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Pseudo-rotations of the open annulus

F. Béguin, S. Crovisier and F. Le Roux

Abstract. In this paper, we study pseudo-rotations of the open annulus,i.e. conser-
vative homeomorphisms of the open annulus whose rotation set is reduced to a single
irrational number (the angle of the pseudo-rotation). We prove in particular that, for
every pseudo-rotationh of angleρ, the rigid rotation of angleρ is in the closure of
the conjugacy class ofh. We also prove that pseudo-rotations are not persistent inCr

topology for anyr ≥ 0.
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Introduction

0.1 Some motivations

The concept of rotation number was introduced by H. Poincaré [28] to compare
the dynamics of orientation preserving homeomorphisms of the circle to the
dynamics of rigid rotations. To any orientation-preserving homeomorphismh is
associated a unique rotation numberρ(h), measuring in some sense the average
speed of rotation of the orbits ofh around the circle. In the case whereρ(h) is
rational, the dynamics ofh may degenerate dramatically:h may present only one
periodic orbit (whereas, for the rigid rotationRρ(h), all the orbits are periodic).
On the contrary, in the case whereρ(h) is irrational,h is always semi-conjugate
to the rigid rotationRρ(h), and the closure of the conjugacy class ofh always
coincides with the closure of the conjugacy class of the rotationRρ(h).

The notion of rotation number was generalized by Misiurewicz, Ziemian, and
Franks in order to describe the dynamics of homeomorphisms of the closed
annulus and of the two-torus (see e.g. [27]). More recently, it was used by
P. Le Calvez in order to describe the dynamics of conservative homeomorphisms
of the open annulus. Given a homeomorphismh of the (closed or open) annulus
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isotopic to the identity, one can define therotation setof h, which is in some
sense the set of all the possible asymptotic speeds of rotation of the orbits ofh
around the annulus. This is a subset ofR, defined up to the addition of an integer.
In general, the rotation set ofh is not reduced to a single point, and the dynamics
of h is much richer than the dynamics of a single rotation. However, one can
address the following problem:

Problem. Consider a homeomorphismh of the annulus, such that the rotation
set ofh is reduced to a single numberρ which is irrational (such an homeomor-
phism will be called apseudo-rotation of angleρ). To what extend does the
dynamics ofh looks like the rigid rotation with angleρ?

In the case of the closed annulusS1 × [−1, 1], the above problem has been
studied in [3], starting from a generalization of a theorem of J. Kwapisz [22].
We would like to deal here with the case of the open annulusS1 × R.

Results on homeomorphisms of the open annulus are usually much harder to
prove than their analogs on the compact annulus. However, the open annulus
setting has a particular interest: it is related to the conservative dynamics on the
two-sphere. Indeed, any orientation-preserving conservative homeomorphismh
of the two-sphereS2 has at least two distinct fixed pointsN and S; removing
these two points, one gets a homeomorphism of the open annulusS2 \ {N, S} '
S1 ×R. Moreover, the rotation set of this homeomorphism is reduced to a single
irrational number if and only ifh has no other periodic points thanN andS (see
proposition 0.2). This is the reason the above-mentionned problem is connected
to the following conjecture of G. Birkhoff (see [4, page 712] and [19]).

Conjecture [Birkhoff’s sphere conjecture]. Leth be an orientation preserving
real-analytic conservative diffeomorphism of the two-sphere, and having only
two periodic (necessarily fixed) points. Then,h is conjugate to a rigid rotation.

This conjecture is still open. An example of M. Handel, improved by M. Her-
man, shows that the real-analyticity assumption is necessary: there exists aC∞

diffeomorphism of the two-sphere, having only two periodic (fixed) points, that
is not conjugate to a rigid rotation ([17, 18]). Note that, in Handel-Herman con-
struction, the rotation number of the diffeomorphism is necessarily a Liouville
number. On the contrary, in the case were the rotation number is assumed to be
diophantian, some partial results towards the conjecture, based on KAM theory
and working forC∞ diffeomorphisms, were proposed by Herman and written
in [8]. Our results, far from proving the conjecture, give some kind of qualitative
and topological motivation for it.
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0.2 The line translation theorem

Let us denote byA = S1 × R the open annulus. We can identifyA with the
sphereS2 minus two pointsN and S. We call Lebesgue probability measure
onA the measure induced by the Lebesgue measure onS2. We callessential
topological line inA every simple curve, parametrized byR, properly embedded
in A, joining one of the ends ofA to the other. We recall that aFarey intervalis
an interval of the form] p

q ,
p′

q′ [ with p,q, p′,q′ ∈ Z andqp′ − pq′ = 1. Here is
our main result.

Theorem 0.1 (Line translation theorem).Leth : A → A be a homeomorphism
of the open annulus which is isotopic to the identity and preserves the Lebesgue
measure. Assume that the closure of the rotation set of some lifth̃ : R2 → R2 of
h is contained in a Farey interval] p

q ,
p′

q′ [.
Then, there exists an essential topological lineγ ofA such that the topological

linesγ, h(γ ), . . . , hq+q′−1(γ ) are pairwise disjoint. Moreover, the cyclic order
of these topological lines is the same as the cyclic order of theq + q′ − 1 first
iterates of a vertical line{θ} × R under the rigid rotation with angleρ, for any
ρ ∈] p

q ,
p′

q′ [.

Very roughly speaking, theorem 0.1 asserts that, if the the rotation set of a
homeomorphismh : A → A is included in a Farey interval] p

q ,
p′

q′ [, then the

dynamics ofh is similar to those of a rigid rotation of angleρ ∈] p
q ,

p′

q′ [, provided
that one does not wait for more thanq + q′ − 1 iterates.

Although the statement of theorem 0.1 is the natural generalization of the arc
translation theorem of [3], the proofs of these two results are completely different.
Indeed, most of the arguments used in [3] are specific to the compact annulus ;
here, we will have to use some techniques coming from Brouwer theory, that are
typical from topological dynamics on non-compact surfaces.

The line translation theorem implies the following useful corollary:if the
rotation set ofh is bounded, thenh is conjugate to a homeomorphism whose
displacement function is bounded(see proposition 5.1 below). This corollary
plays a key role in the proof of the perturbation theorem 0.5 below.

0.3 Results on pseudo-rotations

We callpseudo-rotationof the open annulus any homeomorphism which is iso-
topic to the identity, which preserves the Lebesgue measure, and whose rotation
set is reduced to a single numberα. This numberα (defined up to the addition of
an integer) is called theangleof the pseudo-rotation. The following proposition
provides an alternative definition of pseudo-rotations with irrational angles:
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Proposition 0.2 (Characterization of pseudo-rotations). Let h be a home-
omorphism of the open annulusA, isotopic to the identity and preserving the
Lebesgue probability measure. Thenh is a pseudo-rotation with irrational an-
gle if and only if it does not have any periodic orbit.

This result does not seem to appear in the literature. It can be seen as a
straightforward application of a generalization of Poincaré-Birkhoff theorem by
J. Franks, together with an ergodic theoretical argument of P. Le Calvez. We
will provide a proof in section 2.3.

As an immediate corollary of the line translation theorem 0.1, we get:

Corollary 0.3 (Line translation theorem for pseudo-rotations). Leth : A →
A be a pseudo-rotation of irrational angleρ. Then, for everyn ∈ N \ {0},
there exists an essential topological lineγ in A, such that the topological
lines γ, h(γ ), . . . , hn(γ ) are pairwise disjoint. The cyclic order of the lines
γ, h(γ ), . . . , hn(γ ) is the same as the cyclic order of then first iterates of a
vertical line under the rigid rotation of angleρ.

Corollary 0.3 can be seen as an analogue of the following well-known property
for the dynamics on the circle: ifh is an orientation-preserving homeomorphism
of the circle with irrational rotation numberρ, then the cyclic order of the points
of any orbit ofh is the same as the cyclic order of the points of any orbit of the
rigid rotation with angleρ. However, note that, in corollary 0.3, the essential
simple lineγ does depend on the integern. Indeed, one can construct a pseudo-
rotationh : A → A with irrational angle such that no essential topological line
in A is disjoint from all its iterates underh (see the examples of Handel [17] and
Herman [19]).

Using corollary 0.3, one can prove the following:

Theorem 0.4 (Closure of the conjugacy class of a pseudo-rotation).Leth be
a pseudo-rotation of the open annulus with irrational angleρ. The rigid rotation
of angleρ is in the closure (for the compact-open topology) of the conjugacy
class1 of h.

In other words, for every pseudo-rotationh of angleρ, there are conjugates
of h which are arbitrarily close (for the compact-open topology) to a rigid rota-
tion. We do not know if the same result holds if one allows only conservative
conjugacies. We also do not know if any pseudo-rotation of angleρ is in the
closure of the rigid rotation of angleρ.

Corollary 0.3 and theorem 0.4 show some common features between the
dynamics of any pseudo-rotation with irrational angle and the dynamics of a

1Here, the conjugating homeomorphisms are not assumed to be conservative.
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rigid rotation. Nevertheless, there are examples of pseudo-rotations whose dy-
namics is quite different from those of a rotation. Indeed, using techniques
developed by D. Anosov and A. Katok (see [1, 6, 7, 9]), one can construct
C∞ pseudo-rotations for which the Lebesgue probability measure is ergodic; in
particular, such pseudo-rotations are not semi-conjugate to a rigid rotation.

We end this discussion on pseudo-rotations by noting that irrational pseudo-
rotation are not robust under perturbations: for eachr ≥ 0, the set of irrational
pseudo-rotations is meagre in the space ofCr conservative diffeomorphisms
isotopic to the identity (see Corollary 6.3). This will be a consequence of the
following perturbation result, where the perturbation is chosena priori, and does
not depend on the map one wants to perturb.

Theorem 0.5 (Perturbation of pseudo-rotation). For every homeomorphism
h : A → A isotopic to the identity and preserving the Lebesgue probability
measure, there exists a rigid rotationR of arbitrarily small angle such thath◦ R
has a periodic orbit.

Theorem 0.5 answers a question of J. Franks, who also proved that the same
statement holds in the compact annulus (see [12] pages 18–19). To cope with
the lack of compactness, we have to use the line translation theorem and some
continuity results of P. Le Calvez. Note that the analogue of theorem 0.5 for
non-conservative homeomorphism of the annulus was shown to be false (G. Hall
and M. Turpin, [16]). Moreover, it is not known (see [19]) if, forr ≥ 2, the
space ofCr diffeomorphisms of the two-torus (in the non-conservative case) or
of compact manifolds with dimension larger or equal to 3 (in the conservative
and non-conservative cases) has a dense subset of diffeomorphisms that present
a periodic orbit.

In a forthcoming paper, we shall prove that any irrational pseudo-rotationh
possesses a circle compactification in the following sense: there exists a home-
omorphismĥ of the compact annulusS1 × [0, 1] whose restriction to the open
annulusS1×]0, 1[ is conjugate toh. In other words, if we seeh as a homeo-
morphism of the sphere fixing the North and South poles, one can construct a
blow-up ofh at each fixed point.

1 Preliminaries (I): rotation numbers

1.1 The open annulus

We denote byA = T1 × R the infinite annulus and bỹA = R× R its universal
covering space. We denote byπ the canonical projection of̃A ontoA. We
denote byp1 the projection defined onA or Ã by p1(x, y) = x. We denote
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by T : Ã → Ã the translation defined byT(x, y) = (x + 1, y). Note that the
annulusA is the quotient spacẽA/T . We will sometimes consider the annulus
Aq = R2/Tq for someq ≥ 2.

By the two points compactification, one can identify the annulusA to the
punctured sphereS2 \ {N, S}, whereN andSare two distinct points ofS2. The
Lebesgue measure onS2 induces onA a probability measure onA that we call
theLebesgue probability measure ofA and denote by Leb.

The set of the homeomorphisms of the annulus (resp. of the two-sphere) that
are isotopic to the identity is denoted by Homeo+(A) (resp by Homeo+(S2)). We
will mostly consider the subsets Homeo+

Leb(A)and Homeo+Leb(S
2)of Homeo+(A)

and Homeo+(S2) made of the homeomorphisms which preserve the Lebesgue
probability measure.

1.2 Rotation numbers of points and measures, rotation set of a
homeomorphism

Consider a homeomorphismh ∈ Homeo+(A), and a lifth̃ : Ã → Ã of h. Since
A is not compact, the definitions of the rotation number of a point underh̃, of the
rotation set of̃h, etc. cannot be as simple as in the case of the closed annulus.
We follow here the definitions proposed by Le Calvez in [23].

Let us consider a (positively and negatively) recurrent pointz ∈ A of h. We
say that therotation number ofz underh̃ is well-defined and equal toρ(z, h̃) ∈
R ∪ {±∞} if, for every lift z̃ of z and for any subsequence(hnk)k≥0 of (hn)n≥0

and of(hn)n≤0 such thathnk(z) converges toz, we have

p1 ◦ h̃nk (̃z)

nk
−→ ρ(z, h̃).

The rotation setRot(̃h) of h̃ is the set of all rotation numbers of recurrent
points of̃h. As it is discussed in [23], we consider only recurrent points in order
to get a definition which is invariant by conjugacy. Note that the rotation set may
be empty.

Now, consider a probability measurem onA which is invariant underh. Note
thatm-almost every point is recurrent underh. Suppose that

• m-almost every pointz ∈ A has a rotation numberρ(z, h̃) ;

• the functionz 7→ ρ(z, h̃) is integrable (with respect to the measurem).

Bull Braz Math Soc, Vol. 37, N. 2, 2006
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Then, we say thatthe rotation number of the measurem underh̃ is well-defined
and equal to

ρ(m, h̃) =
∫

A
ρ(z, h̃)dm.

In the case wherem is the Lebesgue probability measure2, Le Calvez found a
nice condition implying that the rotation number ofm is well-defined. First note
that, ifz is a fixed point ofh, then the rotation number ofz is always well-defined
and is an integer. Consider the set RotFix(̃h) of the rotation numbers of all the
fixed points ofh. Then, one has the following result.

Theorem 1.1 (P. Le Calvez, existence of the mean rotation number).Suppose
that h preserves the Lebesgue probability measure, and that the setRotFix(̃h) is
bounded. Then Lebesgue almost every pointx̃ has a rotation number, and the
rotation set of̃h is bounded. In particular, the rotation numberρ(Leb, h̃) of the
Lebesgue probability measure underh̃ is well-defined.

The rotation set, the rotation numbers of the points, and the rotation numbers
of the measures satisfy the following elementary properties.3

Proposition 1.2.

1. The rotation set, the rotation number of a point, and the rotation number
of a measure are invariant by conjugacy inHomeo+Leb(A).

2. The rotation set ofTk ◦ h̃ is obtained by translating byk the rotation set
of h̃. Similarly, for the rotation number of a point, or the rotation number
of an invariant measure.

3. The rotation set of̃hq is qRot(̃h). Similarly for the rotation number of a
point, and for the rotation number of an invariant measure.

1.3 The morphism property

Thehorizontal displacement of̃h is the functionr : A → R defined as follows:
givenz ∈ A, we choose a lift̃z of z, and we setr (z) = p1(̃h(̃z))− p1(̃z). Note
thatr (z) does not depend on the choice ofz̃. If m is anh-invariant probability
measure, and ifr is m-integrable, Birkhoff’s ergodic theorem implies thatm has
a rotation number equal to

∫
rdm. This shows that the rotation number of the

Lebesgue probability measure satisfies some morphism property.

2Or, more generally, in the case wherem is a probability measure such thatm(U ) > 0 for every
open subsetU of A.

3For item 3, note that a point which is recurrent forh is also recurrent forhq for anyq.
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Proposition 1.3. Let h, g be two homeomorphisms ofA that are isotopic to the
identity and preserve the Lebesgue probability measure. Leth̃, g̃, h̃ ◦ g̃ be some
lifts to Ã of h, g andh ◦ g.

If the horizontal displacement ofh, g andh◦g are integrable for the Lebesgue
probability measure, then

ρ(Leb, h̃ ◦ g̃) = ρ(Leb, h̃)+ ρ(Leb, g̃).

In general, the horizontal displacement of a homeomorphism is not integrable.
Moreover, one should note that the property of the horizontal displacement being
Leb-integrable is not invariant by conjugacy. We do not know if proposition 1.3
is true without the integrability assumptions (see the precise question and the
results in paragraph 5).

2 Preliminaries (II): Brouwer theory

Every annulus homeomorphismh lifts to a homeomorphism̃h of the plane.
Thus results about the existence of fixed points can be obtained by considering
Brouwer homeomorphisms, which are the orientation-preserving fixed point free
homeomorphisms of the planeR2. In this section, we briefly recall some of the
main results of the theory of Brouwer homeomorphisms.

2.1 Brouwer lines and Brouwer theorem

A topological linein the plane is the image0 of a proper continuous embed-
ding fromR toR2 (equivalently, using Schoenflies theorem, it is the image of a
Euclidean line under a homeomorphism of the plane). Given a Brouwer home-
omorphismH , a Brouwer linefor H is a topological line0, disjoint from its
imageH(0), and such that0 separatesH(0) from H−1(0). We will say that0
is anoriented Brouwer lineif it is endowed with the orientation such thatH(0)
is on the right of0 (and thusH−1(0) is on the left of0). Then for everyk ∈ Z,
we can endow the lineHk(0) with the image byHk of the orientation of0.
SinceHk preserves the orientation, the lineHk+1(0) is on the right ofHk(0),
and the lineHk−1(0) is on the left ofHk(0). By induction, we see thatHq(0)

is on the right ofH p(0) if and only if q > p. In particular, the lines(Hk(0))k∈Z

are pairwise disjoint.
Now let U be the open region ofR2 situated between the lines0 andH(0),

and Cl(U ) = 0 ∪ U ∪ H(0). The sets(Hk(U ))k∈Z are pairwise disjoint. As
a consequence, the restriction ofH to the open setO =

⋃
k∈Z Hk(Cl(U )) is

Bull Braz Math Soc, Vol. 37, N. 2, 2006
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conjugate to a translation. In particular, if the iterates of Cl(U ) cover the whole
plane, thenH itself is conjugate to a translation.

The main result of Brouwer theory is theplane translation theorem: every
point ofR2 lies on a Brouwer line forH (see for example [14]).

2.2 Guillou-Sauzet-Le Calvez theorem

In the case where the Brouwer homeomorphismH is a lift of a homeomorphism
of the annulusA, one would like to have an “equivariant version” of the plane
translation theorem,i.e. one would like to find some Brouwer lines forH which
project as “nice” curves in the annulusA. This is the purpose of a result of L.
Guillou (see [15]), which was improved by A. Sauzet in his PhD thesis (see [29]).
We give below a foliated version of Guillou-Sauzet’s result which relies on a
recent and powerful theorem of P. Le Calvez (see [24]). For sake of simplicity,
we restrict ourselves to the case of homeomorphisms without wandering points.
Recall that anessential topological lineis the image of the line{0} ×R under a
homeomorphism of the annulus that is isotopic to the identity.

Theorem 2.1 (L. Guillou, A. Sauzet, P. Le Calvez).Let h : A → A be a
homeomorphism isotopic to the identity. Assume that:

• h̃ : R2 → R2 is a fixed point free lift ofh;

• the homeomorphismh does not have any wandering point (i.e. every open
set must meet some of its iterates underh).

Then there exists an oriented foliationF of the annulusA such that each oriented
leaf ofF is an essential topological line which lifts inR2 to an oriented Brouwer
line for h̃.

Note that any foliation of the annulus by essential topological lines is homeo-
morphic to the trivial foliation by vertical lines.

Proof of theorem 2.1. Let h be a homeomorphism of the annulusA, and let
h̃ : R2 → R2 be a fixed point free lift ofh. Le Calvez has proved that there exists
aC0 oriented foliationF of the annulusA, which lifts as an oriented foliatioñF
ofR2 such that every oriented leaf of̃F is an oriented Brouwer line0 for h̃, with
h̃(0) on the right of0 (see [24]). Now we see the annulusA as the sphere minus
the two pointsN, S, and we seeF as a foliation ofS2 with two singularities
N andS.

Suppose thatF has a leafγ which is homeomorphic to a circle. Since it lifts to
a topological line0 in the universal covering space ofA, this leaf must separate
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N andS. Since0 is a Brouwer line, the leafγ is disjoint from its image, and the
open annular regionU betweenγ andh(γ ) is disjoint from its iterates underh,
which contradicts the second assumption of the theorem.

Similarly, we see thatF does not admit a leaf which is closed inA and whose
endpoints inS2 are both equal toN, or both equal toS. Nor doesF admit any
cycle of oriented leavesγ1, γ2 that are closed inA and goes respectively from
N to S and fromS to N. Now Poincaré-Bendixson theory tells us that all the
leaves ofF are closed inA, and either they all go fromN to S, or they all go
from S to N. �

Remark 2.2. In most situations, we will not need the whole foliation provided
by theorem 2.1 but only one leaf of this foliation.

2.3 Application to the existence of periodic orbits

In this section, we use some Guillou-Sauzet-Le Calvez theorem to prove classical
results about the existence of periodic orbits. In particular, we provide the char-
acterisation of irrational pseudo-rotations announced in the introduction, namely
that an annulus homeomorphism does not have any periodic orbit if and only if
its rotation set is reduced to a single irrational number (proposition 0.2).

Theorem 2.3 (Franks [12], Le Calvez [23]).Let h ∈ Homeo+Leb(A), and let̃h
be a lift ofh. Suppose that̃h does not have any fixed point. Then the rotation set
Rot(̃h) is either contained in[−∞, 0] or in [0,+∞]. Furthermore, Lebesgue
almost every recurrent point has a non zero rotation number.

We do not know if the statement can be improved by proving that the rotation
set does not contain zero.

Proof. Let h ∈ Homeo+Leb(A), and let̃h be a lift of h that has no fixed point.
Let F̃ be the lift toR2 of the oriented foliationF provided by theorem 2.1.
Either all the leaves ofF are oriented fromS to N, or they are all oriented from
N to S. In the remainder, we assume that we are in the first situation. We will
prove that the rotation set of̃h is contained in[0,+∞] and that Lebesgue almost
every point has a positive rotation number.

Let 0,0′ be lifts inR2 of essential topological lines (oriented fromS to N).
We denote byL(0) the connected component ofR2 \ 0 on the left of0, and
by R(0) the connected component ofR2 \ 0 on the right of0. We will write
0 < 0′ if 0′ is included inR(0).

Bull Braz Math Soc, Vol. 37, N. 2, 2006
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Observe that, due to the orientations, for every0 ∈ F̃, and everyp,q ≥ 0,

T−p(0) < 0 < T p(0) and h̃−q(0) < 0 < h̃q(0).

Consider a pointx ∈ R2 and a leaf0 of F̃ such thatx ∈ R(0) ∩ L(T(0)).
On the one hand, for everyq ≥ 0, the point̃hq(x) is in h̃q(R(0)) ⊂ R(0).
On the other hand, for everyp > 0, the pointT−p(x) is in T−p(L(T(0)) =
T−p+1(L(0)) ⊂ L(0). This implies that, the pointx cannot have a negative
rotation number. This proves that the rotation set ofh̃ is included in[0,+∞].

We are left to prove that Lebesgue almost every point inR2 has a positive
rotation number. For this purpose, we use some ergodic theoretical arguments
due to P. Le Calvez (see [23, page 3227]). Consider a leaf0 of F̃. Let

Ũ = Ũ0 = R(0) ∩ L (̃h(0)) ∩ L(T(0)),

andU = U0 be the projection inA of Ũ . Note that, by definition,̃U is disjoint
from its images under̃h andT . Consider thereturn time functionν = ν0 : U →
N \ {0}, thefirst return map8 = 80 : U → U , and thedisplacement function
τ = τ0 : U → Z defined as follows:

• ν(x) = inf {n > 0 | hn(x) ∈ U };

• 8(x) = hν(x)(x);

• τ(x) is the unique integer such thath̃ν(x)(̃x) ∈ T τ(x)(Ũ ), wherex̃ is the
(unique) lift of x in Ũ .

By classical arguments (Kac’s lemma), the functionν is integrable. Hence, by
Birkhoff ergodic theorem, the quantity

ν∗(x) = lim
n→+∞

1

n

n−1∑

k=0

ν(8k(x))

exists, is finite and positive for Lebesgue almost everyx in U . We claim that
τ(x) is a positive integer for everyx ∈ U : indeed, for everỹx ∈ Ũ , the point
h̃ν(x)(̃x) is in h̃ν(x)(R(0)), which is included inR(̃h(0)), and, for everyp ≥ 0,
the setT−p(Ũ ) is contained inL (̃h(0)). Hence, by Birkhoff ergodic theorem
for positive functions, the quantity

τ ∗(x) = lim
n→+∞

1

n

n−1∑

k=0

τ(8k(x))
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exists and is greater than or equal to 1 (maybe equal to+∞) for Lebesgue almost
everyx in U . SinceU is open, the recurrent points ofh in U are exactly the
recurrent points of8. Hence, the rotation number of Lebesgue almost every
point x of U is equal to

lim
n→+∞

τ(x)+ ∙ ∙ ∙ + τ(8n−1(x))

ν(x)+ ∙ ∙ ∙ + ν(8n−1(x))
=

τ ∗(x)

ν∗(x)
,

which is positive (maybe equal to+∞) for Lebesgue almost every point inU .
SinceR2 =

⋃
0∈F̃ U0, and sinceU0 is a non-empty open set for every0, this

implies that almost every point inR2 has a non-zero rotation number. �

Corollary 2.4. Leth ∈ Homeo+Leb(A), and let̃h be a lift ofh. Let p
q be a rational

number in]ρ−, ρ+[, whereρ− andρ+ belong to the rotation set of̃h. Then p
q

also belongs to the rotation set, and is the rotation number of aq-periodic point
of h.

Proof. Apply the previous theorem toT−p ◦ h̃q (using proposition 1.2). �

Proof of proposition 0.2. Let h ∈ Homeo+Leb(A), and let̃h be a lift of h. Any
periodic point ofh has a rational rotation number, which proves the easy part
of the proposition. So assume thath does not have any periodic orbit. Ac-
cording to the previous corollary, the rotation set ofh̃ is reduced to a single
numberα. Furthermore, the second part of theorem 2.3 (applied to the homeo-
morphismsT−p◦ h̃q) implies thatα cannot be a rational number. This completes
the proof. �

3 Proof of the line translation theorem

The purpose of this section is to prove the line translation theorem 0.1. Let us
explain briefly the strategy of the proof. In subsection 3.1, we prove a preliminary
result which ensures that a homeomorphism whose rotation set is contained in
[ε,+∞[ for someε > 0 is conjugate to a translation. In subsection 3.2, we
introduce the first return maps̃ϕ = T−p ◦ h̃q andψ̃ = T p′

◦ h̃−q′
, and we state

a proposition saying that, to prove theorem 0.1, it is enough to find an essential
simple lineγ in A and a lift of γ which is disjoint from its images under̃ϕ
andψ̃ . This proposition is a classical consequence of arithmetical properties of
Farey intervals. Subsection 3.3 contains the core of the proof of theorem 0.1.
The results of subsection 3.1 implies that the homeomorphismϕ̃ is conjugate to
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a translation, so that the quotientA′ := R2/ϕ̃ is homeomorphic to an annulus.
The homeomorphism̃ψ induces an homeomorphismψ ′ of the annulusA′. So,
we can apply Guillou-Sauzet-Le Calvez theorem to the homeomorphismψ ′. It
provides us with a line0 in R2, which is a Brouwer line for̃ψ , and projects in
A′ as an essential topological line. Thus0 is is also a Brouwer line for̃ϕ. Then,
we prove that0 is also a Brouwer line for the translationT , and that it projects
to an essential topological line in our original annulusA.

Note that the we do not know if one can strengthen the statement of theorem 0.1
by removing the wordclosure. The example described in appendix A only shows
that our strategy fails to prove this stronger result, since the first step of the proof
(proposition 3.1 below) does not work anymore.

3.1 Homeomorphisms with positive rotation sets

The purpose of this subsection is to prove the following.

Proposition 3.1. Let g ∈ Homeo+Leb(A), and g̃ : R2 → R2 be a lift of g.
Assume that the closure of the rotation set ofg̃ is included in]0,+∞]. Theñg
is conjugate to a translation.

Note that the above statement is sharp: one can construct an example of a
measure-preserving homeomorphismg : A → A isotopic to the identity, such
that, for some lift̃g of g, the rotation set of̃g is included in]0,+∞], but g̃ is
not conjugate to a translation (see appendix A).

Proof of proposition 3.1. Choose a positive integerk such that the rotation
set ofg̃ is included in]1

k ,+∞]. Consider the homeomorphism̃g′ := g̃k ◦ T−1,
which is a lift of the homeomorphismg′ = gk. The rotation set of̃g′ is included
in ]0,+∞] (see proposition 1.2). In particular, the homeomorphismg̃′ is fixed
point free. Furthermore, sinceg preserves the Lebesgue probability measure on
A, so doesg′, and in particular no point is wandering under the action ofg′. Thus
we can apply Guillou-Sauzet theorem 2.1, which provides us with an essential
topological lineγ in A, such that some lift0 of γ is disjoint from its image
g̃′(0).

Using the conservative version of Schoenflies theorem (see appendix B), we
can assume that0 is the vertical line{0} × R in R2, oriented from bottom to
top. The imagẽg′(0) is disjoint from0. If it was on the left side of0, then
the rotation set of̃g′ would be contained in[−∞, 0[ (by the same argument as
in the proof of theorem 2.3). Thus̃g′(0) is on the right side of0. Applying
the covering translationT , we get that̃gk(0) is on the right side ofT(0). By
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induction, for any positive integern, g̃nk(0) is on the right ofTn(0). Similarly,
the topological linẽg−nk(0) is on the left ofT−n(0). Let Cl(U ) denote the
closed band delimited by0 and g̃k(0); we get that the iterates of Cl(U ) by g̃k

cover the whole plane. Thus̃gk is conjugate to a translation (see paragraph 2.1).
Now it follows from a standard argument thatg̃, having a power conjugate to

a translation, is also conjugate to a translation (the quotientÃ/g̃k is an annulus,
thus̃A/g̃ is the quotient of an annulus by a map of finite order: this is a topological
surface whose fundamental group is infinite cyclic, so (using the classification
of surfaces) it is again an annulus, so thatg̃ is conjugate to a translation). �

3.2 The “first return maps” ϕ̃ = T−p ◦ h̃q and ψ̃ = T p′
◦ h̃−q′

We consider a homeomorphismh ∈ Homeo+Leb(A), and a lifth̃ : R2 → R2 of h.

We assume that the rotation set ofh̃ is included in a Farey interval] p
q ,

p′

q′ [. We

consider the homeomorphisms̃ϕ := T−p ◦ h̃q andψ̃ := T p′
◦ h̃−q′

, sometimes
calledthe first return maps associated withh. These two homeomorphisms play
a fundamental role in the proof of the line translation theorem, via the following
proposition.

Proposition 3.2.Letγ be an essential topological line in the annulusA. Assume
that some lift0 of γ is disjoint from its images under the first return mapsϕ̃
andψ̃ .

Then theq+q′−1first iterates ofγ underh are pairwise disjoint, and ordered
as theq + q′ − 1 first iterates of a vertical line under a rigid rotation of angle
α ∈] p

q ,
p′

q′ [.

In other words, to prove the line translation theorem, it is enough to find
an essential topological lineγ in A, and a lift ofγ which is disjoint from its
images under̃ϕ andψ̃ . The analogue of proposition 3.2 in the context of home-
omorphisms of the circle is well-known. The proof of the proposition relies
on arithmetical properties of Farey intervals. The reader can find a proof in [3,
appendix A] (the proof is written in the context of the closed annulus, but also
works in the infinite annulus setting).

3.3 Proof of the line translation theorem

The closures of the rotation sets of the homeomorphismsϕ̃ = T−p ◦ h̃q and
ψ̃ = T p′

◦h̃−q′
are included respectively in]0, 1

q′ [and]0, 1
q [ (see proposition 1.2).

In particular, according to proposition 3.1, the homeomorphismϕ̃ is conjugate to
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a translation, and thus, the quotientA′ := R2/ϕ̃ is an open annulus. We denote
by π ′ the natural projection ofR2 ontoA′.

Sincẽϕ andψ̃ commute,̃ψ induces a homeomorphismψ ′ of the open annulus
A′. The lift ψ̃ of ψ ′ is fixed point free. The next task is to check thatψ ′ satisfies
the second hypothesis of theorem (2.1).

Claim 1. No point of the annulusA′ is wandering under the iteration ofψ ′.

Proof. We shall prove that a dense set of points ofA′ are recurrent for the
homeomorphismψ ′; the claim will follow.

According to Le Calvez theorem 1.1, a dense setD of points of the annulusA
which are recurrent underh and have a well-defined rotation number. This set
lifts to a dense set̃D of points inR2, which again projects to a dense setD′ in
A′. We prove that this last setD′ consists of recurrent points forψ ′.

Since a pointx ∈ D is positively recurrent forh, there exists two sequences of
integers(i n)n∈N and( jn)n∈N, such thatjn → +∞ andT−in ◦ h̃ jn (̃x) → x̃ when
n goes to+∞. For everyn, we set

kn := jn p′ − i nq′ and ln := jn p − i nq,

so that
T−in ◦ h̃ jn = ψ̃ ln ◦ ϕ̃kn .

Hence,̃ψ ln ◦ ϕ̃kn (̃x) → x̃ whenn goes to+∞, which implies thatψ ′ln(x′) → x′

wherex′ = π ′(̃x). Since in
jn

tends to the rotation number ofx which is bigger
than p

q , for n large enough we haveln < 0. Thus the pointx′ is negatively
recurrent for the homeomorphismψ ′. Similarly, we prove thatx′ is positively
recurrent. This completes the proof of claim 1. �

We are now in a position to apply Guillou-Sauzet-Le Calvez theorem 2.1; it
provides us with a Brouwer line0 for ψ̃ , such that the projectionγ ′ of 0 in the
annulusA′ = R2/ϕ̃ is an essential topological line. This implies that0 is also a
Brouwer line forϕ̃. According to proposition 3.2, we are left to prove that the
projectionγ of the line0 in the original annulusA = R2/T is again an essential
topological line.

Claim 2. The lines̃ψ(0) andϕ̃(0) belongs to the same connected component
ofR2 \ 0.
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Proof. We choose an orientation of0 in such a way that̃ϕ(0) is on the right of
0 (see subsection 2.1). For everyk, l ∈ Z, the lineϕ̃k ◦ ψ̃ l (0) is endowed with
the image bỹϕk ◦ ψ̃ l of the orientation of0. We denote byU be the connected
open region ofR2 bounded by the lines0 andϕ̃(0).

We argue by contradiction: we assume thatψ̃(0) is on the left of0, or equiv-
alently, thatψ̃−1(0) is on the right of0. Under this assumption, the homeo-
morphisms̃ϕ andψ̃−1 are both “pushing the line0 towards the right”. Hence,
for every pair of positive integer(k, l ), the regioñϕk ◦ ψ̃−l (U ) is on the right of
ϕ̃(0), and thus is disjoint fromU .

According to Le Calvez theorem 1.1, almost every point of the annulusA is
recurrent underh and has a well-defined rotation number. Thus we can find a
point x̃ in U and some positive integersm, n such that the point̃hm ◦ T−n(̃x) is
in U and such thatn/m belongs to]p/q, p′/q′[. We have

h̃m ◦ T−n = ϕ̃k ◦ ψ̃−l , with k = mp′ − nq′ and l = −mp+ nq.

Sincen/m is in the Farey interval]p/q, p′/q′[, the integersk = mp′ − nq′ and
l = −mp+ nq are positive. Hence, the regioñhm ◦ T−n(U ) is disjoint from the
regionU . But this is absurd, since the pointhm ◦ T−n(̃x) is in the intersection
of these two regions. �

Claim 3. The line0 is a Brouwer line forT. Furthermore, letV be the
connected open region ofR2 bounded by the lines0 and T(0), andCl(V) =
0 ∪ V ∪ T(0). ThenCl(V) is a fundamental domain for the covering map
R2 → A = R2/T.

Proof. By claim 2, both homeomorphisms̃ϕ andψ̃ “push the line0 towards
right”. Hence, given four integersk, l , k′, l ′ ∈ Z, such thatk < k′ andl < l ′,
the lineϕ̃k′

◦ ψ̃ l ′(0) is strictly on the right of the linẽϕk ◦ ψ̃ l (0) (we call this
“property(?)”).

In particular,T(0) = ϕ̃q′
◦ ψ̃q(0) is strictly on the right of0, andT−1(0) is

strictly on the left of0. Therefore,0 is a Brouwer line forT .
We are left to prove that the iterates of Cl(V) underT cover the whole plane,

i.e. that
⋃

k∈Z Tk(Cl(V)) = R2. As above, we denote byU the connected open
region ofR2 bounded by the lines0 andϕ̃(0). Since the projection of0 in the
annulusA′ = R2/ϕ̃ is an essential simple line, Cl(U ) = 0 ∪ U ∪ ϕ̃(0) is a
fundamental domain for the covering mapR2 → A′, and thus, we have

⋃

k∈Z

ϕ̃k(Cl(U )) = R2.
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According to property(?), for everyn > 0, the lineT−n(0) = ϕ̃−nq′
◦ ψ̃−nq(0)

is on the left of the linẽϕ−n(0), and the lineTn(0) = ϕ̃nq′
◦ ψ̃nq(0) is on the

right of the lineϕ̃n(0) (remember thatq andq′ are greater than 1). Now observe
that the set

⋃n−1
k=−n T(Cl(V)) is the region situated between the linesT−n(0)

andTn(0), and the set
⋃n−1

k=−n ϕ̃(Cl(U )) is the region situated between the lines
ϕ̃−n(0) andϕ̃n(0). As a consequence, for everyn > 0, we have

n−1⋃

k=−n

T(Cl(V)) ⊃
n−1⋃

k∈Z=−n

ϕ̃k(Cl(U )),

and thus
⋃

k∈Z Tk(Cl(V)) = R2. This completes the proof of the claim. �

Claim 4. The line0 projects inA to an essential lineγ .

Proof. What remains to be proved is that, with respect to the translation
T : (x, y) 7→ (x+1, y), the Brouwer line0 is equivalent to the “trivial” Brouwer
line 00 := {0} × R. That is, that0 is proper inA. For that, it suffices to con-
struct a homeomorphismG of the plane that commutes withT , and such that
G(00) = 0. This is very classical, as we have already mentioned in para-
graph 2.1. By Schoenflies theorem, there exists a homeomorphismG from the
band[0, 1] × R onto the region Cl(V), such that

T ◦ G|{0}×R = G|{1}×R ◦ T.

Then we extendG by conjugacy, that is, we set

G(p + α, t) = T p(G(α, t))

for any real numbert , any integerp and any numberα between 0 and 1. The
mapG is continuous. It is one-to-one (because0 andV are disjoint from their
iterates underT). It is onto (because of claim 3). Clearly,G is an open map;
hence, it is a homeomorphism. �

This completes the proof of the line translation theorem.

4 Closure of the conjugacy class of a pseudo-rotation

Recall that theorem 0.4 states that, for any pseudo-rotationh : A → A of
irrational angleρ, the rigid rotation of(x, y) 7→ (x + ρ, y) is in the closure (for
the compact open topology) of the conjugacy class ofh. A similar result was
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proved in [3, corollary 0.2] in the compact annulus setting. Actually, the proof
given in [3, section 5] applies to the open annulus setting, with the following
modifications:

– replace the notion ofessential simple arcused in [3] by the notion of
essential topological linedefined in the present article,

– instead of using thearc translation theoremof [3], use theline translation
theoremof the present article.

5 Integrability of the displacement function

The aim of this section is to show that, under the hypothesis of Le Calvez the-
orem 1.1, up to a suitable change of coordinates, the horizontal displacement
function is bounded, and hence integrable (the horizontal displacement function
has been defined in paragraph 1.3).

5.1 Statements

Proposition 5.1 (Integrability of the displacement function). Consider a
homeomorphismh ∈ Homeo+Leb(A). Assume that the setRotFix(̃h) of rotation
numbers of the fixed points ofh is bounded (for some lift̃h).

Then there existsg ∈ Homeo+Leb(A), such that the horizontal displacement
functionr of any lift h̃1 of the homeomorphismh1 = g ◦ h ◦ g−1 is bounded.

Note that as a consequence of Birkhoff ergodic theorem, the mean rotation
number of̃h1 is equal to the integral ofr over the annulusA. As a classical
consequence, we get a more geometrical definition.

Proposition 5.2. Let h1 ∈ Homeo+Leb(A), and h̃1 : Ã → Ã be a lift of h1.
Suppose that the horizontal displacement functionr of h̃1 is bounded. Then
the mean rotation number of̃h1 is equal to the algebraic area (for the lift of
the Lebesgue probability measure onA) of the region of̃A = R × R situated
between any vertical linẽD = {θ} × R and its imagẽh1(D̃).

In view to proposition 5.1, it seems natural to hope that (under suitable as-
sumptions) the mean rotation number “defines a morphism”, as in the case of the
compact annulus (see 1.3). For example, the following question may be asked.

Question 5.3. Let f , g be two homeomorphisms of the annulus, which are
isotopic to the identity and preserve the Lebesgue probability measure. Consider
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some lifts f̃ , g̃ of f, g, and assume that the mean rotation numbers off̃ , g̃ and
f̃ ◦ g̃ are well-defined.

Is the mean rotation number of̃f ◦ g̃ equal to the sum of the mean rotation
numbers of̃h andg̃ ?

We briefly explain the idea of the proof of proposition 5.1. The easy case is
when the closure of the rotation set ofh̃ is contained in some interval]p, p +
1[ with p ∈ Z (e.g. whenh is an irrational pseudo-rotation). In this case,
since]p, p + 1[ is a Farey interval, we can directly apply the line translation
theorem 0.1, and we get an essential topological line inA which is disjoint
from its image underh. The conservative version of Schoenflies theorem gives a
g ∈ Homeo+Leb(A) that maps this topological line on the straight line{0}×R. The
conjugated homeomorphismghg−1 now maps this straight line off itself, and we
see easily that the horizontal displacement function of any lift is bounded. In the
general case, we will use this easy case by considering intermediate coverings.

5.2 Rotation numbers for intermediate coverings

As usual, takeh ∈ Homeo+Leb(A) and h̃ : Ã → Ã a lift of h. Remember that
T denotes the covering translation ofÃ (which commutes with̃h). Given an
integerq ≥ 2, we may consider the intermediate coveringAq = Ã/Tq, which
is again an annulus. The homeomorphismh̃ induces a homeomorphismh′ of
Aq. In addition to the previously defined notions of rotation numbers ofh̃ as a
lift of h, one can consider the rotation numbers ofh̃ = h̃′ as a lift ofh′. These
numbers are linked in the following way. Ifz is a recurrent point forh, andz′ is
any lift of z in Aq, then one easily proves thatz′ is a recurrent point forh′. If z
has a well-defined rotation numberρ(z, h̃) underh, then the rotation number of
z′ underh′ is also well defined and equal to1qρ(z, h̃).

5.3 Proofs

The core of the proof of proposition 5.1 is contained in the proposition given
below. We use the notations of the previous paragraph. Assume that the closure
of the rotation set of̃h′ = h̃ as a lift ofh′ is contained in the Farey interval]0, 1[.
Then we can apply the line translation theorem 0.1, which provides us with an
essential topological lineγ ′ of Aq, which is disjoint from its imageh′(γ ′). Note
that in general, the projection ofγ ′ in A is not a topological line (it may have
self-intersections).

Proposition 5.4. We can choose the topological lineγ ′ so that its projection in
A is again a topological line.
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We will also callessential topological line inR2 an oriented simple curve
0 : R → R2 such that the second coordinate of0(t) tends to−∞ (resp.+∞)
when t tends to−∞ (resp. +∞). Remember that we denote byR(0) (resp.
L(0)) the connected component ofR2 \ 0 on the right (resp. on the left) of0.
If 01 and02 are two essential topological lines inR2, we write01 ≤ 02 when
02 is containedin R(01); we write01 < 02 if 01 ≤ 02 and the two lines are
disjoint.

Lemma and notation 5.5. Let01 and02 be two essential topological lines in
R2, and letU be the unique connected component of the setL(01)∩L(02)which
contains half lines of the form] − ∞,a[×{b}. Then the boundary ofU is an
essential topological line inR2, that we denote by01 ∨ 02.

The proof of lemma 5.5 is similar to that of lemma 3.2 in [3] and uses a classical
result by B. Kerékjártó ([21]).

Remark 5.6. Let 01, 02, 03 be three essential topological lines inR2. The
following properties are immediate consequences of the definition of the line
01 ∨ 02.

(i) The line01 ∨02 is included in the union of the lines01 and02. Hence, if
03 < 01 and03 < 02, then03 < 01 ∨ 02.

(ii) The setsR(01) and R(02) are included in the setR(01 ∨ 02). In other
words, we have01 ∨ 02 ≤ 01 and01 ∨ 02 ≤ 02.

Proof of proposition 5.4. By theorem 0.1, there exists an essential topological
line γ0 of Aq which is disjoint from its imageh′(γ0). We consider some lift00

of γ0 toR2. Sinceγ0 is simple inAq, the arc00 is disjoint fromTq(00). Note
that since the rotation set of̃h′ = h̃ as a lift ofh′ is contained in]0, 1[, we have
T−q(00) < h̃−1(00) < 00.

Now, we choose some essential topological lines01, . . . , 0q−1 inR2 such that

T−q(00) < 0q−1 < 0q−2 < ∙ ∙ ∙ < 01 < 00.

Consider the essential topological line

0 = 00 ∨ T(01) ∨ ∙ ∙ ∙ ∨ Tq−1(0q−1) =
q−1∨

i =0

Ti (0i ).

For everyi ∈ {0, . . . , q − 2}, we haveTi +1(0i +1) < Ti +1(0i ) (by definition of
the0i ’s) and0 ≤ Ti +1(0i +1) (by definition of0 and by item (ii) of remark 5.6).
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Hence for everyi ∈ {0, . . . , q − 2}, we get

0 < Ti +1(0i ).

Moreover, we have00 < Tq(0q−1) and0 ≤ 00. Hence

0 < Tq(0q−1).

Finally, using item (i) of remark 5.6, we get

0 <

q−1∨

i =0

Ti +1(0i ) = T(0).

In particular,0 is disjoint from its image underT . Moreover, we may assume
that the lines01, . . . , 0q−1 were chosen such that

h̃−1(00) < 01, . . . , 0q−1 < 00.

This implies that, for everyi ∈ {0, . . . , q − 1}, we have

h̃−1 ◦ Ti (0i ) < Ti (0i ).

Using the definition of0 and item (ii) of remark 5.6, this implies

h̃−1(0) < Ti (0i ).

And using item (i) of remark 5.6, this gives

0 < h̃(0) = h̃′(0).

Similarly, sincẽh ◦ T−q(00) < 00, we may assume that the lines01, . . . , 0q−1

were chosen such that

h̃ ◦ T−q(00) < 01, . . . , 0q−1 < 00.

This easily implies that

h̃′(0) = h̃(0) < Tq(0).

Let γ ′ be the projection of0 in the annulusAq. Since0 < h̃(0) < Tq(0),
the curveγ ′ is an essential topological line inAq which is disjoint from its image
h′(γ ′). Furthermore, since0 < T(0), the projection ofγ ′ in the annulusA is
again simple, thus it is an essential topological line. �

We are now able to prove proposition 5.1.
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Proof of proposition 5.1. Let h ∈ Homeo+Leb(A), and̃h be a lift ofh. Assume
that the set of rotation numbers of the fixed points ofh is bounded. Applying
theorem 2.3 to the homeomorphismsT−p ◦ h̃, we see that the rotation set ofh̃ is
also bounded. Up to a change of lift, we may assume that Rot(̃h) is included in
an interval[1,q − 1] for some integerq.

Consider the homeomorphismh′ induced bỹh on the intermediate covering

Aq. The rotation set of̃h, seen as a lift ofh′, is included in
[

1
q , . . . ,

q−1
q

]
(see

paragraph 5.2). Hence, by proposition 5.4, there exists an essential topological
line γ in A and a liftγ ′ of γ in Aq which is disjoint from its imageh′(γ ′).

Using the conservative Schoenflies theorem, we get some homeomorphism
g ∈ Homeo+Leb(A) which sendsγ on the vertical lineD = {0} × R. Take any
lift g̃ of g to R2 and denote byg′ the induced map onAq. We consider the
conjugatesh1 = g ◦ h ◦ g−1, h′

1 = g′ ◦ h′ ◦ (g′)−1 and h̃1 = g̃ ◦ h̃ ◦ g̃−1.
Consider some lift̃D of D in R2, and its projectionD′ in Aq. Sinceh′(γ ′) is
disjoint fromγ ′, the lineD′ is disjoint fromh′

1(D
′). Thus the imagẽh1(D̃) is

betweenTqk(D̃) andTqk+q(D̃) for some integerk. This easily implies that the
image of the displacement functionr = p1 ◦ h̃1 − p1 is bounded. The proof
is complete. �

Proof of proposition 5.2. We may assume that̃D is the vertical line{0} × R.
We also note that if the proposition is satisfied for some lifth̃1 of h1, then it is true
for any other lift. Since the displacement functions of the lifts ofh1 are bounded,
one may choose a lift̃h1 and an integerq ≥ 1 such that̃D < h̃1(D̃) < Tq(D̃).
Hence, there exists a vertical linẽD1 betweeñD andTq(D̃) such that the area of
the strip bounded bỹD andh̃1(D̃) is equal to the area of the strip betweenD̃ and
D̃1. We will work on the intermediate coveringAq with the homeomorphism
h′

1 induced bỹh1. In Aq, the projection of̃D1 is a vertical lineD′
1 of the form

{θ} × R and the projection of̃D is a vertical lineD′.
By the conservative Schoenflies theorem, there exists some homeomorphism

ψ ∈ Homeo+Leb(Aq) which is the identity onD′ and which maps the lineh′
1(D

′)

on D′
1: one can require moreover that each point(0, t) in D′ is mapped byψ ◦h′

1
on the point(θ, t) in D′

1. We denote bỹψ the lift of ψ to Ãq = Ã which fixes
D̃. Note that the displacement function ofψ̃ is bounded. We also introduce the
translationRθ : Ã → A by θ . It is the lift of the rotationR′ of Aq with angleθq .

Sinceψ̃ and R−1
θ ◦ ψ̃ ◦ h̃1 are the identity oñD, their rotation sets (as lift

of homeomorphism onAq) are{0} and their mean rotation number are 0. By
the morphism property (proposition 1.3), one deduces that the mean rotation
number of̃h1 (as lift of homeomorphisms ofAq) is equal toθq . As it is explained
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at paragraph 5.2, this implies that the mean rotation number ofh̃1, as lift of
the homeomorphismh1 of A, is equal toθ . By construction,θ is also the area
betweenD̃ and its imagẽh1(D̃) in Ã. This concludes the proof. �

6 Periodic orbits in one-parameter families

In this section, we consider perturbations of conservative homeomorphisms
by hamiltonian vector flows, and we prove a general statement that implies
theorem 0.5.

6.1 General statement and some consequences

Let X be a smooth vector field onA such that

1. X is bounded (in the coordinates systemA = S1 × R);

2. the flow(8t)t∈R generated byX preserves the Lebesgue probability mea-
sure onA.

The vector fieldX lifts to a vector fieldX̃ on Ã, which in turn generates a
flow (8̃t)t∈R which is a lift of the flow(8t)t∈R. The rotation number of the
Lebesgue probability measure for8̃t is well defined. Since the displacement
function is bounded, the morphism property of proposition 1.3 is satisfied and
the mapt 7→ ρ(Leb, 8̃t) is continuous. Hence, we have

ρ(Leb, 8̃t) = t.ρ(Leb, 8̃1).

Our favourite example is of course the family of Euclidean rotations onS2

(given onA = S1 × R by the constant vector fieldX = (1, 0)). The following
statement implies at once theorem 0.5.

Theorem 6.1.Let X be a vector field as above, and suppose

ρ(Leb, 8̃1) 6= 0.

Let h ∈ Homeo+Leb(A). Then there exists arbitrarily small values oft such that
h ◦8t has a periodic orbit.

Let us first state and prove two interesting corollaries of this theorem.

Corollary 6.2. Given any homeomorphismh ∈ Homeo+Leb(A), the set

D(h) :=
{
t ∈ R|h ◦8t has a periodic orbit

}

is dense inR.
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For eachr ∈ [0,∞], we consider the space Diffr,+
Leb(A) of Cr diffeomorphisms

of the annulusA that preserves the Lebesgue probability measure, endowed either
with the compact-open or the Whitney topology.

Corollary 6.3. The spaceDiff r,+
Leb(A) contains an open and dense subset of dif-

feomorphisms having periodic orbits. In particular, the set of irrational pseudo-
rotations is meagre.

Proof of corollary 6.2 assuming theorem 6.1. Fix t0 ∈ R. Applying theo-
rem 6.1 to the homeomorphismh ◦8t0, we get arbitrarily small numbersη such
that the homeomorphismh ◦8t0+η = h ◦8t0 ◦8η has a periodic orbit. �

Proof of corollary 6.3 assuming theorem 6.1. Consider the setU of all the
elements of Diffr,+Leb(A) that have at least one hyperbolic periodic orbit. Note that
U is an open subset of Diffr,+

Leb(A) (since hyperbolic periodic orbits are persistent)
for the compact-open topology, and so for the Whitney topology. Consider an
elementh of Diff r,+

Leb(A), and an open neighbourhoodV of h in Diff r,+
Leb(A), for

the Whitney topology. There existsh′ ∈ V that has a periodic orbit: this follows
from theorem 6.1 since there exists a smooth vector fieldX of A with compact
support such that the time-one map81 has a non-zero rotation number. We can
perturbh′ in order to get a diffeomorphismh′′ ∈ V that has a hyperbolic periodic
orbit. This proves thatU is dense in Diffr,+Leb(A) for the Whitney topology, hence
also for the compact-open topology. �

6.2 Idea of the proof

Let us explain briefly the idea of the proof of theorem 6.1, as developed in
paragraph 6.5. We suppose thath is an irrational pseudo-rotation, with angle
α (otherwise there is nothing to prove). There are two disjoint cases. Either
the rotation sets of the homeomorphismsh ◦8t “explode” (that is, there exists
arbitrarily small values oft for which the rotation set ofh◦8t contains numbers
arbitrarily far fromα), or the rotation set ofh ◦ 8t is uniformly bounded fort
close to 0. Surprisingly, the first case is the easiest: because of the lower semi-
continuity property of the rotation set (see below), the rotation set ofh◦8t must
also contain some numbers arbitrarily close toα; so we can apply Poincaré-
Birkhoff-Franks’s theorem to get a periodic orbit of rotation number close to
α. In the second case, we use proposition 5.1 that allows us to suppose that
the horizontal displacement ofh is bounded. Approximating the maps8t by
compactly supported maps and using a continuity property (see below), we see
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that the “morphism property” holds:ρ(Leb, h̃◦ 8̃t) = ρ(Leb, h̃)+ρ(Leb, 8̃t).
Whenα + t is rational, this again gives rise to periodic orbits.

6.3 The compactly supported case

Before addressing the general issue, it is useful to deal with a restricted problem.
We first prove theorem 6.1 assuming that the vector fieldX is compactly supported
in A. The following argument is essentially due to J. Franks ( [11]).

Proof (compactly supported case). If h is not an irrational pseudo-rotation,
then it has a periodic orbit (proposition 0.2), hence we can takeθ = 0, and
there is nothing to prove. So from now on we assume thath is an irrational
pseudo-rotation.

We fix a lift h̃ of h. We denote byα the rotation number of̃h. Sinceh is a
pseudo-rotation, its rotation set is certainly bounded. Thus we can apply propo-
sition 5.14: by performing a change of coordinates given by a homeomorphism
g, we may assume that the horizontal displacement function ofh̃ is bounded.
Note that the change of coordinates does not affect the fact that the flow(8t)t∈R
is compactly supported5.

We now deal with̃h and8̃t having bounded (integrable) horizontal displace-
ment functions. Thus we have the morphism property (proposition 1.3):

ρ(Leb, h̃ ◦ 8̃t) = ρ(Leb, h̃)+ ρ(Leb, 8̃t) = α + t.ρ(Leb, 8̃1).

By hypothesis,ρ(Leb, 8̃1) is non null, so there exists arbitrarily small values of
t such that the mean rotation numberρ(Leb, h̃ ◦ 8̃t) is rational. For any such
value,h ◦8t is not an irrational pseudo-rotation, so it must have periodic orbits
according to proposition 0.2. This solves the compactly supported case.�

6.4 Some continuity results by P. Le Calvez

We need some more tools before coping with the general case. Le Calvez has
proved the following continuity property for the rotation number of the Lebesgue
probability measure (see [23, theorem 2]). Remember that RotFix(̃h) denotes the
set of rotation numbers of the fixed points ofh̃ (see section 1.2).

4Note that this is the easy case of the proposition, as explained at the end of paragraph 5.1.
5The conjugated flow is not smooth anymore, which will not do any harm.
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Theorem 6.4 (P. Le Calvez, continuity of the mean rotation number).Con-
sider a sequence(hn)n∈N of Homeo+Leb(A) converging towards some homeo-
morphismh ∈ Homeo+Leb(A) for the compact-open topology. Consider also a
sequence(̃hn) of lifts converging towards a lift̃h of h.

If the setsRotFix(̃hn) are uniformly bounded, then the setRotFix(̃h) is bounded
and the sequence of rotation numbersρ(Leb, h̃n) converges towards the rotation
numberρ(Leb, h̃).

Actually, the proof of the above theorem uses another continuity property
proved in the same paper (see [23, proposition 3]). We consider a sequence of
lifts (̃hn) converging towards a lift̃h as in the previous statement.

Theorem 6.5 (P. Le Calvez, lower semi-continuity of the rotation set).If the
closures of the rotation setsRot(̃hn) converge towards some interval[a, b] ⊂
[−∞,+∞], then the closure of the rotation setRot(̃h) is contained in[a, b].

There are some easy remarks in this footnote6.

6.5 The general case

We now consider the general case, without assuming thatX is compactly sup-
ported.

Proof (general case). As before, it suffices to consider an irrational pseudo-
rotation. We use the notations introduced for the compactly supported case.
We consider two disjoint subcases.

First subcase: the rotation set of̃h ◦ 8̃t is not uniformly bounded for t close
to 0. More precisely, there exists a sequence of numberstn → 0 such that the
set Rot(̃h ◦ 8̃tn) contains a numberβn with βn → +∞ or βn → −∞.

According to the lower semi-continuity of the rotation set (theorem 6.5), there
must exist another sequence(αn) → α such thatαn ∈ Rot(̃h ◦ 8̃tn). For each

6In particular, the closure of the conjugacy class of an irrational pseudo-rotation with angleα

contains only pseudo-rotations with angleα. However, the closure of the conjugacy class of some
homeomorphism whose rotation set is not reduced to a point may contain some homeomorphism
whose rotation set is smaller. For instance, sinceA is open, it is easy to build an example where
each homeomorphism̃hn has rotation set equal to[0, 1] andh has a rotation set reduced to{0}.
This shows that the rotation set is not upper semi-continuous.
Theorem 6.5 is false if one does not assume that thehn’s preserve the Lebesgue probability
measure. Note that in the context of the compact annulus, the rotation set is always upper semi-
continuous (even without assuming that the Lebesgue measure is preserved).
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value ofn, choose a rational numberα′
n strictly betweenαn andβn, in such a way

that the sequence(α′
n) tends toα. Then, Franks’ version of Poincaré-Birkhoff

theorem (first part of theorem 2.3) provides for eachn a periodic orbit for the
maph ◦8tn with rotation numberα′

n, and we are done.

Second subcase: the rotation set of̃h ◦ 8̃t is uniformly bounded for t close
to 0. We now assume that there exists a boundM > 0 and an anglet0 such that

Rot(̃h ◦ 8̃t) ⊂ [−M,M]

for all t ∈ [−t0, t0]. In particular, the rotation numbers of all the fixed points of
h ◦8t are included in[−M,M] for everyt ∈ [−t0, t0].

Let (ϕs)s∈[1,+∞] be a continuous family of smooth functions fromA = S1 ×R
to [0, 1] such that

1. ϕs is equal to 1 on the compact annulusS1 × [−s, s];

2. ϕs is equal to 0 outside the compact annulusS1 × [−2s, 2s].

For each value ofs we consider the vector fieldXs = ϕs.X. We denote by
(8t

s)t∈R the corresponding flow. The lifted flow (generated by the pullback on
Ã of the vector fieldXs) is denoted by(8̃t

s)t∈R. For each finite value ofs, the
flow (8t

s)t∈R is compactly supported; whereas it coincides with the original flow
(8t)t∈R for s = +∞.

Since we have slowed down the flow, we have the following easy but crucial
property: for any positivet, for any pointx̃ ∈ Ã and anys ≥ 1 there exists
a timet ′ between0 and t such that8̃t ′ (̃x) = 8̃t

s(̃x). In particular, for every
t ∈ [−t0, t0] and everys ≥ 1, each rotation number of some fixed point ofh◦8t

s

is equal to a rotation number of some fixed point ofh ◦8t ′ for t ′ ∈ [−t0, t0]. So
the sets RotFix(̃h ◦ 8̃t

s) of rotation numbers of the fixed points are all included in
[−M,M].

With this property we can apply the continuity theorem 6.4. We get for each
t ∈ [−t0, t0],

lim
s→+∞

ρ(Leb, h̃ ◦ 8̃t
s) = ρ(Leb, h̃ ◦ 8̃t).

Moreover, from the compactly supported case we know that the morphism prop-
erty holds for the compactly supported flow(8t

s)t∈R:

ρ(Leb, h̃ ◦ 8̃t
s) = ρ(Leb, h̃)+ ρ(Leb, 8̃t

s).

Whens tends towards+∞ we get

ρ(Leb, h̃ ◦ 8̃t) = ρ(Leb, h̃)+ ρ(Leb, 8̃t) = α + t.ρ(Leb, 8̃1).
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Thus in that subcase the morphism property also holds for the flow(8t)t∈R, and
we conclude as in the compactly supported case. �

Remark

1. Note that the proof provides a periodic orbit whose rotation number is
close to the rotation numberα of the irrational pseudo-rotationh. However,
in the case where the(Rθ )’s are the Euclidean rotations, we do not know
if there must be a periodic orbit of rotation numberα + θ every time
this number is rational. This is linked to the morphism property, see
question 5.3.

2. The first case of the proof does occur (it might even occur withh conjugate
to an irrational rotation).

Indeed, consider a lift̃Rof an irrational rotationR. Choose a point̃x ∈ R2,
an integeri and a real numbert . Let ỹ = R̃(̃x). One can find a measure-
preserving homeomorphismg : A → A and a lift g̃ : R2 → R2 of g,
such that̃g(̃x) = 8̃−t (̃x) and g̃(ỹ) = x̃ + (0, i ). Let h := g ◦ R ◦ g−1

and h̃ := g̃ ◦ R̃ ◦ g̃−1. Then,y is a fixed point of the homeomorphism
h ◦8t , whose rotation number under̃h ◦ 8̃t is equal toi . Hence, for any
arbitrarily large integeri and any arbitrarily small real numbert , we have
found a homeomorphism̃h conjugate tõR such that the integeri belongs
to the rotation set of̃h ◦ 8̃t .

Now, observe that the homeomorphismh can be chosen to coincide with
R outside a compact invariant annulus arbitrarily close to one end ofA
(by controlling the support ofg). Hence, repeating the above procedure,
one can modifyR on infinitely many pairwise disjoint compact annuli,
and get a homeomorphismh∞ conjugated toR, such that the rotation set
of h̃∞ ◦ 8̃t contains arbitrarily large integers for some arbitrarily smallt .

A A hairy example

In this appendix we describe an example that shows why proposition 3.1
is sharp.

The left part of figure A shows the dynamics of a conservative homeomorphism
h of the disc. The disc is foliated by circles, apart from the central set which is
the union of a sequence(Ik)k∈Z of segments whose length tends to zero, having
a single pointN in common. The homeomorphism fixesN and sendsIk to Ik+1.
Each circle is invariant, and the homeomorphism acts as a non-trivial rotation.
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N
x̃ ỹz̃ε

h̃nε(z̃ε)

T

Figure 1: The hairy example.

Note that the rotation number must tends to zero when the circles get closer
to the hairy set.

Next we see this disc as the upper half-sphere, and extendh to the lower half-
sphere by a rotation. Thus we get a conservative homeomorphism (again called
h) of the sphere, with the two polesN andSas the only fixed points. We seeh
as an element of Homeo+

Leb(A) with no fixed point. Thenh has a lifth̃ whose
rotation set is equal to]0, α] for someα. In particular, the points on the hairs
are not recurrent, which explains why zero does not belong to the rotation set.
Furthermore, one can prove that the homeomorphismh̃ is not conjugate to a
translation. Indeed, consider a pointx̃ that projects on a hair, and̃y = T (̃x)
(see the right part of the figure). Then the couple(̃x, ỹ) is singular: there exists
points z̃ε arbitrarily near̃x, and arbitrarily large integersnε such that̃hnε (̃zε)
is arbitrarily near̃y. This is a dynamical feature that distinguishesh̃ from a
translation.

However there exists some essential topological linesγ in A that are disjoint
from their imageh(γ ) (take the projection of a vertical line in the right part
of the figure). In general, when the rotation set is supposed to be included in
the open interval]0, 1[, we do not know if there always exist such a line. The
line translation theorem 0.1 only works under the stronger assumption that the
closureof the rotation set is included in]0, 1[.

As explained in paragraph 2.3, we do not know either if a homeomorphismh
must have a fixed point when some lifth̃ has a rotation set equal to[0, α] for
some positiveα.
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B Conservative version of Schoenflies theorem

Theorem B.1. Letα1, α2 be two simple arcs in the sphereS2, and fix a homeo-
morphismϕ fromα1 ontoα2. Then there exists an orientation-preserving home-
omorphism8 ofS2 which is an extension ofϕ. In addition to this, if the Lebesgue
measure ofα1, α2 is zero, then8 can be chosen so that it preserves the Lebesgue
measure.

In this paper we use the theorem to straighten some essential topological lines
0 of the annulusA = S1 × R. However there is a slight difficulty coming from
the fact that we have to deal with topological lines whose Lebesgue measure is
not zero. We indicate here how to by-pass the problem. The topological line0

comes with a homeomorphismh of the annulus such that0 ∩ h(0) = ∅. We
choose a neighbourhoodG of 0 such thatG ∩ h(G) = ∅. Then one can find
an essential topological line0′, included inG, whose Lebesgue measure is zero
(for example,0′ can be piecewise affine). We replace0 by 0′ before applying
theorem B.1.

Idea of the proof. We only indicate how to get the second part from the first
one. Let8 be an orientation-preserving homeomorphism that is an extension of
ϕ. Let m denotes the image of the Lebesgue measure under8. The measurem
has the following property: it is positive on each open set, it has no atom, it gives
measure zero to the arcα2. According to a theorem of Oxtoby and Ulam ([13]),
there exists an orientation-preserving homeomorphism9, that is the identity
on α2, and that sends the measurem on the Lebesgue measure (actually, their
theorem is stated on the square, but we can cut the sphere along the arcα2 to
match this setting). The homeomorphism9 ◦8 preserves the Lebesgue measure
and is still an extension ofϕ. �
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