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Pseudo-rotations of the open annulus
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Abstract. In this paper, we study pseudo-rotations of the open annutus;onser-

vative homeomorphisms of the open annulus whose rotation set is reduced to a single
irrational number (the angle of the pseudo-rotation). We prove in particular that, for
every pseudo-rotatioh of angle o, the rigid rotation of angle is in the closure of

the conjugacy class ¢f. We also prove that pseudo-rotations are not persiste@t in
topology for anyr > 0.
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Introduction
0.1 Some motivations

The concept of rotation number was introduced by H. Poincaré [28] to compare
the dynamics of orientation preserving homeomorphisms of the circle to the
dynamics of rigid rotations. To any orientation-preserving homeomorphism
associated a unique rotation numip€h), measuring in some sense the average
speed of rotation of the orbits dfaround the circle. In the case wheréh) is
rational, the dynamics dfmay degenerate dramaticallymay present only one
periodic orbit (whereas, for the rigid rotatid®, ), all the orbits are periodic).

On the contrary, in the case wheréh) is irrational,h is always semi-conjugate

to the rigid rotationR, ), and the closure of the conjugacy classhadlways
coincides with the closure of the conjugacy class of the roteRgp).

The notion of rotation number was generalized by Misiurewicz, Ziemian, and
Franks in order to describe the dynamics of homeomorphisms of the closed
annulus and of the two-torus (see e.g. [27]). More recently, it was used by
P. Le Calvez in order to describe the dynamics of conservative homeomorphisms
of the open annulus. Given a homeomorphisof the (closed or open) annulus
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isotopic to the identity, one can define tiatation setof h, which is in some
sense the set of all the possible asymptotic speeds of rotation of the orhits of
around the annulus. This is a subseRotlefined up to the addition of an integer.

In general, the rotation set bfis not reduced to a single point, and the dynamics
of h is much richer than the dynamics of a single rotation. However, one can
address the following problem:

Problem. Consider a homeomorphisimof the annulus, such that the rotation
set ofh is reduced to a single numbgmwhich is irrational (such an homeomor-
phism will be called gpseudo-rotation of angle). To what extend does the
dynamics ot looks like the rigid rotation with anglg?

In the case of the closed annul§s x [—1, 1], the above problem has been
studied in [3], starting from a generalization of a theorem of J. Kwapisz [22].
We would like to deal here with the case of the open annitus R.

Results on homeomorphisms of the open annulus are usually much harder to
prove than their analogs on the compact annulus. However, the open annulus
setting has a particular interest: it is related to the conservative dynamics on the
two-sphere. Indeed, any orientation-preserving conservative homeomotphism
of the two-spheré&? has at least two distinct fixed poinké and S; removing
these two points, one gets a homeomorphism of the open arSiNyN, S} ~
St x R. Moreover, the rotation set of this homeomorphism is reduced to a single
irrational number if and only ih has no other periodic points th&dhandS (see
proposition 0.2). This is the reason the above-mentionned problem is connected
to the following conjecture of G. Birkhoff (see [4, page 712] and [19]).

Conjecture [Birkhoff’s sphere conjecture]. Leth be an orientation preserving
real-analytic conservative diffeomorphism of the two-sphere, and having only
two periodic (necessarily fixed) points. Théris conjugate to a rigid rotation.

This conjecture is still open. An example of M. Handel, improved by M. Her-
man, shows that the real-analyticity assumption is necessary: there eRidts a
diffeomorphism of the two-sphere, having only two periodic (fixed) points, that
is not conjugate to a rigid rotation ([17, 18]). Note that, in Handel-Herman con-
struction, the rotation number of the diffeomorphism is necessarily a Liouville
number. On the contrary, in the case were the rotation number is assumed to be
diophantian, some partial results towards the conjecture, based on KAM theory
and working forC> diffeomorphisms, were proposed by Herman and written
in [8]. Our results, far from proving the conjecture, give some kind of qualitative
and topological motivation for it.
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PSEUDO-ROTATIONS OF THE OPEN ANNULUS 277

0.2 The line translation theorem

Let us denote byA = S x R the open annulus. We can identify with the
sphereS? minus two pointsN and S. We call Lebesgue probability measure
on A the measure induced by the Lebesgue measuf@ oiWe call essential
topological line inA every simple curve, parametrized Ryproperly embedded
in A, joining one of the ends af to the other. We recall thatfarey intervalis
an interval of the forn]ap, qﬂf[with p,q, P’,q € Zandqp — pq = 1. Hereis
our main result.

Theorem 0.1 (Line translation theorem).Leth: A — A be a homeomorphism
of the open annulus which is isotopic to the identity and preserves the Lebesgue
measure. Assume that the closure of the rotation set of sorhe 2 — R2 of
h is contained in a Farey interva]lqﬂ, qﬂ[

Then, there exists an essential topological nef A such that the topological
linesy, h(y), ..., h9t9=1(y) are pairwise disjoint. Moreover, the cyclic order
of these topological lines is the same as the cyclic order ofjtheq’ — 1 first
iterates of a vertical ling6} x R under the rigid rotation with angle, for any
pelg. gl

Very roughly speaking, theorem 0.1 asserts that, if the the rotation set of a
homeomorphisnih : A — A is included in a Farey intervaqu, ﬂ[ then the

dynamics oh is similar to those of a rigid rotation of angbee]ap, qﬂ[ provided
that one does not wait for more thgnt+- q’ — 1 iterates.

Although the statement of theorem 0.1 is the natural generalization of the arc
translation theorem of [3], the proofs of these two results are completely different.
Indeed, most of the arguments used in [3] are specific to the compact annulus ;
here, we will have to use some techniques coming from Brouwer theory, that are
typical from topological dynamics on non-compact surfaces.

The line translation theorem implies the following useful corollaifythe
rotation set ofh is bounded, them is conjugate to a homeomorphism whose
displacement function is boundésee proposition 5.1 below). This corollary
plays a key role in the proof of the perturbation theorem 0.5 below.

0.3 Results on pseudo-rotations

We callpseudo-rotatiorof the open annulus any homeomorphism which is iso-
topic to the identity, which preserves the Lebesgue measure, and whose rotation
setis reduced to a single numberThis number (defined up to the addition of

an integer) is called thengleof the pseudo-rotation. The following proposition
provides an alternative definition of pseudo-rotations with irrational angles:
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Proposition 0.2 (Characterization of pseudo-rotations). Let h be a home-
omorphism of the open annulds isotopic to the identity and preserving the
Lebesgue probability measure. Theeiis a pseudo-rotation with irrational an-
gle if and only if it does not have any periodic orbit.

This result does not seem to appear in the literature. It can be seen as a
straightforward application of a generalization of Poincaré-Birkhoff theorem by
J. Franks, together with an ergodic theoretical argument of P. Le Calvez. We
will provide a proof in section 2.3.

As an immediate corollary of the line translation theorem 0.1, we get:

Corollary 0.3 (Line translation theorem for pseudo-rotations). Leth : A —

A be a pseudo-rotation of irrational angle. Then, for everyn € N\ {0},
there exists an essential topological linein A, such that the topological
lines y, h(y), ..., h"(y) are pairwise disjoint. The cyclic order of the lines
v,h(y), ..., h"(y) is the same as the cyclic order of thefirst iterates of a
vertical line under the rigid rotation of angle.

Corollary 0.3 can be seen as an analogue of the following well-known property
for the dynamics on the circle: fifis an orientation-preserving homeomorphism
of the circle with irrational rotation numbeyr, then the cyclic order of the points
of any orbit ofh is the same as the cyclic order of the points of any orbit of the
rigid rotation with angleo. However, note that, in corollary 0.3, the essential
simple liney does depend on the integerindeed, one can construct a pseudo-
rotationh : A — A with irrational angle such that no essential topological line
in A is disjoint from all its iterates undér (see the examples of Handel [17] and
Herman [19]).

Using corollary 0.3, one can prove the following:

Theorem 0.4 (Closure of the conjugacy class of a pseudo-rotation)eth be

a pseudo-rotation of the open annulus with irrational angleT he rigid rotation

of anglep is in the closure (for the compact-open topology) of the conjugacy
class of h.

In other words, for every pseudo-rotatibrof anglep, there are conjugates
of h which are arbitrarily close (for the compact-open topology) to a rigid rota-
tion. We do not know if the same result holds if one allows only conservative
conjugacies. We also do not know if any pseudo-rotation of apgkein the
closure of the rigid rotation of angje.

Corollary 0.3 and theorem 0.4 show some common features between the
dynamics of any pseudo-rotation with irrational angle and the dynamics of a

IHere, the conjugating homeomorphisms are not assumed to be conservative.
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PSEUDO-ROTATIONS OF THE OPEN ANNULUS 279

rigid rotation. Nevertheless, there are examples of pseudo-rotations whose dy-
namics is quite different from those of a rotation. Indeed, using techniques
developed by D. Anosov and A. Katok (see [1, 6, 7, 9]), one can construct
C* pseudo-rotations for which the Lebesgue probability measure is ergodic; in
particular, such pseudo-rotations are not semi-conjugate to a rigid rotation.

We end this discussion on pseudo-rotations by noting that irrational pseudo-
rotation are not robust under perturbations: for eachO, the set of irrational
pseudo-rotations is meagre in the spaceCbfconservative diffeomorphisms
isotopic to the identity (see Corollary 6.3). This will be a consequence of the
following perturbation result, where the perturbation is ch@spnori, and does
not depend on the map one wants to perturb.

Theorem 0.5 (Perturbation of pseudo-rotation). For every homeomorphism
h: A — A isotopic to the identity and preserving the Lebesgue probability
measure, there exists a rigid rotatidhof arbitrarily small angle such thdto R

has a periodic orbit.

Theorem 0.5 answers a question of J. Franks, who also proved that the same
statement holds in the compact annulus (see [12] pages 18-19). To cope with
the lack of compactness, we have to use the line translation theorem and some
continuity results of P. Le Calvez. Note that the analogue of theorem 0.5 for
non-conservative homeomorphism of the annulus was shown to be false (G. Hall
and M. Turpin, [16]). Moreover, it is not known (see [19]) if, for> 2, the
space ofC" diffeomaorphisms of the two-torus (in the non-conservative case) or
of compact manifolds with dimension larger or equal to 3 (in the conservative
and non-conservative cases) has a dense subset of diffeomorphisms that present
a periodic orbit.

In a forthcoming paper, we shall prove that any irrational pseudo-rotation
possesses a circle compactification in the following sense: there exists a home-
omorphismh of the compact annulug® x [0, 1] whose restriction to the open
annulusS'x 10, 1[ is conjugate tdh. In other words, if we seld as a homeo-
morphism of the sphere fixing the North and South poles, one can construct a
blow-up ofh at each fixed point.

1 Preliminaries (I): rotation numbers

1.1 The open annulus

We denote byl = T* x R the infinite annulus and b& = R x R its universal
covering space. We denote kythe canonical projection of onto A. We
denote byp; the projection defined oA or A by p;(X, y) = x. We denote
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by T: A — A the translation defined by (x, y) = (x + 1, y). Note that the
annulusA is the quotient spac&/T. We will sometimes consider the annulus
Aq = R?/T4 for someq > 2.

By the two points compactification, one can identify the annulus the
punctured spherg? \ {N, S}, whereN andS are two distinct points d§?. The
Lebesgue measure &3 induces ord a probability measure oA that we call
the Lebesgue probability measure &fand denote by Leb.

The set of the homeomorphisms of the annulus (resp. of the two-sphere) that
are isotopic to the identity is denoted by Hormi¢a) (resp by Homed(S?)). We
will mostly consider the subsets Homfgg(A) and Homeg,, (S?) of Homeo™ (A)
and Homed (S?) made of the homeomorphisms which preserve the Lebesgue
probability measure.

1.2 Rotation numbers of points and measures, rotation set of a
homeomorphism

Consider a homeomorphisine Homed" (A), and a lith: A — A of h. Since
A is not compact, the definitions of the rotation number of a point uhdefthe
rotation set ofﬁ, etc. cannot be as simple as in the case of the closed annulus.
We follow here the definitions proposed by Le Calvez in [23].
Let us consider a (positively and negatlvely) recurrent ppiatA of h. We
say that theotation number ot underh is well-defined and equal to(z, h) e
R U {+£o0} if, for every lift Z of z and for any subsequen¢e™)y>o of (h"M)n=0o
and of(h"),<o such thah™(z) converges ta, we have

pLo ™ (2)

h).
e —> p(z,h)

The rotation setRot(ﬁ) of h is the set of all rotation numbers of recurrent
points ofh. As itis discussed in [23], we consider only recurrent points in order
to get a definition which is invariant by conjugacy. Note that the rotation set may
be empty.

Now, consider a probability measureon A which is invariant undehn. Note
thatm-almost every point is recurrent under Suppose that

* m-almost every point € A has a rotation number(z, h);

« the functionz — p(z, h) is integrable (with respect to the measoige
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PSEUDO-ROTATIONS OF THE OPEN ANNULUS 281

Then, we say thahe rotation number of the measureunderh is well-defined
and equal to

o(m, h) = / p(z, hydm.
A

In the case whem is the Lebesgue probability measdré.e Calvez found a
nice condition implying that the rotation numbenofis well-defined. First note
that, ifzis a fixed point oh, then the rotation number ais always well-defined
and is an integer. Consider the set RQE) of the rotation numbers of all the
fixed points ofh. Then, one has the following result.

Theorem 1.1 (P. Le Calvez, existence of the mean rotation numberguppose
that h preserves the Lebesgue probability measure, and that teatet (h) is
bounded. Then Lebesgue almost every poihas a rotation number, and the
rotation set ofh is bounded. In particular, the rotation numbetLeb, F{) of the
Lebesgue probability measure undeis well-defined.

The rotation set, the rotation numbers of the points, and the rotation numbers
of the measures satisfy the following elementary properfies.

Proposition 1.2.

1. The rotation set, the rotation number of a point, and the rotation number
of a measure are invariant by conjugacyttomeq’,,(A).

2. The rotation set of K o h is obtained by translating b the rotation set
of h. Similarly, for the rotation number of a point, or the rotation number
of an invariant measure.

3. The rotation set o is qRot(ﬁ). Similarly for the rotation number of a
point, and for the rotation number of an invariant measure.

1.3 The morphism property

Thehorizontal displacement df is the functiorr : A — R defined as follows:
givenz € A, we choose a liff of z, and we set (z) = pl(ﬁ(i)) — p1(2). Note
thatr (z) does not depend on the choicezflf m is anh-invariant probability
measure, and if is m-integrable, Birkhoff’s ergodic theorem implies thatas

a rotation number equal tbrdm. This shows that the rotation number of the
Lebesgue probability measure satisfies some morphism property.

20r, more generally, in the case wheres a probability measure such thatU) > 0O for every
open subsdt of A.
SFor item 3, note that a point which is recurrent fois also recurrent fon9 for anyq.
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Proposition 1.3. Leth, g be two homeomorphisms Afthat are isotopic to the
identity and preserve the Lebesgue probability measureﬁ,@tﬁ o § be some
lifts to A of h, gandhog.

If the horizontal displacement bf g andh o g are integrable for the Lebesgue
probability measure, then

p(Leb, ho @) = p(Leb, h) + p(Leb, §).

In general, the horizontal displacement of a homeomorphism is not integrable.
Moreover, one should note that the property of the horizontal displacement being
Leb-integrable is not invariant by conjugacy. We do not know if proposition 1.3
is true without the integrability assumptions (see the precise question and the
results in paragraph 5).

2 Preliminaries (Il): Brouwer theory

Every annulus homeomorphishlifts to a homeomorphisnﬁ of the plane.

Thus results about the existence of fixed points can be obtained by considering
Brouwer homeomorphismahich are the orientation-preserving fixed point free
homeomorphisms of the plafi€¢. In this section, we briefly recall some of the
main results of the theory of Brouwer homeomorphisms.

2.1 Brouwer lines and Brouwer theorem

A topological linein the plane is the imagE of a proper continuous embed-
ding fromR to R? (equivalently, using Schoenflies theorem, it is the image of a
Euclidean line under a homeomorphism of the plane). Given a Brouwer home-
omorphismH, a Brouwer linefor H is a topological linel”, disjoint from its
imageH (I'), and such thal' separatesi (I') from H~(I"). We will say thatl"
is anoriented Brouwer linéf it is endowed with the orientation such thidt(I")
is on the right ofl” (and thusH (") is on the left ofl"). Then for everk € Z,
we can endow the liné*(I") with the image byH¥ of the orientation off".
SinceHX preserves the orientation, the lilt1(I") is on the right ofH*(I"),
and the lineH*~1(I") is on the left ofH*(I"). By induction, we see thad 9(I")
is on the right ofH P(I") if and only ifq > p. In particular, the linesH*(I"))kez
are pairwise disjoint.

Now letU be the open region d&? situated between the lindsand H (I),
and ClU) = T UU U H(I"). The setgHX(U))xz are pairwise disjoint. As
a consequence, the restriction ldfto the open seO = |, HK(CI(V)) is
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conjugate to a translation. In particular, if the iterates qf.Jlcover the whole
plane, therH itself is conjugate to a translation.

The main result of Brouwer theory is thptane translation theoremevery
point of R? lies on a Brouwer line foH (see for example [14])

2.2 Guillou-Sauzet-Le Calvez theorem

In the case where the Brouwer homeomorphidns a lift of a homeomorphism

of the annulus\, one would like to have an “equivariant version” of the plane
translation theoren.e. one would like to find some Brouwer lines fér which
project as “nice” curves in the annulds This is the purpose of a result of L.
Guillou (see [15]), which was improved by A. Sauzet in his PhD thesis (see [29]).
We give below a foliated version of Guillou-Sauzet's result which relies on a
recent and powerful theorem of P. Le Calvez (see [24]). For sake of simplicity,
we restrict ourselves to the case of homeomorphisms without wandering points.
Recall that aressential topological linés the image of the lin¢0} x R under a
homeomorphism of the annulus that is isotopic to the identity.

Theorem 2.1 (L. Guillou, A. Sauzet, P. Le Calvez).Leth : A — A be a
homeomorphism isotopic to the identity. Assume that:

« h:R2 > R2is a fixed point free lift of;

« the homeomorphisimdoes not have any wandering poing( every open
set must meet some of its iterates uniler

Then there exists an oriented foliatifiof the annulug\ such that each oriented
leaf of F is an essential topological line which lifts &? to an oriented Brouwer
line for h.

Note that any foliation of the annulus by essential topological lines is homeo-
morphic to the trivial foliation by vertical lines.

Proof of theorem 2.1. Let h be a homeomorphism of the annulfisand let
h : R2 - R? be afixed point free lift oh. Le Calvez has proved that there exists
aCP oriented foliatiord of the annulus\, which lifts as an oriented foliatioft
of R? such that every oriented leaf #fis an oriented Brouwer linE for ﬁ, with
h(I") on the right of” (see [24]). Now we see the annuliiss the sphere minus
the two pointsN, S, and we seé¢F as a foliation ofS? with two singularities
N andS.

Suppose thdf has a leaj which is homeomorphic to acircle. Since it lifts to
a topological lind" in the universal covering space &f this leaf must separate
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N andS. Sincerl is a Brouwer line, the leaf is disjoint from its image, and the
open annular regiobd betweeny andh(y) is disjoint from its iterates undé,
which contradicts the second assumption of the theorem.

Similarly, we see thaf does not admit a leaf which is closeddmand whose
endpoints irS? are both equal t?N, or both equal t&5. Nor doesF admit any
cycle of oriented leaveg,, y, that are closed id and goes respectively from
N to Sand fromSto N. Now Poincaré-Bendixson theory tells us that all the
leaves ofF are closed im\, and either they all go fronN to S, or they all go
from Sto N. O

Remark 2.2. In most situations, we will not need the whole foliation provided
by theorem 2.1 but only one leaf of this foliation.

2.3 Application to the existence of periodic orbits

Inthis section, we use some Guillou-Sauzet-Le Calvez theorem to prove classical
results about the existence of periodic orbits. In particular, we provide the char-

acterisation of irrational pseudo-rotations announced in the introduction, namely
that an annulus homeomorphism does not have any periodic orbit if and only if

its rotation set is reduced to a single irrational number (proposition 0.2).

Theorem 2.3 (Franks [12] Le Calvez [23]).Leth € Homeq,(A), and leth

be a lift ofh. Suppose that does not have any fixed point. Then the rotation set
Rot(h) is either contained in—oo, 0] or in [0, +oc]. Furthermore, Lebesgue
almost every recurrent point has a non zero rotation number.

We do not know if the statement can be improved by proving that the rotation
set does not contain zero.

Proof. Leth € Homed,,(A), and leth be a lift of h that has no fixed point.
Let T be the lift to R? of the oriented foliatiort” provided by theorem 2.1.
Either all the leaves dF are oriented fronsto N, or they are all oriented from

N to S. In the remainder, we assume that we are in the first situation. We will
prove that the rotation set bfis contained if0, +oo] and that Lebesgue almost
every point has a positive rotation number.

Let T, I'” be lifts in R? of essential topological lines (oriented fra®to N).
We denote byL (T") the connected component B \ T" on the left ofl", and
by R(I") the connected component B \ T" on the right ofl". We will write
' < I"if I'is included inR(T).
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Observe that, due to the orientations, for evEryg F, and everyp, q > 0,
TPC)<I <TP) and h9I) <T < h%D).

Consider a poink € R? and a leafl” of F such thatx e R() N L(T()).
On the one hand, for every > 0, the pomthq(x) is in hq(R(F)) c R).
On the other hand, for every > 0, the pointT ~P(x) is in T=P(L(T (")) =
T-PHL(L(I")) c L(I'). This implies that, the point cannot have a negative
rotation number. This proves that the rotation séht &f included in[0, +o0].

We are left to prove that Lebesgue almost every poiriRirhas a positive
rotation number. For this purpose, we use some ergodic theoretical arguments
due to P. Le Calvez (see [23, page 3227]). Consider dledfF. Let

0 =0 = R() N LM(T) N L(TD)),

andU = Ur be the projection im\ of U. Note that, by definition(J is disjoint
from its images undér andT. Consider theeturn time function = vy : U —
N\ {0}, thefirst return map® = &r : U — U, and thedisplacement function
T =1 : U — Z defined as follows:

e v(x) =inf{n > 0| h"(x) e U};
© O(x) = h"x);

« 7(x) is the unique integer such that™® (x) € T*(J), whereX is the
(unique) lift of x in U.

By classical arguments (Kac’s lemma), the functiois integrable. Hence, by
Birkhoff ergodic theorem, the quantity

* H 1 = k
Vi) = lim = é (®*(x))

exists, is finite and positive for Lebesgue almost eveig U. We claim that
7(X) is a positive integer for every € U: indeed, for everyx e U, the point
h ™ (%) is in h"@ (R(T")), which is included inR(h(I")), and, for everyp > 0,
the setT —P(U) is contained inL (h(I")). Hence, by Birkhoff ergodic theorem
for positive functions, the quantity

n—1

™(X) = lim % Z 7(P(x))

n—+4-o00
k=0
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exists and is greater than or equal to 1 (maybe equabt) for Lebesgue almost
everyx in U. SinceU is open, the recurrent points bfin U are exactly the
recurrent points ofb. Hence, the rotation number of Lebesgue almost every
pointx of U is equal to

im0+ T@0) | T
n—+oo V(X)) +---+ U(CD“—l(X)) - U*(X)’

which is positive (maybe equal teoo) for Lebesgue almost every point .
SinceR? = Ure<s Ur, and sincéJr is a non-empty open set for every this
implies that almost every point iR? has a non-zero rotation number. O

Corollary 2.4. Leth € Homeq,(A), and leth be a lift ofh. Letg be arational

number injp~, pT[, wherep~ and p* belong to the rotation set df. Thené—’
also belongs to the rotation set, and is the rotation numberageriodic point
of h.

Proof. Apply the previous theorem t6~F o ha (using proposition 1.2). O

Proof of proposition 0.2. Leth € Homed,,(A), and leth be a lift ofh. Any
periodic point ofh has a rational rotation number, which proves the easy part
of the proposition. So assume thHatdoes not have any periodic orbit. Ac-
cording to the previous corollary, the rotation sethofs reduced to a single
numbera. Furthermore, the second part of theorem 2.3 (applied to the homeo-
morphismsT—poﬁq) implies thatx cannot be a rational number. This completes
the proof. O

3 Proof of the line translation theorem

The purpose of this section is to prove the line translation theorem 0.1. Let us
explain briefly the strategy of the proof. In subsection 3.1, we prove a preliminary
result which ensures that a homeomorphism whose rotation set is contained in
(e, +oo[ for somes > 0 is conjugate to a translation. In subsection 3.2, we
introduce the first return magé= TP o h¥ andy = T” o h~9, and we state

a proposition saying that, to prove theorem 0.1, it is enough to find an essential
simple liney in A and a lift of y which is disjoint from its images undef
andvr. This proposition is a classical consequence of arithmetical properties of
Farey intervals. Subsection 3.3 contains the core of the proof of theorem 0.1.
The results of subsection 3.1 implies that the homeomorpgigtonjugate to
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a translation, so that the quotiefit := R?/¢ is homeomorphic to an annulus.
The homeomorphisr& induces an homeomorphisi of the annulugd’. So,
we can apply Guillou-Sauzet-Le Calvez theorem to the homeomorphisiit
provides us with a lind in R?, which is a Brouwer line foxy, and projects in
A’ as an essential topological line. ThiDss is also a Brouwer line fop. Then,
we prove thaf” is also a Brouwer line for the translatidn and that it projects
to an essential topological line in our original annukus

Note that the we do not know if one can strengthen the statement of theorem 0.1
by removing the wor@losure The example described in appendix A only shows
that our strategy fails to prove this stronger result, since the first step of the proof
(proposition 3.1 below) does not work anymore.

3.1 Homeomorphisms with positive rotation sets
The purpose of this subsection is to prove the following.

Proposition 3.1. Letg € Homeg,,(A), and§ : R* — R? be a lift of g.
Assume that the closure of the rotation se§ja$ included in]0, +oc]. Theng
is conjugate to a translation.

Note that the above statement is sharp: one can construct an example of a
measure-preserving homeomorphigm A — A isotopic to the identity, such
that, for some liftg of g, the rotation set o is included in]0, +oc], but@ is
not conjugate to a translation (see appendix A).

Proof of proposition 3.1. Choose a positive integdérsuch that the rotation
set ofg is included in]%, +00]. Consider the homeomorphisgh:= g o T2,
which is a lift of the homeomorphisii = g¥. The rotation set off is included
in 10, +00] (see proposition 1.2). In particular, the homeomorphigns fixed
point free. Furthermore, singgpreserves the Lebesgue probability measure on
A, sodoeg/, and in particular no point is wandering under the actiog' off hus
we can apply Guillou-Sauzet theorem 2.1, which provides us with an essential
topological liney in A, such that some lifl" of y is disjoint from its image
g @).
Using the conservative version of Schoenflies theorem (see appendix B), we
can assume thdt is the vertical line{0} x R in R?, oriented from bottom to
top. The imagey'(I') is disjoint fromTI". If it was on the left side of”, then
the rotation set o would be contained ifi—oo, O[ (by the same argument as
in the proof of theorem 2.3). ThuE(I') is on the right side of". Applying
the covering translatioif, we get tha@¥(I") is on the right side off (I"). By
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induction, for any positive integer, §"(I") is on the right ofT"(I"). Similarly,

the topological lineg—"%(I") is on the left of T-"(I"). Let CI(U) denote the

closed band delimited by andg(I"); we get that the iterates of @) by g«

cover the whole plane. Th@ is conjugate to a translation (see paragraph 2.1).
Now it follows from a standard argument tl@thaving a power conjugate to

a translation, is also conjugate to a translation (the quoﬁgﬁl‘ is an annulus,

thus&/’g is the quotient of an annulus by a map of finite order: thisis atopological

surface whose fundamental group is infinite cyclic, so (using the classification

of surfaces) it is again an annulus, so thas conjugate to a translation). [

3.2 The “firstreturn maps” @ = T Poh%and ¢ = TP o h~9

We consider a homeomorphigme Homeq,(A), and a lifth : R? — R? of h.

We assume that the rotation sethois included in a Farey intervalg, qﬂ[ We
consider the homeomorphisiis= TP o h? andy := TP o h-%, sometimes
calledthe first return maps associated wtih These two homeomorphisms play

a fundamental role in the proof of the line translation theorem, via the following
proposition.

Proposition 3.2. Lety be an essential topological line in the annulusAssume
that some liftl" of y is disjoint from its images under the first return maps
and .

Thentheg+q’ — 1firstiterates ofy underh are pairwise disjoint, and ordered
as theqg + g’ — 1 first iterates of a vertical line under a rigid rotation of angle
a €], E,/[.

9’ q

In other words, to prove the line translation theorem, it is enough to find
an essential topological ling in A, and a lift of y which is disjoint from its
images undep andy. The analogue of proposition 3.2 in the context of home-
omorphisms of the circle is well-known. The proof of the proposition relies
on arithmetical properties of Farey intervals. The reader can find a proof in [3,
appendix A] (the proof is written in the context of the closed annulus, but also
works in the infinite annulus setting).

3.3 Proof of the line translation theorem

'I;he cIosques of the rotation sets of the homeomorphigms TP o hd and
¥ = TP oh~9 areincluded respectively if, <[ and]O, %[ (see proposition 1.2).
In particular, according to proposition 3.1, t%e homeomorplissconjugate to
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a translation, and thus, the quotiekit:= R?/g is an open annulus. We denote
by 7’ the natural prOJectlon dR? onto A,

Sinceg andx// commutey induces a homeomorphisy of the open annulus
A’. Thellift w of ¢’ is fixed point free. The next task is to check tijétsatisfies
the second hypothesis of theorem (2.1).

Claim 1. No point of the annulud’ is wandering under the iteration af’.

Proof. We shall prove that a dense set of pointsAdfare recurrent for the
homeomorphismy’; the claim will follow.

According to Le Calvez theorem 1.1, a densel3etf points of the annulug
which are recurrent unddérand have a well-defined rotation number. This set
lifts to a dense seb of points inR?, which again projects to a dense g&tin
A’. We prove that this last s8’ consists of recurrent points fagr'.

Since a poink € D is positively recurrent foh, there exists two sequences of
integers(in)neny and(jn)nen, such thatj, — +oo andT i o hin(X) — X when
n goes to+oo. For everyn, we set

kn = jnp/ - inq/ and |n = an_ inq,

so that _ _
T—|n ° th — wln o g’b‘kn

Hence '™ 0 3% (X) — X whenn goes totoo, which implies thaty" (x') — X’
wherex’ = 7/(X). Sinceij—: tends to the rotation number &fwhich is bigger
than 2, for n large enough we havg < 0. Thus the poink’ is negatively
recurrent for the homeomorphisii. Similarly, we prove thak’ is positively
recurrent. This completes the proof of claim 1. O

We are now in a position to apply Guillou-Sauzet-Le Calvez theorem 2.1; it
provides us with a Brouwer linE for ¢/, such that the projectiop’ of I in the
annulusA’ = R?/g is an essential topological line. This implies tifais also a
Brouwer line forg. According to proposition 3.2, we are left to prove that the
projectiony of the lineI" in the original annulus\ = R?/ T is again an essential
topological line.

Claim2. The IinesJ(F) andg(T") belongs to the same connected component
of R\ T.
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Proof. We choose an orientation fin such a way thap(I") is on the right of

I" (see subsection 2.1). For evéeyl € Z, the lineg* o J' (I") is endowed with

the image by* o ¥/' of the orientation of". We denote by be the connected
open region ofR? bounded by the lineE and@(I).

We argue by contradiction: we assume thar) is on the left of", or equiv-
alently, thatyy~X(I") is on the right of". Under this assumption, the homeo-
morphismsy andy ! are both “pushing the lin€ towards the right”. Hence,
for every pair of positive integak, |), the regiorz¥ o ¥ (U) is on the right of
¢(I"), and thus is disjoint frortJ .

According to Le Calvez theorem 1.1, almost every point of the anniliss
recurrent undeh and has a well-defined rotation number. Thus we can find a
pointX in U and some positive integens, n such that the poirtt™ o T—"(X) is
in U and such that/m belongs tgp/q, p’/q’[. We have

AmMoT =g oy, with k=mpg—ng and |=-mp+naq.

Sincen/mis in the Farey intervalp/q, p'/q’[, the integerk = mp — ng’ and
| = —mp-+ nqare positive. Hence, the regidff o T-"(U) is disjoint from the
regionU. But this is absurd, since the point o T~"(X) is in the intersection
of these two regions. d

Claim 3. The lineT is a Brouwer line forT. Furthermore, letV be the
connected open region & bounded by the lineE and T(I"), andCI(V) =
ruVv uT@). ThenCl(V) is a fundamental domain for the covering map
R? > A =R?/T.

Proof. By claim 2, both homeomorphisnggandy “push the linel" towards
right”. Hence, given four integets, |, k',I” € Z, such thak < k' andl < I,
the lineg® o ¢/ (I") is strictly on the right of the ling* o ' (I") (we call this
“property (x)").

In particular,T(I") = ¢¥ o {/7‘3'(1“) is strictly on the right of", andT ~1(I") is
strictly on the left ofl". Therefore[" is a Brouwer line forT .

We are left to prove that the iterates of(&€) underT cover the whole plane,
i.e. that| ., TK(CI(V)) = R?. As above, we denote Hy the connected open
region ofR? bounded by the lineE and®(I"). Since the projection df in the
annulusA’ = R?/g is an essential simple line, @) = T UU U @) is a
fundamental domain for the covering m&p — A’, and thus, we have

J#ciu) =r

keZ
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According to property»), for everyn > 0, the lineT (") = §~"9 o ¢y "4(I")

is on the left of the liné&—"(I"), and the lineT™(I") = ¢"¥ o J”q(l“) is on the
right of the lineg"(I") (remember thag andq’ are greater than 1). Now observe
that the seUE;fnT(CI(V)) is the region situated between the linEs"(I")
andT"(I"), and the seUQ;fn ¢(CI(U)) is the region situated between the lines
¢~ "™(I') andg"(I"). As a consequence, for evamy> 0, we have

n—1 n-1
U Tecuvnys (| dciuy),
k=—n keZ=—-n

and thud_J, TK(CI(V)) = R2. This completes the proof of the claim. O

Claim 4. The linel" projects inA to an essential ling.

Proof. What remains to be proved is that, with respect to the translation
T: (X, y) — (X+1,y), the Brouwer lind" is equivalent to the “trivial” Brouwer
line 'y := {0} x R. That s, thafl" is proper inA. For that, it suffices to con-
struct a homeomorphisi@ of the plane that commutes with, and such that
G = I'. This is very classical, as we have already mentioned in para-
graph 2.1. By Schoenflies theorem, there exists a homeomorhisom the
band[0, 1] x R onto the region GV), such that

T (@] G|{O}><R - G|{l}><R O T
Then we extend by conjugacy, that is, we set
G(p+a,t) =TP(G(a,t))

for any real numbet, any integerp and any numbes between 0 and 1. The
mapG is continuous. It is one-to-one (becausandV are disjoint from their

iterates undet). It is onto (because of claim 3). Clearlg is an open map;
hence, it is a homeomorphism. O

This completes the proof of the line translation theorem.

4 Closure of the conjugacy class of a pseudo-rotation

Recall that theorem 0.4 states that, for any pseudo-rotdtionA — A of
irrational anglep, the rigid rotation of(x, y) — (X + p, y) is in the closure (for
the compact open topology) of the conjugacy clash.of\ similar result was
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proved in [3, corollary 0.2] in the compact annulus setting. Actually, the proof
given in [3, section 5] applies to the open annulus setting, with the following
modifications:

— replace the notion oéssential simple arased in [3] by the notion of
essential topological linéefined in the present article,

— instead of using tharc translation theorenof [3], use thdine translation
theoremof the present article.

5 Integrability of the displacement function

The aim of this section is to show that, under the hypothesis of Le Calvez the-
orem 1.1, up to a suitable change of coordinates, the horizontal displacement
function is bounded, and hence integrable (the horizontal displacement function
has been defined in paragraph 1.3).

5.1 Statements

Proposition 5.1 (Integrability of the displacement function). Consider a
homeomorphisrh € Homeqjeb(A). Assume that the sﬂomix(ﬁ) of rotation
numbers of the fixed points bfis bounded (for some lift).

Then there existg € Homeq,(A), such that the horizontal displacement
functionr of any lifth; of the homeomorphisim = g o h o gt is bounded.

Note that as a consequence of Birkhoff ergodic theorem, the mean rotation
number ofh; is equal to the integral af over the annulug\. As a classical
consequence, we get a more geometrical definition.

Proposition 5.2. Leth; € Homeq,,(A), andh;: A — A be a lift of hy.
Suppose that the horizontal displacement functioof h1 is bounded. Then
the mean rotation number &, is equal to the algebraic area (for the lift of
the Lebesgue probability measure A of the region offi = R x R situated
between any vertical lin® = {6} x R and its imageh,(D).

In view to proposition 5.1, it seems natural to hope that (under suitable as-
sumptions) the mean rotation number “defines a morphism”, as in the case of the
compact annulus (see 1.3). For example, the following question may be asked.

Question 5.3. Let f, g be two homeomorphisms of the annulus, which are
isotopic to the identity and preserve the Lebesgue probability measure. Consider
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some liftsf, § of f, g, and assume that the mean rotation number$ o and
f o § are well-defined.

Is the mean rotation number df o § equal to the sum of the mean rotation
numbers oh and§ ?

We briefly explain the idea of the proof of proposition 5.1. The easy case is
when the closure of the rotation settvfs contained in some intervap, p +
1[ with p € Z (e.g. whenh is an irrational pseudo-rotation). In this case,
sincelp, p + 1[ is a Farey interval, we can directly apply the line translation
theorem 0.1, and we get an essential topological liné iwhich is disjoint
from its image undehn. The conservative version of Schoenflies theorem gives a
g € Homeq',(A) that maps this topological line on the straight ljogx R. The
conjugated homeomorphisgihg ! now maps this straight line off itself, and we
see easily that the horizontal displacement function of any lift is bounded. In the
general case, we will use this easy case by considering intermediate coverings.

5.2 Rotation numbers for intermediate coverings

As usual, takeh € Homeg,(A) andh A — A alift of h. Remember that
T denotes the covering translation Amf(whlch commutes Wltfh) Given an
integerq > 2, we may consider the intermediate coveriyg= A/Tq which
is again an annulus. The homeomorphllsmnduces a homeomorphlsm of
Aq. In addition to the previously defined notions of rotation numbers a$ a
lift of h, one can consider the rotation numberdiot h' as a lift of h’. These
numbers are linked in the following way. #fis a recurrent point foh, andz’ is
any lift of zin Aq, then one easily proves thztis a recurrent point foh'’. If z
has a well-defined rotation numbe(z, h) underh, then the rotation number of
Z underh’ is also well defined and equal gm(z, h).

5.3 Proofs

The core of the proof of proposition 5.1 is contained in the proposition given
below. We use the notations of the previous paragraph. Assume that the closure
of the rotation set o’ = h as a lift ofh’ is contained in the Farey intervil, 1[.

Then we can apply the line translation theorem 0.1, which provides us with an
essential topological ling’ of Ay, which is disjoint from its imagé’(y’). Note

that in general, the projection ¢f in A is not a topological line (it may have
self-intersections).

Proposition 5.4. We can choose the topological ligeé so that its projection in
A is again a topological line.
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We will also callessential topological line ifR? an oriented simple curve
I' : R — R? such that the second coordinateltt) tends to—oco (resp. +oc)
whent tends to—oo (resp. +00). Remember that we denote IR(I") (resp.
L (")) the connected component®f \ ' on the right (resp. on the left) df.

If 'y andTI", are two essential topological linesRf, we writeI’; < I', when
I'5 is containedn R(I'7); we writeI"; < I', if I’y < T', and the two lines are
disjoint.

Lemma and notation 5.5. LetI"; andT", be two essential topological lines in
R?, and letU be the unique connected component of thé& $Bt) N L (I',) which
contains half lines of the forh— oo, a[x{b}. Then the boundary df is an
essential topological line iiR?, that we denote b¥; v I'y.

The proof oflemma 5.5 is similar to that of lemma 3.2 in[3] and uses a classical
result by B. Kerékjarto ([21]).

Remark 5.6. LetI'y, I',, I's be three essential topological lines R?. The
following properties are immediate consequences of the definition of the line
'y v I,

(i) ThelineI'y v I'; is included in the union of the linds, andT",. Hence, if
I's<TI' andF3 < Iy, thenI‘3 <TI'1 vy

(i) The setsR(I';) and R(I",) are included in the seR(I"1 Vv I'y). In other
words, we havé'y v I, <T'yandI'y v I < Ty,

Proof of proposition 5.4. By theorem 0.1, there exists an essential topological
line yo of Agq which is disjoint from its imagdy'(y). We consider some liff'g
of yo to R?. Sinceyy is simple inAq, the arcl is disjoint fromT%(Tg). Note
that since the rotation set bf = h as a lift ofh’ is contained ino, 1[, we have
T-9(To) < h~1(I'y) < Io.

Now, we choose some essential topological lings .., I'q_1in R? such that

T 9o) <Tqu1 <Tgez2 <--- <T1 < T

Consider the essential topological line

q-1
P=TovTTY V- vTI ey =\/T@).
i=0

Foreveryi € {0, ...,q— 2}, we haveT ' *1(I'j,1) < T'*(T) (by definition of
theT’s) andI’ < T'*Y(I"; ;1) (by definition ofl" and by item (i) of remark 5.6).
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Hence for every € {0, ..., q — 2}, we get

< T7).
Moreover, we havé’ys < T9(I'4_1) andI" < I'y. Hence

[ < T%Tq_1).
Finally, using item (i) of remark 5.6, we get

q-1

r<\/T @) =TO.
i=0

In particular,I” is disjoint from its image undef. Moreover, we may assume
that the lined™y, ..., I'4—1 were chosen such that

h=%(Ig) < T'y,...,Tq_1 < Io.
This implies that, for every € {0, ..., q — 1}, we have
h=to T'(I) < T'(I).
Using the definition of” and item (ii) of remark 5.6, this implies
h=2() < T'(Y).
And using item (i) of remark 5.6, this gives
I < h) = h'(@).

Similarly, sinceh o T79(T0) < I'p, we may assume that the linEs, ..., I'q_1
were chosen such that

hoT™9Tg) <Ty,...,Tq 1 < Io.
This easily implies that
() =h@) < TYD).

Let ¢’ be the projection of" in the annulusd,. Sincel’ < hT) < T9D),
the curvey’ is an essential topological line iy, which is disjoint from its image
h'(y"). Furthermore, sinc€ < T(I"), the projection of/’ in the annulusA is
again simple, thus it is an essential topological line. O

We are now able to prove proposition 5.1.
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Proof of proposition 5.1. Leth € Homeg,(A), andh be a lift ofh. Assume
that the set of rotation numbers of the fixed point$ 1o bounded. Applylng
theorem 2.3 to the homeomorphisifisP o h, we see that the rotation setiofs
also bounded. Up to a change of lift, we may assume thathiRat included in
an interval[1, q — 1] for some integeq.

Consider the homeomorphisim induced byh on the intermediate covering

Aq. The rotation set oﬁ, seen as a lift oft, is included in[%, e, qT‘l] (see

paragraph 5.2). Hence, by proposition 5.4, there exists an essential topological
line y in A and a lifty’ of y in Aq which is disjoint from its imagé’(y”).

Using the conservative Schoenflies theorem, we get some homeomorphism
g € Homeq,(A) which sends/ on the vertical lineD = {0} x R. Take any
lift § of g to R? and denote by’ the induced map orhg. We consider the
conjugatesh; = gohog™ h; = g oh'o(g)tandh, = Fohog.
Consider some lif® of D in ]RZ and its projectiorD’ in Aq. Smceh’(y ) is
disjoint fromy’, the line D’ is disjoint fromh’ (D’). Thus the |magé11(D) is
betweenT 9%(D) andT9+4(D) for some mtegek This easily implies that the
image of the displacement function= p; o hi — p: is bounded. The proof
is complete. O

Proof of proposition 5.2. We may assume tha is the vertical ling{0} x R.
We also note that if the proposition is satisfied for somélifof hy, then itis true
for any other lift. Since the displacement functions of the lifte pare bounded,
one may choose a lifi; and an integeq > 1 such thaD < hy(D) < T4D).
Hence, there exists a vertical Ii|ﬁ~)a_ betweerD anqu([~)) such that the area of
the strip bounded b andh, (D) is equal to the area of the strip betwe@mnd
D;. We will work on the intermediate coverin@q with the homeomorphism
h’ induced byhs. In Aq, the projection ofD, is a vertical lineD; of the form
{9} x R and the projection ob is a vertical lineD'.

By the conservative Schoenflies theorem, there exists some homeomorphism
¥ € Homeq',, (Aq) which is the identity orD’ and which maps the line; (D)
on D}: one can require moreover that each poiht) in D’ is mapped by/f ohj
on the point(, t) in D;. We denote by) the lift of ¥ to Aq = A which flxes
D. Note that the dlsplacement functionfis bounded. We also introduce the
translationRy : A — A by 6. Itis the lift of the rotationR" of A4 with anglea.

Sincey and Rg‘1 o ¥ o hy are the identity orD, their rotation sets (as lift
of homeomorphism or\y) are {0} and their mean rotation number are 0. By
the morphlsm property (proposition 1.3), one deduces that the mean rotation
number ofh; (as lift of homeomorphisms afy) is equal to— As itis explained
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at paragraph 5.2, this implies that the mean rotation numbér, 0és lift of
the home~omorphisrhl oiA,Nis equal toy. By constructiong is also the area
betweenD and its imagén; (D) in A. This concludes the proof. O
6 Periodic orbits in one-parameter families

In this section, we consider perturbations of conservative homeomorphisms
by hamiltonian vector flows, and we prove a general statement that implies
theorem 0.5.

6.1 General statement and some consequences
Let X be a smooth vector field of such that
1. X is bounded (in the coordinates systém= S' x R);

2. the flow(®');r generated byX preserves the Lebesgue probability mea-
sure onA.

The vector fieldX lifts to a vector fieldX on A, which in turn generates a
flow (®Y);cg Which is a lift of the flow(®!);cg. The rotation number of the
Lebesgue probability measure fé is well defined. Since the displacement
function is bounded, the morphism property of proposition 1.3 is satisfied and
the mapt — p(Leb, ®') is continuous. Hence, we have

p(Leb, ) =t.p(Leb, dY).

Our favourite example is of course the family of Euclidean rotationsS®n
(given onA = S* x R by the constant vector field = (1, 0)). The following
statement implies at once theorem 0.5.

Theorem 6.1.Let X be a vector field as above, and suppose
p(Leb, 1) £ 0.

Leth € Homeg,,(A). Then there exists arbitrarily small valuesto$uch that
h o ®! has a periodic orbit.

Let us first state and prove two interesting corollaries of this theorem.

Corollary 6.2. Given any homeomorphisme Homeq,,(A), the set
D(h) := {t € Rlh o @' has a periodic orbi}
is dense irR.
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For eachr € [0, oo], we consider the space q’_r@;)(A) of C' diffeomorphisms
of the annulug\ that preserves the Lebesgue probability measure, endowed either
with the compact-open or the Whitney topology.

Corollary 6.3. The space®iff '} (A) contains an open and dense subset of dif-
feomorphisms having periodic orbits. In particular, the set of irrational pseudo-
rotations is meagre.

Proof of corollary 6.2 assuming theorem 6.1. Fix ty € R. Applying theo-
rem 6.1 to the homeomorphisgm ', we get arbitrarily small numberssuch
that the homeomorphisimo ®©7 = h o ®' o ®7 has a periodic orbit. [

Proof of corollary 6.3 assuming theorem 6.1. Consider the séitl of all the
elements of Diff:b(A) that have at least one hyperbolic periodic orbit. Note that
U is an open subset of D[ng(A) (since hyperbolic periodic orbits are persistent)
for the compact-open topology, and so for the Whitney topology. Consider an
elementh of Diff |/, (A), and an open neighbourhodtiof h in Diff "} (A), for

the Whitney topology. There exidhs € V that has a periodic orbit: this follows
from theorem 6.1 since there exists a smooth vector fietif A with compact
support such that the time-one mé@p has a non-zero rotation number. We can
perturbh’ in order to get a diffeomorphisim’ € V that has a hyperbolic periodic
orbit. This proves théll is dense in Dif[’;L(A) for the Whitney topology, hence
also for the compact-open topology. O

6.2 Idea of the proof

Let us explain briefly the idea of the proof of theorem 6.1, as developed in
paragraph 6.5. We suppose tlmais an irrational pseudo-rotation, with angle

a (otherwise there is nothing to prove). There are two disjoint cases. Either
the rotation sets of the homeomorphisims @' “explode” (that is, there exists
arbitrarily small values of for which the rotation set df o ' contains numbers
arbitrarily far froma), or the rotation set ofi o ®! is uniformly bounded fot

close to 0. Surprisingly, the first case is the easiest: because of the lower semi-
continuity property of the rotation set (see below), the rotation seb@$' must

also contain some numbers arbitrarily closextoso we can apply Poincaré-
Birkhoff-Franks’s theorem to get a periodic orbit of rotation number close to
«. In the second case, we use proposition 5.1 that allows us to suppose that
the horizontal displacement tfis bounded. Approximating the mags by
compactly supported maps and using a continuity property (see below), we see
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that the “morphism property” holdsi(Leb, ho ®!) = p(Leb, h) + p(Leb, ).
Wheno + t is rational, this again gives rise to periodic orbits.

6.3 The compactly supported case

Before addressing the general issue, it is useful to deal with a restricted problem.
We first prove theorem 6.1 assuming that the vector Kettompactly supported
in A. The following argument is essentially due to J. Franks ([11]).

Proof (compactly supported case). If h is not an irrational pseudo-rotation,
then it has a periodic orbit (proposition 0.2), hence we can take 0, and
there is nothing to prove. So from now on we assume lthiat an irrational
pseudo-rotation.

We fix a lift h of h. We denote by the rotation number dfi. Sinceh is a
pseudo-rotation, its rotation set is certainly bounded. Thus we can apply propo-
sition 5.1 by performing a change of coordinates given by a homeomorphism
g, we may assume that the horizontal displacement functidmisfbounded.
Note that the change of coordinates does not affect the fact that thedlowr
is compactly supportéd

We now deal witth and &t having bounded (integrable) horizontal displace-
ment functions. Thus we have the morphism property (proposition 1.3):

p(Leb, ho @Y = p(Leb, h) + p(Leb, ®') = a +t.p(Leb, dY).

By hypothesisp (Leb, ®1) is non null, so there exists arbitrarily small values of
t such that the mean rotation numbsiLeb, h o ') is rational. For any such
value,h o ®! is not an irrational pseudo-rotation, so it must have periodic orbits
according to proposition 0.2. This solves the compactly supported casé.]

6.4 Some continuity results by P. Le Calvez

We need some more tools before coping with the general case. Le Calvez has
proved the following continuity property for the rotation number of the Lebesgue
probability measure (see [23, theorem 2]). Remember tha,Rotdenotes the

set of rotation numbers of the fixed pointsﬁ)(see section 1.2).

4Note that this is the easy case of the proposition, as explained at the end of paragraph 5.1.
5The conjugated flow is not smooth anymore, which will not do any harm.
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Theorem 6.4 (P. Le Calvez, continuity of the mean rotation number) Con-
sider a sequencéhy)nen Of Homeqeb(A) converging towards some homeo-
morphismh € Homeq',,(A) for the compact-open topology. Consider also a
sequenceﬁhn) of lifts converging towards a lift of h.

If the setsRotF,X(hn) are uniformly bounded, then the Mtﬁx(’ﬁ) is bounded
and the sequence of rotation numbgréeb, ﬁn) converges towards the rotation
numberp (Leb, h).

Actually, the proof of the above theorem uses another continuity property
proved in the same paper (see [23 proposition 3]). We consider a sequence of
lifts (h,) converging towards a lifi as in the previous statement.

Theorem 6.5 (P. Le Calvez, lower semi-continuity of the rotation set)lf the
closures of the rotation seRot(h,) converge towgrds some inten, b]
[—o0, +00], then the closure of the rotation debt(h) is contained ina, b].

There are some easy remarks in this foothote

6.5 The general case

We now consider the general case, without assumingXhiatcompactly sup-
ported.

Proof (general case). As before, it suffices to consider an irrational pseudo-
rotation. We use the notations introduced for the compactly supported case.
We consider two disjoint subcases.

First subcase: the rotation set ofi o ! is not uniformly bounded for t close
to 0. More precisely, there exists a sequence of numtyers 0 such that the
set Roth o ) contains a numbes, with g, — +00 or B, — —oo.
According to the lower semi-continuity of the rotation set (theorem 6.5), there
must exist another sequengg,) — « such thaiy, € Rot(h o ). For each

8In particular, the closure of the conjugacy class of an irrational pseudo-rotation with @ngle
contains only pseudo-rotations with angleHowever, the closure of the conjugacy class of some
homeomorphism whose rotation set is not reduced to a point may contain some homeomorphism
whose rotation set is smaller. For instance, sifids open, it is easy to build an example where
each homeomorphisﬁh has rotation set equal {0, 1] andh has a rotation set reduced {{@}.
This shows that the rotation set is not upper semi-continuous.
Theorem 6.5 is false if one does not assume thathitie preserve the Lebesgue probability
measure. Note that in the context of the compact annulus, the rotation set is always upper semi-
continuous (even without assuming that the Lebesgue measure is preserved).
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value ofn, choose a rational numbef strictly betweeny, andg,, in such a way
that the sequencey;) tends toe. Then, Franks’ version of Poincaré-Birkhoff
theorem (first part of theorem 2.3) provides for each periodic orbit for the
maph o ®™ with rotation numbew/,, and we are done.

Second subcase: the rotation set df o ®! is uniformly bounded for t close
to 0. We now assume that there exists a botvhd- 0 and an angl& such that

Rot(h o &) c [-M, M]

forallt € [—tg, t]. In particular, the rotation numbers of all the fixed points of
h o @' are included if—M, M] for everyt e [—to, to].

Let (¢s)se1.+00) D€ @ continuous family of smooth functions fraim= Stx R
to [0, 1] such that

1. ¢s is equal to 1 on the compact annulifsx [—s, s];

2. s is equal to 0 outside the compact annuiis< [—2s, 2s].

For each value of we consider the vector fiels = ¢s.X. We denote by
(<I>S)t€R the corresponding flow. The lifted flow (generated by the pullback on
A of the vector fieldXs) is denoted b)(CD )ter. FoOr each finite value of, the
flow (®L):cr is compactly supported; whereas it coincides with the original flow
(PYH)ier for s = +o0.

Since we have slowed down the flow, we have the following easy but crucial
property: for any positivet, for any pointX € A and anys > 1 there exists
a timet’ betweerD andt such thatd! (X) = ®L(X). In particular, for every
t € [—to, to] and everys > 1, each rotation number of some fixed poinh@fcbts
is equal to a rotation number of some fixed poinhaf®t fort’ € [—to, to]. SO
the sets Rqﬁx(h o dt o) of rotation numbers of the fixed points are all included in
[—M, M].

With this property we can apply the continuity theorem 6.4. We get for each
t € [—to, to],

Jim_p(Leb, hod!) = p(Leb, ho dh.

Moreover, from the compactly supported case we know that the morphism prop-
erty holds for the compactly supported flo@.);cr:

p(Leb, ho ®') = p(Leb, h) + p(Leb, ).
Whens tends towards-co we get

p(Leb, ho @Y = p(Leb, h) + p(Leb, ') = « +t.p(Leb, dY).
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Thus in that subcase the morphism property also holds for the(féy.r, and
we conclude as in the compactly supported case. O

Remark

1. Note that the proof provides a periodic orbit whose rotation number is
close to the rotation numberofthe irrational pseudo-rotatidn However,
in the case where th@y)’s are the Euclidean rotations, we do not know
if there must be a periodic orbit of rotation numher 6 every time
this number is rational. This is linked to the morphism property, see
guestion 5.3.

2. Thefirst case of the proof does occur (it might even occurvitbnjugate
to an irrational rotation).

Indeed, consider a iR of an irrational rotatiorR. Choose a poirk € R?,
an integeli and a real number Let§ = R(X). One can find a measure-
preserving homeomorphism: A — A and a liftg : R? — R? of g,
such thafj(X) = ®'(X) and§(y) = X+ (0,i). Leth:= go Rog™?!
andh := §o Ro§ L. Then,y is a fixed point of the homeomorphism
h o ®', whose rotation number under ot is equal ta. Hence, for any
arbitrarily large integer and any arbitrarily small real numbgrwe have
found a homeomorphisrhNn conjugate toR such that the integerbelongs
to the rotation set df o .

Now, observe that the homeomorphitncan be chosen to coincide with
R outside a compact invariant annulus arbitrarily close to one erfd of
(by controlling the support af). Hence, repeating the above procedure,
one can modifyR on infinitely many pairwise disjoint compact annuli,
and get a homeomorphisiy, conjugated tdR, such that the rotation set
of ho o ®! contains arbitrarily large integers for some arbitrarily srall

A A hairy example

In this appendix we describe an example that shows why proposition 3.1
is sharp.

The left part of figure A shows the dynamics of a conservative homeomorphism
h of the disc. The disc is foliated by circles, apart from the central set which is
the union of a sequendéy)«cz of segments whose length tends to zero, having
a single pointN in common. The homeomorphism fixBlsand sends to Iy, ;.
Each circle is invariant, and the homeomorphism acts as a non-trivial rotation.
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Figure 1: The hairy example.

Note that the rotation number must tends to zero when the circles get closer
to the hairy set.

Next we see this disc as the upper half-sphere, and extémthe lower half-
sphere by a rotation. Thus we get a conservative homeomorphism (again called
h) of the sphere, with the two polds and S as the only fixed points. We sée
as an element of Homgg(A) with no fixed point. Therh has a lith whose
rotation set is equal t§0, «] for somecx. In particular, the points on the hairs
are not recurrent, which explains why zero does not belong to the rotation set.
Furthermore, one can prove that the homeomorpFﬁsim not conjugate to a
translation. Indeed, consider a poiithat projects on a hair, arijd = T (X)

(see the right part of the figure). Then the cougXgy) is singular. there exists
pointsZ. arbitrarily nearX, and arbitrarily large integens, such thath™ (Z.)

is arbitrarily neary. This is a dynamical feature that distinguisrreﬁom a
translation.

However there exists some essential topological lings A that are disjoint
from their imageh(y) (take the projection of a vertical line in the right part
of the figure). In general, when the rotation set is supposed to be included in
the open interval0, 1[, we do not know if there always exist such a line. The
line translation theorem 0.1 only works under the stronger assumption that the
closureof the rotation set is included ij®, 1[.

As explained in paragraph 2.3, we do not know either if a homeomorphism
must have a fixed point when some fifthas a rotation set equal {6, «] for
some positiver.
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B Conservative version of Schoenflies theorem

Theorem B.1. Letay, ap be two simple arcs in the sphe$é, and fix a homeo-
morphismy fromay ontow,. Then there exists an orientation-preserving home-
omorphisnm®d of S? which is an extension gf. In addition to this, if the Lebesgue
measure o1, o is zero, thenb can be chosen so that it preserves the Lebesgue
measure.

In this paper we use the theorem to straighten some essential topological lines
I" of the annulus\ = S x R. However there is a slight difficulty coming from
the fact that we have to deal with topological lines whose Lebesgue measure is
not zero. We indicate here how to by-pass the problem. The topologicdr line
comes with a homeomorphisimof the annulus such that N h(I') = @. We
choose a neighbourhodd of " such thatG N h(G) = @#. Then one can find
an essential topological ling, included inG, whose Lebesgue measure is zero
(for example I’ can be piecewise affine). We repldcdy I'’ before applying
theorem B.1.

Idea of the proof. We only indicate how to get the second part from the first
one. Let® be an orientation-preserving homeomorphism that is an extension of
¢. Letm denotes the image of the Lebesgue measure ubddihe measuren

has the following property: itis positive on each open set, it has no atom, it gives
measure zero to the agg. According to a theorem of Oxtoby and Ulam ([13]),
there exists an orientation-preserving homeomorphisnthat is the identity

on a», and that sends the measumeon the Lebesgue measure (actually, their
theorem is stated on the square, but we can cut the sphere along thetarc
match this setting). The homeomorphidne ® preserves the Lebesgue measure
and is still an extension af. O
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