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Dichotomies between uniform hyperbolicity and
zero Lyapunov exponents forSL(2,R) cocycles

Jairo Bochi* and Bassam Fayad

Abstract. We consider the linear cocycle(T, A) induced by a measure preserving
dynamical systemT : X → X and a mapA: X → SL(2,R). We address the depen-
dence of the upper Lyapunov exponent of(T, A) on the dynamicsT when the mapA
is kept fixed. We introduce explicit conditions on the cocycle that allow to perturb the
dynamics, in the weak and uniform topologies, to make the exponent drop arbitrarily
close to zero.

In the weak topology we deduce that ifX is a compact connected manifold, then for
a Cr (r ≥ 1) open and dense set of mapsA, either(T, A) is uniformly hyperbolic for
everyT , or the Lyapunov exponents of(T, A) vanish for the generic measurableT .

For the continuous case, we obtain that ifX is of dimension greater than 2, then for
a Cr (r ≥ 1) generic mapA, there is a residual set of volume-preserving homeomor-
phismsT for which either(T, A) is uniformly hyperbolic or the Lyapunov exponents
of (T, A) vanish.

Keywords: linear cocycles, Lyapunov exponents, uniform hyperbolicity, volume-pre-
serving homeomorphisms.
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1 Introduction and statement of the results

Throughout this paper letG = SL(2,R).

Let μ be a finite positive measure on a measurable spaceX, T : X → X be
a μ-preserving map, andA: X → G be a measurable map. The pair(T, A)
is called a cocycle. It induces a skew-product mapFT,A : X × R2 → X × R2
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defined byFT,A(x, v) = (T(x), A(x)v). Denote, forn ∈ N,

An
T (x) = A(Tn−1(x)) ∙ ∙ ∙ A(T(x))A(x), so that

Fn
T,A(x, v) = (Tn(x), An

T (x)v).

The groupG also acts onP1 = P(R2), so(T, A) also induces a skew-product
map onX × P1. By simplicity we use the same notations in bothR2 andP1

cases.
Provided log‖A‖ ∈ L1(μ), the upper Lyapunov exponent of the cocycle

(T, A) at x ∈ X, given by

λ(T, A, x) = lim
n→∞

1

n
log‖An

T (x)‖,

exists forμ-almost everyx ∈ X. (See e.g. [Arn] for basic facts about Lyapunov
exponents.) We denote also

LE(A, T) =
∫

X
λ(T, A, x) dμ(x).

A cocycle(T, A) whereA is essentially bounded is calleduniformly hyper-
bolic if there exists, forμ-a.e.x ∈ X, a splittingR2 = Eu(x) ⊕ Es(x), which
varies measurably with respect tox, is FT,A-invariant, and such thatEu is uni-
formly expanded andEs is uniformly contracted.

Uniform hyperbolicity of(T, A) is equivalent to the following: there exists
c > 0, λ > 1 such that‖An

T (x)‖ > cλn for μ-a.e.x and n ≥ 0. See [Y,
proposition 2].

In this paper we address the question of the dependence ofLE(A, T) on the
dynamicsT , whereA: X → G is fixed. We shall consider the following two
general situations:

Measurable situation:Assume that(X, μ) is a non-atomic Lebesgue space and
A: X → G is a bounded measurable map. The dynamicsT varies in
the spaceAut(X, μ) of the automorphisms of(X, μ) (i.e., bi-measurable
μ-preserving bijections). We will always consider the spaceAut(X, μ) en-
dowed with theweak topology, according to whichTn → T iff μ(Tn(B)M
T(B)) → 0 for every measurable setB ⊂ X.

Continuous situation:X is a compact manifold of dimension at least 2,μ is
a volume measure, andA: X → G is continuous. Now the dynamics
T varies in the spaceHomeo(X, μ) of μ-preserving homeomorphisms,
which we endow with the uniform (C0) topology.

Bull Braz Math Soc, Vol. 37, N. 3, 2006



“main” — 2006/10/19 — 16:23 — page 309 — #3

UNIFORM HYPERBOLICITY AND ZERO LYAPUNOV EXPONENTS 309

Remark 1.1. In the respective topologies, the generic mapsT ∈ Aut(X, μ) and
T ∈ Homeo(X, μ) areergodic. These are classical theorems of Halmos [H] and
Oxtoby and Ulam [OU], respectively. Although we shall not use these results,
we use some related ideas from [AP].

More concretely, we are interested in finding outunder what conditions on
the mapsA andT, is it possible to find a perturbation(in one of the two topolo-
gies above, according to the situation considered)T̃ of T so that the Lyapunov
exponent LE(A, T̃) drops to an arbitrarily small value or even to zero.More-
over, we want those conditions to becheckable, instead of appealing to Baire’s
theorem. It is clear that such conditions must exclude some kind of hyperbolic-
ity: if for example A is constant and hyperbolic, thenLE(A, T) is positive and
independent ofT . (We will see later that the “kinds” of hyperbolicity we have
to exclude are not the same in the measurable and continuous situations.) With
this in mind, we look for the weakest possible conditions that imply dichotomies
between zero exponents and uniform hyperbolicity.

In the measurable situation, we shall define a condition overA, calledrich-
ness, that guarantees the existence of mapsT such thatLE(A, T) = 0. In fact,
we will prove (theorem 1) thatif A is rich then the genericT ∈ Aut(X, μ)
satisfies LE(A, T) = 0. The richness condition is explicit and involves only
the measureν = A∗μ (see definition 1.5). It provides some “abundance” of
matrices in the support ofν that makes it possible to find elliptic products, “mix
directions”, and make the exponents vanish after a perturbation of the dynamics.

Richness involves absolute continuity. So it turns out thatfor the richness
condition to be checkable, we have to ask some differentiability ofA. Since
we are working in the measurable category, that restriction may be considered
as a drawback. However, it is perhaps inevitable that some higher regularity
must be asked fromA. Weconjectureindeed (see § 5.3) thatthere exists a map
A: X → G (that assumes finitely many values only)such that the integrated
exponent LE(A, T) is bounded from below by a constantλ0 > 0 for all T ∈
Aut(X, μ), and neverthelessA assumes an elliptic value on a set of positive
measure.

Remark 1.2. Our problem of studyingLE(A, T) as a function ofT is parallel
to the one addressed in [B], where the mapT on the base is fixed and the cocycle
A is perturbed. The following results are obtained in [B]: For any ergodic
T ∈ Aut(X, μ), there is a residual setRT ⊂ L∞(X,G) such that ifA ∈ RT

then either the cocycle(T, A) is uniformly hyperbolic orLE(A, T) = 0. If, in
addition,X is a compact Hausdorff space andμ is a Borel measure then there
exists a residual subsetR′

T ⊂ C0(X,G) with the same properties. (See also
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[BV] and [ArB] for extensions and related results.)

Definition 1.3. Let us say that a bounded mapA: X → G satisfies the measur-
able dichotomyif:

• either there is a constantλ > 1 such that‖A(xn) ∙ ∙ ∙ A(x1)‖ > λn for
everyx1, …, xn ∈ X (in particular, for everyT ∈ Aut(X, μ) the cocycle
(A, T) is uniformly hyperbolic);

• or the set ofT ∈ Aut(X, μ) for which LE(A, T) = 0 is residual in the
weak topology.

Our next goal would be to express that“most” A’s satisfy the measurable
dichotomy. We are able to prove that fact if we restrict ourselves toC1 maps
A: X → G on some connected manifoldX. In fact, we give a complete classi-
fication in that case (see theorem 2) that permits us to: 1) obtain the measurable
dichotomy for an open and dense set of mapsA (corollary 3), 2) describe pre-
cisely which maps do not satisfy the dichotomy and explicit all the possible
behaviors of the Lyapunov exponents for these maps (proposition 3.7).

In this regard, we also show that if we consider only mapsA that assume
finitely many values, then “most” of them will satisfy dichotomy (see theorem 7).
However, that case is unrelated to richness, and actually we lose any explicit
condition for zero exponents.

In the continuous setting, we show that under certain conditions on the mapA
and also on the volume-preserving homeomorphismT , it is possible to perturbT
and make the exponent drop or (under a stronger assumption) vanish. We obtain
those results as consequences of the afore-mentioned measurable results. For that
we use Alpern’s technique [A2] of approximating measurable automorphisms
by homeomorphisms.

At last, we obtain a dichotomy result concerning homeomorphisms.

Definition 1.4. We say that a continuous mapA: X → G satisfies the continuous
dichotomyif for the genericT ∈ Homeo(X, μ):

• either the cocycle(A, T) is uniformly hyperbolic;

• or LE(A, T) = 0.

We prove that ifX is aCr manifold (r ≥ 1) then theCr -generic mapAsatisfies
the continuous dichotomy.

Next we give the precise statements.

Bull Braz Math Soc, Vol. 37, N. 3, 2006
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1.1 The measurable case

To define richness we need first to introduce some notation. Ifν is a measure in
G andv ∈ P1, then the push-forwards ofν by the maps

M ∈ G 7→ M−1 ∈ G and M ∈ G 7→ M ∙ v ∈ P1

are indicated byν−1 andν ∗ v, respectively. Ifn ∈ N, the push-forward ofνn by
the map

(M1, . . . ,Mn) ∈ Gn 7→ Mn ∙ ∙ ∙ M1 ∈ G

(i.e., then-th convolution power) is indicated byν∗n.

Definition 1.5. Let ν be a finite measure onG of bounded support. Thenν
is called N-rich, for N ∈ N, if there existsκ > 0 such that for everyv ∈ P1

we have
ν∗N ∗ v ≥ κm and

(
ν∗N

)−1
∗ v ≥ κm,

wherem denotes Lebesgue measure inP1. The measureν is called rich if it is
N-rich for someN ∈ N.

The richness property is studied in § 3.1, where the following criterium is
obtained:

Proposition 1.6.LetM be a compact manifold (possibly1-dimensional, possibly
with boundary, possibly not connected), with a smooth volume measureμ, and
let A: M → G be aC1 map. Assume there are pointsp1, …, pk ∈ M such that
the matrixA(pk) ∙ ∙ ∙ A(p1) is elliptic and moreoverA is not locally constant at
at least one of thepi ’s. ThenA∗μ is rich.

Our main theorem is:

Theorem 1. Let (X, μ) be a non-atomic Lebesgue space. LetA: X → G be
a bounded measurable map such that the measureA∗μ is rich. Then there is a
residual setRA ⊂ Aut(X, μ) such that LE(A, T) = 0 for all T ∈ RA.

The following is an informal outline of the proof. Richness implies the ex-
istence of products that send any chosen direction into any other. Perturbing
the dynamics in the weak topology we can make most of the orbits periodic.
Also, we do that perturbation so that a very small “rich part” of the space is kept
invariant. Then another well chosen perturbation makes most of the orbits spend
a few iterates in the rich region in such a way that expanded directions are sent
into contracting directions. This forces the Lyapunov exponents to drop close to
zero.

From theorem 1 and proposition 1.6, we obtain the following result:
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Theorem 2. Let X be a compact connected manifold (possibly1-dimensional,
possibly with boundary), andμ be a volume measure. LetA: X → G be a
C1 map. Then:

(i) either there is aclosedinterval I ⊂ P1 such thatA(x) ∙ I ⊂ I for every
x ∈ X;

(ii) or LE(A, T) = 0 for the genericT ∈ Aut(X, μ) (w.r.t. the weak topology).

It is easy to describe all the possible behaviors of the Lyapunov exponent
under alternative (i) in the theorem – see § 3.3. In fact, for an open and dense
set of mapsA (i) implies uniform hyperbolicity for any dynamics, so we obtain
the result mentioned in the abstract:

Corollary 3. Let 1 ≤ r ≤ ∞ and letX be a compact connectedCr -manifold.
Then the set ofA ∈ Cr (X,G) that satisfy the measurable dichotomy isCr -open
and dense.

We remark thatL∞ andC0 versions of corollary 3 are also true:

Proposition 1.7. Let (X, μ) be a non-atomic Lebesgue space. There exists a
residual subsetR ⊂ L∞(X,G) such that measurable dichotomy holds for every
A ∈ R. If, in addition, X is compact Hausdorff andμ is a Borel measure then
there exists a residual subsetR′ ⊂ C0(X,G) such that measurable dichotomy
holds for everyA ∈ R′.

The proposition follows from the results of [B] mentioned in remark 1.2, see
appendix A.5 for details.

Question 1.8.Can theorem 2 be extended in some form to non-connected man-
ifolds? Does corollary 3 remain true ifX is not connected?

1.2 The continuous case

Next we consider volume-preserving homeomorphisms as dynamics. As ex-
plained before, it is useful to assume differentiability of the mapA.

So now we letX be a smooth compact connected manifold, possibly with
boundary, of dimensiond ≥ 2, and letμ be a smooth volume measure. Recall
Homeo(X, μ) indicates the set ofμ-preserving homeomorphisms, endowed with
theC0 topology. Our main result in that setting is:

Theorem 4. Let T ∈ Homeo(X, μ) and A ∈ C1(X,G). Assume there is a
T-periodic pointp = Tn(p) such that:

Bull Braz Math Soc, Vol. 37, N. 3, 2006
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• An
T (p) is elliptic;

• A is not locally constant at at least one of the pointsp, T p, …,Tn−1 p.

Then for everyε > 0 there existsT̃ ∈ Homeo(X, μ) arbitrarily C0-close toT
such that LE(A, T̃) < ε.

In fact, it is easy to strengthen theorem 4 by demanding only the existence of
periodic pseudo-orbits with similar properties; see § 4.3.

Let us call a periodic pointp of periodn for an homeomorphismT : X → X
persistentif for everyε > 0 there isδ > 0 such that ifT̃ is an homeomorphism
δ-C0-close toT then T̃ has a periodic point̃p of periodn which is ε-close to
p. (For example, ifp is an isolated fixed point of Poincaré–Lefschetz index
different from 1 thenp is persistent.)

Theorem 4, together with a semicontinuity property (proposition A.2), implies:

Corollary 5. Let T ∈ Homeo(X, μ) and A ∈ C1(X,G). Assume thatT has a
persistent periodic pointp = Tn(p) such that:

• An
T (p) is elliptic;

• for somei = 0, 1, . . . , n − 1, the derivativeD A(Ti p) is non-zero.

Then there is a neighborhoodU ⊂ Homeo(X, μ) of T and a residual subset
R ⊂ U such that LE(A, T̃) = 0 for all T̃ ∈ R.

Recall definition 1.4. TheC0-generic map satisfies the continuous dichotomy
– this follows easily from [B] and proposition A.7. Here we extend this result to
higher topologies:

Theorem 6. Let 1 ≤ r ≤ ∞ and let X be a compactCr -manifold, with a
smooth volume measureμ. Then there is a residual setR ⊂ Cr (X,G) such that
if A ∈ R thenA satisfies the continuous dichotomy.

Our proof of the corollary 3 gives an effective way to decide whether a given
mapA: X → G satisfies the measurable dichotomy. That is not so for our proof
of the continuous dichotomy theorem 6. Two related questions are:

Question 1.9.Is there any analogue of theorem 2 for the continuous case?

Question 1.10. In theorem 6, can we take an open and dense set, instead of a
residual one?

Bull Braz Math Soc, Vol. 37, N. 3, 2006
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1.3 The smooth case

If both T andA are assumed to have higher regularity, then dichotomy between
uniform hyperbolicity and zero exponents is no longer true – either fixingA
and varyingT or fixing T and varyingA. This is shown by the following two
examples:

1. Let T : X → X be a volume-preservingC2 Anosov diffeomorphism.
Then the exponent is positive on an open and dense subset ofC1(X,G),
by results of Bonatti and Viana [BnV].

2. Consider Schrödinger cocycles on thed-torus:

Sλ,V (θ) =
(
λV(θ) −1

1 0

)
, θ ∈ Td, λ ∈ R (1)

If V(θ) is a non-constant trigonometrical polynomial, and the dynamics
in the base is restricted to real analytic maps in a neighborhood of the unit
polydisc inCd, then Herman [He1] showed that there exists a positive
lower bound on the exponent, providedλ is greater than someλ0.

In our setting, we can ask:

Question 1.11. AssumeA: X → G is a C1 map that assumes both elliptic
and hyperbolic values. (A concrete interesting example in the torusX = Td is
A = SV,λ given by(1) with V(θ) = cosθ1 andλ � 1.) When is it possible
to find a volume-preservingC1 mapT : X → X such that LE(A, T) is exactly
zero?

We mention here two results obtained by Herman proving abundance of zero
exponents in the absence of uniform hyperbolicity for smooth cocycles above
uniquely ergodic diffeomorphisms of the circle. (Here the exponents are com-
puted above the unique invariant probability measure.) The results are based
on Baire category arguments and the method used is to approximate the base
dynamics by periodic maps and concentrate the measure on orbits above which
the product of matrices are elliptic.

Define
F∞

I =
{

f ∈ Diff ∞
+ (T

1); ρ( f ) ∈ RrQ
}

whereρ( f ) denotes the rotation number off . We consider mapsA ∈ C∞
6=0(T

1,

G), that is, smooth maps that are not homotopic to a constant matrix. Theset
F∞

I × C∞
6=0(T

1,G) is a Baire space with theC∞-topology. Then:
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Theorem 1.12 ([He2]). There is a denseGδ set G ⊂ F∞
I × C∞

6=0(T
1,G) of

cocycles( f, A) such thatf is uniquely ergodic and LE(A, f, μ f ) = 0 withμ f

the unique invariant probability off . Here the absence of uniform hyperbolicity
is granted by the fact that the cocycle is not homotopic to identity – see [He1,
proposition 4.2].

The set of smooth maps that are homotopic to a constant matrix is denoted
by C∞

0 (T
1,G). Then:

Theorem 1.13 ([He2]). There exists a setF ⊂ F∞
I × C∞

0 (T
1,G) whoseC∞

closure F is C0 dense in the subset of non-uniformly hyperbolic cocycles in
F∞

I × C∞
0 (T

1,G), and such that there is aC∞ denseGδ setG ⊂ F of cocycles
( f, A) such thatf is uniquely ergodic and LE(A, f, μ f ) = 0withμ f the unique
invariant measure off .

1.4 The discrete case

We return to the measurable case and consider this time the situation where
A: X → G assumes afinite number of values. SuchA cannot satisfy the
richness condition, so the previous results do not apply. Nevertheless we can
prove that measurable dichotomy holds generically.

Definition 1.14. A bounded set6 ⊂ G is calleduniformly hyperbolicif there
existsλ > 1 such that

‖An ∙ ∙ ∙ A1‖ > λn for all A1, . . . , An ∈ 6.

(Notice that the first option in definition 1.3 just amounts to saying thatA(X)
is a uniformly hyperbolic set.)

Given anN-tuple of matrices6 = (A1, . . . , AN), for simplicity we also write
6 for the set{A1, . . . , AN}.

Theorem 7. Let N ≥ 2 be an integer. There exists a residual setR ⊂ GN such
that for every6 ∈ R:

• either6 is uniformly hyperbolic;

• or for every measurable mapA: X → 6 which assumes every value in6
on a set of positive measure, there is a residual setRA ⊂ Aut(X, μ) such
that LE(A, T) = 0 for everyT ∈ RA.

Remark 1.15. For the reader’s information, we mention a characterization of
uniform hyperbolicity obtained in [AvBY]: A compact set6 ⊂ G is uniformly
hyperbolic iff there exists an open setU ⊂ P1 with finitely many connected
componentsandU 6= P1, suchthat A(U ) ⊂ U for eachA ∈ 6.
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1.5 Structure of the paper

In section 2 we prove theorem 1. In section 3 we prove proposition 1.6 and then
theorem 2. Section 4 deals with the continuous case and contains the proof of
theorem 4 (that uses again theorem 1 and proposition 1.6). The proof of theorem 7
is given in section 5 and it is independent of the other results. In the appendix
we present some technical results that are used throughout the paper.

2 Proof of theorem 1

In all this section,(X, μ) denotes a non-atomic Lebesgue space (not necessarily
with μ(X) = 1).

The following are roughly the main steps of the proof:

• In § 2.1, we show that givenA: (X, μ) → G, the existenceof some
dynamicsT ∈ Aut(X, μ) for which LE(A, T) is small depends only on
the push-forward measureA∗μ in G. That is very useful, because it
allows us to address the questions in Lebesgue spaces(X, μ) and maps
A: (X, μ) → G that are convenient for our constructions.

• In § 2.2, we show that if a measureν = A∗μ is 1-rich then there exists
T ∈ Aut(X, μ) for whichLE(A, T) is small.

• In § 2.3, we collect abstract lemmas on perturbation of measures and maps.
Then, in § 2.4, we relate the convolution measureν∗N that appears in the
definition of richness with a dynamical construction.

• In § 2.5, we conclude the proof. We apply the result from § 2.4 to obtain
an induced cocycle whose push-forward toG is a measure which is close
to an 1-rich one. A specific argument of continuity is used to allow the use
of the results of § 2.2 despite the fact that we are dealing with a measure
that is only close to a 1-rich one.

2.1 Least exponent of orderk

We begin introducing some notation: IfA: (X, μ) → G is a bounded measur-
able map,k ∈ N, andT ∈ Aut(X, μ), let

3k(A, T) =
1

k

∫

X
log‖Ak

T‖ dμ .

Observe that by subadditivity of
∫

X log‖Ak
T‖dμwe haveLE(A, T) ≤ 3k(A, T).

Bull Braz Math Soc, Vol. 37, N. 3, 2006
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We define theleast exponent of orderk of A

3k(A) = inf
T∈Aut(X,μ)

3k(A, T).

The continuity property of3k states as follows:

Lemma 2.1. Givenk ∈ N, C > 1 and δ > 0, there existsη > 0 with the
following properties: IfA, B : (X, μ) → G are measurable maps with‖A‖∞,
‖B‖∞ ≤ C and

‖A − B‖1 =
∫

X
‖A − B‖ dμ < η then |3k(A)−3k(B)| < δ.

Proof. Takeη = C−k+1δ. Fix anyT ∈ Aut(X, μ). We can estimate pointwise

∣
∣log‖Ak

T‖ − log‖Bk
T‖

∣
∣ ≤

∣
∣‖Ak

T‖ − ‖Bk
T‖

∣
∣

≤ ‖Ak
T − Bk

T‖

≤ Ck−1
k−1∑

i =0

‖B ◦ Ti − A ◦ Ti ‖ .

Dividing by k and integrating overX we obtain|3k(A, T)−3k(B, T)| < δ.�

Remark 2.2. If A: X → G is measurable and bounded, andS: (X, μ) →
(X′, μ′) is an isomorphism, it is clear that3k(A ◦ S) = 3k(A), because
3k(A ◦ S, T) = 3k(A, S◦ T ◦ S−1) for everyT ∈ Aut(X, μ).

In fact, we will prove in lemma 2.5 a stronger result:3k(A) depends only on
the push-forward measureA∗μ. To prove that, we will need lemma 2.3 below.

In what follows I denotes the unit interval[0, 1] and m denotes Lebesgue
measure onI or (by abuse of notation) on the squareI2.

Lemma 2.3.Let A: I → G be measurable and bounded. Letπ : I2 → I be the
projection on the first coordinate, and consider the map

A ◦ π : (I2,m) → G.

Then3k(A ◦ π) = 3k(A) for everyk ∈ N.

The idea of the proof is to approximateπ by something invertible and to use
remark 2.2 and the continuity property from lemma 2.1.
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Proof. It is clear that3k(A ◦ π) ≤ 3k(A), because3k(A ◦ π, T × id) =
3k(A, T) for any T ∈ Aut(I,m). Fix δ > 0. Let T ∈ Aut(I2,m) be such
that3k(A ◦ π, T) < 3k(A ◦ π) + δ. For n ∈ N, define an isomorphism
Pn : (I2,m) → (I,m) such that ifI ⊂ I is a dyadic interval with|I | = 2−n then
Pn(I × I) = I . Then the functionsπ andPn : I2 → I are uniformly 2−n-close.
This impliesL1-convergence:

lim
n→∞

‖A ◦ Pn − A ◦ π‖1 = 0.

Indeed, givenε > 0 there exists, by Lusin’s theorem, a compact setK ⊂ I such
thatA|K is continuous andm(K c) < ε. If n is large enough then for everyx, y ∈
K that are 2−n-close we have‖A(x)− A(y)‖ < ε. LetGn = π−1(K )∩ P−1

n (K );
thenm(Gc

n) < 2ε. Thus
∫

I2
‖A ◦ Pn − A ◦ π‖ dm =

∫

Gn

(∙ ∙ ∙ )+
∫

Gc
n

(∙ ∙ ∙ ) < ε + 2ε‖A‖∞.

By lemma 2.1, ifn is sufficiently large then3k(A ◦ Pn, T) < δ +3k(A ◦ π).
Let T ′ = Pn ◦ T ◦ P−1

n ; then3k(A, T ′) = 3k(A ◦ Pn, T). This shows that
3k(A) < δ +3k(A ◦ π). Sinceδ > 0 is arbitrary, the lemma follows. �

Let us record for later use something we have proved:

Lemma 2.4. There exists a sequence of isomorphismsPn : (I2,m) → (I,m)
such that for any measurable boundedA : I → Gwe have‖A◦Pn−A◦π‖1 → 0
asn → ∞.

Now we can state and prove the:

Lemma 2.5. Let A, B : (X, μ) → G be such thatA∗μ = B∗μ. Then3k(A) =
3k(B).

Proof. We can assume thatμ(X) = 1. By remark 2.2, we can assume thatA
and B are defined over(X, μ) = (I,m). SinceA∗m = B∗m, by lemma A.4
there is an automorphismS of the squareI2 such thatA ◦ π = B ◦ π ◦ S. In
particular,3k(A ◦ π) = 3k(B ◦ π). So, by lemma 2.3,3k(A) = 3k(B). �

Based on lemma 2.5, we can introduce the following notation: Ifν is a finite
measure inG with bounded support, andk ∈ N, we write

3k(ν) = 3k(A),

where A: (X, μ) → G is some map, defined on some non-atomic Lebesgue
space, such thatA∗μ = ν. (Notice the existence of suchA.)
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The map3k has the following convexity properties:

Lemma 2.6. Let ν, ν ′ be finite measures inG, with bounded supports, and let
t > 0. Then

(i) 3k(tν) = t3k(ν);

(ii) 3k(ν + ν ′) ≤ 3k(ν)+3k(ν
′).

Proof. The first part is obvious, so let us show the second one. LetI , I ′ ⊂ R
be disjoint intervals with lengthsν(G), ν ′(G), respectively. Take a mapA: I t
I ′ → G such thatA∗m|I = ν, A∗m|I ′ = ν ′ (wherem is Lebesgue measure).
Then (1)3k(ν + ν ′), (2)3k(ν) + 3k(ν

′), are the infimum of3k(A, T) where
T runs over (1) all automorphismsT ∈ Aut(I t I ′,m), (2) the automorphisms
T such thatT(I ) = I , T(I ′) = I ′, respectively. �

2.2 An existence result

If ν is a finite measure onG with bounded support, we write

|ν| = ν(G) and ‖ν‖∞ = inf {C > 1; ‖A‖ < C for ν-a.e.A ∈ G} ,

where‖∙‖ is some fixed operator norm.

Proposition 2.7.LetC > 1, δ > 0, andσ be a1-rich measure with‖σ‖∞ ≤ C.
Then there existsk ∈ N with the following properties: Ifω is a measure inG
such that|ω| ≤ 1 and‖ω‖∞ ≤ C then

3k(ω + σ) < |ω|δ + |σ | logC.

The proposition implies thatgiven A: (X, μ) → G, such thatν = A∗μ is
1-rich, there existsT ∈ Aut(X, μ) such that LE(A, T) is small. Indeed, takeδ
small. The measureσ = δν is 1-rich as well, so we can apply the proposition to
ω = (1 − δ)ν.

The fact thatk depends uniformly onω, provided‖ω‖∞ ≤ C, will be important
in the proof of theorem 1.

For the reader’s convenience, we will give an informal sketch of the proof:

• We first deal with the case whereω is a Dirac measure on some hyperbolic
H ∈ G. We use 1-richness ofσ and the abstract lemma A.4 to find pro-
ducts of length 2 that send the expanding direction ofH exactly to the
contracting one. Then we construct a dynamics so that orbits spend a long
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time in the (hyperbolic)ω-part of the space, then spend two iterates in the
σ -part, then return to theω-part. This makes3k(ω+ σ) small fork large
enough.

• To reduce the general case to the previous one, we (essentially) approxi-
mate a givenω by a linear combination of Dirac measures, and use lem-
mas 2.1 and 2.6.

Given a matrixH ∈ G, denote byρ(H) ∈ [1,∞) its spectral radius. (That
is, ρ(H) = max(|λ1|, |λ2|) if λ1, λ2 are the eigenvalues ofH .)

Proof of proposition 2.7. Definition ofk: Given C > 1 andδ > 0, there is
`0 ∈ N with the following properties: IfH, R ∈ G are matrices such that

• ‖H‖ ≤ C, ‖R‖ ≤ C2;

• H is a hyperbolic matrix and moreoverρ(H) ≥ eδ/4;

• R(eu) = es, whereeu andes ∈ P1 denote respectively the expanding and
contracting eigendirections ofH ;

then the matrixRH` is elliptic for every` ≥ `0. To prove this fact, take a basis

{vu, vs} of unit eigenvectors ofH . In this basis,R becomes

(
0 c
b d

)
. The angle

betweenvu andvs cannot be too small, hence we can give bounds tob, c, d
depending only onC andδ. Then| tr RH`| = |d|ρ(H)−` < 2 for sufficiently
large`.

Given the 1-rich measureσ with ‖σ‖∞ ≤ C, letκ > 0 be as in definition 1.5.
Fix an integer

` ≥ max(`0, 2/κ).

By proposition A.6, there existsk′ ∈ N such that ifE ∈ G is an elliptic matrix
with ‖E‖ ≤ C`+2 then

1

p
log‖Ep‖ <

(`+ 2)δ

2
∀p ≥ k′.

Fix p ≥ k′ large enough so that definingk = (`+ 2)p, we have

1

k
log‖Hk‖ <

δ

2
for all H ∈ G s.t.‖H‖ ≤ C and ρ(H) < eδ/4.

Let us verify thatk has the stated properties.
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First case: We will first prove the proposition in the case whereω is a Dirac
measureδH on someH ∈ G, with ‖H‖ ≤ C. We will exhibit a Lebesgue space
(X, μ), a mapA: X → G with A∗μ = δH + σ , and a dynamicsT ∈ Aut(X, μ)
such that3k(A, T) < δ/2 + |σ | logC.

If ρ(H) < eδ/4 (e.g.H is elliptic or parabolic), we simply takeT = id, and
the claim follows.

So we assumeH is a hyperbolic matrix, withρ(H) ≥ eδ/4. Leteu andes ∈ P1

be its expanding and contracting eigendirections, respectively. Sinceσ is 1-rich,
we have

σ ∗ eu ≥ κm, σ−1 ∗ es ≥ κm.

There are measuresσ1, σ2 ≤ σ such thatκm = σ1 ∗ eu andκm = σ−1
2 ∗ es.1 Let

L1 ⊂ J1, L2 ⊂ J2 be intervals with|Li | = 1
2κ = 1

2|σi |, |Ji | = 1
2|σ |, J1∩ J2 = ∅.

Choose two measurable mapsAi : Ji → G (i = 1, 2) such that(Ai )∗(m|Li ) =
1
2σi and(Ai )∗(m|JirLi ) = 1

2(σ−σi ). By lemma A.4, there exists an isomorphism
Ssuch that the following diagram commutes a.e:

L1 × I

S

π L1
A1(∙)eu

P1

L2 × I
π

L2

A2(∙)−1es

That is, for a.e.z ∈ L1 × I,

(A2 ◦ π)(S(z)) ∙ (A1 ◦ π)(z) ∙ eu = es.

Define a convenient Lebesgue space to work on:

X = I t (J1 × I) t (J2 × I),

The measureμ on X restricted toI, resp.Ji × I, is one-, resp. two-, dimensional
Lebesgue measure. The mapA: X → G is defined asA = H onI, A = A1 ◦π
on J1 × I, andA = A2 ◦ π on J2 × I. ThenA∗μ = δH + σ . At last, we define
the measure-preserving dynamical systemT : X → X. BreakI into disjoint
intervals I1, …, I` of equal measurem(I1) = 1/`. Since 1/` ≤ κ/2, we can
take a setZ ⊂ L1 × Iwith m(Z) = m(I1). LetU1 : I` → Z be an isomorphism.
We defineT as being the identity on

Xid = ((J1 × I)r Z) ∪ ((J2 × I)r S(Z)),

1Given a homomorphismf : (X, μ) → (Y, ν) andν1 ≤ ν, define a measureμ1 in X by dμ1
dμ =

dν1
dν ◦ f ; then f∗μ1 = ν1.
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and in the rest as

I1 → I2 → ∙ ∙ ∙ → I`
U1−→ Z

S
−→ S(Z)

U2−→ I1 ,

where the unspecified arrows are translations and the isomorphismU2 are chosen
so thatT`+2|I1 is identity.

Let us estimate3k(A, T).
Note that
If z ∈ I1 then

A`+2
T (z) = A(S◦ T`−1(z))A(T`−1(z))H `,

with A(S◦ T`−1z)A(T`−1z) ∙ eu = es. By our choice of̀ , A`+2
T (z) is elliptic

for everyz ∈ I1. In fact this holds for anyz ∈ X r Xid . Since p ≥ k′ and
k = (`+ 2)p, we have, for anyz ∈ X r Xid ,

1

k
log‖Ak

T (z)‖ =
1

(`+ 2)p
log‖[A`+2

T (z)]p‖ <
δ

2
.

On the other hand,1k
∫

Xid
log‖Ak

T‖dμ ≤
∫

Xid
log‖A‖dμ ≤ |σ | logC.

This shows that3k(A, T) <
δ
2 + |σ | logC, as claimed.

General case:Now letω be any measure satisfying the hypotheses of the propo-
sition. Let I1 = [0, |σ |), I2 = [|σ |, |σ | + |ω|], and A: I1 ∪ I2 → G be such
that

A∗(m|I1) = σ and A∗(m|I2) = ω.

Let η = η(k,C, δ|ω|/2) be given by lemma 2.1.
Let B : I2 → G be a simple function such that‖B‖∞ ≤ C and‖A|I2 − B‖1 <

η. ExtendB to I1 ∪ I2 by takingB = A on I1. We can write

B∗m = σ +
n∑

i =1

ti δHi = (1 − |ω|)σ +
n∑

i =1

ti (δHi + σ),

whereHi ∈ G, ti ≥ 0 and
∑n

i =1 ti = |ω| ≤ 1.
By lemma 2.6 and the case already considered,

3k(B) ≤ (1 − |ω|)3k(σ )+
∑

ti3k(δHi + σ)

≤ (1 − |ω|)|σ | logC +
(∑

ti
) (

δ
2 + |σ | logC

)

= 1
2|ω|δ + |σ | logC.

Since‖A − B‖1 < η, we obtain3k(A) < |ω|δ + |σ | logC. This proves the
proposition. �
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2.3 Perturbing measures

In this subsection, we introduce a definition of closeness in the space of measures
which is suitable to our purposes, and prove a couple of useful properties.

Definition 2.8. Let ν1, ν2 be measures inG with bounded support and same
mass|ν1| = |ν2| = a. Givenη > 0, we say thatν1 andν2 are η-closeif there
existA1, A2 : ([0,a],m) → G such that(Ai )∗μ = νi and‖A1 − A2‖1 < η.

We can define a distanced(ν1, ν2) as the infimum of theη such thatν1 and
ν2 areη-close in the sense above. That this is indeed a metric follows from the
lemma below:

Lemma 2.9. Let A: (X, μ) → G andν = A∗μ. If ν̃ is η-close toν then there
existsÃ: (X, μ) → G such that‖Ã − A‖1 < η and ν̃ = Ã∗m.

Proof. Without loss of generality we assume|ν| = 1, and moreover,(X, μ) =
(I,m). By assumption, there areA1, A2 : I → G such that(A1)∗m = ν,
(A2)∗m = ν̃, andη′ = η − ‖A1 − A2‖1 > 0.

By lemma A.4, there existsS ∈ Aut(I2,m) such that andA1 ◦ π ◦ S =
A ◦ π a.e. LetPn : I2 → I be given by lemma 2.4 and choosen ∈ N so that
‖A ◦ π − A ◦ Pn‖1 < η

′. DefineÃ = A2 ◦ π ◦ S◦ P−1
n . ThenÃ∗m = ν̃ and

‖Ã − A‖1 = ‖ Ã ◦ Pn − A ◦ Pn‖1 = ‖A2 ◦ π ◦ S− A ◦ Pn‖1

≤ ‖A2 ◦ π ◦ S− A1 ◦ π ◦ S‖1‖A ◦ π − A ◦ Pn‖1

< ‖A2 − A1‖1 + η′ = η.

�

We will also need the following:

Lemma 2.10.Let A: (X, μ) → G, ν = A∗μ andσ ≤ ν. Then for everyη > 0
there exists a measurable setY ⊂ X such thatA∗(μ|Y) is η-close toσ .

Proof. There is no loss of generality in assuming that|μ| = |ν| = 1. So we
can also assume that(X, μ) = (I,m). Let f : G → I be the Radon-Nikodym
derivative dσ

dν . Define Y0 = {(x, t) ∈ X × I; 0 ≤ t ≤ f ◦ A(x)}. Let
Pn : X × I → X be as in lemma 2.4, withn ∈ N large enough so that‖A ◦ π −
A ◦ Pn‖1 < η. Let Y = Pn(Y0). Then A∗(μ|Y) = (A ◦ Pn)∗((μ × m)|Y0) is
η-close to(A ◦ π)∗((μ× m)|Y0). The later measure equalsσ . Indeed,

(
(A ◦ π)∗((μ× m)|Y0)

)
(Z) = (μ× m)

(
Y0 ∩ π−1(A−1(Z))

)

=
∫

A−1(Z)
f ◦ A dμ =

∫

Z
f dν = σ(Z),

for any measurableZ ⊂ G. �
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2.4 Towers and convolutions

In this subsection we show that convolution measures can be approximately
obtained in a dynamical way, in the following sense:

Lemma 2.11. Let A: I → G be bounded andν = A∗m. GivenN ∈ N and
η > 0 there existsF ∈ Aut(I,m) and a setZ ⊂ I such thatF N = id, the sets
Z, F(Z), …, F N−1(Z) are disjoint, and the measure(AN

F )∗(m|Z) is η-close to
1
N ν

∗N.

Proof. If N = 1 there is nothing to prove; assumeN ≥ 2. Let us first consider
the case whereAhas a special form, namely there isM ∈ N such thatA restricted
to each intervalI j = [ j −1

M ,
j

M ), j = 1, . . . ,M , is constant, say equal toAj . Then

ν =
1

M

M∑

j =1

δAj and ν∗N =
1

M N

∑

j∈{1,...,M}N

δAjN ∙∙∙Aj1
.

Break each intervalI j into N MN−1 disjoint intervals of equal length,I j,k,
k = 1, . . . , N MN−1. Take a bijection

{1, . . . , N} × {1, . . . ,M}N → {1, . . . ,M} × {1, . . . , N MN−1}

of the form(i, j) 7→ ( ji , k(i, j)), wherej = ( j1, . . . , jN).
Write Ji,j = I ji ,k(i,j); then {Ji,j }i,j is a partition ofI. Define F : I → I by

mapping eachJ1,j to J2,j , J2,j to J3,j , …, andJN,j to J1,j by translations.
Let

Z =
⊔

j∈{1,...,M}N

J1,j .

ThenZ, F(Z), …, F N−1(Z) are disjoint and(AN
F )∗(m|Z) = 1

N ν
∗N .

General case:Given any boundedA: I → G, defineC = ‖A‖∞ and assume
that N ∈ N andη > 0 are arbitrarily chosen. Let̃A: I → G be a bounded
simple function which isε(C, N, η)− L1-close toA and such that̃A hasM level
sets, all with the same measure 1/M ; whereM is some integer andε(C, N, η)
will be defined later.

TakeS ∈ Aut(I,m) that maps these level sets to intervals, soÂ = Ã ◦ S falls
in the later case. Accordingly there existF̂ ∈ Aut(I,m) and a setẐ ⊂ I such
that Ẑ, F̂(Ẑ), …, F̂ N−1(Ẑ) are disjoint and(ÂN

F̂
)∗(m|Ẑ) = 1

N (Â∗m)∗N .

Let F = S−1 ◦ F̂ ◦ S and Z = S−1(Ẑ). Then(ÃN
F )∗(m|Z) = 1

N (Ã∗m)∗N .
From point 2 of the proof of lemma 2.1 we see thatε(C, N, η) can be chosen

Bull Braz Math Soc, Vol. 37, N. 3, 2006



“main” — 2006/10/19 — 16:23 — page 325 — #19

UNIFORM HYPERBOLICITY AND ZERO LYAPUNOV EXPONENTS 325

so that theε(C, N, η) − L1 closeness ofÃ and A implies that(A∗m)∗N and
(Ã∗m)∗N areη/2-close (in the sense of definition 2.8) as well as(AN

F )∗(m|Z)

and(ÃN
F )∗(m|Z). This concludes the proof. �

2.5 End of the proof

An interval permutation of rankM is an automorphismT ∈ Aut(I,m) which
sends each interval of the form

[
j

M
,

j + 1

M

)
, j = 0, 1, . . . ,M − 1,

onto another by an ordinary translation. We callT cyclic if the induced permu-
tation of the intervals is cyclic. We are going to use the following fact:

Theorem 2.12 (Halmos).Cyclic interval permutations are dense in Aut(I,m),
in the weak topology.

For the proof, see Halmos [H, p. 65], or [AP, lemmas 6.4 and 3.2].

Proof of theorem 1. Since we are working in the measurable category we can
assume thatX is the unit intervalI andμ is the Lebesgue measure on it.

SupposeA: I → G is such thatν = A∗m is rich. Due to proposition A.2, we
only have to show that givenT ∈ Aut(I,m)andδ > 0, there exists̃T ∈ Aut(I,m)
arbitrarily close toT in the weak topology such thatLE(A, T̃) < δ.

So letT andδ, and also an arbitraryε > 0. By theorem 2.12, we can assume
thatT is a cyclic interval permutation and assume its rankM satisfiesM ≥ 4/ε.
Let N be such thatν∗N is 1-rich.

Before going into the details of the proof let us sketch how we will obtain the
perturbationT̃ that will actually satisfym[T̃ 6= T] < ε. The perturbation is done
in two steps. In the first one, we will use richness of the measureν to produce a
mapT1 that is close toT and that has two cyclic towers: (1) a (big) cyclic tower
of heightM that fills most of the space and that comes from the original tower
of T ; (2) a (small) cyclic tower of heightN such that the push forward of the
measure on its base by the product ofA’s along itsN levels is a measure close
to a 1-rich one, namelyσ/N, whereσ = ε′ν∗N andε′ is small. (Actually, there
is a third invariant set that can be disregarded because it has small measure.)

Let W be the union of the basis of the big and the small tower. Then we
consider the first return on the setW: we obtain a derived cocycle overW with
identity for dynamics and a matrix map̂A such thatÂ∗(m|W) contains a part that
is close toσ/N.
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Here we pass to the second step and perturbT1 to T̃ , keeping the two towers
aboveW invariant but modifying the first return map to a mapS so that the
Lyapunov exponentLE(Â, S) of the derived cocycle becomes small (this is done
by takingT̃ equal toT1 except onT−1

1 W with nevertheless̃T T−1
1 W = W). Since⋃

n∈Z T̃nW =
⋃

n∈Z Tn
1 W has almost full measure, the latter implies smallness

of LE(A, T̃). The mapT̃ that we obtain is close toT1 since we only modify the
dynamics onT−1

1 W.
To understand how the mapS is obtained, replace for a momentÂ∗(m|W) by

a mapÃ such thatÃ∗(m|W) containsσ/N so that proposition 2.7 applies and
identity onW can be replaced by a dynamics that reduces3k(Ã, S) close to zero
(for somek that depends onσ/N). Now, the fact thatk depends only on the
1-rich part of the measure and a careful choice of quantifiers allow to use the
continuity of3k and derive the same conclusion forÂ instead ofÃ. Now we
give the exact proof.

Let C = ‖A‖∞ and

ε′ = min

(
ε

(4M)
,

δ

(M logC)

)
.

Let σ = ε′ν∗N . We will use that the measureσ/N is 1-rich. Let k =
k(σ/N, δ,CM) be given by proposition 2.7, and letη = η(k, δ,Cmax(M,N))

be given by lemma 2.1.
Using lemma 2.11, we findF ∈ Aut(I,m) such thatF N = id, and a setZ ⊂ I

such thatZ,…, F N−1(Z) are disjoint and(AN
F )∗(m|Z) is η-close to 1

N ν
∗N . By

lemma 2.10, there exists a setY ⊂ Z such that(AN
F )∗(m|Y) is η-close to 1

Nσ

(from definition 2.8 this requires thatm(Y) = |σ |/N).

Let TF =
⊔N−1

i =0 Fi (Y); this set is anF-tower of heightN, and has small
measure:

m(TF) = Nm(Y) = |σ | < ε′.

Let TT =
⋂M−1

i =0 T−i (T c
F). This set has almost full measure:m(T c

T ) ≤
Mm(TF) < Mε′ < ε/4. It is also invariant byT (sinceT M = id) and we can
write it as aT-tower of heightM over I ∩ TT where I is any interval of the
cyclic permutationT .

Consider a first perturbation ofT :

T1(x) =






T(x) if x ∈ TT ,

F(x) if x ∈ TF ,

x otherwise.
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ThenTT andTF are two disjoint invariant towers forT1 with heightsM andN
respectively, and basisI ∩ TT andY respectively. We defineT = TT ∪ TF ,
andW = (I ∩ TT ) t Y.

The first-return map ofT1 to W is the identity. The return-time function is
nW(x) = M for x ∈ I ∩TT andnW(x) = N for x ∈ Y. Hence we define onW
the following map:

Â(x) =

{
AM

T (x) if x ∈ I ∩ TT ,

AN
F (x) if x ∈ Y.

Because(AN
F )∗(m|Y) andσ/N areη-close, lemma 2.9 gives a map̃A: Y → G

such thatÃ∗(m|Y) = σ/N and‖Ã− AN
F |Y‖1 ≤ η. Let B̂ : W → G be such that

B̂(x) =

{
AM

T (x) if x ∈ I ∩ TT ,

Ã(x) if x ∈ Y.

By proposition 2.7, since we tookk = k(σ/N, δ,CM), we get

3k(B̂) = 3k(B̂∗(m|W))

= 3k

(
(AM

T )∗(m|I ∩TT )+
σ

N

)
<

δ

M
+
ε′

N
logCM < 2δ.

Since‖Â− B̂‖1 ≤ 2η, with η = η(k, δ,Cmax(M,N)), we conclude by lemma 2.1,

3k(Â) < 3δ.

This means that there exists an automorphismS: W → W such that3k(Â,
S) < 3δ, and consequentlyLE(Â, S) < 3δ.

Finally, we defineT̃ on I:

T̃(x) =

{
S(T1(x)) if x ∈ T−1

1 (W),

T1(x) otherwise.

The setT = TT ∪ TF is still invariant byT̃ , the return time to the setW is
still the functionnW as forT1 and the products of matrices aboveW before the
first return are still given byÂ. But the first return map toW by T̃ is now S.
Hence, by proposition A.1, we haveLE(A|T , T̃ |T ) = LE(Â, S).

Recall thatm(T c) ≤ m(T c
T ) ≤ Mε′ and that we tookε′ ≤ δ/(M logC),

therefore
LE(A, T̃) = LE(Â, S)+ LE(A|T c, T̃ |T c) < 4δ.
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We have

m[T̃ 6= T] ≤ m[T̃ 6= T1] + m[T1 6= T]

≤ m(W)+ m(T c
T ) ≤

(
1

M
+
ε′

N

)
+
ε

4
< ε,

as required. �

3 Applying theorem 1

3.1 Proof of the richness criterium

Before deriving any consequences of theorem 1, we have to prove proposition 1.6.
Let us (temporarily) call a measureν N-f-rich if there isκ > 0 such that

ν∗N ∗ v ≥ κm for everyv ∈ P1. (The difference, compared to definition 1.5,
is that we only considerforward iterates.) We callν f-rich if it is N-f-rich for
someN.

In this paragraph,M denotes a compact manifold, intM = M r ∂M , andμ
is a smooth volume measure onM .

The following lemma essentially reduces the problem of proving richness to
a one-dimensional case:

Lemma 3.1. Let A: M → G be aC1 map. Letξ : [−2, 2] → int M be aC1

embedded arc. Assume that for anyv ∈ P1,
{

A(ξ(t)) ∙ v; t ∈ [−1, 1]
}

= P1

and
∂

∂t
[ A(ξ(t)) ∙ v] 6= 0 ∀t ∈ [−2, 2].

ThenA∗μ is 1- f -rich.

Proof. Consider a (normal) tubular neighborhood (map) of the arcξ :

4 : [−2, 2] × Dd−1 → M

such that4(t, 0) = ξ(t). (Dd−1 denotes the open unit ball inRd−1.) For
0 < δ ≤ 1 and j = 1, 2, letU j

δ = 4
(
[− j, j ] × δDd−1

)
. We are going to show

that for sufficiently smallδ > 0 there existsκ > 0 such that

d
(

A∗(μ|U2
δ
) ∗ v

)

dmP1
(w) ≥ κ ∀v,w ∈ P1. (2)
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We push the euclidian metric inRd forward by theC1-diffeo 4, and without
loss, assume thatμ|U2

1
is the Riemannian volume induced by that metric. In the

new metric, we have‖ξ ′(t)‖ = 1.
For convenience of notation, letv,w ∈ P1 be fixed. LetF : M → P1 be given

by F(x) = A(x) ∙ v. Let {t1 < . . . < tk} = {t ∈ [−1, 1]; F(ξ(t)) = w}. Let
Dδ

i ⊂ U2
δ be the connected component ofF−1(w)∩U2

δ that containsξ(ti ). From
the assumption,F has no critical points on a neighborhood of the areξ([−2, 2]).
So, for smallδ, Dδ

i is a(d − 1)-submanifold. We have

d
(

F∗(m|U2
δ
)
)

dmP1
(w) =

∫

F−1(w)∩U2
δ

dσ(x)

‖∇F(x)‖
≥

k∑

i =1

∫

Dδi

dσ(x)

‖∇F(x)‖
,

whereσ is Riemannian(d − 1)-dimensional volume. Using thatσ(Dδ
i ) ≥

σ(δDd−1) and that‖∇F‖ is bounded, we have
∫

Dδi

dσ(x)

‖∇F(x)‖
=

σ(Dδ
i )

‖(∇F)(ξ(ti ))‖
+ O(δd) ≥ Cδd−1 + O(δd) ,

for someC > 0. All bounds are uniform inv andw, hence we can find a small
δ so that (2) holds. �

In what follows, we denote:

Rθ =
(

cosθ − sinθ
sinθ cosθ

)
.

Remark 3.2. For eachT ∈ (−2, 2), the set ofA ∈ G such that trA = T consists
on twoG-conjugacy classes, namely{L Rθ L−1; L ∈ G} and{L R−θ L−1; L ∈ G},
for a certainθ ∈ (0, π). (Note also that the set consists on a singleGL(2,R)-
conjugacy class.) IfA andB are two elliptic matrices in the sameG-conjugacy
class then there exists an uniqueL of the form

L =
(

a b
0 a−1

)
, with a > 0, (3)

such thatB = L AL−1.

Next we prove the following special case of proposition 1.6:

Lemma 3.3. Let A: M → G be aC1 map. Assume there exists a pointp ∈ M
such thatA(p) is elliptic and tr A is not locally constant atp. ThenA∗μ is
f-rich.

Bull Braz Math Soc, Vol. 37, N. 3, 2006



“main” — 2006/10/19 — 16:23 — page 330 — #24

330 JAIRO BOCHI and BASSAM FAYAD

Proof. We can assume thatp ∈ int M and that(∇ tr A)(p) 6= 0. Let ξ : [−2,
2] → int M be an embeddedC1 path such thatξ(0) = p and

|tr A(t)| < 2 and
d

dt
tr A(ξ(t)) 6= 0 ∀t.

Let θ(t) = arccos
(

1
2 tr A(ξ(t))

)
. Thenθ(t) is a C1 function with θ ′(t) 6= 0

for all t . For eacht there existsL(t) ∈ G such thatA(ξ(t)) equals either
L(t)Rθ(t)L(t)−1 or L(t)R−θ(t)L(t)−1 (see remark 3.2). By continuity, the same
alternative, say the first, occurs for allt ∈ [−2, 2]. Besides, we can chooseL(t)
so thatL : [−2, 2] → G is aC1 map.

For N ∈ N, we haveA(ξ(t))N = L(t)RNθ(t)L(t)−1 . It is easy to see that ifN
is large enough then for anyv ∈ P1,

{
A(ξ(t))N ∙ v; t ∈ [−1, 1]

}
= P1 and

∂

∂t

(
A(ξ(t))N ∙ v

)
6= 0 ∀t ∈ [−2, 2].

Next define





M̂ = M N = M × ∙ ∙ ∙ × M,

μ̂ = μN = μ× ∙ ∙ ∙ × μ,

Â: M̂ → G by Â(x1, . . . , xN) = A(x1) ∙ ∙ ∙ A(xN),

(4)

and ξ̂ : [−2, 2] → int M̂ by ξ̂ (t) = (ξ(t), . . . , ξ(t)). Applying lemma 3.1
to these data, we obtain that̂A∗μ̂ = (A∗μ)

∗N is 1-f-rich, that is, A∗μ is
N-f-rich. �

For the last part, we will need the following property about traces:

Lemma 3.4. Let A, B ∈ G be elliptic matrices that are conjugate via a matrix
in G. Then

tr AB ≤ tr A2,

with equality if and only ifA = B.

The reader may check the lemma would be false had we assumed only that the
elliptic matrices have the same trace.

Proof. Write B = L AL−1, with L ∈ G. We can assume thatA = Rθ andL is
given by (3). Of course, sinθ 6= 0. Direct calculation gives

tr AB = 2 − (2 + a2 + a−2 + b2) sin2 θ ≤ 2 − 4 sin2 θ = tr A2,

with equality if and only ifa = 1 andb = 0. �
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Now we conclude the:

Proof of proposition 1.6. It clearly suffices to show thatA∗μ is f-rich.

Let M̂ , μ̂, andÂbe as in (4) withk in the place ofN. Let alsop̂ = (p1, . . . , pk).
By assumption,Â( p̂) is elliptic andÂ is not locally constant at̂p ∈ M̂ .

If tr Â is not locally constant at̂p in M̂ then, by lemma 3.3,̂A∗μ̂ = (A∗μ)
∗k

is f-rich, and therefore so isA∗μ.
Assume then that tr̂A is constant at a neighborhood ofp̂ in M̂ . By continuity,

all Â(x̂), with x̂ close top̂, belong to a sameG-conjugacy class (see remark 3.2).
Consider

M̌ = M̂ × M̂, μ̌ = μ̂× μ̂, p̌ = ( p̂, p̂), and Ǎ(x̂1, x̂2) = Â(x̂1)Â(x̂2).

Then trǍ is not locally constant aťp ∈ M̌ . (Otherwise, by lemma 3.4,̂A would
be locally constant at̂p.) Applying lemma 3.3 toǍ we get thatA∗μ is 2k-
f-rich. �

3.2 Proof of theorem 2

We will need the following:

Lemma 3.5. Let6 ⊂ G be a compact connected set. Assume that there is no
closed intervalI $ P1 such thatA ∙ I ⊂ I for everyA ∈ 6. Then there are
A1, . . . , An ∈ 6 such thatA1 ∙ ∙ ∙ An is elliptic.

Proof. We claim that there isn0 ∈ N such that for allv, w ∈ P1, there exist
A1, . . . , An0 ∈ 6 such thatA1 ∙ ∙ ∙ An0v = w.

Indeed, fix any matrixA0 ∈ 6, and letv0 ∈ P1 be such thatA0v0 = v0.
Let In ⊂ P1 be the set of directionsA1 ∙ ∙ ∙ An(v0), with Ai ∈ 6. Since6 is
connected, eachIn is an interval or the circle. Also,In ⊂ In+1, becausev0 is
invariant by a matrix in6. Let us see thatIn1 = P1 for somen1. Assume the
contrary, and letI =

⋃
n In. We haveA( Ī ) ⊂ Ī for all A. Since we are assuming

6 has no invariant interval, we must haveĪ = P1. ThereforeI = P1 r {z} for
somez. By the same assumption, there must beA ∈ 6 such thatA(z) 6= z. Then
A−1(z) ∈ I and so there must existA1, …, An such thatA1 ∙ ∙ ∙ An(v0) = A−1(z).
But this impliesz ∈ I , a contradiction.

We have shown that there isn1 such that for anyw there is a product of length
n1 which sendsv0 tow. The same reasoning applied to the set6−1 (which does
not have an invariant interval as well) gives that there isn2 such that for anyv
there is a product of lengthn2 sendingv to v0. Let n0 = n1 + n2. The claim is
proved.
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Next we construct an elliptic product. Fix anyA ∈ 6, A 6= id. If A is elliptic,
we are done.

If A is hyperbolic, leteu andes be its respectively expanding and contracting
eigenvectors. LetB be a product such thatB(eu) ∈ Res. Then a calculation
shows that trAnB → 0 asn → ∞, so there exists an elliptic product.

If A is parabolic then, relative to some basis{e1, e2},

A = ±
(

1 β

0 1

)
, with β 6= 0.

Let B be a product such thatBe1 ∈ Re2. Write

B =
(

0 b
c d

)
, with c 6= 0.

Then|tr AnB| = |βcn + d| → ∞ asn → ∞. This shows that6 has a hyper-
bolic product. Then we can repeat the previous reasoning and find an elliptic
product. �

Remark 3.6. We ignore how to extend lemma 3.5 to non-connected sets6, and
that is why we are unable to answer question 1.8.

We are ready now to give the:

Proof of theorem 2. If the function A is constant then the first case holds ifA
is hyperbolic or parabolic, and the second case holds ifA is elliptic. So we can
assumeA is not constant.

Assume the first case does not hold. Applying lemma 3.5 to6 = {A(x);
x ∈ X}, we conclude that there isn ∈ N such that the function

(x1, . . . , xn) ∈ Xn 7→ A(xn) ∙ ∙ ∙ A(x1)

assumes an elliptic value. This function is not constant andXn is connected, so
proposition 1.6 applies and the exponent vanishes generically by theorem 1.�

3.3 Addendum to theorem 2 and proof of corollary 3

We study how the Lyapunov exponent depends onT if the first alternative in
theorem 2 holds. There are two initial possibilities:

(i.1) There is an invariant point (i.e.∃ v0 ∈ P1 s.t. A(x) ∙ v0 = v0 ∀x ∈ X).
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(i.2) There is no invariant point.

In case (i.2), consider an invariant closed intervalI . We further subdivide case
(i.2) into cases(i.2.1), (i.2.2), and(i.2.3)according to whetherA(x) ∙ I ⊂ I ◦ for
none, some but not all, or all x ∈ X, respectively. (Notice that the case in which
A falls may depend on the choice ofI .)

Proposition 3.7 (Addendum to theorem 2).Each case has the corresponding
consequence as below:

(i.1) ⇒ There isλ0 ≥ 0 such that LE(A, T) = λ0 for all T ∈ Aut(X, μ).

(i.2.1) ⇒ LE(A, T) > 0 for all ergodicT ∈ Aut(X, μ).

(i.2.2) ⇒ There isλ0 > 0 such that LE(A, T) ≥ λ0 for all T ∈ Aut(X, μ).

(i.2.3) ⇒ The setA(X) ⊂ G is uniformly hyperbolic (see definition 1.14), so
(A, T) is uniformly hyperbolic for allT ∈ Aut(X, μ).

Proof. In case (i.1) we have

λ0 =

∣
∣
∣
∣

∫
log

‖A(x)v0‖

‖v0‖
dμ(x)

∣
∣
∣
∣ .

Next recall some facts about the Hilbert metric. That is a Riemannian metric
d on I ◦ with the property that ifB ∈ G satisfiesB(I ) ⊂ I then there exists
τB ≥ 1 such that

d(B(x), B(y)) ≤ τ−1
B d(x, y) ∀x, y ∈ I ◦ .

Besides, ifB(I ) ⊂ I ◦ thenτB > 1. Using these facts, it is not hard to prove the
remaining assertions in the proposition. �

Proof of corollary 3. For an open and dense set ofA ∈ Cr (X,G), (i) implies
(i.2.3).

4 More consequences: the continuous case

In this sectionX will denote aC1-smooth compact connected manifold, possibly
with boundary, of dimensiond ≥ 2, andμwill denote a smooth volume measure.

4.1 Notations and tools

Here we collect some results from the book [AP] that we will use in the proof of
theorem 4.
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Let d be a metric in the manifoldX. The uniform topology onHomeo(X, μ)
is determined by the metricd(T, T̃) = supx∈X d(T(x), T̃(x)). If T or T̃ (or
both) are not inHomeo(X, μ) but in Aut(X, μ) then the distance above should
be considered with essential supremum instead of sup.

In the proof of theorem 4, we will make a non-continuous perturbation of the
given homeomorphism, and then perturb again to get a homeomorphism. For
that last step we will need Alpern’s [A2] volume-preserving version of Lusin
theorem:

Theorem 4.1 (Theorem 10.2 from [AP]).Let T ∈ Homeo(X, μ) andε > 0.
Then there existsδ > 0with the following properties: GivenS ∈ Aut(X, μ), with
d(S, T) < δ and a weak neighborhoodW of S, there exists̃S ∈ Homeo(X, μ),
which equalsT in the boundary ofX, and satisfies̃S ∈ W andd(S̃, T) < ε.

The following result permits us to carry some geometry from the cube(Id,m)
to the manifold(X, μ). (In fact, the proof of theorem 4 would become slightly
easier if(X, μ) = (Id,m).)

Theorem 4.2 (Theorem 9.6 from [AP]). There exists a continuous map8 :
Id → X, called aBrown map, such that:

1. 8 is onto;

2. 8|int Id is a homeomorphism of the interior ofId onto its image;

3. 8(∂Id) is a closed nowhere dense set, disjoint from8(int Id);

4. 8∗m = μ.

Form ∈ N, consider the partition mod 0 of the cubeId into 2dm cubes of size
2−m. The images of those cubes by the Brown map8 form a mod 0 partition
of X. Let us indicate this partition byPm and call its elementscubesas well.
An automorphismS ∈ Aut(X, μ) such that the image of a cube inPm is mod
0 a cube inPm will be called ageneralized cube exchange map. If additionally
the map8−1S8 sends cubes into cubes by translations ofRd, we callSa cube
exchange map.

A generalized cube exchange map induces a permutation of the setPm of cubes.
We express the permutation as a product of disjoint cycles; corresponding to each
cycle there is anS-invariant subset ofM , that we call acyclic tower.

An important perturbation result due to Lax [L] is the following:

Theorem 4.3 (Theorem 3.1 from [AP]).Let T ∈ Homeo(Id,m). Then for any
δ > 0 there is a cube exchangeP such thatd(P, T) < δ.
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In fact, it was shown by Alpern [A1] that we can takeP in Lax theorem with
a single cycle tower. To show that he used the lemma below (which we will also
employ with a slightly different purpose):

Lemma 4.4 (Lemma 3.2 from [AP]). Given any permutationσ of N =
{1, . . . , N}, there is a cyclic permutatioñσ ofN such that|σ̃ ( j ) − σ( j )| ≤ 2
for all j ∈ N .

4.2 Proof of theorem 4

The proof has three steps:

1. We take a fine partitionPm of X and approximate the givenT by a gen-
eralized cube exchange mapS4. This approximation is taken with the
following additional properties:

• S4 equalsT in the (periodic)T-orbit of p (above which there is the
elliptic product) and isC1 in a neighborhood of it;

• S4 has two cyclic cube towers, the smaller of them consisting of the
n cubes that intersect the orbit ofp.

2. Using theorem 1, we changeS4 in a set of small diameter to make the
Lyapunov exponent vanish. The new mapS5 is still uniformly close toT .

3. Theorem 4.1 provides a homeomorphismT̃ weakly close toS4, which by
semicontinuity will have small exponent.

We precise now these three steps. LetT , A, and p be as in the statement,
and let ε > 0. Let δ = δ(T, ε) be given by theorem 4.1. LetO(p) =
{p, T p, . . . , Tn−1 p}. Without loss of generality, we assume that the minimum
distance between different points inO(p) is greater thanδ.

Let8 be the Brown map given by theorem 4.2. We can assume thatO(p) ∩
8(∂Id) = ∅ and, moreover, thatO(p) does not intersect the cube boundaries,
for any of the partitionsPm.

Step 1. Lax theorem 4.3 provides a cube exchangeS1 of rank m such that
d(S1, T) < δ/10. We assume that the rank is high enough so the diameter of the
cubes (inX) is less thanδ/10. The partition into cubes is fixed from now on.

Let Ci be the cube that containsTi p, for i ∈ Zn. Let H be the cube exchange
that permutes eachS1(Ci )with Ci +1, and fixes the other cubes. LetS2 = H ◦ S1;
thenS2 has a cyclic tower which containsO(p) andd(S2, S1) < 3δ/10.
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Next number all cubes fromPM in such a way that consecutive cubes share
a common face. Then delete then cubesCi and monotonically renumber the
remaining cubes, say asC′

j . Since distinctCi cubes do not share a common
face, we have that if| j − k| ≤ 2 then the diameter ofC′

j ∪ C′
k is less than

3δ/10. Applying the combinatorial lemma 4.4, we find a cube exchangeS3

which is 3δ/10-close toS2, cyclically permutes theC′
j cubes and still satisfies

S2(Ci ) = Ci +1.
Take open neighborhoodsUi 3 Ti p with Ui ⊂ int Ci such that there are

volume-preservingC1-diffeomorphismsfi : Ui → Ui +1 satisfying fi (Ti p) =
Ti +1 p. SinceCi rUi andCi +1rUi +1 are Lebesgue spaces with the same mea-
sure, we can extend eachfi to a volume-preserving mapCi → Ci +1. Changing
S3 inside theCi cubes according to those maps,2 we obtainS4 ∈ Aut(X, μ)with
d(S4, T) < 8δ/10.

Step 2. The generalized cube exchangeS4 obtained above has two cyclic towers
that cover allX. We select the cubesCi 3 p andC′

1 as bases of those towers.
We can assume thatC1 andC′

1 share a common face. LetW = C0 ∪ C′
0; then

diamW ≤ 2δ/10. Consider the cocycle(U, Â) =
(
(S4)W, AS4,W

)
induced by

S4 on W.
The measurêA∗(μ|W) ≥ (AS4)

n
∗(μ|C1) is rich, by proposition 1.6. So theo-

rem 1 yields a measurable dynamicsŨ : W → W such thatLE(Â, Ũ ) = 0. Let
S5 ∈ Aut(X, μ) be given by

S5(x) =

{
Ũ (S4(x)) if x ∈ S−1

4 (W),

S4(x) otherwise.

By proposition A.1, we haveLE(A, S5) = 0. Moreover,d(S5, T) < δ.

Step 3. By semicontinuity of the Lyapunov exponent (proposition A.2), there
is a weak neighborhoodW ⊂ Aut(X, μ) of S5 such thatL E(A, ∙) < ε onW .
Theorem 4.1 then gives somẽT ∈ W ∩ Homeo(X, μ) such thatd(T̃, T) < ε.
This concludes the proof.

Remark 4.5. Notice we haven’t used the full strength of theorem 1, but the mere
fact that ifA∗μ is rich then there exists someT ∈ Aut(X, μ) for whichLE(A, T)
is small.

2This last step would be simpler if the Brown map8 happened to beC1.
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4.3 Proof of theorem 6

It is interesting to mention that the following (apparently) stronger form of the-
orem 4 holds:

Theorem 8. GivenT ∈ Homeo(X, μ) andε > 0, there existsδ > 0 with the
following properties: LetA ∈ C1(X,G) and assume there exists a periodic
δ-pseudo-orbit(x0, . . . , xn−1, xn = x0) for T such that:

• A(xn−1) ∙ ∙ ∙ A(x0) is elliptic;

• A is not locally constant at at least one of the pointsxi .

Then there exists̃T ∈ Homeo(X, μ) ε-C0-close toT such that LE(A, T̃) is
arbitrarily close to zero.

Theorem 8 is actually a corollary of theorem 4. Indeed, given a periodic
δ-pseudo-orbit(x0, . . . , xn−1, xn = x0) for T , there exists a perturbatioñT of
T such thatT̃(xi ) = xi +1 for i = 0, . . . , n − 1. (This follows from [AP,
theorem 2.4], for instance.).

We are going to use the following result due to Avila. RecallRθ denotes the
rotation of angleθ , andρ(∙) denotes spectral radius.

Lemma 4.6 (Lemma 2 from [Y]). For everyn ∈ N and A0,…,An−1 ∈ G, there
is θ ∈ R such that

Rθ An−1 ∙ ∙ ∙ Rθ A1Rθ A0 is elliptic and |θ | ≤
C

n
logρ(An−1 ∙ ∙ ∙ A0),

whereC > 0 is some constant.

Proof of theorem 6.By proposition A.7, it suffices to prove that the set of(A, T)
such that either(A, T) is uniformly hyperbolic orLE(A, T) = 0 is generic in
Cr (X,G)× Homeo(X, μ). The uniformly hyperbolic cocycles(A, T) form an
open set. Also, the function

LE : Cr (X,G)× Homeo(X, μ) → R

is an upper semicontinuous function. So to prove the theorem, we have to show
that if (A, T) is not uniformly hyperbolic then for everyε > 0 there existÃ
Cr -close toA andT̃ C0-close toT such thatLE(A, T) < ε.

Fix ε > 0 and a cocycle(A, T) which is not uniformly hyperbolic. Making a
Cr -perturbation if necessary, we can assume thatA is nowhere locally constant.
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Let δ > 0 be given by theorem 8. BecauseT preserves volume, there is some
`0 ∈ N such that for every pair of pointsy, x ∈ X there exists aδ-pseudo-orbit
(y0, y1, . . . , y`) for T , such that̀ < `0, y0 = y, andy` = x.

Since(A, T) isn’t uniformly hyperbolic, there exist arbitrarily largen ∈ N
andx ∈ M such that‖An

T (x)‖ < (1 + δ)n. Fix n andx with n > `0/δ.
By concatenation we obtain aδ-pseudo-orbit(x0, x1, . . . , xn+`) of lengthn +

` < n + `0 with x0 = xn+` = x and such that

‖A(xn+`−1) ∙ ∙ ∙ A(x0)‖ < ‖A‖`∞(1 + δ)n.

According to lemma 4.6, there existsθ with |θ | < const.δ such that

A(xn+`−1)Rθ ∙ ∙ ∙ A(x1)Rθ A(x0)Rθ

is an elliptic matrix. So theorem 8 applies to theCr -perturbationÃ = ARθ of
A, showing that there exist̃T δ-C0-close toT such thatLE(Ã, T̃) is as small as
we want. �

5 The discrete case. Questions

In this section we prove theorem 7 and, in § 5.3, we pose related problems.

5.1 Preparation

Uniformly hyperbolic sets, elliptic products. The set of6 ∈ GN which are
uniformly hyperbolic is open inGN , see [Y]. In fact, we will use the following
result, which is indeed an immediate corollary of Avila’s lemma 4.6:

Theorem 5.1 (Proposition 6 in [Y]). There is an open and dense subsetR0 ⊂
GN such that if6 ∈ R0 then either6 is uniformly hyperbolic or there is an
elliptic matrix in the semigroup〈6〉 generated by6.

Liouville pairs. Recall thatρ denotes the spectral radius.

Definition 5.2. Letψ : N → N, with limn→∞ ψ(n) = ∞. If R andH belong to
G, we say that the pair(R, H) isψ-Liouville if R is elliptic and

lim inf
n→+∞

1

ψ(n)
logρ

(
RnHψ(n)

)
= 0.
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Notice that ifH is not hyperbolic then, for anyψ , (R, H) is ψ-Liouville for
every ellipticR.

Lemma 5.3. Given anyψ : N → N with limn→∞ ψ(n) = ∞, letR be the set
of (R, H) ∈ G2 such thatR is not elliptic or(R, H) isψ-Liouville. ThenR is
a residual subset ofG2.

Proof. LetGell be the subset ofG formed by elliptic matrices, and letL ⊂ G2

be the set ofψ-Liouville pairs. We haveL =
⋂

m≥1,ε>0 Um,ε, where

Um,ε =
{
(R, H) ∈ Gell ×G; ∃n ≥ m s.t.

1

ψ(n)
logρ

(
RnHψ(n)

)
< ε

}
.

EachUm,ε is open and we have to show it is dense inGell ×G. Given(R, H) ∈
Gell ×G, with H hyperbolic, take a basis ofR2 such that we can write

H =
(
λ 0
0 λ−1

)
, |λ| > 1.

Arbitrarily close toR, there is an elliptic matrix̃R such thatR̃n(1, 0) ∈ R(0, 1)
for somen ≥ m, that we can choose satisfying 1< eεψ(n). Hence

R̃n =
(

0 c
b d

)
and R̃nHψ(n) =

(
0 cλ−ψ(n)

bλψ(n) dλ−ψ(n).

)

If n is chosen large enough we have
∣
∣ tr R̃nHψ(n)

∣
∣ = |d||λ|−ψ(n) < Const∙ ‖R̃‖ |λ|−ψ(n) < 2.

Thereforeρ
(
R̃nHψ(n)

)
= 1< eεψ(n), that is,(R̃, H) ∈ Um,ε. �

Monomials. Let N = {1, 2, . . . , N}. To every word(k1, . . . , k`) ∈ N `,
` ≥ 1, we can associate a mapF : GN → G, (A1, . . . , AN) 7→ Ak1 ∙ ∙ ∙ Ak` ,
which is called amonomial. For eachi ∈ N , let us write

mi (F) = #
{

j ∈ {1, . . . , `}; kj = i
}
,

that is, the number of appearances of the letterAi in the monomialF . Let us
call two monomialsF1, F2 : GN → G independentif the vectors

(m1(F1), . . . ,mN(F1)) and (m1(F2), . . . ,mN(F2)) ∈ RN

are non-collinear.

Lemma 5.4. Let F1, F2 : GN → G be independent monomials, and letF =
(F1, F2) : GN → G2. Then for every residual subsetR ofG2, the setF−1(R) is
residual inGN.
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Proof. Let C ⊂ GN be the set of critical points ofF . We will show thatC has
empty interior. That implies the lemma, becauseF restricted to the open dense
setGN r C is an open map.

The derivative ofF at (id, . . . , id) is easily computed; it is:

(a1, . . . , aN) ∈ sl(2,R)N 7→

(
N∑

i =1

mi (F1)ai ,

N∑

i =1

mi (F2)ai

)

∈ sl(2,R)2.

Due to the independence assumption,DF (id, . . . , id) is surjective, that is,
(id, . . . , id) /∈ C. AssumeC has an interior pointx. Consider a real-analytic
path[0, 1] → GN from x to (id, . . . , id). Bearing in mind thatC is the zero-set
of some real-analytic function, we reach a contradiction. �

5.2 Proof of theorem 7

In all the proof we fix the functionψ(n) = n.
First we define the residual setR ⊂ GN for which we will prove the conclusion

of the theorem. Given two independent monomialsF1, F2 : GN → G, let
R(F1, F2) be the set of all6 ∈ GN such that

F1(6) is not elliptic or(F1(6), F2(6)) isψ-Liouville.

By lemmas 5.3 and 5.4,R(F1, F2) is a residual subset ofGN . Take the intersec-
tion over all independent pairsF1, F2 and call itR1. Finally, letR = R0 ∩R1,
whereR0 is the set from theorem 5.1.

From now on fix some6 ∈ R. If 6 is uniformly hyperbolic, there is nothing to
do. In the other case, since6 ∈ R0, there is a monomialF1 such thatR = F1(6)

is elliptic. F1 will be fixed from now on. By construction,(F1(6), F2(6)) is
ψ-Liouville for every monomialF2 which is independent fromF1.

Let A: X → 6 be a measurable function such that every matrix in6 is
attained on a positive measure set ofX. As usual, we assumeX is the unit
intervalI. We can also suppose there is a partitionI = I1t∙ ∙ ∙t IN into intervals
such thatA|Ii = Ai , where6 = (A1, . . . , AN).

Now letT : I → I be any given automorphism. We will explain how to perturb
T in the weak topology to make the exponent small. By proposition A.2, this
will conclude the proof.

Using theorem 2.12, we may begin withT equal to a cyclic interval permutation
of some arbitrarily high rankM .
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We will of course perturbT further, but will work only with automorphisms
that are (not necessarily cyclic) interval permutations. In this regard, a sequence
of disjoint intervalsJi = Ti (J1), i = 0, . . . , `− 1, is called atower of height̀ .
The tower is said to becyclic if in addition T`(J1) = J1. If moreover the map
A: I → 6 is constant on each intervalJi then we can talk about theproduct of
matrices along the tower, that we denote byA(JM) ∙ ∙ ∙ A(J1).

Since the rankM is high, most of the intervals
[

j

M
,

j + 1

M

)
, j = 0, 1, . . . ,M − 1,

will be completely contained in one of the intervalsIi (whereA is constant). By
changingT on a set of small measure, we may assume the collection of those
“good” intervals is cyclically permuted byT . The union of the “bad” intervals is
now an invariant set of small (less thanN/M) measure, and so its contribution to
the mean Lyapunov exponent is small. So, to simplify writing, we will assume
that all intervals are good.

Write F1(A1, . . . , AN) = Akp ∙ ∙ ∙ Ak1. Among the intervals that are permuted
by T , select someJ1, …, Jp such thatA|Ji = Aki . SinceM can be chosen
arbitrarily high compared top, the measure ofT1 =

⊔p
i =1 Ji is small. So, after

another perturbation, we can assume that that the dynamics ofT decomposes
into two cyclic towers, the smaller of which is

J1 → J2 → ∙ ∙ ∙ → Jp → J1.

Call this towerT1. The product of matrices along it is precisely the elliptic
matrix F1(6).

Let T2 be the other, bigger, tower. Consider the product of matrices along
T2; as a function of6 that product is by definition a monomialF2(6). We
may assume thatF1 and F2 are independent monomials. In fact, via a small
perturbation ofT we can remove a single level of the bigger tower to makeF1

and F2 independent. The removed interval becomes an invariant set of small
measure and can be disregarded.

Hence, by definition ofR, the pair(R, H) = (F1(6), F2(6)) isψ-Liouville.
That is, there is an integern such that

1

n
logρ(Hn Rn) < ε, (5)

whereε > 0 is any fixed small number.
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Decompose each intervalJi into n intervals of equal length

Ji = Ji,1 t Ji,2 t ∙ ∙ ∙ t Ji,p.

Modify slightly T in order to form the following tower of heightnp:

J1,1 → ∙ ∙ ∙ → Jp,1 →

J1,2 → ∙ ∙ ∙ → Jp,2 →

∙ ∙ ∙ →

J1,n → ∙ ∙ ∙ → Jp,n → J1,1.

The product along this new tower isRn. In the same way we decompose theT2

tower inn towers that we unfold as above into a single tower along which the
product of matrices will beHn. As sets, the two new towers are still the same
T1 andT2.

By our construction,T1 andT2 have bases of the same size. So we can actually
concatenate them one on top of the other to get a single cyclic tower along which
the matrix product isHn Rn. (This is done by composing on the left the dynamics
with a map that permutes the bases of the towers.) Since almost all the space is
covered by this tower, we deduce from (5) that the integrated Lyapunov exponent
corresponding to the perturbed dynamics is small. This proves theorem 7.

5.3 Some open questions

Problem 5.5.Does a finite set6 ⊂ G with the following properties exist?

1. 6 cannot be approximated by a uniformly hyperbolic set;

2. there exists a measurable mapA: I → 6 which assumes every value
in 6 on a set of positive measure such that LE(A, T) > 0 for every
T ∈ Aut(I,m). (Or even stronger, such that LE(A, T) ≥ λ0 > 0 for every
T.)

By theorem 7, those6 with #6 = N form a meager subset ofGN .
A positive answer to the following more elementary question would, by the

ergodic theorem, answer problem 5.5 (in the stronger form) positively:

Problem 5.6.Does there exist a pair of matricesA1, A2 ∈ G with the following
properties?A1 is hyperbolic,A2 is elliptic, and there are constants0 < p < 1
and λ > 1 such that for every wordAi1 Ai2 ∙ ∙ ∙ Ain satisfying thefrequency
condition

#
{

j ∈ {1, . . . , n}; i j = 2
}
< pn , (6)
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we have
‖Ai1 Ai2 ∙ ∙ ∙ Ain‖ > λn . (7)

Fixing some integerN ≥ 2, we can also ask whether the set of6 ∈ GN that
have the properties as in problem 5.5 has positive, or even full measure in the
complement of the hyperbolicity locus inGN .

Remark 5.7. From lemma 5.3 we see that even if the right hand side in (6) is
replaced by any functionφ(n) such thatφ(n) → ∞ then the set of6 ∈ G2 that
satisfy the conclusion of problem 5.6 is meager.

A Appendices

A.1 Derived cocycles

Given a setW ⊂ X of positive measure, we define thefirst return mapTW : W →
W by TW(x) = TnW(x)(x), wherenW(x) = min{n ≥ 1; Tn(x) ∈ W}. nW and
TW are defined a.e. and we haveTW ∈ Aut(W, μ|W).

Define AT,W : W → G as AT,W(x) = AnW(x)
T (x). The pair(TW, AT,W) is a

G-cocycle on(W, μ|W). This is called thederivedor induced cocycle.

Proposition A.1. We have LE(AT,W, TW) = LE(A|T , T |T ), whereT is the
T-invariant set

⋃
n∈Z T−n(W).

In fact, if T is ergodic thenT = X mod 0 and the proposition is lemma 2.2
from [K]. It is easy to adapt that proof to the general case, using Kac’s formula
in the form: ∫

W
nW dμ = μ(T ).

A.2 Semicontinuity

It is well-known that:

LE(A, T) = inf
N

1

N

∫

X
log‖AN

T ‖ dμ.

Among the consequences, we have semicontinuity ofLE(A, ∙):

Proposition A.2. LetA: X → Gbe measurable and such thatlog‖A‖ ∈ L1(μ).
Then the functionT ∈ Aut(X, μ) 7→ LE(A, T) ∈ R is upper semicontinuous.
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Proof. We may assume thatX is the unit intervalI andμ is Lebesgue measure
m. The weak topology inAut(I,m) is then given by theweak metric

d(S, T) = inf {ρ > 0; m({|S− T | > ρ}) < ρ}.

Let A: I → G, T ∈ Aut(I,m), andε > 0 be fixed. There existsN ∈ N such
that

LE(A, T) > −ε +
1

N

∫

I
log‖AN

T ‖ dm.

Since log‖A‖ is integrable, there isδ1 > 0 such that ifZ ⊂ I has mea-
sure m(Z) < δ1 then

∫
Z log‖A‖ dm < ε. By Lusin’s theorem, there ex-

ists a compact setK ⊂ I such that the functionsA|K and T |K are continu-
ous, andm(K c) < δ1/(2N). Let C = supK ‖A‖. There isδ2 > 0 such
that if A1, . . . , AN, B1, . . . , BN ∈ G are matrices with norm at mostC and
‖Ai − Bi ‖ < δ2 for eachi then‖

∏1
N Ai −

∏1
N Bi ‖ < ε. Let δ3 > 0 be such

that if x, y ∈ K , |x − y| < δ3 then ‖A(x) − A(y)‖ < δ2. Take numbers
η1 > ∙ ∙ ∙ > ηN−1 > 0 such thatη1 = δ3/2 and

x, y ∈ K , |x − y| < 2ηi +1 ⇒ |T(x)− T(y)| < ηi .

Let ρ = min(ηN−1, δ1/(2N)).
Now assumeS ∈ Aut(I,m) is such thatd(S, T) < ρ. LetW = {|S−T | ≤ ρ};

thenm(Wc) < ρ. Define

G =
N−1⋂

i =0

[
T−i (K ∩ W) ∩ S−i (K ∩ W)

]
.

ThenGc has small measure:m(Gc) ≤ Nm(K c + Wc) < δ1. We are going
to bound the expression1N

∫
I log‖AN

S ‖ dm. To do so, we are going to split the
integral in two parts,

∫
I =

∫
Gc +

∫
G. For the first part, we have

1

N

∫

Gc
log‖AN

S ‖ dm ≤
1

N

N−1∑

i =0

∫

Si (Gc)

log‖A‖ dm ≤ ε.

For the second part,

1

N

∫

G
log‖AN

S ‖ dm ≤
1

N

∫

G
log‖AN

T ‖ dm+
1

N

∫

G
‖AN

S − AN
T ‖ dm

< LE(A, T)+ ε +
1

N

∫

G
‖AN

S − AN
T ‖ dm.
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(We used that log(a + b) ≤ loga + b for a ≥ 1, b ≥ 0.)
Let x ∈ G. We claim that|Ti (x)−Si (x)| ≤ 2ηN−i for all i = 0, 1, . . . , N−1.

This is easily shown by induction:

|Ti +1(x)− Si +1(x)| ≤ |T(Ti (x))− T(Si (x))| + |T(Si (x))− S(Si (x))|

≤ ηN−i −1 + ρ ≤ 2ηN−i −1.

In particular, for alli we have|Ti (x) − Si (x)| < δ3 and thus‖A(Ti (x)) −
A(Si (x))‖ < δ2. Therefore‖AN

T (x)− AN
S (x)‖ < ε.

Summing the two parts, we conclude that

LE(A, S) ≤
1

N

∫

G
log‖AN

S ‖ dm ≤ LE(A, T)+ ε +
ε

N
.

This shows upper semicontinuity. �

Remark A.3. For the semicontinuity ofLE(∙, T) in theL1-topology, see [ArB].

A.3 An auxiliary result from measure theory

The aim of this section is to establish the lemma A.4 below, which we use a few
times in section 2. In what follows,I denotes the unit interval[0, 1], m denotes
Lebesgue measure inI or (by abuse of notation) in the squareI2, andπ : I2 → I
the projection in the first coordinate.

Lemma A.4. Let Y be eitherG or P1. Let A, A′ : I → Y be measurable
functions such thatA∗m = A′

∗m = ν. Then there existsS ∈ Aut(I2,m) such
that A′ ◦ π ◦ S = A ◦ π m-a.e.

The lemma is a straightforward consequence of the work of Rokhlin [R], as
we explain below.

Let (X, μ) and(Y, ν) be Lebesgue spaces and leth : (X, μ) → (Y, ν) be a
homomorphism (that is, a measurable map withν = h∗μ). Consider the Rokhlin
disintegration of the measureν along fibers ofh: For ν-a.e.y ∈ Y we have a
probability measureμy on the seth−1(y).

Lemma A.4 is in fact a particular case of the following:

Proposition A.5. Let h, h′ : (X, μ) → (Y, ν) be two homomorphisms between
Lebesgue spaces. Let{μg} and {μ′

g} be the respective Rokhlin disintegrations
of the measureμ. Assume that forν-a.e. y ∈ Y, the measuresμy andμ′

y are
non-atomic. Then there exists an automorphismS: (X, μ) → (X, μ) such that
h′ ◦ S = h μ-a.e.
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Proof. Consider the two decompositions

ζ = {h−1(y)}y∈Y and ζ ′ = {(h′)−1(y)}y∈Y

of the spaceX. The factor spacesX/ζ andX/ζ ′ are isomorphic (to(Y, ν), see
[R, p. 32]). Therefore the result of [R, p. 51], together with the assumption that
μy andμ′

y are non-atomic, gives that the decompositionsζ andζ ′ are isomorphic
mod 0. This means (see [R, p. 9]) that there exist isomorphismsU andV which
make the diagram below commutes mod 0:

X
U

X

X/ζ
V

X/ζ ′

(Vertical arrows denote quotient maps.) FromU we construct the desired auto-
morphismS. �

A.4 Uniform spectral radius theorem

Let‖∙‖ be an operator norm inGL(d,R), and letρ(A) denote the spectral radius
of A ∈ GL(d,R).

Proposition A.6. We haveρ(A) = limn→+∞ ‖An‖1/n for everyA ∈ GL(d,R),
and the convergence is uniform in compact subsets of GL(d,R).

Proof. The first part is the spectral radius theorem. Now, fixA0 ∈ GL(d,R)
andε > 0. Letn0 ∈ N be such that‖An0

0 ‖1/n0 < ρ(A0)+ ε. Let δ > 0 be such
that‖A − A0‖ < δ implies

‖An0‖1/n0 < ρ(A0)+ 2ε and ρ(A) > ρ(A0)− ε.

Forn ∈ N, we writen = mn0+k with m ≥ 0 and 0≤ k < n0. If n is sufficiently
large andA is δ-close toA0 then

ρ(A) ≤ ‖An‖1/n ≤ ‖An0‖m/n ‖A‖k/n < (ρ(A0)+ 2ε)mn0/n(‖A0‖ + δ)k/n

< ρ(A0)+ 3ε < ρ(A)+ 4ε.

This shows uniform convergence in the ball{A; ‖A − A0‖ < δ}. �
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A.5 Generic measurable dichotomy forL∞ or C0 cocycles

Here we show proposition 1.7. For that we need the proposition below, which is
also used in the proof of theorem 6.

Proposition A.7. If X, Y are separable Baire spaces andR ⊂ X × Y is
residual, then there is a residual subsetR′ ⊂ X such that for everyx ∈ R′, the
setRx = {y ∈ Y; (x, y) ∈ R} is a residual subset ofY.

Proof. First letA ⊂ X×Y be an open and dense set. For any open setV ⊂ Y, let
XA,V = {x ∈ X; there existsy ∈ V such that(x, y) ∈ A}. ThenXA,V is open
and dense inX. LetV be a countable base of open subsets ofY, and consider
the residual setXA =

⋂
V∈V XA,V . If we defineAx = {y ∈ Y; (x, y) ∈ A},

thenAx is open and dense inY for everyx ∈ XA.

Now, given a residual setR ⊂ X × Y, write R =
⋂

n∈N An, where An

are open and dense. LetR′ =
⋂

n∈N XAn . Then for everyx ∈ R′, the fiber
Rx =

⋂
n∈N(An)x is a residual subset ofY. �

Proof of proposition 1.7. We will only prove theL∞ statement, because the
C0 one is analogous. Note that ifA ∈ L∞(X,G) then one should read the
first alternative in the measurable dichotomy with “a.e. points” in place of “all
points”.

By propositions A.2 and A.7, we only have to show that if the essential image
of A ∈ L∞(X,G) is not an uniformly hyperbolic set (see definition 1.14) then
for everyT ∈ Aut(X, μ) there existÃ andT̃ close toA andT respectively in
theL∞ and weak topologies, such thatLE(Ã, T̃) is small.

Fix such anA. GivenT ∈ Aut(X, μ), to say that the cocycle(A, T) is not
uniformly hyperbolic means that

∀c > 0, ∀λ > 1, ∃n ∈ N s.t.μ
{
x; ‖An

T (x)‖ < cλn
}
> 0 .

Therefore the set ofT ∈ Aut(X, μ) such that(A, T) is not uniformly hyperbolic
is a Gδ set (in the weak topology). That set is also dense, by Baire and the
assumption that the essential image ofA is not an uniformly hyperbolic set.

So given any automorphismT , we can find a weak perturbatioñT which is
ergodic (see remark 1.1) and such that(A, T̃) is not uniformly hyperbolic. By
a result from [B] (mentioned in remark 1.2), there existsÃ L∞-close toA such
thatLE(Ã, T̃) = 0. �
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