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Ultraproducts of real interpolation spaces
betweenL P-spaces
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Abstract. Let {(LP(Qq, ), LP1(Qq, uq)), d € D}, 1 < po < p1 < o0, be a
family of compatible couples df P-spaces. We show that, given a countably incomplete
ultrafiltert in ®, the ultraproduct(L P (24, 1), LP1 (R4, ud))e,q)u. 0 <0 <1,1<

g < oo of interpolation spaces defined by the real method is isomorphic to the direct sum
of an interpolation space of tyge P0(Q1, v1), LP1(Q21, v1))g,q. an intermediate Kéthe
space betweehPo(Q2, v2) and £PL(Q2, v2), (22, v2) being a purely atomic measure
space, and a Koéthe function spaceéQs) defined on some purely non atomic measure
spaceg 23, v3) in such away tha®2, U Q3 # ¢.
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Mathematical subject classification: Primary: 46A45, 46E30, 46M35.

1 Introduction

Ultraproducts were introduced in Banach space theory by Dacunha-Castelle
Krivine in [4] and are very suitable for the study of local theory of Banach
spaces and ideals of operators acting between them (see [5] and [18]). Anim-
portant problem in ultraproducts theory is the study of permanence properties of
factor spaces in ultraproducts. The more easy result of this type is the known
fact that an ultraproduct df P spaces is again aoP space, 1< p < oco. The

book [8] is almost entirely devoted to study the structure of ultraproducts of
Lebesgue-Bochner spack8[ X]. The long paper [20] deals with this question
when the factor spaces are interpolation spaces of Banach lattices defined by the
Calderdén-Lozanowski method. In [19] it is shown that an ultraproduct of Kéthe
function spaces with a non trivial concavity is again a Kothe function space,
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although the resulting measure space has a very abstract character and has no
easy connection with the starting measure spaces.

In order to obtain more concrete descriptions, we have studied in [17] the
structure of ultraproducts of interpolation spaces of tyip& (), LP1(2))s g,
0<6 <1, 1<g < oo.Unfortunately our results are based on some assump-
tions on factor spaces and moreover they do not give a complete description
of the full resulting ultraproduct.In this paper, and using different methods,
we improve the results ¢17] by removing all assumptions and getting a more
accurate description of the full ultraproduct

Section 2 of the paper introduces the basic specific notation in order to imple-
ment our methods and some preparatory technical results. Section 3 contains the
main theorems of the paper. General notation is standard. To specify the space
where a nornij|.| is computed, we writd.| g. If (2, M, u) is a measure space
and f is a;M-measurable scalar function, the supporf dé defined, except by
a set of zerqu-measure aSupp f) := {t € Q| f(t) # 0}. Lo, M, ) will
denote the set of classes®f-measurable real functions defined @modulo
equality u-almost everywhere. Symboisl or i can be omitted if there is no
risk of confusion. The restriction to a measurable Aetf the measureg. will
be denoted by also.

We use in an essential way results of Banach lattice theory and hensigall
deal only with real Banach spaceA. general reference for this material is [1].
We set some notation. Given a Banach laticandx € E, the band generated
by x will be denoted byBy. If E is order complete anB is a band ingE, Pg will
be the band projection associatecBavhich is given by the formula (see [1])

VxeE, x>0, Pg(x)=supfyeB/0<y<xj.

In particular, in the case of the bari) generated by a single elemext(a
principal band), to simplify we will writePy instead ofPg, and the equality
VzeE, 2z>0, VXeEX>0 P,(X)=SupXA nz (1)
neN
holds.

Given a latticeE andx € E, x > 0, every elemeny € E such thaty > 0
andy A (x —y) = O is said to be @omponenbf x. If E is order complete, the
set of all components of is Boole algebra (see theorem 3.15 in [1]) which will
be denoted by’ (x). We recall that aratomin E is an elemenk > 0 such that
yAz=0and0<y <x,0=<z=<ximply eithery=00rz=0.

A Banach latticeE of measurable real functions defined on the measure space
(22, M, ) which is also a solid set ih°(Q, M, u) (i.e|f| < |glandg € E
implies f € E) is called a Kothe function space (defined)@h M, ).
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ULTRAPRODUCTS OF REAL INTERPOLATION SPACES BETWEEMNP-SPACES 193

Concerning interpolation spaces, we refer the reader to [2] for basic facts.
Given a compatible couple®q, A;) of Banach spaces and numbers® < 1
and 1< q < oo, in the interpolation spaceAq, A1)y q We shall consider two
equivalent norms. The first one is

1
q

i (J=0nd||y 19
x| := mfjrgg(i € lenllAj) ,

nez

taking the infimum over all sequenc{ssi.}nez, j =0, 1suchthak = xr? + xr},
x% € Agandx?! € A; for everyn € Z. The second one is

1

q
X||| := inf max el=ona 19 1 |
11| ,-:o,l(z 1Xall%,

nez

taking the infimum over all sequencgs }nez such thaix, € AgN A; for every
neZandx =) ;% in the spaceédq + A;.

With respect to ultraproducts, our main references are [4] and [9]. We give
a brief account of the more relevant definitions and general facts. Given a non
void index set® and a Banach spadg; for everyd € ®©, we denote

*((Eq)) := {(Xd) € MaenEq | sUplixall < 00}-
de®

Given an ultrafilter on ®, we putZq = {(Xq) € £°((Eq)) | limg.1 [|1Xd]l =
0}. Given (Xq) € £*°((Ey)), its class in the quotient se&f°((Eq))/Zy is
denoted by(xXg)1,. Then the ultraproduct spadé&y)+, is the quotient Banach
space®>((Eq))/Zy, Wwhose canonical quotient norm equals the niéra) || :=
limy ||Xqll. To avoid trivialitiesall the used ultrafilterst are assumed to be
countably incomplete, e. there is asequengd,}o°, C ‘Usuchthan® U, =
@. Given a family{Ty : Ef — Fg4 | d € ©} of continuous linear maps be-
tween Banach spacds; and Fy such that sup - || Tql| < oo we can define
the canonical ultraproduct mapy) v : (Eq)u —> (Fg)u by

V (xd)u € (Ed)u  (To)u((Xa)w) = (Ta(Xa)u- (2

More generally, suppose we have a family : Ef — Fq | d € D} of
(non necessarily linear) continuous maps whicHaeally ‘U-globally uniformly
continuousi.e. for everyR > 0 ande > O there is§ > 0 andD € ‘U such that

sup{l Ta(Xa) — Ta(Ya)ll | IXa — Yall =6, lIXall < R, llyall < R, d € D} <.
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Then definition (2) is meaningful still and produces a well defined (non linear)
continuous mapTy)v : (Eq)u —> (Fg)y asitis easily seen. We shall use this
type of mappings in Section 2.

If every Eq,d € © is a Banach lattice(Eq), also is a Banach lattice with
the canonical order given bixg)u < (yq)« if and only if there is(Xq) € (Xi)«u
and(Yy) € (¥i)w suchthatXy <y, for everyd € . Then(Xg)u A (Ya)u =
(Xd A Yd)u-

Remark 1. If (Xg)u A (Ya)u = 0, we can choose representag) € (Xq)u
and(Yy) € (Yg)u suchthatxXyg A yy =0 foralld € .

Proof. Our assumption implies lim X4 A Y4l = 0 and hence

Xd — Xd A Ya)Du = Kddu, (Yo — Kd A Ya)u = (Ya)u »

and(Xq — (Xg A Ya)) A (Vg — (Xg A Yq)) = O for everyd € © (see [7], chapter
1, theorem 1). O

Remark 2. LetXx = (Xq)y > 0in e ‘U. Lety = (yq)u be a component of
X. There are representant®y) € (Xg)u and (Yy) € (Ya)u Suchthaty, is a
componenbf Xq4 for everyd € .

Proof. Since(x — y) Ay = 0 we can supposgy > 0 andxq > Yy for
everyd € ®. By remark 1, there are representatiqag) € (Xg — Yq)u and
(Yq) € (Ya)u such thatzg A Yy = O for everyd € ©. Then

lim 1} 2o — X + Ya) | = 0
PutXy := zy + Y4 for everyd € ©. Then
'Jr{} |(Xa =Xl = l(;rpl 1(Zd+Yg — Xl = IJTI 1(Zd —Xa + (Yg — Ya) +Ya) | = O
and henceXg)y = (Xg)u. Moreover(Xq — Yg) AYq = 24 A Yy = O for

alld € ®. Hence eeryy, is a componenbdf X4, d € © and the proof is
complete. O

We fix now some notation concerning the specific ultraproducts we shall use
in this paper. Given fixed real numbers<l pg, p1,g < ccand 0< 6 < 1,
for everyd € © we consider the spacds’i (g4, My, 1q), (LPI(2q, nq) Or
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ULTRAPRODUCTS OF REAL INTERPOLATION SPACES BETWEEMNP-SPACES 195

L Pi (Q4) for short if there is no risk of confusion),= 0, 1 and the interpolation
spacerq = (L™ (Qq, nd), LP(Qq, 1a))e,q- By a known result of Krée (see
[11]), every spacéy, d € D is isomorphic to a Lorentz spade™9(Qq, 11q)
(where ¥p = (1 — 6)/po + 6/ p1) with inequality constants independent on
Qq4. Hence, ifq < po < p1, definingr by the equality I'p=(1—6)/q+6/r

we obtain thakq is isomorphic ta’L9(2q), L' (24))s,q. A corresponding result
can be obtained ipg < p1 < g. As a consequence, since in this paper we shall
be concerned with ultraproducts of spazgsd € ©, we shall suppose always
Po < g < prandpy < p1. For everyd € © we have the canonical inclusion
maps

19,5 LP(Qa) N L") — (LP(Qq), LP(Qa))og,
15,1 (L™ (Qa), LP(Q4)).q —> L™(Qa) + LP(Qq),

19, 1 LP(Qq) NLP(Rq) — LP(Qq), =01
and
lpu — LP(Qg) +LP(Qq¢), =01
All these maps have norm not greater than 1 and, moreover,
Id Id _ Id Id _ Idld
poU'Npp — "pU nNpy — TAUTNA

We form now the ultraproducts
Up, == (LP(Qa)u, =01
Uy = (LP(Rq), LP(Q4))o.q)us
Uy == (LP(Qq) N LP(Qa))u

and
Us == (LP(Qq) + LP(Q4))u

and the canonical ultraproduct maps
lna = (l&)u Uy —> Uy,
lau = (Hdu)'u tUp — Us,
lnp; i= (1fp)u: Us —> Up, [j=0,1

and
lpu = (5 )u: Up — Us, j=0,1

are well defined.
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It is known thatUp,, j = 0, 1 are order continuous (and hence order com-
plete) Banach lattices (they are actually abstilabt-spaces and hence order
isometric to suitabléPi spaces). We also have

Lemma3. ‘U, andU, are order continuous Banach lattices.

Proof. By the previously quoted result of Krée (see [11]), every spacd <

D, isisomorphictothe Lorentz spat@9(Qq, iq) (Wherepis defined as above)
with inequality constants independent ©9. Theniq has a ma{p, q}-lower
estimate. Hencél, also has a m&p, q}-lower estimate as a consequence of
the definition of its norm. By a result of Maurey (see [13[}, is h-concave

for everyh > max{Pp, q}. ThenU, cannot contaiic, as sublattice and hence its
norm is order continuous (see theorems 2.4.12 and 2.4.2 in [14]). The proof for
U, is similar. O

2 Preliminary technical results

Lemmad4. The mapHp,p, : Up, — Up, defined by

Po
V= (fouy Hap ()= (1fal™)
P1
is a (non linear) locally uniform homeomorphism which preserves disjointness
and sends components of positive elemerdsU ,, into components dfl , ,, (X)
and induces an isomorphisth,,,, between the respective boolean algebras of
band projections given by

q)popl(PB) = I:)Hpopl(B)-

Proof. Itis clear thatH,,, is a bijective map. We use the elementary inequal-
ities . ) .
Vp>1 a beR [lalr —|bP| <]a—b|P
and
Vp>=1 la=b=0 Ja’~ b’ <pla—blla™
Let f = (fd)upo, 9 = (Gd)u,,- For everyd € © we have
2 P Po po 71
I fal P — 190l ™ e < Ifal™ — 19al™l % g,

1 1
< potll(fa = g (I fal v 1gaD ™Il g,

A
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ULTRAPRODUCTS OF REAL INTERPOLATION SPACES BETWEEMNP-SPACES 197

and by Hélder’s inequality

Ppo—1
= po ” 1:d gd”LPo(Qd)m fdl 4 IngHLPO(Qd) (3)

Hence we obtain easily that the famﬂg%opl: LPo(Q2q) —> LP1(Qq) of (non

oop, () = sa(f)[ f |%[1) is a set of locallyu-globally
uniformly continuous homeomorphismsg( f) denotes the sign function of
f defined bysg(f)(t) = 1if f(t) > 0, sg(f)(t) = 0if f(t) = 0 and
sg(f)t) = —11if f(t) < 0). Everyhpopl, d € © sends open balls of center 0

and radius in L™(Q4) onto open balls of center 0 and radiu%O in LP1(Qq).
Then the ultraproduct mapl,p, = (hpopl)u, is well defined. Taking limits
alongU in (3), we see that,, is an homeomorphism which is uniformly
continuous on bounded sets and has the same property about open fbjls in
andUy, that its component mappings.

Itis now clear thatH,, ,, preserves disjointness and, by Remark 2, sends com-
ponents of positive elements i, onto components of its image because the
components of an element in a function lattice (which is endowed with its canon-
ical puntual order) are the product of such element by characteristic functions of
measurable sets. With the same proof of proposition 1.1.1 of Raynaud in [20] it
can be proved that the map defineddy,,, (Pg) = Phgop, (B) is an isomorphism
between the corresponding boolean algebras of band projections. O

For everyd € D let

linear) maps defined biy@

Sl =i{xelPQq)|lx|=1, i=01
S'=i{xerg|lIxl =1}, S =1{xeLPQq)NLPQ)|IXI=1

be the unit spheres in the respective spaces. Next lemma is essentially due to
Raynaud [20] but we give a complete account of the more relevant details of
the proof for better understanding of the paper.

Lemma5. There are (non linear) locally uniform isometries
Hap : U — Up, 1=0,1

and Hns : U; — ‘U, which preserves disjointness, induces isomorphisms
®np, 1 =0,1and P, between the boolean algebras of band projections in
the corresponding spaces and moreokgyp, Hnp, = Hnp, -
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Proof. By the deep results of Chaatit given in propositions 2.8 and 2.9 of
[3], for eachd € D there is a uniform surjective homeomorphism between the
corresponding unit spheres

hdpO : Si — %
which preserves the supports of the elemamd has a modulus of continuity
3(e) which depends on the modulus of uniform convexityld®(24) and the
modulus of uniform smoothness bf° (Q4) N LPL(2q4) exclusively. Hencé (¢)
isindeed independent dfe ©® and it depends opg and p; only. This isometry
can be extended to another support preserving surjective isometry (again denoted
by hg,,) defined in the whole spade™ (2q) N L P*(q) settingh?, (0) = 0 and

V fqg#0, fqeL™(Qq)NLP(Qy)

f
ey (fo) = Il allLronLos W, <_d> |

| fallLPori P

Let us see thaln%po is uniformly continuous in bounded sets bfo(24) N
LP1(Qq). Let B, denotes the closed ba#, := {fq | || fgllLronLr < a}, @ > O.
Fix M > 0. Givene > 0, we have

&
Il fallLPo@g)nLPr(aq) < E = [Ih8,, (fo)ll < >

sinceh%po is an isometry. On the other hand there is=1p > 0 such that
0 <n < pimpliesd(n) < ;5. Let fg € LP(Qqg) N LP(Rq), fq # 0 be such
thatf < |[fall < M. If g4 € LP(Qq) N LP(Qq) verifies| fq — gull < &,
having in mind that necessaril\gq|| > § > 0 and

‘ I fa —aall 1 lgall = Il fall |
| fall Il fall
fo_
8|| d— Gall

&

e~
Il ligal

=<p,
we have

|85, (fa) — S (G0 |

f Jd Jd
= 1o (1 (i) ~ o (i) ) + 0+ s 1, (25
“” "”(“m AN T AR AN T

Od
< | f - - =
Iall 2 (andu 194l

&

D+u g — gall <

-blm
-l>|°’>
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ULTRAPRODUCTS OF REAL INTERPOLATION SPACES BETWEEMNP-SPACES 199

Hence

fa, 0o € Bw, fa—0a€ By = [, (f) —hi (@l <e (4

as we claimed.

Noting that, by the independence df € D on the modulus of continuity
of everyhgpo, (4) holds simultaneously for al € © (for fixed M > 0 and
¢ > 0 given in advance), we see that the fan{liy%p0 | d € D} is locally U-
globally uniformly continuous. Hence the ultraproduct mé,, := (hgpo)u :
U; — Uy, is well defined, continuous and by remark 1 preserves disjointness
of elements.

Then, sincell; and Uy, are order complete Banach lattices, for each band

B in U; we have
Hrpo (B)™ = (Hnpo(B)™)™ = Hnpy(BH) ™ = Hnpy(B) = Hnpy(B),
that is,Hnp, (B) is also a band ifil,. In particular
VX €U Hapy(Bx) = Hapy(x ) = (Hnpp (X)) = Hnpy 00

and Hnp,(Bx) = Bu,, 0. the band generated by the imagfep, (x). With
the same proof of proposition 1.1.1 of Raynaud in [20] it can be proved now
that the map defined b, (Pg) = P (B) is an isomorphism between the
corresponding boolean algebras of band projections.

Finally, definingHnp, := Hp,p, Hnp, and®np, (B) = Py, (s) for every band
B in U;, with a similar argumentation we obtain the second desired homeo-
morphism. Concerningd~, and ®n, the proof is analogous using moreover
proposition 2.4 in [3] and starting with Chaatit's homeomorphisfhsbetween
the unit spheres of the spade® (Q24) N LP(24) andig. O

Setlny = laulpa. Let Dy := {€' := (€})u,. v € Vi} be a maximal
system of pairwise disjoint elements in the baider(l,))* in U; and such
that ||e’|l, = 1 for everyv € V;. As a consequence, for everye V; and
every componenx of e’ we have necessariliy (x) # 0. Let D, := {&' :=
(€4)u,, v € Vo) be a maximal system adtomsin the bandKer(ly) such
that ||e’|ly, = 1 for eachv € V,. Remark that®, can be void. Finally,
let D3 := {e" := (e))wu,, v € V3} be a maximal system of pairwise disjoint
elements in the band er(1~,) N D5 such that, moreovelte’ ||y, = 1 for each
v € V3. By maximality of ®, noe, v € V3 has atomic components. As above,
perhaps®s; = @ but we have alway®, U D3 # @ becausdp is injective if
and only if everyl 4,19, d € ® is an isomorphism onto the image and the set
of norms oflfu Irﬁ'A and its inverse mappings is uniformly bounded with respect
tod e D.
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PutVp := V1 UV, U V3. Clearly®g := {€' | v € Vp} is a maximal system
of pairwise disjoint elements i, sincel; = B @® B+ for every bandB in ‘U;.

With help of ©( we select now some special sets of pairwise disjoint elements
inUp,i =0,1andU,. We define

v Impo(e”) if ve Vl ; Impl(e”) if ve Vl
u' = =
Hmpo(e“) if ve Vz U V3, v Hmpl(e”) if ve VZ U Vg
and
) lna (€Y) if ve Wy
Z =
Hna (6Y) if ve Vz U Vg.
Remark that
VueVoUVs Wy = 0’ lluy, = 1204, = L (5)
and
Vve Vi wllu, <12°llu, < U7y, < 1. (6)

Fix, for future work, the notation® = (U upy s 2 = (Zg)u, andw® = (wg)uy,
for everyv € V.

Lemma6. {u’|ve Vp}and{w’ |v € Vy} are maximal systems of pairwise
disjoint elements irll,, and U, respectively.

Proof. Letx = (Xd)uy, € Up, verifies x| A U’ = 0 for everyv € V.
Sety := (Yo)u = (Hﬂpo)‘1(|x|). Fix v € Vo. As |X] AUY = 0 we can
suppose thaixq| A uy = 0 for everyd € © (Remark 1). Then, by Lemma 5
lyal A (h8 )"t (uy) = 0 and consequentlyy| A ) = 0 becausé?, preserves
the support of functions. In this way we ggt A e’ = 0. Asv € Vj is arbi-
trary, necessarily = 0 and hencgx| = Hnp,(y) = 0. The proof foru,, is
similar. O

Lemma7. Foreveryv € V,, u', z" andw’ are atoms.

Proof. Assumex A y=0,0<x <u’andO<y <u’.Thenx A uS=0
andy A u® =0 foreachs € Vp, s # v. As Hnp, preserves disjointness,

Hom QLA THAE ()1 =0,  [H (0| Ae =0 and [Hy(y)|Ae =0
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for suchs € V,. By the maximal property o®g necessarily
0#€ AlH ()] <€ and 0#e’ A[H L(y)| <€

since| Hm‘plo(x)| # 0and| nglo(y)l # 0, Hnp, being anisometry, a contradiction
with the atomic character @&'. The proof of the other statements is similadi

For simplicity of notation, puh,, := hg, (hd,)~* for everyd € ® and

Hoon = (h%ox)’u = Hna Hﬁ‘r}o which still is a homeomorphism. For every
d € © and everyxg € C(uy), we put

18,09, (%) if veW

d
gp A(Xd) = v .
0 Ph%o)\(xd)(zd) if ve VoU7Vs.

Clearly supg. IIQ%OA(Xd)II = SURQycs IXdllu, < oo if v € Vi. In other case we
have

sup||g5,, (Xa) [l = sup|| sup z5 A N Y (o)l < suplizgll < oo (7)

de® de® neN de®

Then the map

Vve Vo, YXECWU) GpalX) = (g8, Xa)u,

is well defined orl_J{C(u") | v € Vo}.
We extendG,, to the set

n
fgo = {Zaixi Jai € R, % € C(UY), X A X =0
i=1

if i £j0,j=12..n neN}

putting

n n n
v ZaiXi S flgo GpoA (Zam) = ZaiGpOA(Xi).
i=1 i=1 i=1

Finally, we extend the definition dbp,» by linearity to the linear spaﬂﬁg of
UpevoF py- WE have
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Lemma 8.

1) Gp,a is well defined orfﬁg andGpa (X) € C(2¥) for everyv € Vp and
X € C(u).

2) Gpya iscontinuos onthe Iinearspaﬁﬁ’iw2 of (J{CUY) | ve V1UV,}
and hence it can be extended by continuity to the barid v € V; U

Proof. 1) If v e Vi, Gya is well defined onFy, trivially. Let v € Vo U Vs,

Suppose
daix =By (8)
i=1 j=1

where{x'}_, and{y’ }’j“:l are sets of pairwise disjoint componentsibfBy well
known properties of vector lattices, (see for instance proposition 1.2.17 in [14]),
there is another sefk}{g:l = {(Zg)upo}ﬂzl of pairwise disjoint components of

u? such that

h
Vi=12..nXx =Zy.k2k and
k=
9)
Vi=12..my = ijkz
and, moreoveyx = 0oryx = landpjx = 0orpjx = Lforeveryi =1,2,....,n

andj = 1,2, ..., m. By remark 1 we can alssupposef'é ANZg=0forde D
and 1<k #s<h. Then

iil:ozixi —Z(Za.yk)

k=1

and

Y By = Z Zﬂ,p,k va
j=1

k=1 =1

and from (8) we obtain
n m
Vvk=1,2 ..h ZaiMkZZ,Bj,Ojk- (10)
i= j=1
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According to (9), for eaclkl € © let

h
Vi=12..,n % :Zy.kig and
k1 1)

vi=12..,m yd ijkzd

Clearly, by (9) we haved = (X)y,.i = 1,2,...nandyl = (y)u,,
j =1,2,...,m. Furthermore, (11) implies

Vde®, Vi=12..n Suppxy)=|J{Supnz) | vk =1}
and
Vvde®, Vj=12..m Suppy)=|]J{Supnz) | oy =1}.

Then we can suppose that for evéry: 1,2,...,n and everyt € Qg with
Xy (t) # 0 there is 1< k < h suchthatZ(t) # O and smcehp , preserves the
supportsh (xd)(t) #0 andhpok( 5)(t) # 0. As a consequence we get

h
, _ d iy d K
théoh(x(.j)(zg) = sung AT S, () = sung ATHS, (Z Vlkzd)

= Supzj AT (Z thpox(zd)> Z Vik (supzd AT hpok(zd)>

reN k=1 k=1 reN
J— v
= Z Yik Ph%OA(Z'é)(Zd)

k=1

having in mind that the supports z ‘k’s are pairwise disjoint.

Then after a similar computation with the elemem’,i}le, by (10) we get

n h n
vdeD > aiPu )@ =) (Z amk) Prg ) (Z)

i=1 k=1 \i=1

'Ma IM-

Il
i

m
> Bipic Pha @) (Z)

j=1

B;i P hd v )(Zd)
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That means thab ,, is well defined onfp if v e V2 U Va.

Since every element qj—"@‘; can be written in a uniqgue way as finite sum
Ziszl X; with everyx; € Byi, vi € Vo, 1 = 1,2, ..., s, itis now clear thaG pa
is well defined onF3?.

Onthe other hand, for every projection baBith a Banach lattic& and every
x € E, x > 0, Pg(x) isacomponent af. Then, by Remark @gok(xd) e C(zy)
for everyv € Vp, X := (Xa)up, € C(u”) andd € D. ThenGpy, (X) € C(2") for
everyx € C(uv).

2) Again it is enough to do the proof for the linear sga‘ﬁ; of J{C) |
v € V,}. Letv € V,. By Lemma 7 every’ is an atom and hence the unique
component ofl? is the sameai”. Then

Gpoa (U") = Gpon (Uug) = (Pt (),

12
= (Pa@)u, = @y, =7 42

‘U, having arr upper estimate, where= min{p, q}, (nhotation of Lemma 3),
U, being an abstradt P-space and noticing thaty < r, there isC > 0 such
that, for every finite sefu}l _, ¢ D, and{an}l_; C R, by (12) and (6) we
have

D anGpam| = C DanrquOA(u“n)nqu)
n=1 'UA n=1
t o
<cC Z|an|P°||zvn||$j’A>
n=1
1
t o t
<C Z|an|p°||u“n||$,°po> =C > apu
n=1 n=1

Upy

which shows the continuity 06, in f{i‘;. By order continuity oflUp, and
Freudenthal’s spectral theore@,,, can be continuously extended to the band
| ve Vytt. 0O

Now we do a similar work with the ultraproductd, andU,,. For every
d € D we definehy, :=hg, (hg)™,
18, (15) 7 (Xa) if veMy

Yv € Y s Vxq € C(Z d Xg) =
ve Vo, VXg€C(Zg) Gp,(Xa) Pio s if vE€V2UVs
Apy

Bull Braz Math Soc, Vol. 37, N. 2, 2006



ULTRAPRODUCTS OF REAL INTERPOLATION SPACES BETWEEMNP-SPACES 205

and, after similar computations to that (7), we define
Vv e Vo, VX = (Xau, € C(Z") Gap(X) = (G, (Xa))uy, -

We extendG ,,, by linearity to

k
TR = X:anyn yleC@),n=12 ..k keN,y"Ay"=0 if n;ém}

n=1
and in a further step to the linear spﬁ]@o of | {C(2°) | v € Vp}. Note that
VveVy w'=Gyp(2). (13)

We have

Lemma 9.

1) Gap, is well defined orj}-"{‘,o andG,p, () € C(w?) for everyv € Vy and
X € C(2%).

2) G,yp, is continuos on the linear spagfi{‘,lw2 of J{C(Z") | ve VLU Vy}
and hence it can be extended by continuity to the bgrid v € YV U
Vo)t in U, generated by them.

Proof. The proof is analogous to the given one in Lemma 2 but using the fact
that'U, verifies as-lower estimate, (where = maxp, q} ands < p;). There

is nowM > 0 such that giverv,}k_, ¢ V> and{an}k_; C R, by (13) and (5),

‘U, being an abstradt " -space, we have

1

k P1
p:
= E |Oln|p1||GAp1(Zvn)||ulpl

n=1

k
> anGap, (Z7)

n=1

Up,

A

1
k s
(Z |an|5||GApl<zvn>||i,pl) -
1

n=

h 3
S V) S
( |otn| ||Z”||up1> <M
n=1

Consider now the linear maGp,p, : Uy, — Up, defined byGyp, =
Gap,Gpoa- We have

IA

k
>
n=1

Un
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Lemma 10. Foreveryv € V, and everyx € C(u’) the equality
Gpopy (¥) = Hpgp, (X)
holds.

Proof. There is nothing to prove it € Vi. Letv € Vo U V;. Let x =
(Xd)u,, € CU). Since everyxg andug are functions on the measure space
Qq4,d € D, by Remark 2 we can suppose there are measurableAgets 24
such thakyg = xa,uy foreveryd € . Foreveryd € D, letyy := g?,ok(xd) and

S = (h%ok)‘l(yd). By known properties of band projections and the definition
of the homeomorphisril,, o, , Up, andUp, being order continuous lattices we
obtain

Oy (Ya) = Phg ypy(wa) = Suphiy o, (ug) An hi, (Vo)
neN

= suphf, o, (up Anhoo (NG () (14)
neN
Po

@ S}
= supluy) ™ AN §*t.
neN
By properties oh‘g,oA the equalities
Po

Po Po
Supp(Xd"l) = SupfiXd) = SUPHYa) = SUPASH) = SUpp<sdp1> ;

hold. Asxyg = xa,Uy, We get as continuation of (14)
Po
d

Po B Po B
G5y (Vo) = SURXAUS P AN § = (XagUg) ™ = X3* = hS | (Xa).
neN

As a consequence

GapGpon () = Gapy (G5, Xa))uy) = (G, (Vo))

= (hGyp, X)) up, = Hpop, (X).

3 Main results

Theorem 11. There is a measure spacq;, M4, (q) and isometric order
isomorphisms

Wy Up, —> LP(Qu, My p). | =0.1
such that
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Proof. Letv € Vp and letPy (u’) and P, (w") be the boolean algebras of
principal band projections generated by the components @ind w’ respec-
tively. By Lemma 10 we have

VXe C(Uu) VIfe Upl PHpopl(X)(f) = PGpopl(X)(f)

and by lemmata 8 and B (u’) = x and PGpopl(X)(w“) = Gpyp,(X). Then
by lemmata 4 and 10, the restriction to the set of principal band projections of
D pop, given by

VX € CU") @ pypy (Po) = Py 00 = Popop 0

is an isomorphism between the respective boolean algebras of principal band
projections. By the Stone representation theorem there is an extremely discon-
nected compact spac€, and isomorphisms of boolean algebras

.’]—[SO:C(UU)—>(90, Hgl:C(w”)—>Ov
onto the boolean algebr@, of clopen sets oK, such that
VX € CUY) HE(X) = H} (Hpop (X)) € O, (16)
Since everyUp,,i = 0, 1 is an abstradt " -space, if we define
VA€ O, (A= II(H)(Ag, =01

we obtain measurgs;, i = 0,1 in O, such that, by (16) and the definition of
Hpopl

VA€ O, ui(A) = Hy) M Allg,
= [ Hpops () M AT, = IEH) AR, = (A,

i.e. we have a unique measure defined on?,. By the standard Caratheodory
procedureu, can be extended to a measure (again denoted,bydefined in
theo-algebraMm, of u,-measurable sets &f,. The map

\IJBO ngo — LPO(XU’ o)
given by

n n
i () = L
i=1 i=1
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is well defined by the same argumentation used in Lemma 8. Ufsis an
abstract P-space we have

n n n
. (Zaixi) = Z/ e [Podpy = lon [Py (H (X))
i—1 i=1 Vg, () i=1
n

Po

L PO (1)
P
= D lail™®IxlIg, = IxI™
i=1

and hencey, is anisometry. Analogously, if

n
fglziyzzmyi yyeCw’), i=12..,n neNyAy=0ifis#]j¢,
i=1

the map
W Fp —> LPOX, )
defined by

n

n
v (z yi) = S enors o
i=1

i=1
is an isometry. Sincél,,p, sends components into compongihtsmma 4), by
Lemma 10, for every finite s¢k;}{'_; C C(u”) and{«;}i_; C R we have

n

n n
v . . — . — .
\Ilpo (Z i X') - ZO[, X}[So(Pxi) - ZO[, X}[51<PHpopl(xi>)
i=1 i=1

i=1

= ‘I’Bl (Zai Hpopl(xi)> = q"gl (ZaiGpopl(Xi))
i=1 i=1

s fom(£9)

To finish we only have to define the measure spdee, My, uy) Where
QU = UUEVO Xvs

My :=1A:= UAlee.’MUVUGVO
UEVO

and

VA=A €My puh) =) u(A)
vely veVp
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and to glue the isomorphismig;, , i = 0, 1 defining

VX € Up Wpo(¥) =Y W (Py(X)
veVp

and

VX €Uy Wp(X) =Y Wh(Pp(X). O
veVy

Theorem 12. There are a measure spacg;, M, u1), a discrete measure
space£2;, Ma, u2) (eventually empty) and an atomless measure s(RageMs,
u3), (eventually empty) such th&, U Q3 # ¢ and such that the ultraproduct
of interpolation spaces(L ™ (Qq, q), L1 (24, 1td))e.q)u iS isomorphic to the
direct sum

(LP(Q1, 1), LPH(Q1, 11))o,q ® K(22) & X(23)

where K (©2,) is an intermediate space of the cough(R2,), £P1(2,)) and
X(£23) is an order continuous Kdthe function space o@gr

Proof. For everyi = 1,2, 3 let Pqilpoi Up, —> Uy, be the canonical pro-
jection onto the band generatedfy, by the sef{u’ | v € Vi}. Analogously
we definePJupl : Up, — Uy, as the canonical projection onto the band gener-
ated inUp, by the sef{w’ | v € V;} and P,;JA: Uy —> ‘U, as the canonical
projection onto the band generatedtih, by the se{z’ | v € V;}. Clearly we
have

Uy = P (Up) @ PZ, (Up) & PJ (Uy).

We consider the measure spd€k,, M, vy, ) constructed in Theorem 11.
Let Qi = U,ey, SuppWy,(u”)),i = 1,2, 3. Let fﬁ‘;m be the linear span of
the set of components {C(U¥) | v € Vo U Va}. We definew?2? : jf{’,‘;wa —>
LO(Q2 U Qs, ) by

n n n
v Zai Xi € ooy, Vi (Z o Xi) = Zai K (Gt 00))
i=1

i=1 i=1

and we define a norm olZ3(FY,) by

Po 23
VXxe Fyuv, YO = IX]luy-

Bull Braz Math Soc, Vol. 37, N. 2, 2006



210 J.A. LOPEZ MOLINA, M.E. PUERTA and M.J. RIVERA

By the construction and the isomorphic propertiesigf, W23 is an isometric
order isomorphism frongy?, ,, onto WZ(F32 ,) and hence it can be ex-
tended by continuity to another isometric order isomorphism (again denoted
by WZ7) between the respective completions. But the completiofi¥jf . is
P%A (Up) & PﬁA (‘U,) by Freudenthal's spectral theoreftd,, being order con-
tinuous (Lemma 3). In this wa}?flA (‘Up) and P,flA (‘U,) are isometric to certain
atomic Kéthe spac (©2,) and certain Kdthe function spaeg23) defined on
Q, and Qs respectively (the completion obZ*(F1°).i = 2,3 (whereFy? is
the linear span ofl_J {C(u") | v € Vi},i = 2, 3) which can be identified with
a subspace df°(Q, U Q3, My, uw)).

As W, is an order isomorphism, every tipfWp,(u")), v € V> is an atom
in (Qy, My, py) andpy (SUPEWYp,(UY))) = ||u”||,f’1°pO = 1 (remember lem-
mata 7 and 5). The(2,, M, nq) is a purely atomic space. Th&t(2,) is
an intermediate space of the coupld° (2,), £P1(£2;)) follows from Proposi-
tions 8 and 9 and Theorem 11.

Finally we prove thatP}lA(qu) is isomorphic to the interpolation space
(LP(Q1, pa), LPH(Q1, nu))e,q. Take a family(eq)« such that lim g = 0
andey < 1 for eachd € ®© (remember thatl is countably incomplete). Let
(fa)u, € Ux. Foreveryd e © and everyn € Z there is a representation

fa= 04+ M vnez (17)

such that

q

j—6 d

max (ZZ =M (1) o m) < Ifallzg + a. (18)
ne

Since sup.y | fall,4 < oo, using (18) we obtain for eveny ¢ Z andj =0, 1

1

q
d —(]—0 j—0)k d
supll(f) [l ri (g, <€ 7" (Ze“ ke >||ij<gd>)
de®

keZ

S e_(j—Q)n (Sup” fjnd||Ad _|_ 1) < 00

ded®
andasa consequen(;ﬁ”d)u € Uy,.
Then given( fy)y, € U, we can choos(efjd)upj € Up;, | =0,1such that
(fo)u, = (f8+ £, . We define
V (fou, € U 95((fo)u,) = $((fs + fHu,)

19
= Wy (P, (Fhug)) + Yoy (P, (F)wy)). 49
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Claim 1. The definition oftllqll((fd)m) does not depend on the selected de-
composition for( f9), .

Proof. Suppose
0= (fod + fld)qu (20)

with (fjd)upj € Up,, ] = 0,1 Having in mind the order continuity of every
Up,, ] =0, 1to finish the proof of the claim it is enough to see that for every
v € V; the equality

0= Wiy (Puv (f§) 1)) + Wiy (P ((F)ary)
holds. To see that, define
Ao = {t € Q1 | Wy (Puv () D) 4+ Wy (P (P, (1) > 0} :

Assumeuy(Ag) > 0. Then there would be a measurable et O, and a
numbers > 0 such thatA C Ag, 0 < uy(A) < oo and

8xa = (Wpo (P ((F) ) + Wy (Pue (Fu, ) xa =
and by Theorem 11
= Wy, (P ((Fup)) + Wy (Puv (1), ) XA
= Wp, (P ((fg' + f)u, ) XA

We obtain 0# W 1(xa) € Uy, sinceW, is an isomorphism. On the other
hand (20) implies

(21)

0=Pa((fd+ tHu,).
and taking images by p,

0= Pu((fe+ fHu,).
If y = \IJ,;ll(XA) € C(w") C Up, we have
P, Py ((f§ + fhu,) A W (xa) = 0A W M(xa) = 0.
But, ¥, being an order isomorphism and using (21) and (1)
Wor (P Pur (18 + F9)u,) A 9520w

= xaWp, (Pur ((f§' + Ty ) A xa = 8xa A xa=min{l, 8}xa > 0.
a contradiction. Analogously we can prove that, if

Bo = {t € Q| Wi (P (1) DO + W, (Pur (), (V) < O}

necessarily we haveq(Bo) = 0. Hencewy, is well defined.
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Claim 2. W3, is an isomorphism fronﬁ’qﬂA (‘U,) onto the interpolation space
(LP(Q1), LPH(R1))s.q-

Proof. Choose representations of type (18). By claim 1

Vhe Z Wi ((fau,) = Yo (P, (f8Dup)) + W (P, (FDap,))-
Then

q
WL ((f)u)ll < max (Ze“ Oha (P ((f"“)fup]))lleJ(g2 )) <

andWw,, ¥, being isometries

1

a
j—6)h hd
max (Zeu 0) Q||P,L11pj ((f; )upj)llc{lpj)

<
= Mmax
heZ
1
a
1 —o)h hd
= max [Py, Il { 2_ &= tm 17 )
heZ
a
(22)
= max_lim | lim gli=hay £hd
j=0,1 k—o0 |§<:k | ”Lp’ ()
<

(J—6)hq hd
- Jn=]0a)1( (“m Ze I ”LpJ (Qd)>

=< EFE (M fallrg +€a) = 1(f)uy lluy

andW¥} becomes continuous.
Conversely, giver > 0 andf e (LP(Qq, py), LP(R1, pu))e,q there is a
sequencé f"hez C LPO(Q1, ) N LPL(Q4, wy), such that

f=> f" (23)
heZ

in (LP(Qq, ), LPH(Q1, nu))e,q (recall that 1< q < oo and proposition 3,
chapter Il in [2]) and

1
(i—)ha
jnloa,)l((ze] If ”LpJ(Q)) <Ifll+e. (24)

heZ

Bull Braz Math Soc, Vol. 37, N. 2, 2006



ULTRAPRODUCTS OF REAL INTERPOLATION SPACES BETWEEMNP-SPACES 213

We can suppose thdtand eachf", h e Z are defined in alf2; U Q, U Q3 and
vanishes i, U Qs.
Let us see that the series

Z Gpor P}Jpoxp,;ol(f% (25)
heZ

is convergentin the Banach spal%#A (‘U,). Remark that, by our assumptions on
every f", h € Z and by Theorem 11, iff{) v, := P%lpo\l!;ol(fh) =W (M,
we havefdh e LPo(Qq) N LPL(Qq) for everyd € ©. Then, by the convergence
of the series of (24), giveh > 0 there is a finite setly C Z such that for every
finitesetH c Z such thatH N Hy = ¥ we have

2

he Ho

> Gpoal(fHu)

heH
0 Ua Un Up

= lim fall < lim X (i=Hhay ¢hya
im | > A7) <lim max 3 e0M I, o

heHg A heHg
1
q
i—0)hq |; hyd
< max E e =Oha jim || ‘
~j=01 A e )
heHo

1
q

_ (j—6)hq h q
ma>1< Z e ||(fd )Upj ”fupj
heHg

Q-

j—0)h h
= max | eIy (fDuy e )
’ hGHo

Q=

_ (j—&)hq) ¢hpd
= max D el o | <6

heHp

Then, (25) is convergent it , and with similar computations we get

PEHIN

heZ

<|Ifll+e. (26)
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Now we see that the sum of series (25) is independent on the selected sequence
{fMhez in (23) and (24). LetTh}hGZ be another sequencelir® () NLP1(Q4)
for which (23) holds. Assume

+
_ —h
@ = (ZGpOAqulpO\IJpol(fh —f )) > 0.

heZ

By Freudenthal’s spectral theorem, there is V1, x € C(z) and somé > 0
such that 0< x < & ¢. Clearlyp € P} (Us) and hencex € P, (Ux)
and Gup, (X) < Gap,(p). As \IJ,}I is continuous, by definition ofV; and by
Theorem 11 we have

0 # Wy, (Gap, (X)) = WL (x) < 8 Wk (p)

+ +

heZ heZ

+ +
=5 (Z\pplxppll(f“—Th)> :(S(Z(fh—Th)) —0

heZ heZ

a contradiction. Thep = 0 and an analogous computation gives us the negative
part is also O.
Once (25) is well defined, > 0 being arbitrary in (26), we get

> (),

heZ

<l (27)

As W1, is continuous, by (19)
iy (Z(fd“m) = D Wu(fDu) =) Wit =3 "=t
heZ heZ heZ heZ

Then by (27) and (22) we get the continuity(@f? )~ and the bijectivity of¥'7,.
Finally, definingW, = Wi, P}, + Wi} (PZ + P¥ ) the proofis complete. (]
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