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1 Introduction

Given an open subsét of R? and a differentiable (not necessarily of cl&9
mapX: U — R?, we shall denote by SpeX) the set of all eigenvalues of the
derivativeD X,, whenz varies inU.

Our main result is the following

Theorem 1.1. Let X = (f,g): R?\ D, — R? be a differentiable (but not
necessarilyC') map, wheres > 0 andD, = {z € R?: ||z|]| < o}. If for some
€ > 0, SpecX) N (—¢, +00) = @, then there exists > o such thatXl]Rz\ﬁs
can be extended to a globally injective local homeomorph¥éne: (f, @) :
R? - R2.

This theorem generalizes Gutierrez and Sarmiento injectivity work [15] who
proved the correspondir@! version.
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218 CARLOS GUTIERREZ and ROLAND RABANAL

The mapX of Theorem 1.1 is not necessarily a homeomorphisti?fit is a
differentiable embedding, the image of which may be properly containid.in

Theorem 1.1 is valid for vector fields such that SpaX) N (—oo, €) = @. In
fact, if in Theorem 1.1 we change the péX, (¢, 00)) by (— X, (—o0, €)), we
may see that its conclusions remain valid. AlscAifR? — R? is an arbitrary
invertible linear map, then Theorem 1.1 applies to the rapX o A~

Throughout this article, given a topological cir@lec R?, the compact disc
(resp. open disc) bounded B will be denotedby D(C) (resp. D(C)). The
boundary of any sef will be denoted by A.

Letus proceedto give an idea of the proof of this result. Firstitwill be observed
that the assumptions imply that the Local Inverse Function Theorem is true. As
a consequence, the level curnfds= constant (resp.{g = constan}) make up
a CO-foliation ‘F(f) (resp. F(g)) on the plane, without singularities, such that
every leafL of F(f) (resp.F(Q)) is a differentiable curve angl_ (resp. f|.)
is strictly monotone; in particulgf () andF (g) are (topologically) transversal
to each other.

We will need:

Theorem 2.1. LetY: R? — R? be a local homeomorphism such that, for
somes > 0, Y|gz p, is differentiable. If there exists > 0 such that, for all
p € R?\ Ds, no eigenvalue oDY, belongs ta(—e, €), thenY is injective.

To prove Theorem 2.1, it will be seen that the foliatigri f) (resp. F(9))
is topologically equivalent to the foliation, on thig, y)-plane, induced by the
form dx (this foliation is made up by all the vertical straight lines). The in-
jectivity of Y will follow from the fact that 7 (f) and F(g) are topologically
transversal everywhere.

Sections 3 and 4 are devoted to prove

Proposition 4.7. Let X = (f, g): R?\ D, — R? be a differentiable map as
in Theoreml.1. There exists a topological circlé such that¥ (f), restricted
to R?\ D(C), is topologically equivalent to the foliation, d&° \ D, induced
by dx.

Observe that the foliation, oR? \ Dy, induced bydx has exactly two tan-
gencies withh D; (at (1, 0) and(—1, 0)) which are “generic” and “external”. Let
us say a little more about what is proved in Section 3 and 4:

We show, in Section 3, that given a topological cBlec R?\ D, surrounding
the origin, and having “generic” contact withi( f), the number of “external”
tangencies off (f) with C, is equal to 2 plus the number of “internal” tangen-
cies of F(f) with C;. We show, in Section 4, that the cirdlr can be deformed
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INJECTIVITY AT INFINITY 219

to a new topological circl€, so that the referred “external” and “internal” tan-
gencies cancel in pairs yielding exactly 2 tangencies which are “external”.

The proof of Theorem 1.1 is finished in Section 5. First, it will be seen that,
under conditions of Proposition 4.7, the cir€@ean be deformed so that, for the
resulting new circle, still denoted hy:

(i) F(f)lra\p(c). is topologically equivalent to the foliation, aR? \ D,
induced bydx;

(i) X takesC homeomorphically to a circle; and
(iii) X|g2 p(c) can be extended to a local homeomorphX¥mR? — R?.

Under these conditions, the proof of Theorem 1.1 is obtained by using Theo-
rem2.1

Concerning injectivity of mapR" — R" (globally defined) we wish to men-
tion the following results:

(1) Fernandes—Gutierrez—Rabanal [11] proved thaXifR? — R? is a
differentiable (but not necessarilg!) map and, for some: > 0,
SpecX) N[0, ¢) = @, thenX is injective. See also [8], [13], [14], [16].
Under additional assumptions, there is an extension of this result for maps
from R" to itself (See [12, Theorem 1]).

(2) Pinchuck [23] proved that there are non-injective polynomial néaps
R? — R? such that 0¢ SpecX). Also Smith and Xavier ([28], Theorem
4) proved that there exist integems> 2 and non-injective polynomial
mapsP: R" — R" with SpecP) N [0, +00) = .

(38) C. Olech [20] proved the existence of a strong connection between the
injectivity of C! maps, fromR? into itself, and global asymptotic stability
of C! planar vector fields (see also [21]) . In a similar wayVifis a
neighborhood ofo in the Riemann Sphei®? U {co}, the results of this
work is used to prove the existence of a sufficient condition that imply that
a vector fieldX: (V, co) — (R?, 0), which is differentiable iV \ {oc}
but not necessarily continuousat, hasoo as an attracting or a repelling
singularity (see [15] and [17]). Moreover, the methods used in this work
are related to those used in the study of planar vector fields (see [7], [9],
[26], [22], [10], [6]).

The structure of the proof of our main result is similar to that of [15]. Nev-
ertheless, most of the arguments had to be reconstructed. The basic difficulty
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220 CARLOS GUTIERREZ and ROLAND RABANAL

was that, in our case, the eigenvaluedoX, do not depend continuously on
p. In this respect, we mention below some of the facts that were used in a very
important way for theC!-case and were not available for the differentiable case

1. the assumption Spét) N (—¢,¢) = @ in Theorem 2.1 is open in the
C'—Whitney topology; this allowed the map to be C* approximated
by asmooth maﬁY = (f, 0) such that Spe(ﬁ() N(—€/2,¢/2) = @ and
(fx, y) had generic contact with the vertical foliation;

2. the Hamiltonian vector fielks = (—fy, fy), of aC?l vector fieldX =
(f, g), was continuous and so its index along a circle was well defined.

Before continuing, the authors wish to express their gratitude to the referee
whose comments have been appreciated and incorporated into this work.

2 Global injectivity result

This section is devoted to prove the following:

Theorem 2.1.LetY = (f, g): R? — R? be a local homeomorphism such that,
for somes > 0, Y|r2\pg is differentiable. If there exists > 0 such that, for all
p € R?\ Ds, no eigenvalue oDY, belongs ta—e, €), thenY is injective.

Theorem 2.1 improves the main injectivity result of [8]. The proof of this
theorem will be completed throughout this section; to this end we shall use the
following Cernavskii’'s Theorem [4], [5] (see also [29] and [25]).

Theorem 2.2. LetU be an open subset &2 and X = (f,g): U — R? be
a differentiable map such that, for app € U, DX, is non-singular. Then,
for all p € U, there exists a neighborhodd = V(p) ande = ¢(p) > 0
suchthatX|y: V — (f(p) — e, T(p)+¢&) x (g(p) — &, g(p) + ¢) is a differ-
entiable homeomorphism whose invet¥e\ ) ! is also differentiable.

As a consequence of thisverse Mapping Theoreme obtain:

Corollary 2.3. Let X = (f,g): U c R?> — R? be a differentiable map such
that, for all p € U, DX, is non-singular. Then the level curveg = constant
(resp. {g = constanf) make up ac®-foliation F(f) (resp. F(g)) onU C
R?, without singularities, such that every leafof F(f) (resp. F(Q)) is a
differentiable curve and|_ (resp. f|_) is strictly monotone; in particulag ()
and F(g) are (topologically) transversal to each other.

Orient F (f) (resp. F(9)) so thatifL is an oriented leaf of (f) (resp.F(9))
theng|, (resp. f|.) is an increasing function in conformity with the orientation
of L.
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INJECTIVITY AT INFINITY 221

Now, we introduce the notion ohalf-Reeb componerfior F(f). Let
ho(X, y) = xy and consider the set

B={(X,y)€[0,2] x[0,2]: 0 < x+Yy <2}

Definition 2.4. Let X = (f,g): U c R? — R? be a local homeomorphism.
Givenh € {f, g}, we will say thatA C U is a half-Reeb component fgr(h)
(or simply a hRc forfF (h)) if there is a homeomorphisid : B — A which is
a topological equivalence betweghh)|; and F (ho)|g such that:

(1) The segment(x,y) € B: x +y = 2} is sent byH onto a transversal
section for the foliatiorF (h) in the complement of the poikt(1, 1); this
section is called the compact edgeaf

(2) Both segment§(x,y) € B: x = 0} and{(x,y) € B: y = 0} are sent
by H onto full half-trajectories off (h). These two semi-trajectories of
F(h) are called the non—compact edgesaf

Observe thatd may not be a closed subsetRf.

%9

Figure 1: A half-Reeb component.

For eachfd € R let Ry denote the linear rotation
cosf —sind
sing cosd )

The following proposition will be needed. For the proof we refer the reader
to [11, Proposition 1.5].

Proposition 2.5. LetY = (f, g): R> — R? be a local homeomorphism such
that F(f) has a hRcA. Let(fy,d9) = RyoY o Ry, 6 € R. If TI(A) is
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222 CARLOS GUTIERREZ and ROLAND RABANAL

bounded, wherél: R? — R is given byll(x, y) = X, then there is ar > 0
such that, for alb € (—¢, 0) U (0, €), F(fy) has a hRcA, for whichTT1(Ay) is
an interval of infinite length.

The proof of the following lemma can be found in [3] (see also [18] and [27]).

Lemma 2.6. Let| be a bounded interval & andH: | — R be a bounded
measurable function. IA denote the set of € | such that
. JHX+h) — HX)] B

lim
h—0 |h|

ThenAis a (Lebesgue) measure—zero set.
We will need the following proposition.

Proposition 2.7.Leto > 0andX = (f, g): R?\ D, — R? be a differentiable
map such that for some> 0, Spe¢X) N (—e¢, €) = @. Then,

(i) any half-Reeb component of eithg( f) or F(g) is a bounded subset
of R?;

(i) whenX extends to alocal homeomorphistn= (f, §) : R2 — R2, F(f)
and F(g) have no hRc’s.

Proof. Consider only the case (i). Suppose by contradiction fhat) has an
unbounded half-Reeb componefit By composing with a linear rotation if
necessary (see Proposition 2.5 and its notation) we may assunig(tAatis an
unbounded interval. To simplify matters, let us suppose[thatoco) C I1(A).
Then, ifa > bis enough large,

(a) for anyx > a, the vertical linelT~1(x) intersects exactly one trajectory
ay C A of F(f)|a suchthafll(ay) N (X, +00) = @. In other wordsx
is the maximum for the restrictiof |, .

As ay is a continuous curve, it follows that;xf> a, a, NTT1(x) is a compact
subset ofA.
LetH: (a, +o0) — R be defined by

H(x) = sup{y: (X,y) € ax NTTH(X)}.

Whenx > a is kept fixed, every € IT~1(x) N ay is a local extremal of the
differentiable function(x, y) — f(x, y). Thus
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INJECTIVITY AT INFINITY 223

(b) ifx >a, fy(x, H(x)) =0.
As F(f) is ac®—foliation, we may obtain that the function

(€) p(x) = f(x, H(x)) is strictly monotone and continuous which, when
restricted to any intervah, b], is bounded; in particulag is differentiable
a.e.

We claim that
(d) H is upper semicontinuous; thud, is a measurable function.

Infact, suppose by contradiction tHatis not upper semicontinuousxt > a.
As H restricted tda, Xp+1) is boundedthere existe R and asequenocg — Xg
such thatH (xg) < candH (x,) — c. However, ag is continuous,

f(%0, €)= M (X, H()) = liM_¢(Xn) = ¢(%0) = f (X0, H (X))

This contradiction with the definition dfi proves (d).

By (d) above, Lemma 2.6 and by the fact thas differentiable a.e., we obtain
that ifa > 0 is large enough, there exists a full measure sulkef (a, +o0)
such that

(e) if x € M, theng is differentiable ak and

fimint LHOCHW = HOOI
h—0 |h|

To proceed we shall only consider the case in whids strictly increasing.
We claim that

(f) if x € M, theng'(x) = fx(x, H(X)) > &.

In fact, if x € M, there is a sequendg, — 0 such that Iim_mr'j—: e R
wherek, = H(x 4+ h,) — H(x). Also, by (b), fy(x, H(x)) = 0. Hence, asf
is differentiable a{x, H (x)), there are real valued functions, ¢, defined in a

neighborhood of0, 0) such that

f(X+hy, HX) +ky) = F(x, HX) + fx(X, H(X)hy
+ gl(hn, kn)hn + 82(hn, kn)kn
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and lim,_, o e1(hn, kn) = limp_, o e2(hp, ky) = 0. Therefore, whem is large
enough,

hn) — ko
¢(X+ h) ¢ _ ¢ (x. HX) + e1(hn, kn) + e2(hn, kn) =

n
which implies that

¢(X+ hn) —9(X)

n

= fy (X, H(X)).

@' (X) = lim
n—oo
Therefore,

DX (X, H(x)) = ( 90 0 )

Ox(X, H(X)) gy(X, H(x))

i.e. ¢'(X)isaneigenvalue dd X (x, H(x)). By the assumption of the proposition
and the fact thap is a strictly increasing function, (f) is proved.

As f|4 is boundedy is bounded too. Hence, there is a constant 0 such
that for allx > a, 0 < ¢(X) — ¢(a) < K. Takec > a so that(c — a)e > K.
Then we have that

c c

@' (x)dx > / edx = (c—a)s > K.

a

K>w@—wmz/

a

This contradiction proves the proposition. O

Leta > 0 ando, y : [—a, a) — R? be injectiveC®-curves such that (0) =
y(0) = 0. We say thay is transversal(resp. tangen} to o aty(0) = o (0),
if there existe > 0, neighborhood¥ of y(0) andU of (0, 0), in R?, and a
homeomorphisnmH : V — U such that for allt| < &, H o o(t) = (t,0) and
Hoy(t) = (t,t) (resp.H o y (1) = (t, ¢ (1)), wherep(t) > 0 andg (0) = 0).
If y is tangent tar at y (0) = o (0), we say that the tangency genericif H
and ¢ (as right above) can be taken so tilgat) = |t|. In particular, when
o([—a, a)) = C is a topological circle ilR? \ D,,, we will say that the generic
tangency inp = o (0) = y(0) is external(resp. internal) if in the definition of
generic we have that(t) € R?\ D(C) (resp.y(t) € D(C))forall 0 < |t]| < e.

Now we prove the main result of this section.

Proof of Theorem 2.1. Suppose by contradiction that the mdps not injec-
tive. Let p; # p2 be points inR?, such thatY(p;) = Y(p2). Fori = 1,2,
let o; denote the leaf ofF () passing througlp;. As gl is strictly monotone
andg(p1) = g(p2), we obtaine; Nay = @. Let Q(py, p2) be the set of all the
compact arc¥; embedded in the plane such that: (1)ifet 1, 2, I'; meetsy;
transversally ap;; (2) all the tangencies of ( f) with I'; aregeneric
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. /o

t t
angen transversal

Figure 2

(@) Among all elements a2 (p;, p2) takeT" € Q(p1, p2) Which minimizes
the number of (generic) tangencies wift f ).

We claim that:
(b) oy NI ={p}, fori=1,2

If we assume, by contradiction, that N I" contains properly p;:}, we may
findq € ' \ {p1, p2} and a closed subinterval of «;, with endpointsp,, q,
such thatx N T" = {py1, q}. Lety denote the connected componentof {q}
containing{ p,}. We can see thatr U y is an arc connecting, and p, and also
that F(f) is tangent td" at some point of” \ (y U {p1} U {q}). Under these
conditions, we may approximateU y by an arc of(p;, p2) which has less
number of generic tangencies witi( f) thanT". This contradiction with (a)
proves (b).

As f(p1) = f(p), F(F) is tangent tal" at some poing ¢ {p1, p2}. All
tangencies off ( f) with I" are generic. Therefore, by looking at the trajectories
of F(f)aroundy, we may see that there exist closed subinterfyalg], [q, T p]
of ' with[p,qlN[g, Tpl = {g}, and a homeomorphisim: [p, q] — [q, Tp]
such that,

(c.1) Tg=qgandforevery € (p, q), thereisanarfx, T x]s of F(f), starting
atx, ending afT x and meeting" exactly and transversally &t, T x},

(c.2) the family{[x, Tx]¢: x € (p,q)} depends continuously anand tends
to the one poinfq} asx — q.

From now on, suppose that
(d) [p, gl is maximal with respect to properties (c.1) and (c.2) above.
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Then, using (b) and the fact thgi(f) has no half-Reeb components (see
Proposition 2.7), we obtaifp, T p} N {p1, p2} = ¥. We claim that

(e) there is no arc of trajectoryp, Tpl¢+ of F(f) connectingp and Tp
such that the family{[x, Tx]¢: x € (p, q]} approaches continuously to
[p, T p]+ asx goes top.

In fact, suppose that (e) is false. Then, by using (d) and the facfftbft has
no half-Reeb components, we conclyigeT p]; is tangenttd” at least at one of
the points of p, T p}. Under these circumstances, itis not difficult to approximate
the curve, which is the union ¢p, T p]+ withT"\ ((p, qlU[d, T p)), by a curve
'y € Q(p1, p2) which has less tangencies witt f) thanI". This contradiction
with (a) proves (e). Therefore, the subinterypl q] U [q, T p] is the compact
edge of a half-Reeb componentpt f ) made up of two half trajectories gf( )
starting atp andT p, respectively, together with the union of the afgsT x|+,
with x € (p,q]. Thus we have found an unbounded half-Reeb component of
F (). This contradiction with Proposition 2.7 finishes the proof. O

3 Alocal flow associated toF (f)

Let X: R?\ D, — R? be a differentiable map such that for glle R?\ D,,

D X, is non-singular (See Theorem 2.2). llef be the connected component
of the level curve f = f(p)} passing througtp. Sinceg|, is strictly mono-
tone, giverg € L, andt = g(q) — g(p) we definep(t, p) as the unique point
which is the intersection oL , with the level curve{g = g(q)}. For each
p € R? letam(p) = inf{g(q): q € Lp) andaw(p) = supg(@): q € Ly}. If

p € R? andt € (an(p) — g(p), am(p) — g(p)) theny(t, p) is well defined and
determines a continuous local flow around any poiriR&f This mapgy will be
calledthe local flow associated tg ( f).

Proposition 3.1. Let X = (f,g): R?\ D, — R? be a differentiable map with
Spe¢X) N[0, +o0) = @. If C c R?\ D, is a topological circle surrounding
the origin , there existsy > 0 such that:

(a) the local flowy associated tgF () is defined in(—eq, gg) x C.

(b) LetS' = {(x,y) € R?: x>+ y? = 1}. If u € (—&0,0) U (0, o) and
Z, = (Ay, By): C — Stis defined as

Qﬂ(u, p) - p

Zu(p) = ——
P = owp—pl
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ThenA,(po) = 0, for somepy € C, implies thatB,(pg) < 0. In particu-
lar, the degree ok, is zero.

To prove this proposition we shall need the following lemmas.
Lemma3.2.LetZ: R?\ D, — R? be given by

(— ty(p), fx(p))
Z = .
P =1, ol

(@ If peC, Zy(p) — Z(p) asu — O*.

(b) The curvea — ¢(t, p) is differentiable and

9 et (-
7t P = Geroxg @ @),

whereq = ¢(s, p).

Proof. If W denotes the local inverse of = (f, g) at X(p) = (c, d), by using
the fact that this inverse is differentiable, (see Theorem 2.2) we have

M(c, d) — lim W(c,d + u) — W(c, d)
ay u—0 u
_eup)—p _ dp
= HLnO— — au (07 p)v

and

W L]0
8—y(c,d) = (DXp) [1]

= ;(—f (P, x(p)
= detDXp) VP PV
As Spe¢X) N[0, +00) = ¥ we obtain that dgD X,) > 0. This finishes the
proof of (a). The proof of (b) follows from the last computations. O

Lemma 3.3. Lety be the local flow associated tB( f). There does not exist a
compact disd whose boundary is made up of the union of a vertical segment
A={@ y):c <y =<d}andan arc of trajectoryB = {(p(t,p)): 0 <t <

to} such thatc < d, p = (a,¢), ¢, p) = (a,d) and, forall 0 < t <

to, TI(p(t, p)) # a, wherelT: R? — R is given byll(x, y) = X.
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(a,d) (a,d)

(CL(), Co) (CLO; CO)

a,c) (a, d
Figure 3a Figure 3b
Figure 3

Proof. Suppose by contradiction that such a dixexists (see Figure 3a). We
shall only consider the case in which, for all© t < tg, II(¢(t, p)) > a.
Let [a, ag] be the intervalll1(D). Let 5 € [0, to] be the smallest value such
thatTT(p(Sp, P)) = ag. Let (ag, Co) = ¢ (S, p) and letR be the closed region
bounded by the union dfa, y): y < ¢}, {(ag, ¥): Y < o} and{p(t, p): 0 <

t < so}. It follows from (b) of Lemma 3.2 thafy (ag, ¢p) = 0. This implies that
fx(ag, Co) € SpecX). By the assumptions of Proposition 3.1 about $pe¢
fx(ap, co) < 0 which in turn implies that the argo(t, p): S < t < tg} must
enter intoR and cannot cross the boundaryR®gsee Figure 3b). This contradicts
the fact thatp(tp, p) = (a,d) ¢ R. O

Proof of Proposition 3.1. The proof of (a) is immediate. Let us proceed to
prove (b). OrientC andS* with the usual positive orientation. Suppose by
contradiction that, for somép, u) € C x [(—&o, 0) U (0, gg)] we have that
Z,(p) = (0,1). Hencep(u, p) is of the formgp(u, p) = (a, d), withc < d.

By applying Lemma 3.3 we conclude that the segment conne@irg with
(a, d) must be an arc of trajectory. However, this would imply tfigtp) = 0
and fy(p) > 0 which would be a contradiction with the assumptions of this
proposition becaus& (p) € Spe¢X). O

4 Avoiding internal tangencies

We say that a topological circleé ¢ R?\ D, is in general position withf (f) if
there exista sel C C, at most finite such that: (ff(f) is transversalt€ \ T,
(i) F(f) has a generic tangency wit at every point ofT and, (iii) a leaf of
F(f) can meet tangentiallg at most at one point.
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Denote byGP(f) = GP(f, o) the set of all topological circle§ ¢ R?\ D,
in general position withF (f) and surrounding the origin.

Remark 4.1. Let suppose that € GP(f). If q € C is an (internal) tangency
of F(f) with C, we have that:

(i) For some closed subintervdlp, g1, [, r] in C there exist an orientation
reversing homeomorphisgn [p, q] — [q, r]suchthat, foralk € (p, q),
f(z2 = f((¢(2)) and there is an oriented af¢ of a leaf of F(f),
connectingz with ¢(z) and meetingC exactly and transversally at its
endpoints.

(il) The family {T,: z € (p, q)} depends continuously anand tends to the
one point sefq} asz — q.

The following definition was introduced in [1] (see also [24]).

Definition 4.2. LetC € GP(f). The Index off (f) alongC is the integer

number .
2—n¢(f,C)+n'(f,C)

2

wheren®(f, C) (resp. n' (f, C)) is the number of generic tangenciesHf f)
with C, which are external (resp. internal).

|T(f)(C) =

LetC c R?\ D, be atopological circle surrounding the origin. [&t: C —
St be as in Proposition 3.1. We say that has ageneric contacfresp. generic
tangency with; resp. transversal to; etc) wihat p € C if every small local
integral curve ofZ, at p has such property.

It is well known that ifZ, is in general position witlC,

2— ne(ZU7 C) + ni (ZU7 C)
2

degzu) =

whereni (Z,, C) (resp. n(Zy, C)) is the number of internal tangency (resp.
external tangency) of,, with C (see [19, Theorems 9.1 and 9.2, p. 166-174]).
By using a standard homotopy argument we may conclude that

Lemma 4.3.1f Z,: C — S'is as in Propositior8.1,

degZu) = |jr(f)(C).

As a consequence
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Lemma 4.4. LetC € GP(f) be such that' (f,C) = 0. If n®(f, C) is greater
than two, the degree &, is different from zero.

Next proposition will shows us that we can always seféct G2P(f) such
that, 7 (f) has no internal tangencies withand exactly two external ones. The
definitions of external, internal and generic tangencies are given right after the
proof of Proposition 2.7.

We shall need the following two lemmas, the first of which is proved in [15,
Lemma 2].

Lemma4.5.LetC € GP(f). Suppose that a leaf of F(f) meet<C transver-
sally somewhere and with an external tangency at a ppiatC. Then,y con-
tains a closed subintervdlp, r 1+ which meetsLC exactly at{p,r} (doing it
transversally at) and the following is satisfied:

(i) If [p, r]denotes the closed subinterval®tuch that” = [p, r]U[p, rls
bounds a compaatisc D(I") contained inR? \ D(C), then points of
v \ [p, r1s nearbyp do not belongo D(I).

(i) Let(p,F) and[p, ] be subintervals ofC satisfying[p,r] c (p,f) C
[P, F]. If pandf are close enough tp andr, respectively, then we may
deformC into C; € GP(f) in such a way that the deformation fixes
C\ (p,F) and takeg p,f] C C to a closed subintervdlp,f]; c C;
which is close tdp, r];. Furthermore, the number of generic tangencies
of F(f) with C; is smaller than that ofF () with C.

Lemma 4.6. Let X = (f,g): R?\ D, — R? be a differentiable map as in
Theoreml.1. If C € GP(f) minimizes the number of tangencies wjtlif),
then every tangency is external.

Proof. Suppose, by contradiction, thate C is an internal tangency of (f)

with C, we shall proceed using Remark 4.1 and its notation, so we may select
the maximal interval p, q] with properties (i) and (ii) of this remark. Assume
that

(a) the family{T,}, with z € (p, ), can be extend continuously #o= p in
such a way thal, is a compact arc.

In this case, by our selection ¢p, q], the arcT, has to meeC at a generic
tangency. By Lemma 4.5 we may sel&t € GP(f) having smaller number
of tangencies withF () than that ofC. This contradiction proves that (a) is not
possible. Therefore, the level curye = f (p)} has two connected components:
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p € C belongs to one connected component and C belongs to the other.
By Remark 4.1[p,r]c C C is the compact edge of an unbounde®ic This
contradiction with Proposition 2.7 finishes the proof of the lemma. g

Proposition 4.7.Let X = (f, g): R?\ D, — R? be a differentiable map as in
Theoreml.1l. There exists a topological circl€ € G2(f) and there are two
pointsa, b € C, with f(a) < f (b), such thatF(f) is tangent taC exactly ata
andb; moreover, these tangencies are generic and external.

Proof. TakeC e GP(f) as Lemma 4.6, sn'(f,C) = 0. Ifa, b € C are such
that f (C) = [f(a), f(b)], the circleC has two external tangencies: oneaat
and the other &b.

Suppose by contradiction thaaindb are not the only tangencies; 8&( f, C)
is greater than two. Thisimplies, by Lemma 4.4, that the degr&g fdifferent
from zero, contradicting Proposition 3.1. 0

5 Proof of Theorem 1.1

We shall say that a collar neighborhoddof a topological circleC C R?\ D,
is interior (resp. exterior), itJ is containedn D(C) (resp.R?\ D(C)).

Proposition 5.1. Let X = (f, g): R?\ D, — R? be a differentiable map as in
Theorem 1.1. There exists a topological cir€lec R? \ D, surrounding the
origin such that: (i) X(C) is a topological circle;(ii) for some exterior collar
neighborhoodJ of C, its imageX(U) is an exterior collar neighborhood of
X(C) and(iii) X|y: U — X(U) is a homeomorphism.

The proof of this proposition needs some preparatory lemmas.

We say that a topological circle ¢ R?\ D, is of ETT (i.e external tangency
type for F(f), if the following is satisfied:C surrounds the origin, there are
two pointsa, b € C, with f(a) < f(b), f(C) = [f(a), f(b)], and there are
pointsay, a, ...,a, € C~ andby, b, ..., b, € C*, whereC~ andC™ are the
connected components Gf\ {a, b}, such that:

(a.1) F(f)istangent taC exactly ata andb; also, these tangencies are generic
and external;

(@2 f(a=inf{f(2:ze C} <supf(2): ze C} = f(b);

(a.3) f takes homeomorphically eall, withi € {—, 4}, onto the open inter-
val (f(a), f(b)) (i.e., X(C") is the graph of a mapf (a), f (b)) — R);
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(a.4) XrestrictedtaC\{ay, ..., an, by, ..., by} isatopological embedding and
also,X(C~) and X (C*) meet transversally to each other;

(a.5) X(@), X(@), ..., X(&a)) = (X(by), X(by), ..., X(by)) and f(a) <
fay = floy) < < f(an = fby < f(b;

(a.6) there are sequenocgs— a andy, — b of pointsx, andy, in R?\ D(C)
such that, for alh, f(x,) < f(@) < f(b) < f(y,). This means that the
local exterior ofC arounda (resp. around) is taken to the unbounded
connected component @2 \ X(C). In particular,n > 0 is an even
number;

(a.7) if x € R?\ D(C) is close enough toy € C* (resp. y € C~) and
f(x) = f(y), theng(y) < g(x) (resp.g(y) > g(x)).

(a.8) if a;,a, € C~ andby, b, € C* close enough t@,, a, andby, b, re-
spectively, anday, a,] C (ay, @), [b1, byl C (by, by) then, X([ay, a1) U
(an, @n]) is belowX ([by, b1) U (bn, ba]) (i.e. ifa’ € [@1, a1) U (an, @n] and
b’ e [by, by) U (bn, by] are such thaf (&) = f (b') theng(@’) < gb)).

Lemma 5.2. There exists a topological circlé ¢ R?\ D, of ETT for F(f).

Proof. By Proposition 4.7 we may take a topological cir@ec R?\ D,,
surrounding the origin, such thatthere are two pantse C with f(a) < f (b),
f(C) =[f(a), f(b)], and so that (a.1) above is satisfied. This implies that (a.2)
and (a.3) of the definition above are also satisfied.

By deformingC around a small open neighborhodgdc C ofa(resp.V, ¢ C
of b) we may also assume thal, (resp.gly,) is a topological embedding. In
this way, ifV, andV,, are small enougiX |v,uy, is a topological embedding. This
implies that

X(CHNX(ECT) = X(ECT\ (VaUVp)) N X(C™\ (VaU Vi)

is a compact set. AET \ (Va U V) andC~ \ (V, U V) are disjoints sets we
may deformC so that

(i) X(C*) and X(C~) meet transversally doing this along a set which is at
most finite.

Thus, (i) implies that (a.4) and (a.5) of the definition above are satisfied too.
Item (a.6) follows directly from the preceeding properties. XA) is tangent
to the vertical foliation at the pointX(a) and X(b) and by using (a.6), the
connected componen@~ andC* can be named to satisfy (a.7). Item (a.7)
implies (a.8). g
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In the following of this sectionC will be a topological circle oETT for F(f)
and we shall use all corresponding introduced notation.

Givena, B € C~ (resp.a, B € CY), [a, Bl,(«, B),[a, B) will denote subinter-
vals of C~ (resp.C™) with endpointsy, 8. Let L denote the straight line which
passes through the pointsa;) and X (a,). Let £ be the foliation ofR?> made
up by all the straight lines parallel the lihe By a small deformation of with
support in[ag, an] U [by, by], we may assume that

(b) every point of tangency oK ([a;, a,] U [by, b,]) with £ is generic,
X([a1, ap]) and X ([by, by]) are transversal th.

From (a.8), bytakinga;, @, € C~ andby, b, € C* close toay, a, andby, by
respectively, such thdl, a,] C (@i, a,) and[by, by] C (b, by), we may
suppose as well that

(c) X([a1, a1) U (&, a,]) and X ([by, by) U (by, by]) are disjoint ofL.

Leto € (— %, %] be such thaR(£) is made up of vertical lines, wheR, is
the linear rotation of anglé. Recall thatX, = (s, gy) = Ry o X o R_4. By

means of a small deformation 6f we may also assume that

(d) Ry(C) is in general position withF (fy), i.e. Ry(C) € GP(fy).

Remark 5.3. X, takes any leaf off (fy) into a leaf of Ry (L), where the folia-
tion Ry (L) is made up by vertical lines.

Lemma 5.4. Let denotegy = Ry(aj), § = Ry(@j), b; = Ry(bj) andb; =

R,g(t_),-). If Xo([a1, 1) U (an, @) is on the left to the vertical lindxy (L) and

X¢([b1, b1) U (by, by]) is on the right toRy(L) (see fig. 4); then there is a
circle C; ¢ R?\ D(Ry(C)), surrounding the origin, obtained frorR, (C) by

a deformation which fixeR, (C) \ ((31, @) U (b1, bn)) and takeqa;, a,] C

Ry(C) and[by, by] C Ry(C) to the closed subinterval@;, a,]c, ¢ C; and

[by, Bn]Cl C C; respectively, which satist, ([a1, @nlc,) is on the left toR, (L)

and X, ([by, bnlc,) is on the right toRy(L). In particular, R 4(C,) is as re-
guested to prove Propositidnl.

Proof. Item (d) mentioned in this proof, refers to the one considered right before
the statement of this lemma.

Suppose thafF (fy) has an internal tangency witR (C) atqg € (a1, a,). By
Item (d), we may proceed as in Remark 4.1 (appliedrtd,) and considering
the notation introduced there) to obtain subintenjgdsql, [q,r] of Ry(C),
(generated by € Ry (C)), determined by the condition that
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) | L c
F(f) ¢ | |
@ X=(fg) | |
a py ——— I
| |
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a; bo —_—
by
l'_)l bl

Figure 4: case = 2 in Lemma 5.4.

(e.1) (p,q] is the maximal interval satisfying properties (i) and (ii) of Re-
mark 4.1, and alsop, q] contained infay, a,].

By Remark 4.1, every element of the fam{l{,.: z € (p, q)} is an arc of a leaf
of F(fe).

As R?\ D(Ry(C)) is not bounded[p, q] U [q, r] is properly contained in
Ry (C). Therefore,

(e.2) the family{T,}, with z € (p, q), extends continuously to = p, in such
a way thatT, is a compact arc connectirgandr .

In fact, if (e.2) is false the positive (resp. negative) half-legf(resp. L) of
the foliationF ( fy) starting atp (resp. at) does not meeR, (C) and so accumu-
late at the pointo of the Riemann sphei@? U co. Under these circumstances,
Remark 4.1 implies that the subinteryal, q] U [g, r] is the compact edge of a
unboundedRcfor F(fy). This contradiction with Proposition 2.7 shows (e.2).

It follows from (e.1), (e.2) and (d) that
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(e.3) If{p,r} n{a, an} = @, then, betweemp andr, exactly one of them is an
external tangency point gf (f) with Ry (C). See Fig. 5.

Figure 5

Let us to perform a sequence of adequate deformatiofs @), in order to
obtain the circleC; as requested. We meet two possible cases:

Thefirst one is thaf{p,r} N {a;, a,} # ¥. Consider only the case in which
p = a; andr # a,. From (ii) of Remark 4.1 and (e.2), we may defoRn(C)
into a new circleC, in such a way that: the deformation fix(C) \ (@, a,)
and takega, a,] to a closed subintervghy, a,lc, C C; such that

(f) the cardinality ofR, (L) N Xy ([@1, @nlc,) is less than that of (the finite set)
Ry (L) N Xy ([@1, @y]); and, concerning the number of tangencies with the
vertical foliation, that are on the right 8, (L), the curveX,([ai, anlc,)
has less number than that Xf ([a;, a,]). See fig. 6.

In this deformation the arfp, r] ¢ Ry(C) has been taken to an interval whose
image undeiX, is on the left of the vertical lin&y (L). This deformation takes
place inside a small neighborhood|gfT,: z € [p, q]} and soC; is surround-
ing the origin and satisfies (f). Also ga;,a,] c C is transversal tgF(f),
[a1, anlc, C C;1 can be obtained to be transversal to the foliafF (f)). We
do not care ifX,(C,) has more self-intersections th o Ry (C).

Thesecondcase happens whép, r} N {a;, an} = @. We shall only consider
the case in whiclp is the external tangency (see e.3). This and Remark 4.1
imply that

(9.1) if T' = [p,r]UTp, then,D(I") is contained iMR? \ D(R,(C)) and the
points ofL , \ Ty (hereL, is the leaf of ¥ ( fy) passing througip) nearp
do not belongo D(T).
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Xg( Xe(af/ Xe(p)
Figure 6

The arguments of Lemma 4.5 imply that we may defornRefC) into a new
circle C, according to the following conditions. The deformation fiX@gC) \
(a1, an) and takegay, a,] to a closed subintervghy, a,]lc, C C; such that

(9.2) Ry(L) N Xyp([a1, @nlc,) has the same number of elements tfi&L) N
Xo([@1, @,]); and, concerning the number of tangencies with the vertical
foliation, that are on the right t& (L), X ([a1, alc,) has one less than
that of Xy ([a, an)).

As above, this deformation takes place inside a small neighborho®g afd

so C; surrounds the origin. Als¢a;, an]lc, C C; can be constructed to be
transversal to the foliatiofR, (/F(f)). Again, as in the case above, we do not
care if X4(C1) has more self-intersections thXip o R, (C).

As these cases are the only possible ones, and thanks to (f) and (g.2), we
only need to perform finitely many times the process (just described above) of
obtaining new circles such that their image unéey, is of ETT for F(f), in
order to finally obtain a circle, sa@,, such thatX,([ai, a.]c,) is on the left to
Ry (L). Similarly, by a deformation that fixé3; \ [b1, b,] we will finally obtain
one circle as requested in this lemma. O

Proof of Proposition 5.1. By Lemma 5.2, there exists a topological cir€lec
R2\ D, of ETTfor F(f). The property (a.8) of the definition afr T tell us that

X ([@1, a1)U(an, an]) is belowX ([by, b1)U(by, by]). Now, we select an adequate
6 sothatwe may deforR, (C), locallyaround Ry (a1), Ry (b1), Re(an), Re(bn)}

in such a way that its image undBr 4 is of ETT for F(f), and R, (C) satisfies
the conditions of Lemma 5.4. Thereforg,(C) can be deformed into one as
requested to prove this proposition. O
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Proof of Theorem 1.1.Let C andU be as in Proposition 5.1.

By Schoenflies Theorem [2, Theorem I11.6.B], the méf: C — X(C),
can be extended to a homeomorphm![n D(C) — D(X(C)). In this way,
we extendX: R?2\ D(C) — R?to X: R2 — R? by deflnlngX|D(C) =Y.
As X|U U — X(U) is a homeomorphism and and X (U) are exterior col-
lar neighborhoods of and X(C), respectlvely,X is a local homeomorphism
everywhere. By Theorem 24 is globally injective. 0
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