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Injectivity of differentiable mapsR2 → R2

at infinity
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Abstract. The main result given in Theorem 1.1 is a condition for a mapX, defined
on the complement of a diskD in R2 with values inR2, to be extended to a topological
embedding ofR2, not necessarily surjective. The mapX is supposed to be just differ-
entiable with the condition that, for someε > 0, at each point the eigenvalues of the
differential do not belong to the real interval(−ε, ∞). The extension is obtained by re-
stricting X to the complement of some larger disc. The result has important connections
with the property of asymptotic stability at infinity for differentiable vector fields.
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1 Introduction

Given an open subsetU of R2 and a differentiable (not necessarily of classC1)
mapX : U → R2, we shall denote by Spec(X) the set of all eigenvalues of the
derivativeDXz, whenz varies inU .

Our main result is the following

Theorem 1.1. Let X = ( f, g) : R2 \ Dσ → R2 be a differentiable (but not
necessarilyC1) map, whereσ > 0 and Dσ = {z ∈ R2 : ||z|| ≤ σ }. If for some
ε > 0, Spec(X) ∩ (−ε, +∞) = ∅, then there existss ≥ σ such thatX|R2\Ds

can be extended to a globally injective local homeomorphismX̃ = ( f̃ , g̃) :
R2 → R2.

This theorem generalizes Gutierrez and Sarmiento injectivity work [15] who
proved the correspondingC1 version.
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The map̃X of Theorem 1.1 is not necessarily a homeomorphism ofR2; it is a
differentiable embedding, the image of which may be properly contained inR2.

Theorem 1.1 is valid for vector fieldsX such that Spec(X)∩ (−∞, ε) = ∅. In
fact, if in Theorem 1.1 we change the pair(X, (ε, ∞)) by (−X, (−∞, ε)), we
may see that its conclusions remain valid. Also, ifA: R2 → R2 is an arbitrary
invertible linear map, then Theorem 1.1 applies to the mapA ◦ X ◦ A−1.

Throughout this article, given a topological circleC ⊂ R2, the compact disc
(resp. open disc) bounded byC, will be denotedby D(C) (resp. D(C)). The
boundary of any setA will be denoted by∂ A.

Let us proceed to give an idea of the proof of this result. First it will be observed
that the assumptions imply that the Local Inverse Function Theorem is true. As
a consequence, the level curves{ f = constant} (resp.{g = constant}) make up
aC0-foliationF( f ) (resp.F(g)) on the plane, without singularities, such that
every leafL of F( f ) (resp.F(g)) is a differentiable curve andg|L (resp. f |L )
is strictly monotone; in particularF( f ) andF(g) are (topologically) transversal
to each other.

We will need:

Theorem 2.1. Let Y : R2 → R2 be a local homeomorphism such that, for
somes > 0, Y|R2\Ds

is differentiable. If there existsε > 0 such that, for all
p ∈ R2 \ Ds, no eigenvalue ofDYp belongs to(−ε, ε), thenY is injective.

To prove Theorem 2.1, it will be seen that the foliationF( f ) (resp. F(g))
is topologically equivalent to the foliation, on the(x, y)-plane, induced by the
form dx (this foliation is made up by all the vertical straight lines). The in-
jectivity of Y will follow from the fact thatF( f ) andF(g) are topologically
transversal everywhere.

Sections 3 and 4 are devoted to prove

Proposition 4.7. Let X = ( f, g) : R2 \ Dσ → R2 be a differentiable map as
in Theorem1.1. There exists a topological circleC such thatF( f ), restricted
to R2 \ D(C), is topologically equivalent to the foliation, onR2 \ D1, induced
bydx.

Observe that the foliation, onR2 \ D1, induced bydx has exactly two tan-
gencies with∂ D1 (at(1, 0) and(−1, 0)) which are “generic” and “external”. Let
us say a little more about what is proved in Section 3 and 4:

We show, in Section 3, that given a topological cirleC1 ⊂ R2\Dσ surrounding
the origin, and having “generic” contact withF( f ), the number of “external”
tangencies ofF( f ) with C1 is equal to 2 plus the number of “internal” tangen-
cies ofF( f ) with C1. We show, in Section 4, that the circleC1 can be deformed
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to a new topological circleC2 so that the referred “external” and “internal” tan-
gencies cancel in pairs yielding exactly 2 tangencies which are “external”.

The proof of Theorem 1.1 is finished in Section 5. First, it will be seen that,
under conditions of Proposition 4.7, the circleC can be deformed so that, for the
resulting new circle, still denoted byC:

(i) F( f )|R2\D(C), is topologically equivalent to the foliation, onR2 \ D1,
induced bydx;

(ii) X takesC homeomorphically to a circle; and

(iii) X|R2\D(C) can be extended to a local homeomorphismX̃ : R2 → R2.

Under these conditions, the proof of Theorem 1.1 is obtained by using Theo-
rem 2.1

Concerning injectivity of mapsRn 7→ Rn (globally defined) we wish to men-
tion the following results:

(1) Fernandes–Gutierrez–Rabanal [11] proved that ifX : R2 → R2 is a
differentiable (but not necessarilyC1) map and, for someε > 0,
Spec(X) ∩ [0, ε) = ∅, thenX is injective. See also [8], [13], [14], [16].
Under additional assumptions, there is an extension of this result for maps
fromRn to itself (See [12, Theorem 1]).

(2) Pinchuck [23] proved that there are non-injective polynomial mapsX :
R2 → R2 such that 0/∈ Spec(X). Also Smith and Xavier ([28], Theorem
4) proved that there exist integersn > 2 and non-injective polynomial
mapsP : Rn → Rn with Spec(P) ∩ [0, +∞) = ∅.

(3) C. Olech [20] proved the existence of a strong connection between the
injectivity of C1 maps, fromR2 into itself, and global asymptotic stability
of C1 planar vector fields (see also [21]) . In a similar way, ifV is a
neighborhood of∞ in the Riemann SphereR2 ∪ {∞}, the results of this
work is used to prove the existence of a sufficient condition that imply that
a vector fieldX : (V, ∞) → (R2, 0), which is differentiable inV \ {∞}
but not necessarily continuous at∞, has∞ as an attracting or a repelling
singularity (see [15] and [17]). Moreover, the methods used in this work
are related to those used in the study of planar vector fields (see [7], [9],
[26], [22], [10], [6]).

The structure of the proof of our main result is similar to that of [15]. Nev-
ertheless, most of the arguments had to be reconstructed. The basic difficulty
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was that, in our case, the eigenvalues ofDXp do not depend continuously on
p. In this respect, we mention below some of the facts that were used in a very
important way for theC1-case and were not available for the differentiable case

1. the assumption Spec(Y) ∩ (−ε, ε) = ∅ in Theorem 2.1 is open in the
C1−Whitney topology; this allowed the mapY to beC1 approximated
by a smooth map̃Y = ( f̃ , g̃) such that Spec(Ỹ) ∩ (−ε/2, ε/2) = ∅ and
( f̃x, f̃ y) had generic contact with the vertical foliation;

2. the Hamiltonian vector fieldX f = (− fy, fx), of a C1 vector fieldX =
( f, g), was continuous and so its index along a circle was well defined.

Before continuing, the authors wish to express their gratitude to the referee
whose comments have been appreciated and incorporated into this work.

2 Global injectivity result

This section is devoted to prove the following:

Theorem 2.1.LetY = ( f, g) : R2 → R2 be a local homeomorphism such that,
for somes > 0, Y|R2\Ds

is differentiable. If there existsε > 0 such that, for all
p ∈ R2 \ Ds, no eigenvalue ofDYp belongs to(−ε, ε), thenY is injective.

Theorem 2.1 improves the main injectivity result of [8]. The proof of this
theorem will be completed throughout this section; to this end we shall use the
following Černavskii’s Theorem [4], [5] (see also [29] and [25]).

Theorem 2.2. Let U be an open subset ofR2 and X = ( f, g) : U → R2 be
a differentiable map such that, for allp ∈ U, DXp is non-singular. Then,
for all p ∈ U, there exists a neighborhoodV = V(p) and ε = ε(p) > 0
such thatX|V : V → ( f (p) − ε, f (p) + ε) × (g(p) − ε, g(p) + ε) is a differ-
entiable homeomorphism whose inverse(X|V )−1 is also differentiable.

As a consequence of thisInverse Mapping Theoremwe obtain:

Corollary 2.3. Let X = ( f, g) : U ⊂ R2 → R2 be a differentiable map such
that, for all p ∈ U, DXp is non-singular. Then the level curves{ f = constant}
(resp. {g = constant}) make up aC0-foliation F( f ) (resp. F(g)) on U ⊂
R2, without singularities, such that every leafL of F( f ) (resp. F(g)) is a
differentiable curve andg|L (resp. f |L) is strictly monotone; in particularF( f )

andF(g) are (topologically) transversal to each other.

OrientF( f ) (resp.F(g)) so that ifL is an oriented leaf ofF( f ) (resp.F(g))
theng|L (resp. f |L) is an increasing function in conformity with the orientation
of L.
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Now, we introduce the notion ofhalf-Reeb componentfor F( f ). Let
h0(x, y) = xy and consider the set

B =
{
(x, y) ∈ [0, 2] × [0, 2] : 0 < x + y ≤ 2

}
.

Definition 2.4. Let X = ( f, g) : U ⊂ R2 → R2 be a local homeomorphism.
Givenh ∈ { f, g}, we will say thatA ⊂ U is a half-Reeb component forF(h)

(or simply a hRc forF(h)) if there is a homeomorphismH : B → A which is
a topological equivalence betweenF(h)|A andF(h0)|B such that:

(1) The segment{(x, y) ∈ B : x + y = 2} is sent byH onto a transversal
section for the foliationF(h) in the complement of the pointH(1, 1); this
section is called the compact edge ofA.

(2) Both segments{(x, y) ∈ B : x = 0} and {(x, y) ∈ B : y = 0} are sent
by H onto full half-trajectories ofF(h). These two semi-trajectories of
F(h) are called the non–compact edges ofA.

Observe thatA may not be a closed subset ofR2.

20

2

B

H

Γ

A

Figure 1: A half-Reeb component.

For eachθ ∈ R let Rθ denote the linear rotation
(

cosθ − sinθ

sinθ cosθ

)
.

The following proposition will be needed. For the proof we refer the reader
to [11, Proposition 1.5].

Proposition 2.5. Let Y = ( f, g) : R2 → R2 be a local homeomorphism such
thatF( f ) has a hRcA. Let ( fθ , gθ ) = Rθ ◦ Y ◦ R−θ , θ ∈ R. If 5(A) is
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bounded, where5 : R2 → R is given by5(x, y) = x, then there is anε > 0
such that, for allθ ∈ (−ε, 0) ∪ (0, ε),F( fθ ) has a hRcAθ for which5(Aθ ) is
an interval of infinite length.

The proof of the following lemma can be found in [3] (see also [18] and [27]).

Lemma 2.6. Let I be a bounded interval ofR and H : I → R be a bounded
measurable function. IfA denote the set ofx ∈ I such that

lim
h→0

|H(x + h) − H(x)|

|h|
= +∞.

ThenA is a (Lebesgue) measure–zero set.

We will need the following proposition.

Proposition 2.7.Letσ > 0 andX = ( f, g) : R2 \ Dσ → R2 be a differentiable
map such that for someε > 0, Spec(X) ∩ (−ε, ε) = ∅. Then,

(i) any half-Reeb component of eitherF( f ) or F(g) is a bounded subset
ofR2;

(ii) whenX extends to a local homeomorphism̃X = ( f̃ , g̃) : R2 → R2,F( f̃ )

andF(g̃) have no hRc’s.

Proof. Consider only the case (i). Suppose by contradiction thatF( f ) has an
unbounded half-Reeb componentA. By composing with a linear rotation if
necessary (see Proposition 2.5 and its notation) we may assume that5(A) is an
unbounded interval. To simplify matters, let us suppose that[b, +∞) ⊂ 5(A).
Then, ifa > b is enough large,

(a) for anyx ≥ a, the vertical line5−1(x) intersects exactly one trajectory
αx ⊂ A of F( f )|A such that5(αx) ∩ (x, +∞) = ∅. In other words,x
is the maximum for the restriction5|αx .

Asαx is a continuous curve, it follows that; ifx ≥ a, αx ∩5−1(x) is a compact
subset ofA.

Let H : (a, +∞) → R be defined by

H(x) = sup
{
y : (x, y) ∈ αx ∩ 5−1(x)

}
.

Whenx ≥ a is kept fixed, everyq ∈ 5−1(x) ∩ αx is a local extremal of the
differentiable function(x, y) 7→ f (x, y). Thus
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(b) if x ≥ a, fy(x, H(x)) = 0.

AsF( f ) is aC0−foliation, we may obtain that the function

(c) ϕ(x) = f (x, H(x)) is strictly monotone and continuous which, when
restricted to any interval(a, b], is bounded; in particular,ϕ is differentiable
a.e.

We claim that

(d) H is upper semicontinuous; thus,H is a measurable function.

In fact, suppose by contradiction thatH is not upper semicontinuous atx0 > a.
As H restricted to(a, x0+1) is bounded there existc ∈ Rand a sequencexn → x0

such thatH(x0) < c andH(xn) → c. However, asϕ is continuous,

f (x0, c) = lim
n→∞

f (xn, H(xn)) = lim
n→∞

ϕ(xn) = ϕ(x0) = f (x0, H(x0)).

This contradiction with the definition ofH proves (d).
By (d) above, Lemma 2.6 and by the fact thatϕ is differentiable a.e., we obtain

that if a > 0 is large enough, there exists a full measure subsetM of (a, +∞)

such that

(e) if x ∈ M , thenϕ is differentiable atx and

lim inf
h→0

|H(x + h) − H(x)|

|h|
< +∞.

To proceed we shall only consider the case in whichϕ is strictly increasing.
We claim that

(f) if x ∈ M , thenϕ′(x) = fx(x, H(x)) ≥ ε.

In fact, if x ∈ M , there is a sequencehn → 0 such that limn→∞
kn
hn

∈ R
wherekn = H(x + hn) − H(x). Also, by (b), fy(x, H(x)) = 0. Hence, asf
is differentiable at(x, H(x)), there are real valued functionsε1, ε2 defined in a
neighborhood of(0, 0) such that

f (x + hn, H(x) + kn) = f (x, H(x)) + fx(x, H(x))hn

+ ε1(hn, kn)hn + ε2(hn, kn)kn
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and limn→∞ ε1(hn, kn) = limn→∞ ε2(hn, kn) = 0. Therefore, whenn is large
enough,

ϕ(x + hn) − ϕ(x)

hn
= fx(x, H(x)) + ε1(hn, kn) + ε2(hn, kn)

kn

hn

which implies that

ϕ′(x) = lim
n→∞

ϕ(x + hn) − ϕ(x)

hn
= fx(x, H(x)).

Therefore,

DX(x, H(x)) =
(

ϕ′(x) 0
gx(x, H(x)) gy(x, H(x))

)

i.e. ϕ′(x) is an eigenvalue ofDX(x, H(x)). By the assumption of the proposition
and the fact thatϕ is a strictly increasing function, (f) is proved.

As f |A is bounded,ϕ is bounded too. Hence, there is a constantK > 0 such
that for all x > a, 0 ≤ ϕ(x) − ϕ(a) ≤ K . Takec > a so that(c − a)ε > K .
Then we have that

K > ϕ(c) − ϕ(a) ≥
∫ c

a
ϕ′(x)dx ≥

∫ c

a
εdx = (c − a)ε > K .

This contradiction proves the proposition. �

Let a > 0 andσ, γ : [−a, a) → R2 be injectiveC0-curves such thatσ(0) =
γ (0) = 0. We say thatγ is transversal(resp. tangent) to σ at γ (0) = σ(0),
if there existε > 0, neighborhoodsV of γ (0) andU of (0, 0), in R2, and a
homeomorphismH : V → U such that for all|t | < ε, H ◦ σ(t) = (t, 0) and
H ◦ γ (t) = (t, t) (resp. H ◦ γ (t) = (t, φ(t)), whereφ(t) ≥ 0 andφ(0) = 0).
If γ is tangent toσ at γ (0) = σ(0), we say that the tangency isgenericif H
andφ (as right above) can be taken so thatφ(t) = |t |. In particular, when
σ([−a, a)) = C is a topological circle inR2 \ Dσ , we will say that the generic
tangency inp = σ(0) = γ (0) is external(resp. internal) if in the definition of
generic we have thatγ (t) ∈ R2 \ D(C) (resp.γ (t) ∈ D(C)) for all 0 < |t | < ε.

Now we prove the main result of this section.

Proof of Theorem 2.1. Suppose by contradiction that the mapY is not injec-
tive. Let p1 6= p2 be points inR2, such thatY(p1) = Y(p2). For i = 1, 2,

let αi denote the leaf ofF( f ) passing throughpi . As g|αi is strictly monotone
andg(p1) = g(p2), we obtainα1 ∩ α2 = ∅. Let �(p1, p2) be the set of all the
compact arcs01 embedded in the plane such that: (1) fori = 1, 2, 01 meetsαi

transversally atpi ; (2) all the tangencies ofF( f ) with 01 aregeneric.
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transversal
tangent

γ γ

σ
σ

Figure 2

(a) Among all elements of�(p1, p2) take0 ∈ �(p1, p2) which minimizes
the number of (generic) tangencies withF( f ).

We claim that:

(b) αi ∩ 0 = {pi }, for i = 1, 2.

If we assume, by contradiction, thatα1 ∩ 0 contains properly{p1}, we may
find q ∈ 0 \ {p1, p2} and a closed subintervalα of α1, with endpointsp1, q,

such thatα ∩ 0 = {p1, q}. Let γ denote the connected component of0 \ {q}
containing{p2}. We can see thatα ∪ γ is an arc connectingp1 andp2 and also
thatF( f ) is tangent to0 at some point of0 \ (γ ∪ {p1} ∪ {q}). Under these
conditions, we may approximateα ∪ γ by an arc of�(p1, p2) which has less
number of generic tangencies withF( f ) than0. This contradiction with (a)
proves (b).

As f (p1) = f (p2), F( f ) is tangent to0 at some pointq /∈ {p1, p2}. All
tangencies ofF( f ) with 0 are generic. Therefore, by looking at the trajectories
ofF( f ) aroundq, we may see that there exist closed subintervals[p, q], [q, T p]
of 0 with [p, q] ∩ [q, T p] = {q}, and a homeomorphismT : [p, q] → [q, T p]
such that,

(c.1) T q = q and for everyx ∈ (p, q), there is an arc[x, T x] f ofF( f ), starting
at x, ending atT x and meeting0 exactly and transversally at{x, T x},

(c.2) the family{[x, T x] f : x ∈ (p, q)} depends continuously onx and tends
to the one point{q} asx → q.

From now on, suppose that

(d) [p, q] is maximal with respect to properties (c.1) and (c.2) above.
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Then, using (b) and the fact thatF( f ) has no half-Reeb components (see
Proposition 2.7), we obtain{p, T p} ∩ {p1, p2} = ∅. We claim that

(e) there is no arc of trajectory[p, T p] f of F( f ) connectingp and T p
such that the family{[x, T x] f : x ∈ (p, q]} approaches continuously to
[p, T p] f asx goes top.

In fact, suppose that (e) is false. Then, by using (d) and the fact thatF( f ) has
no half-Reeb components, we conclude[p, T p] f is tangent to0 at least at one of
the points of{p, T p}. Under these circumstances, it is not difficult to approximate
the curve, which is the union of[p, T p] f with 0 \ ((p, q]∪ [q, T p)), by a curve
01 ∈ �(p1, p2) which has less tangencies withF( f ) than0. This contradiction
with (a) proves (e). Therefore, the subinterval[p, q] ∪ [q, T p] is the compact
edge of a half-Reeb component ofF( f ) made up of two half trajectories ofF( f )

starting atp andT p, respectively, together with the union of the arcs[x, T x] f ,
with x ∈ (p, q]. Thus we have found an unbounded half-Reeb component of
F( f ). This contradiction with Proposition 2.7 finishes the proof. �

3 A local flow associated toF( f )

Let X : R2 \ Dσ → R2 be a differentiable map such that for allp ∈ R2 \ Dσ ,
DXp is non-singular (See Theorem 2.2). LetL p be the connected component
of the level curve{ f = f (p)} passing throughp. Sinceg|L p is strictly mono-
tone, givenq ∈ L p andt = g(q) − g(p) we defineϕ(t, p) as the unique point
which is the intersection ofL p with the level curve{g = g(q)}. For each
p ∈ R2, let am(p) = inf {g(q) : q ∈ L p} andaM(p) = sup{g(q) : q ∈ L p}. If
p ∈ R2 andt ∈ (am(p) − g(p), aM(p) − g(p)) thenϕ(t, p) is well defined and
determines a continuous local flow around any point ofR2. This mapϕ will be
calledthe local flow associated toF( f ).

Proposition 3.1. Let X = ( f, g) : R2 \ Dσ → R2 be a differentiable map with
Spec(X) ∩ [0, +∞) = ∅. If C ⊂ R2 \ Dσ is a topological circle surrounding
the origin , there existsε0 > 0 such that:

(a) the local flowϕ associated toF( f ) is defined in(−ε0, ε0) × C.

(b) Let S1 =
{
(x, y) ∈ R2 : x2 + y2 = 1

}
. If u ∈ (−ε0, 0) ∪ (0, ε0) and

Zu = (Au, Bu) : C → S1 is defined as

Zu(p) =
ϕ(u, p) − p

‖ ϕ(u, p) − p ‖
.
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ThenAu(p0) = 0, for somep0 ∈ C, implies thatBu(p0) < 0. In particu-
lar, the degree ofZu is zero.

To prove this proposition we shall need the following lemmas.

Lemma 3.2.Let Z : R2 \ Dσ → R2 be given by

Z(p) =
(− fy(p), fx(p))

||(− fy(p), fx(p))||
.

(a) If p ∈ C, Zu(p) → Z(p) asu → 0+.

(b) The curvet 7→ ϕ(t, p) is differentiable and

∂ϕ

∂t
(s, p) =

1

det(DXq)
(− fy(q), fx(q)),

whereq = ϕ(s, p).

Proof. If W denotes the local inverse ofX = ( f, g) at X(p) = (c, d), by using
the fact that this inverse is differentiable, (see Theorem 2.2) we have

∂W

∂y
(c, d) = lim

u→0

W(c, d + u) − W(c, d)

u

= lim
u→0

ϕ(u, p) − p

u
=

∂ϕ

∂u
(0, p),

and

∂W

∂y
(c, d) = (DXp)

−1

[
0
1

]

=
1

det(DXp)
(− fy(p), fx(p)).

As Spec(X) ∩ [0, +∞) = ∅ we obtain that det(DXp) > 0. This finishes the
proof of (a). The proof of (b) follows from the last computations. �

Lemma 3.3.Letϕ be the local flow associated toF( f ). There does not exist a
compact discD whose boundary is made up of the union of a vertical segment
A = {(a, y) : c ≤ y ≤ d} and an arc of trajectoryB = {(ϕ(t, p)) : 0 ≤ t ≤
t0} such thatc < d, p = (a, c), ϕ(t0, p) = (a, d) and, for all 0 < t <

t0, 5(ϕ(t, p)) 6= a, where5 : R2 → R is given by5(x, y) = x.
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R

(a, d)(a, d)

(a0, c0)(a0, c0)

(a, c)(a, c)

Figure 3a Figure 3b

Figure 3

Proof. Suppose by contradiction that such a discD exists (see Figure 3a). We
shall only consider the case in which, for all 0< t < t0, 5(ϕ(t, p)) > a.
Let [a, a0] be the interval5(D). Let s0 ∈ [0, t0] be the smallest value such
that5(ϕ(s0, p)) = a0. Let (a0, c0) = ϕ(s0, p) and letR be the closed region
bounded by the union of{(a, y) : y ≤ c}, {(a0, y) : y ≤ c0} and{ϕ(t, p) : 0 ≤
t ≤ s0}. It follows from (b) of Lemma 3.2 thatfy(a0, c0) = 0. This implies that
fx(a0, c0) ∈ Spec(X). By the assumptions of Proposition 3.1 about Spec(X),
fx(a0, c0) < 0 which in turn implies that the arc{ϕ(t, p) : s0 ≤ t ≤ t0} must
enter intoRand cannot cross the boundary ofR (see Figure 3b). This contradicts
the fact thatϕ(t0, p) = (a, d) /∈ R. �

Proof of Proposition 3.1. The proof of (a) is immediate. Let us proceed to
prove (b). OrientC andS1 with the usual positive orientation. Suppose by
contradiction that, for some(p, u) ∈ C × [(−ε0, 0) ∪ (0, ε0)] we have that
Zu(p) = (0, 1). Henceϕ(u, p) is of the formϕ(u, p) = (a, d), with c < d.

By applying Lemma 3.3 we conclude that the segment connecting(a, c) with
(a, d) must be an arc of trajectory. However, this would imply thatfy(p) = 0
and fx(p) > 0 which would be a contradiction with the assumptions of this
proposition becausefx(p) ∈ Spec(X). �

4 Avoiding internal tangencies

We say that a topological circleC ⊂ R2 \ Dσ is in general position withF( f ) if
there exist a setT ⊂ C, at most finite such that: (i)F( f ) is transversal toC \ T,

(ii) F( f ) has a generic tangency withC at every point ofT and, (iii) a leaf of
F( f ) can meet tangentiallyC at most at one point.
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Denote byGP( f ) = GP( f, σ ) the set of all topological circlesC ⊂ R2 \ Dσ

in general position withF( f ) and surrounding the origin.

Remark 4.1. Let suppose thatC ∈ GP( f ). If q ∈ C is an (internal) tangency
of F( f ) with C, we have that:

(i) For some closed subintervals[p, q], [q, r ] in C there exist an orientation
reversing homeomorphismϕ : [p, q] → [q, r ] such that, for allz ∈ (p, q),
f (z) = f ((ϕ(z))) and there is an oriented arcTz of a leaf ofF( f ),
connectingz with ϕ(z) and meetingC exactly and transversally at its
endpoints.

(ii) The family {Tz : z ∈ (p, q)} depends continuously onz and tends to the
one point set{q} asz → q.

The following definition was introduced in [1] (see also [24]).

Definition 4.2. Let C ∈ GP( f ). The Index ofF( f ) alongC is the integer
number

IF( f )(C) :=
2 − ne( f, C) + ni ( f, C)

2

wherene( f, C) (resp. ni ( f, C)) is the number of generic tangencies ofF( f )

with C, which are external (resp. internal).

LetC ⊂ R2\ Dσ be a topological circle surrounding the origin. LetZu : C →
S1 be as in Proposition 3.1. We say thatZu has ageneric contact(resp. generic
tangency with; resp. transversal to; etc) withC at p ∈ C if every small local
integral curve ofZu at p has such property.

It is well known that ifZu is in general position withC,

deg(Zu) =
2 − ne(Zu, C) + ni (Zu, C)

2

whereni (Zu, C) (resp. ne(Zu, C)) is the number of internal tangency (resp.
external tangency) ofZu with C (see [19, Theorems 9.1 and 9.2, p. 166-174]).

By using a standard homotopy argument we may conclude that

Lemma 4.3. If Zu : C → S1 is as in Proposition3.1,

deg(Zu) = IF( f )(C).

As a consequence
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Lemma 4.4. Let C ∈ GP( f ) be such thatni ( f, C) = 0. If ne( f, C) is greater
than two, the degree ofZu is different from zero.

Next proposition will shows us that we can always selectC ∈ GP( f ) such
that,F( f ) has no internal tangencies withC and exactly two external ones. The
definitions of external, internal and generic tangencies are given right after the
proof of Proposition 2.7.

We shall need the following two lemmas, the first of which is proved in [15,
Lemma 2].

Lemma 4.5.LetC ∈ GP( f ). Suppose that a leafγ ofF( f ) meetsC transver-
sally somewhere and with an external tangency at a pointp ∈ C. Then,γ con-
tains a closed subinterval[p, r ] f which meetsC exactly at{p, r } (doing it
transversally atr ) and the following is satisfied:

(i) If [p, r ] denotes the closed subinterval ofC such that0 = [p, r ]∪ [p, r ] f

bounds a compactdisc D(0) contained inR2 \ D(C), then points of
γ \ [p, r ] f nearbyp do not belongto D(0).

(ii) Let ( p̃, r̃ ) and [ p̃, r̃ ] be subintervals ofC satisfying[p, r ] ⊂ ( p̃, r̃ ) ⊂
[ p̃, r̃ ]. If p̃ andr̃ are close enough top andr, respectively, then we may
deformC into C1 ∈ GP( f ) in such a way that the deformation fixes
C \ ( p̃, r̃ ) and takes[ p̃, r̃ ] ⊂ C to a closed subinterval[ p̃, r̃ ]1 ⊂ C1

which is close to[p, r ] f . Furthermore, the number of generic tangencies
ofF( f ) with C1 is smaller than that ofF( f ) with C.

Lemma 4.6. Let X = ( f, g) : R2 \ Dσ → R2 be a differentiable map as in
Theorem1.1. If C ∈ GP( f ) minimizes the number of tangencies withF( f ),

then every tangency is external.

Proof. Suppose, by contradiction, thatq ∈ C is an internal tangency ofF( f )

with C, we shall proceed using Remark 4.1 and its notation, so we may select
the maximal interval[p, q] with properties (i) and (ii) of this remark. Assume
that

(a) the family{Tz}, with z ∈ (p, q), can be extend continuously toz = p in
such a way thatTp is a compact arc.

In this case, by our selection of[p, q], the arcTp has to meetC at a generic
tangency. By Lemma 4.5 we may selectC1 ∈ GP( f ) having smaller number
of tangencies withF( f ) than that ofC. This contradiction proves that (a) is not
possible. Therefore, the level curve{ f = f (p)} has two connected components:
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p ∈ C belongs to one connected component andr ∈ C belongs to the other.
By Remark 4.1,[p, r ]C ⊂ C is the compact edge of an unboundedhRc. This
contradiction with Proposition 2.7 finishes the proof of the lemma. �

Proposition 4.7. Let X = ( f, g) : R2 \ Dσ → R2 be a differentiable map as in
Theorem1.1. There exists a topological circleC ∈ GP( f ) and there are two
pointsa, b ∈ C, with f (a) < f (b), such thatF( f ) is tangent toC exactly ata
andb; moreover, these tangencies are generic and external.

Proof. TakeC ∈ GP( f ) as Lemma 4.6, soni ( f, C) = 0. If a, b ∈ C are such
that f (C) = [ f (a), f (b)], the circleC has two external tangencies: one ata
and the other atb.

Suppose by contradiction thata andb are not the only tangencies; sone( f, C)

is greater than two. This implies, by Lemma 4.4, that the degree ofZu is different
from zero, contradicting Proposition 3.1. �

5 Proof of Theorem 1.1

We shall say that a collar neighborhoodU of a topological circleC ⊂ R2 \ Dσ

is interior (resp. exterior), ifU is containedin D(C) (resp.R2 \ D(C)).

Proposition 5.1. Let X = ( f, g) : R2 \ Dσ → R2 be a differentiable map as in
Theorem 1.1. There exists a topological circleC ⊂ R2 \ Dσ surrounding the
origin such that: (i) X(C) is a topological circle;(ii) for some exterior collar
neighborhoodU of C, its imageX(U ) is an exterior collar neighborhood of
X(C) and(iii) X|U : U → X(U ) is a homeomorphism.

The proof of this proposition needs some preparatory lemmas.

We say that a topological circleC ⊂ R2 \ Dσ is of ETT (i.e external tangency
type) for F( f ), if the following is satisfied:C surrounds the origin, there are
two pointsa, b ∈ C, with f (a) < f (b), f (C) = [ f (a), f (b)], and there are
pointsa1, a2, . . . , an ∈ C− andb1, b2, . . . , bn ∈ C+, whereC− andC+ are the
connected components ofC \ {a, b}, such that:

(a.1) F( f ) is tangent toC exactly ata andb; also, these tangencies are generic
and external;

(a.2) f (a) = inf { f (z) : z ∈ C} < sup{ f (z) : z ∈ C} = f (b);

(a.3) f takes homeomorphically eachCi , with i ∈ {−, +}, onto the open inter-
val ( f (a), f (b)) (i.e., X(Ci ) is the graph of a map( f (a), f (b)) 7→ R);
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(a.4) X restricted toC\{a1, . . . , an, b1, . . . , bn} is a topological embedding and
also,X(C−) andX(C+) meet transversally to each other;

(a.5) (X(a1), X(a2), . . . , X(an)) = (X(b1), X(b2), . . . , X(bn)) and f (a) <

f (a1) = f (b1) < ∙ ∙ ∙ < f (an) = f (bn) < f (b);

(a.6) there are sequencesxn → a andyn → b of pointsxn andyn in R2 \ D(C)

such that, for alln, f (xn) < f (a) < f (b) < f (yn). This means that the
local exterior ofC arounda (resp. aroundb) is taken to the unbounded
connected component ofR2 \ X(C). In particular,n ≥ 0 is an even
number;

(a.7) if x ∈ R2 \ D(C) is close enough toy ∈ C+ (resp. y ∈ C−) and
f (x) = f (y), theng(y) < g(x) (resp.g(y) > g(x)).

(a.8) if a1, an ∈ C− andb1, bn ∈ C+ close enough toa1, an andb1, bn re-
spectively, and[a1, an] ⊂ (a1, an), [b1, bn] ⊂ (b1, bn) then,X([a1, a1) ∪
(an, an]) is belowX([b1, b1)∪ (bn, bn]) (i.e. if a′ ∈ [a1, a1)∪ (an, an] and
b′ ∈ [b1, b1) ∪ (bn, bn] are such thatf (a′) = f (b′) theng(a′) < g(b′)).

Lemma 5.2.There exists a topological circleC ⊂ R2 \ Dσ of ETT for F( f ).

Proof. By Proposition 4.7 we may take a topological circleC ⊂ R2 \ Dσ ,

surrounding the origin, such that there are two pointsa, b ∈ C with f (a) < f (b),
f (C) = [ f (a), f (b)], and so that (a.1) above is satisfied. This implies that (a.2)
and (a.3) of the definition above are also satisfied.

By deformingC around a small open neighborhoodVa ⊂ C of a (resp.Vb ⊂ C
of b) we may also assume thatg|Va (resp.g|Vb) is a topological embedding. In
this way, ifVa andVb are small enoughX|Va∪Vb is a topological embedding. This
implies that

X(C+) ∩ X(C−) = X(C+ \ (Va ∪ Vb)) ∩ X(C− \ (Va ∪ Vb))

is a compact set. AsC+ \ (Va ∪ Vb) andC− \ (Va ∪ Vb) are disjoints sets we
may deformC so that

(i) X(C+) and X(C−) meet transversally doing this along a set which is at
most finite.

Thus, (i) implies that (a.4) and (a.5) of the definition above are satisfied too.
Item (a.6) follows directly from the preceeding properties. AsX(C) is tangent
to the vertical foliation at the pointsX(a) and X(b) and by using (a.6), the
connected componentsC− andC+ can be named to satisfy (a.7). Item (a.7)
implies (a.8). �
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In the following of this section,C will be a topological circle ofETT forF( f )

and we shall use all corresponding introduced notation.
Givenα, β ∈ C− (resp.α, β ∈ C+), [α, β],(α, β),[α, β) will denote subinter-

vals ofC− (resp.C+) with endpointsα, β. Let L denote the straight line which
passes through the pointsX(a1) andX(an). LetL be the foliation ofR2 made
up by all the straight lines parallel the lineL. By a small deformation ofC with
support in[a1, an] ∪ [b1, bn], we may assume that

(b) every point of tangency ofX([a1, an] ∪ [b1, bn]) with L is generic,
X([a1, an]) andX([b1, bn]) are transversal toL.

From (a.8), bytakinga1, an ∈ C− andb1, bn ∈ C+ close toa1, an andb1, bn

respectively, such that[a1, an] ⊂ (a1, an) and [b1, bn] ⊂ (b1, bn), we may
suppose as well that

(c) X([a1, a1) ∪ (an, an]) andX([b1, b1) ∪ (bn, bn]) are disjoint ofL.

Let θ ∈
(
− π

2 , π
2

]
be such thatRθ (L) is made up of vertical lines, whereRθ is

the linear rotation of angleθ . Recall thatXθ = ( fθ , gθ ) = Rθ ◦ X ◦ R−θ . By
means of a small deformation ofC, we may also assume that

(d) Rθ (C) is in general position withF( fθ ), i.e. Rθ (C) ∈ GP( fθ ).

Remark 5.3. Xθ takes any leaf ofF( fθ ) into a leaf ofRθ (L), where the folia-
tion Rθ (L) is made up by vertical lines.

Lemma 5.4. Let denoteaj = Rθ (aj ), aj = Rθ (aj ), bj = Rθ (bj ) and bj =
Rθ (bj ). If Xθ ([a1, a1) ∪ (an, an]) is on the left to the vertical lineRθ (L) and
Xθ ([b1, b1) ∪ (bn, bn]) is on the right toRθ (L) (see fig. 4); then there is a
circle C1 ⊂ R2 \ D(Rθ (C)), surrounding the origin, obtained fromRθ (C) by
a deformation which fixesRθ (C) \ ((a1, an) ∪ (b1, bn)) and takes[a1, an] ⊂
Rθ (C) and [b1, bn] ⊂ Rθ (C) to the closed subintervals[a1, an]C1 ⊂ C1 and
[b1, bn]C1 ⊂ C1 respectively, which satisfyXθ ([a1, an]C1) is on the left toRθ (L)

and Xθ ([b1, bn]C1) is on the right toRθ (L). In particular, R−θ (C1) is as re-
quested to prove Proposition5.1.

Proof. Item (d) mentioned in this proof, refers to the one considered right before
the statement of this lemma.

Suppose thatF( fθ ) has an internal tangency withRθ (C) at q ∈ (a1, an). By
Item (d), we may proceed as in Remark 4.1 (applied toF( fθ ) and considering
the notation introduced there) to obtain subintervals[p, q], [q, r ] of Rθ (C),
(generated byq ∈ Rθ (C)), determined by the condition that
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F(f) C−

C+

a bC
X = (f, g)

RθRθ

L
L

f(a) f(b)

Xθ = (fθ, gθ)

Rθ(L)
Rθ(L)

F(fθ) a1
a2

ā1

ā2

b1
b2

b̄1

b̄2Rθ(C)

Figure 4: casen = 2 in Lemma 5.4.

(e.1) (p, q] is the maximal interval satisfying properties (i) and (ii) of Re-
mark 4.1, and also(p, q] contained in[a1, an].

By Remark 4.1, every element of the family{Tz : z ∈ (p, q)} is an arc of a leaf
of F( fθ ).

As R2 \ D(Rθ (C)) is not bounded,[p, q] ∪ [q, r ] is properly contained in
Rθ (C). Therefore,

(e.2) the family{Tz}, with z ∈ (p, q), extends continuously toz = p, in such
a way thatTp is a compact arc connectingp andr .

In fact, if (e.2) is false the positive (resp. negative) half-leafL+
p (resp. L−

r ) of
the foliationF( fθ ) starting atp (resp. atr ) does not meetRθ (C) and so accumu-
late at the point∞ of the Riemann sphereR2 ∪ ∞. Under these circumstances,
Remark 4.1 implies that the subinterval[p, q] ∪ [q, r ] is the compact edge of a
unboundedhRcfor F( fθ ). This contradiction with Proposition 2.7 shows (e.2).

It follows from (e.1), (e.2) and (d) that
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(e.3) If {p, r } ∩ {a1, an} = ∅, then, betweenp andr , exactly one of them is an
external tangency point ofF( f ) with Rθ (C). See Fig. 5.

p q

z r

Rθ(C)

ϕ(z)

Figure 5

Let us to perform a sequence of adequate deformations ofRθ (C), in order to
obtain the circleC1 as requested. We meet two possible cases:

Thefirst one is that{p, r } ∩ {a1, an} 6= ∅. Consider only the case in which
p = a1 andr 6= an. From (ii) of Remark 4.1 and (e.2), we may deformRθ (C)

into a new circleC1 in such a way that: the deformation fixesRθ (C) \ (a1, an)

and takes[a1, an] to a closed subinterval[a1, an]C1 ⊂ C1 such that

(f) the cardinality ofRθ (L)∩ Xθ ([a1, an]C1) is less than that of (the finite set)
Rθ (L) ∩ Xθ ([a1, an]); and, concerning the number of tangencies with the
vertical foliation, that are on the right toRθ (L), the curveXθ ([a1, an]C1)

has less number than that ofXθ ([a1, an]). See fig. 6.

In this deformation the arc[p, r ] ⊂ Rθ (C) has been taken to an interval whose
image underXθ is on the left of the vertical lineRθ (L). This deformation takes
place inside a small neighborhood of

⋃
{Tz : z ∈ [p, q]} and soC1 is surround-

ing the origin and satisfies (f). Also as[a1, an] ⊂ C is transversal toF( f ),
[a1, an]C1 ⊂ C1 can be obtained to be transversal to the foliationRθ (F( f )). We
do not care ifXθ (C1) has more self-intersections thanXθ ◦ Rθ (C).

Thesecondcase happens when{p, r } ∩ {a1, an} = ∅. We shall only consider
the case in whichp is the external tangency (see e.3). This and Remark 4.1
imply that

(g.1) if 0 = [p, r ] ∪ Tp, then,D(0) is contained inR2 \ D(Rθ (C)) and the
points ofL p \ Tp (hereL p is the leaf ofF( fθ ) passing throughp) nearp
do not belongto D(0).
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Xθ(q)Xθ(q)

Xθ(C1)
Xθ(p)Xθ(p)

Xθ(r) Xθ(r)

Figure 6

The arguments of Lemma 4.5 imply that we may deform ofRθ (C) into a new
circleC1 according to the following conditions. The deformation fixesRθ (C) \
(a1, an) and takes[a1, an] to a closed subinterval[a1, an]C1⊂ C1 such that

(g.2) Rθ (L) ∩ Xθ ([a1, an]C1) has the same number of elements thanRθ (L) ∩
Xθ ([a1, an]); and, concerning the number of tangencies with the vertical
foliation, that are on the right toRθ (L), Xθ ([a1, an]C1) has one less than
that of Xθ ([a1, an]).

As above, this deformation takes place inside a small neighborhood ofTp and
so C1 surrounds the origin. Also[a1, an]C1 ⊂ C1 can be constructed to be
transversal to the foliationRθ (F( f )). Again, as in the case above, we do not
care if Xθ (C1) has more self-intersections thanXθ ◦ Rθ (C).

As these cases are the only possible ones, and thanks to (f) and (g.2), we
only need to perform finitely many times the process (just described above) of
obtaining new circles such that their image underR−θ is of ETT for F( f ), in
order to finally obtain a circle, sayC2, such thatXθ ([a1, an]C2) is on the left to
Rθ (L). Similarly, by a deformation that fixesC2 \ [b1, bn] we will finally obtain
one circle as requested in this lemma. �

Proof of Proposition 5.1.By Lemma 5.2, there exists a topological circleC ⊂
R2 \ Dσ of ETT forF( f ). The property (a.8) of the definition ofETT tell us that
X([a1, a1)∪(an, an]) is belowX([b1, b1)∪(bn, bn]). Now, we select an adequate
θ so that we may deformRθ (C), locally around{Rθ (a1), Rθ (b1), Rθ (an), Rθ (bn)}
in such a way that its image underR−θ is of ETT for F( f ), andRθ (C) satisfies
the conditions of Lemma 5.4. Therefore,Rθ (C) can be deformed into one as
requested to prove this proposition. �
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Proof of Theorem 1.1.Let C andU be as in Proposition 5.1.

By Schoenflies Theorem [2, Theorem III.6.B], the mapX|C : C → X(C),
can be extended to a homeomorphismY1 : D(C) → D(X(C)). In this way,
we extendX : R2 \ D(C) → R2 to X̃ : R2 → R2 by defining X̃|D(C) = Y1.

As X̃|U : U → X(U ) is a homeomorphism andU and X(U ) are exterior col-
lar neighborhoods ofC and X(C), respectively,̃X is a local homeomorphism
everywhere. By Theorem 2.1̃X is globally injective. �
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[6] M. Chamberland, J. Llibre and G.Świrszcz,Weakened Markus-Yamabe conditions
for 2-dimensional global asymptotic stability.Nonlinear Anal.59 6 (2004), 951–
958.

[7] C. Chicone,Ordinary differential equations with applications.Texts in Applied
Mathematics,34 (1999), Springer-Verlag, New York. xvi+561 pp.

[8] M. Cobo, C. Gutierrez and J. Llibre,On the injectivity ofC1 maps of the real plane.
Canadian Journal of Mathematics54 (6) (2002), 1187–1201.

[9] F. Dumortier, P. De Maesschalck,Topics on singularities and bifurcations of vector
fields. Normal forms, bifurcations and finiteness problems in differential equations,
33–86, NATO Sci. Ser. II Math. Phys. Chem.,137 (2004), Kluwer Acad. Publ.,
Dordrecht.

[10] F. Dumortier, R. Roussarie, J. Sotomayor and H.Żoladek,Bifurcations of pla-
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