋃

v∈V0

Av ∈ MU μU(A) =
∑

v∈V0

μv(Av)
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and to glue the isomorphisms9v
p0

, i = 0, 1 defining

∀ x ∈ Up0 9p0(x) =
∑

v∈V0

9v
p0

(Puv (x))

and
∀ x ∈ Up1 9p1(x) =

∑

v∈V0

9v
p1

(Pwv (x)). �

Theorem 12. There are a measure space(�1,M1, μ1), a discrete measure
space(�2,M2, μ2) (eventually empty) and an atomless measure space(�3,M3,

μ3), (eventually empty) such that�2 ∪ �3 6= ∅ and such that the ultraproduct
of interpolation spaces((L p0(�d, μd), L p1(�d, μd))θ,q)U is isomorphic to the
direct sum

(L p0(�1, μ1), L p1(�1, μ1))θ,q ⊕ K (�2) ⊕ X(�3)

where K (�2) is an intermediate space of the couple(`p0(�2), `
p1(�2)) and

X(�3) is an order continuous Köthe function space over�3.

Proof. For everyi = 1, 2, 3 let Pi
Up0

: Up0 −→ Up0 be the canonical pro-
jection onto the band generated inUp0 by the set{uv | v ∈ Vi }. Analogously
we definePi

Up1
: Up1 −→ Up1 as the canonical projection onto the band gener-

ated inUp1 by the set{wv | v ∈ Vi } and Pi
U3

: U3 −→ U3 as the canonical
projection onto the band generated inU3 by the set{zv | v ∈ Vi }. Clearly we
have

U3 = P1
U3

(U3) ⊕ P2
U3

(U3) ⊕ P3
U3

(U3).

We consider the measure space(�U,MU, μU, ) constructed in Theorem 11.
Let �i = ∪v∈Vi Supp(9p0(u

v)), i = 1, 2, 3. Let F p0
V2∪V3

be the linear span of
the set of components∪ {C(uv) | v ∈ V2 ∪V3}. We define923

U : F p0
V2∪V3

−→
L0(�2 ∪ �3, μU) by

∀
n∑

i =1

αi xi ∈ F p0
V2∪V3

923
U

(
n∑

i =1

αi xi

)

=
n∑

i =1

αi χ9p0

(
G−1

p03(xi )
)

and we define a norm on923
U (F

p0
V2∪V3

) by

∀ x ∈ F p0
V2∪V3

|‖923
U (x)‖| = ‖x‖U3

.
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By the construction and the isomorphic properties of9p0, 923
U is an isometric

order isomorphism fromF p0
V2∪V3

onto 923
U (F

p0
V2∪V3

) and hence it can be ex-
tended by continuity to another isometric order isomorphism (again denoted
by 923

U ) between the respective completions. But the completion ofF
p0
V2∪V3

is
P2
U3

(U3) ⊕ P3
U3

(U3) by Freudenthal’s spectral theorem,U3 being order con-
tinuous (Lemma 3). In this way,P2

U3
(U3) andP3

U3
(U3) are isometric to certain

atomic Köthe spaceK (�2) and certain Köthe function spaceX(�3) defined on
�2 and�3 respectively (the completion of923

U (F
p0
Vi

), i = 2, 3 (whereF p0
Vi

is
the linear span of

⋃
{C(uv) | v ∈ Vi }, i = 2, 3) which can be identified with

a subspace ofL0(�2 ∪ �3,MU, μU)).

As 9p0 is an order isomorphism, every setSupp(9p0(u
v)), v ∈ V2 is an atom

in (�U,MU, μU) andμU (Supp(9p0(u
v))) = ‖uv‖p0

Up0
= 1 (remember lem-

mata 7 and 5). Then(�2,MU, μU) is a purely atomic space. ThatK (�2) is
an intermediate space of the couple(`p0(�2), `

p1(�2)) follows from Proposi-
tions 8 and 9 and Theorem 11.

Finally we prove thatP1
U3

(U3) is isomorphic to the interpolation space
(L p0(�1, μU), L p1(�1, μU))θ,q. Take a family(εd)U such that limd,U εd = 0
andεd < 1 for eachd ∈ D (remember thatU is countably incomplete). Let
( fd)U3

∈ U3. For everyd ∈ D and everyn ∈ Z there is a representation

fd = f nd
0 + f nd

1 ∀ n ∈ Z (17)

such that

max
j =0,1

(
∑

n∈Z

e( j −θ)nq‖( f nd
j )‖L pj (�d)

) 1
q

≤ ‖ fd‖λd + εd. (18)

Since supd∈D ‖ fd‖λd < ∞, using (18) we obtain for everyn ∈ Z and j = 0, 1

sup
d∈D

‖( f nd
j )‖L pj (�d) ≤ e−( j −θ)n

(
∑

k∈Z

e( j −θ)kq‖( f nd
j )‖L pj (�d)

) 1
q

≤ e−( j −θ)n

(
sup
d∈D

‖ f nd
j ‖λd + 1

)
< ∞

and as a consequence( f nd
j )U ∈ Upj .

Then given( fd)U3
∈ U3 we can choose( f d

j )Upj
∈ Upj , j = 0, 1 such that

( fd)U3
= ( f d

0 + f d
1 )U3

. We define

∀ ( fd)U3
∈ U3 91

U(( fd)U3
) = 91

U(( f d
0 + f d

1 )U3
)

= 9p0(P1
Up0

(( f d
0 )Up0

)) + 9p1(P1
Up1

(( f d
1 )Up1

)).
(19)

Bull Braz Math Soc, Vol. 37, N. 2, 2006



“main” — 2006/10/10 — 14:44 — page 211 — #21

ULTRAPRODUCTS OF REAL INTERPOLATION SPACES BETWEENL p-SPACES 211

Claim 1. The definition of91
U(( f d)U3

) does not depend on the selected de-
composition for( f d)U3

.

Proof. Suppose
0 =

(
f d
0 + f d

1

)
U3

(20)

with ( f d
j )Upj

∈ Upj , j = 0, 1. Having in mind the order continuity of every
Upj , j = 0, 1 to finish the proof of the claim it is enough to see that for every
v ∈ V1 the equality

0 = 9p0(Puv (( f d
0 )Up0

)) + 9p1(Pwv (( f d
1 )Up1

))

holds. To see that, define

A0 :=
{
t ∈ �1 | 9p0(Puv (( f d

0 )Up0
))(t) + 9p1(Pwv (( f d

1 )Up1
))(t) > 0

}
.

AssumeμU(A0) > 0. Then there would be a measurable setA ∈ Ov and a
numberδ > 0 such thatA ⊂ A0, 0 < μU(A) < ∞ and

δχA ≤ (9p0(Puv (( f d
0 )Up0

)) + 9p1(Pwv (( f d
1 )Up1

)))χA =

and by Theorem 11

= 9p1(Pwv (( f d
0 )Up1

)) + 9p1(Pwv (( f d
1 ))Up1

))χA

= 9p1(Pwv (( f d
0 + f d

1 )Up1
))χA.

(21)

We obtain 06= 9−1
p1

(χA) ∈ Up1 since9p1 is an isomorphism. On the other
hand (20) implies

0 = Pzv (( f d
0 + f d

1 )U3
),

and taking images byI3p1

0 = Pwv (( f d
0 + f d

1 )Up1
).

If γ := 9−1
p1

(χA) ∈ C(wv) ⊂ Up1 we have

Pγ Pwv (( f d
0 + f d

1 )Up1
) ∧ 9−1

p1
(χA) = 0 ∧ 9−1

p1
(χA) = 0.

But, 9p1 being an order isomorphism and using (21) and (1)

9p1

(
Pγ Pwv (( f d

0 + f d
1 ))Up1

) ∧ 9−1
p1

(χA)
)

= χA9p1(Pwv (( f d
0 + f d

1 )Up1
)) ∧ χA ≥ δχA ∧ χA = min{1, δ}χA > 0,

a contradiction. Analogously we can prove that, if

B0 :=
{
t ∈ � | 9p0(Puv (( f d

0 )Up0
))(t) + 9p1(Pwv (( f d

1 )Up1
))(t) < 0

}

necessarily we haveμU(B0) = 0. Hence91
U is well defined.
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Claim 2. 91
U is an isomorphism fromP1

U3
(U3) onto the interpolation space

(L p0(�1), L p1(�1))θ,q.

Proof. Choose representations of type (18). By claim 1

∀h ∈ Z 91
U(( fd)U3

) = 9p0(P1
Up0

(( f hd
0 )Up0

)) + 9p1(P1
Up1

(( f hd
1 )Up1

)).

Then

‖91
U(( fd)U3

)‖ ≤ max
j =0,1

(
∑

h∈Z

e( j −θ)hq‖9pj (P1
Upj

(( f hd
j )Upj

))‖q
L pj (�1)

) 1
q

≤

and9p0, 9p1 being isometries

≤ max
j =0,1

(
∑

h∈Z

e( j −θ)hq‖P1
Upj

(( f hd
j )Upj

)‖q
Upj

) 1
q

≤ max
j =0,1

‖P1
Upj

‖

(
∑

h∈Z

e( j −θ)hq lim
d,U

‖ f hd
j ‖q

L pj (�d)

) 1
q

= max
j =0,1

lim
k→∞



lim
d,U

∑

|h|≤k

e( j −θ)hq‖ f hd
j ‖q

L pj (�d)





1
q

≤ max
j =0,1

(

lim
d,U

∑

h∈Z

e( j −θ)hq‖ f hd
j ‖q

L pj (�d)

) 1
q

≤ lim
d,U

(‖ fd‖λd + εd) = ‖( fd)U3
‖U3

(22)

and91
3 becomes continuous.

Conversely, givenε > 0 and f ∈ (L p0(�1, μU), L p1(�1, μU))θ,q there is a
sequence{ f h}h∈Z ⊂ L p0(�1, μU) ∩ L p1(�1, μU), such that

f =
∑

h∈Z

f h (23)

in (L p0(�1, μU), L p1(�1, μU))θ,q (recall that 1≤ q < ∞ and proposition 3,
chapter II in [2]) and

max
j =0,1

(
∑

h∈Z

e( j −θ)hq‖ f h‖q
L pj (�)

) 1
q

≤ ‖ f ‖ + ε. (24)
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We can suppose thatf and eachf h, h ∈ Z are defined in all�1 ∪ �2 ∪ �3 and
vanishes in�2 ∪ �3.

Let us see that the series
∑

h∈Z

Gp03 P1
Up0

9−1
p0

( f h) (25)

is convergent in the Banach spaceP1
U3

(U3). Remark that, by our assumptions on
every f h, h ∈ Z and by Theorem 11, if( f h

d )Up0
:= P1

Up0
9−1

p0
( f h) = 9−1

p0
( f h),

we have f h
d ∈ L p0(�d) ∩ L p1(�d) for everyd ∈ D. Then, by the convergence

of the series of (24), givenδ > 0 there is a finite setH0 ⊂ Z such that for every
finitesetH ⊂ Z such thatH ∩ H0 = ∅ we have

∥
∥
∥
∥
∥
∥

∑

h∈H0

Gp03(( f h
d )U)

∥
∥
∥
∥
∥
∥
U3

=

∥
∥
∥
∥
∥
∥




∑

h∈H0

f h
d





U3

∥
∥
∥
∥
∥
∥
U3

= lim
d,U

∥
∥
∥
∥
∥
∥

∑

h∈H0

f d
h

∥
∥
∥
∥
∥
∥

λd

≤ lim
d,U

max
j =0,1




∑

h∈H0

e( j −θ)hq‖ f h
d ‖q

L pj (�d)





1
q

≤ max
j =0,1




∑

h∈H0

e( j −θ)hq lim
d,U

‖ f h
d ‖q

L pj (�d)





1
q

= max
j =0,1




∑

h∈H0

e( j −θ)hq‖( f h
d )Upj

‖q
Upj





1
q

= max
j =0,1




∑

h∈H0

e( j −θ)hq‖9pj (( f h
d )Upj

)‖L pj (�1)
)q





1
q

= max
j =0,1




∑

h∈H0

e( j −θ)hq‖ f h‖q
L p0(�1)





1
q

≤ δ.

Then, (25) is convergent inU3 and with similar computations we get
∥
∥
∥
∥
∥

∑

h∈Z

( f h
d )U3

∥
∥
∥
∥
∥

≤ ‖ f ‖ + ε. (26)
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Now we see that the sum of series (25) is independent on the selected sequence

{ f h}h∈Z in (23) and (24). Let{ f
h
}h∈Z be another sequence inL p0(�1)∩L p1(�1)

for which (23) holds. Assume

ϕ :=

(
∑

h∈Z

Gp03 P1
Up0

9−1
p0

( f h − f
h
)

)+

> 0.

By Freudenthal’s spectral theorem, there isv ∈ V1, x ∈ C(zv) and someδ > 0
such that 0< x ≤ δ ϕ. Clearly ϕ ∈ P1

U3
(U3) and hencex ∈ P1

U3
(U3)

and G3p1(x) ≤ G3p1(ϕ). As 91
U is continuous, by definition ofV1 and by

Theorem 11 we have

0 6= 9p1(G3p1(x)) = 91
U(x) ≤ δ 91

U(ϕ)

= δ

(
∑

h∈Z

91
U

(
Gp03 P1

Up0
9−1

p0
( f h − f

h
)
)
)+

= δ

(
∑

h∈Z

91
U9−1

p1
( f h − f

h
)

)+

= δ

(
∑

h∈Z

9p19
−1
p1

( f h − f
h
)

)+

= δ

(
∑

h∈Z

( f h − f
h
)

)+

= 0

a contradiction. Thenϕ = 0 and an analogous computation gives us the negative
part is also 0.

Once (25) is well defined,ε > 0 being arbitrary in (26), we get
∥
∥
∥
∥
∥

∑

h∈Z

( f h
d )U3

∥
∥
∥
∥
∥

≤ ‖ f ‖. (27)

As 91
U is continuous, by (19)

91
U

(
∑

h∈Z

( f h
d )U3

)

=
∑

h∈Z

91
U(( f h

d )U3
) =

∑

h∈Z

9p09
−1
p0

( f h) =
∑

h∈Z

f h = f.

Then by (27) and (22) we get the continuity of(91
U)−1 and the bijectivity of91

U.

Finally, defining9U = 91
UP1

U3
+ 923

U (P2
U3

+ P3
U3

) the proof is complete.�

References

[1] C.D. Aliprantis and O. Burkinshaw,Positive operators,Pure and Applied Mathe-
matics 119. Academic Press, New York, 1985.

Bull Braz Math Soc, Vol. 37, N. 2, 2006



“main” — 2006/10/10 — 14:44 — page 215 — #25

ULTRAPRODUCTS OF REAL INTERPOLATION SPACES BETWEENL p-SPACES 215

[2] B. Beauzamy,Espaces d’Interpolation Reéls:Topologie et Géométrie,Lecture
Notes in Mathematics 666, Springer Verlag, Berlin, 1978.

[3] F. Chaatit,On uniform homeomorphisms of the unit spheres of certain Banach
lattices.Pac. J. Math.168(1) (1995), 11–31.

[4] D. Dacunha-Castelle and J.L. Krivine,Application des ultraproduits à l’ étude des
espaces et algébres de Banach.Studia Math.41 (1972), 315–334.

[5] A. Defant and K. Floret,Tensor Norms and Operator Ideals,North Holland Math.
Stud. 176, North Holland, Amsterdam, 1993.

[6] D. Freitag,Real interpolation of weightedL p-spaces,Math. Nachr.86 (1978),
15–18.

[7] H.E. Lacey,The isometric theory of classical Banach spaces.Springer Verlag.
Berlin. New York, 1974.

[8] R. Haydon, M. Levy and Y. Raynaud,Randomly normed spaces.Collection
Travaux en Cours, Hermann, Paris, 1992.

[9] S. Heinrich,Ultraproducts in Banach spaces theory.J. Reine Angewandte Math.
313(1980), 72–104.

[10] C.W. Henson and C.W. Moore Jr.,Nonstandard analysis and theory of Ba-
nach spaces. Non standard analysis-recent developments.Lect. Notes Math. 983.
Springer Verlag. 1983.

[11] P. Krée,Interpolation d’espaces qui ne sont normés ni complets. Applications.
Ann. Inst. Fourier17 (1967), 137–174.

[12] J. Lindenstrauss and I. Tzafriri,Classical Banach spaces.Lect. Notes Math. 338.
Springer Verlag. 1973.

[13] B. Maurey,Type et cotype dans les espaces munis de structures locales incondi-
tionelles.Seminaire Maurey-Schwartz 1973-74, Exposes 24-25. École Polytech-
nique, París, 1974.

[14] P. Meyer-Nieberg,Banach lattices.Springer Verlag, Berlin, 1991.

[15] M. Levy and Y. Raynaud,Ultrapuissances deL p(Lq). C. R. Acad. Sc. Paris299(3)
(1984), 81–84.

[16] J.A. López Molina and E.A. Sánchez Pérez,On operator ideals related to(p, σ )-
absolutely continuous operators,Studia Math.138(1) (2000), 25–40.

[17] J.A. López Molina, M.E. Puerta and M.J. Rivera,On the structure of ultraproducts
of real interpolation spaces,Extr. Math.16(3) (2001), 367–382.

[18] A. Pietsch,Operator Ideals.North Holland, Amsterdam, 1980.

[19] Y. Raynaud,Ultrapowers of Köthe function spaces.Collect. Math.48(1997), 733–
742.

[20] Y. Raynaud,Ultrapowers of Calderón-Lozanowskii interpolation spaces.Indag.
Mathem. N. S.9(11) (1998), 65–105.

Bull Braz Math Soc, Vol. 37, N. 2, 2006



“main” — 2006/10/10 — 14:44 — page 216 — #26

216 J.A. LÓPEZ MOLINA, M.E. PUERTA and M.J. RIVERA

J.A. López Molina andM.J. Rivera
E.T.S. Ingenieros Agrónomos
Universidad Politécnica de Valencia
Camino de Vera
46072 Valencia
SPAIN

E-mails: jalopez@mat.upv.es / mjriv@mat.upv.es

M.E. Puerta
Universidad Eafit
Carrera 49 7Sur-50
3300 Medellín
COLOMBIA

E-mail: mpuerta@eafit.edu.co

Bull Braz Math Soc, Vol. 37, N. 2, 2006


