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Dichotomies between uniform hyperbolicity and
zero Lyapunov exponents f&L(2, R) cocycles

Jairo Bochi* and Bassam Fayad

Abstract. We consider the linear cocycl@, A) induced by a measure preserving
dynamical systenT : X — X and a mapA: X — SL(2, R). We address the depen-
dence of the upper Lyapunov exponent(®f A) on the dynamic§ when the mapA

is kept fixed. We introduce explicit conditions on the cocycle that allow to perturb the
dynamics, in the weak and uniform topologies, to make the exponent drop arbitrarily
close to zero.

In the weak topology we deduce thatdfis a compact connected manifold, then for
aC' (r > 1) open and dense set of mafseither(T, A) is uniformly hyperbolic for
everyT, or the Lyapunov exponents 6T, A) vanish for the generic measurafile

For the continuous case, we obtain thaXifs of dimension greater than 2, then for
aC' (r > 1) generic mapA, there is a residual set of volume-preserving homeomor-
phismsT for which either(T, A) is uniformly hyperbolic or the Lyapunov exponents
of (T, A) vanish.

Keywords: linear cocycles, Lyapunov exponents, uniform hyperbolicity, volume-pre-
serving homeomorphisms.
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1 Introduction and statement of the results
Throughout this paper lel = SL(2, R).

Let 1 be a finite positive measure on a measurable space: X — X be
a u-preserving map, ané: X — G be a measurable map. The pélr, A)
is called a cocycle. It induces a skew-product nfiap: X x R? — X x R?
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308 JAIRO BOCHI and BASSAM FAYAD

defined byFr a(X, v) = (T(X), A(X)v). Denote, fom € N,

A (x) = A(T" () - - A(T(X))A(X), so that
FP A%, 0) = (T"(X), AT (x)v).

The groupG also acts orP! = P(R?), so(T, A) also induces a skew-product
map onX x P, By simplicity we use the same notations in bdth andP*
cases.

Provided log|A|| € L*(u), the upper Lyapunov exponent of the cocycle
(T, A atx € X, given by

. 1
T A X) = lim —log||AT (Xl

exists foru-almost every € X. (See e.g. [Arn] for basic facts about Lyapunov
exponents.) We denote also

LE(A, T) = / AT, A, X) du(X).
X

A cocycle(T, A) where A is essentially bounded is calleshiformly hyper-
bolic if there exists, fop-a.e.x € X, a splittingR? = EY(x) @& ES(x), which
varies measurably with respectxtois Fr a-invariant, and such thd" is uni-
formly expanded an&s is uniformly contracted.

Uniform hyperbolicity of (T, A) is equivalent to the following: there exists
c > 0,2 > 1 such that|AT(x)|| > cA" for u-a.e.x andn > 0. See [Y,
proposition 2].

In this paper we address the question of the dependencE (@, T) on the
dynamicsT, whereA: X — G is fixed. We shall consider the following two
general situations:

Measurable situation:Assume that X, w) is a non-atomic Lebesgue space and
A: X — G is a bounded measurable map. The dynariicgries in
the spacéut(X, u) of the automorphisms afX, w) (i.e., bi-measurable
u-preserving bijections). We will always consider the spagt X, () en-
dowed with theveak topologyaccording to whici,, — T iff u(Ta(B) A
T(B)) — 0 for every measurable sBtcC X.

Continuous situation:X is a compact manifold of dimension at least;2js
a volume measure, and: X — G is continuous. Now the dynamics
T varies in the spacklomedX, u) of u-preserving homeomorphisms,
which we endow with the unifornm@P) topology.
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UNIFORM HYPERBOLICITY AND ZERO LYAPUNOV EXPONENTS 309

Remark 1.1. In the respective topologies, the generic m&ps Aut(X, ) and

T € Homed@X, n) areergodic These are classical theorems of Halmos [H] and
Oxtoby and Ulam [OU], respectively. Although we shall not use these results,
we use some related ideas from [AP].

More concretely, we are interested in finding owmider what conditions on
the mapsA andT, is it possible to find a perturbatiofin one of the two topolo-
gies above, according to the situation considefedf T so that the Lyapunov
exponent LEA, T) drops to an arbitrarily small value or even to zerMore-
over, we want those conditions to beeckableinstead of appealing to Baire’s
theorem. Itis clear that such conditions must exclude some kind of hyperbolic-
ity: if for example A is constant and hyperbolic, th&f(A, T) is positive and
independent off. (We will see later that the “kinds” of hyperbolicity we have
to exclude are not the same in the measurable and continuous situations.) With
this in mind, we look for the weakest possible conditions that imply dichotomies
between zero exponents and uniform hyperbolicity.

In the measurable situation, we shall define a condition éyeralledrich-
ness that guarantees the existence of mapsuch thalLE(A, T) = 0. In fact,
we will prove (theorem 1) thaif A is rich then the generid e Aut(X, w)
satisfies LEA, T) = 0. The richness condition is explicit and involves only
the measure = A,u (see definition 1.5). It provides some “abundance” of
matrices in the support efthat makes it possible to find elliptic products, “mix
directions”, and make the exponents vanish after a perturbation of the dynamics.

Richness involves absolute continuity. So it turns out fbatthe richness
condition to be checkable, we have to ask some differentiabilit. oBince
we are working in the measurable category, that restriction may be considered
as a drawback. However, it is perhaps inevitable that some higher regularity
must be asked from\. We conjectureindeed (see § 5.3) th#tere exists a map
A: X — G (that assumes finitely many values ongfch that the integrated
exponent LEA, T) is bounded from below by a constanf > Oforall T ¢
Aut(X, u), and nevertheles# assumes an elliptic value on a set of positive
measure.

Remark 1.2. Our problem of studying.E(A, T) as a function ofT is parallel

to the one addressed in [B], where the nfapn the base is fixed and the cocycle
A is perturbed. The following results are obtained in [B]: For any ergodic
T e Aut(X, w), there is a residual s+ C L*(X, G) such that ifA € Rt
then either the cocycléT, A) is uniformly hyperbolic oLE(A, T) = 0. If, in
addition, X is a compact Hausdorff space ands a Borel measure then there
exists a residual subs®, c CO(X, G) with the same properties. (See also
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[BV] and [ArB] for extensions and related results.)

Definition 1.3. Let us say that a bounded m#&p X — G satisfies the measur-
able dichotomyf:

« either there is a constarit > 1 such that||A(x,) - - - A(Xq)|| > A" for
everyxy, ...,Xs € X (in particular, for everyT € Aut(X, ) the cocycle
(A, T) is uniformly hyperbolic);

« or the set ofT € Aut(X, u) for which LE(A, T) = 0 s residual in the
weak topology.

Our next goal would be to express tifatost” A’s satisfy the measurable
dichotomy We are able to prove that fact if we restrict ourselve€tomaps
A: X — G on some connected manifoKl. In fact, we give a complete classi-
fication in that case (see theorem 2) that permits us to: 1) obtain the measurable
dichotomy for an open and dense set of map&orollary 3), 2) describe pre-
cisely which maps do not satisfy the dichotomy and explicit all the possible
behaviors of the Lyapunov exponents for these maps (proposition 3.7).

In this regard, we also show that if we consider only madpthat assume
finitely many values, then “most” of them will satisfy dichotomy (see theorem 7).
However, that case is unrelated to richness, and actually we lose any explicit
condition for zero exponents.

In the continuous setting, we show that under certain conditions on themap
and also on the volume-preserving homeomorphisiibis possible to perturth
and make the exponent drop or (under a stronger assumption) vanish. We obtain
those results as consequences of the afore-mentioned measurable results. Forthat
we use Alpern’s technique [A2] of approximating measurable automorphisms
by homeomorphisms.

At last, we obtain a dichotomy result concerning homeomorphisms.

Definition 1.4. We say that a continuous mé@p X — G satisfies the continuous
dichotomyif for the genericT € HomedX, w):

« either the cocycléA, T) is uniformly hyperbolic;
e Or LE(A, T) =0.

We prove thatifX isaC" manifold § > 1) then theC'-generic mapA satisfies
the continuous dichotomy
Next we give the precise statements.
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1.1 The measurable case

To define richness we need first to introduce some notationisla measure in
G andv e P!, then the push-forwards ofby the maps

MeGr—>M1ecG and MeG+—> M.velP!

are indicated by ! andv v, respectively. Ih e N, the push-forward of" by
the map
(M]_,..., Mn) EGn [ ManEG

(i.e., then-th convolution power) is indicated hy".

Definition 1.5. Let v be a finite measure o of bounded support. Then
is called N-rich, for N e N, if there existsc > 0 such that for every e P!
we have

N

~1
v xv>km and (U*N) * v > km,

wherem denotes Lebesgue measuréPin The measure is calledrich if it is
N-rich for someN € N.

The richness property is studied in § 3.1, where the following criterium is
obtained:

Proposition 1.6. LetM be a compact manifold (possidiydimensional, possibly
with boundary, possibly not connected), with a smooth volume measaired
let A: M — G be aC! map. Assume there are points, ..., px € M such that
the matrix A(py) - - - A(py) is elliptic and moreove® is not locally constant at
at least one of they’s. ThenA, . is rich.

Our main theorem is:

Theorem 1. Let (X, u) be a non-atomic Lebesgue space. RetX — G be
a bounded measurable map such that the mea8yeis rich. Then there is a
residual setR o C Aut(X, u) suchthat LEA, T) =O0forall T € Ra.

The following is an informal outline of the proof. Richness implies the ex-
istence of products that send any chosen direction into any other. Perturbing
the dynamics in the weak topology we can make most of the orbits periodic.
Also, we do that perturbation so that a very small “rich part” of the space is kept
invariant. Then another well chosen perturbation makes most of the orbits spend
a few iterates in the rich region in such a way that expanded directions are sent
into contracting directions. This forces the Lyapunov exponents to drop close to
zero.

From theorem 1 and proposition 1.6, we obtain the following result:
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Theorem 2. Let X be a compact connected manifold (possibigimensional,
possibly with boundary), ang be a volume measure. Lé&t: X — G be a
C! map. Then:

(i) either there is aclosedinterval | P! such thatA(x) - | c | for every
X e X;

(i) orLE(A, T) = Oforthe genericl € Aut(X, ) (w.r.t. the weak topology).

It is easy to describe all the possible behaviors of the Lyapunov exponent
under alternative (i) in the theorem — see § 3.3. In fact, for an open and dense
set of map9A (i) implies uniform hyperbolicity for any dynamics, so we obtain
the result mentioned in the abstract:

Corollary 3. Letl <r < oo and letX be a compact connectétl -manifold.
Then the set oA € C' (X, G) that satisfy the measurable dichotomyisopen
and dense.

We remark that.* andC° versions of corollary 3 are also true:

Proposition 1.7. Let (X, u) be a non-atomic Lebesgue space. There exists a
residual subseR C L*>°(X, G) such that measurable dichotomy holds for every
A € R. If, in addition, X is compact Hausdorff and is a Borel measure then
there exists a residual subsgt ¢ C°(X, G) such that measurable dichotomy
holds for everyA € R'.

The proposition follows from the results of [B] mentioned in remark 1.2, see
appendix A.5 for details.

Question 1.8.Can theorem 2 be extended in some form to non-connected man-
ifolds? Does corollary 3 remain true X is not connected?

1.2 The continuous case

Next we consider volume-preserving homeomorphisms as dynamics. As ex-
plained before, it is useful to assume differentiability of the mdap

So now we letX be a smooth compact connected manifold, possibly with
boundary, of dimensiod > 2, and letu be a smooth volume measure. Recall
HomeaX, n) indicates the set gi-preserving homeomorphisms, endowed with
the C° topology. Our main result in that setting is:

Theorem 4. Let T € HomedX, u) and A € CY(X, G). Assume there is a
T-periodic pointp = T"(p) such that:
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» AL(p) is elliptic;
« Ais not locally constant at at least one of the poiptsT p, ..., T"1p.

Then for everg > 0 there existsT € HomedX, u) arbitrarily C°-close toT
suchthat LEA, T) < «.

In fact, it is easy to strengthen theorem 4 by demanding only the existence of
periodic pseudo-orbits with similar properties; see § 4.3.

Let us call a periodic poinp of periodn for an homeomorphisrii : X — X
persistentf for every e > 0 there is§ > 0 such thatifT is an homeomorphism
8-C%-close toT thenT has a periodic poinp of periodn which is e-close to
p. (For example, ifp is an isolated fixed point of Poincaré—Lefschetz index
different from 1 thenp is persistent.)

Theorem 4, together with a semicontinuity property (proposition A.2), implies:

Corollary 5. LetT € Homed@X, ) and A € C1(X, G). Assume thal has a
persistent periodic poinp = T"(p) such that:

* Al (p) is elliptic;
« forsomd =0, 1,...,n— 1, the derivativeD A(T! p) is non-zero.

Then there is a neighbgrhodd C Ho[necﬁx, w) of T and a residual subset
R C Usuchthat LEA, T) =0forall T € R.

Recall definition 1.4. Th€C-generic map satisfies the continuous dichotomy
— this follows easily from [B] and proposition A.7. Here we extend this result to
higher topologies:

Theorem 6. Let 1 < r < oo and let X be a compactC'-manifold, with a
smooth volume measuyse Then there is a residual s®& c C" (X, G) such that
if A € R thenA satisfies the continuous dichotomy.

Our proof of the corollary 3 gives an effective way to decide whether a given
mapA: X — G satisfies the measurable dichotomy. That is not so for our proof
of the continuous dichotomy theorem 6. Two related questions are:

Question 1.9.Is there any analogue of theorem 2 for the continuous case?

Question 1.10.1n theorem 6, can we take an open and dense set, instead of a
residual one?
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1.3 The smooth case

If both T and A are assumed to have higher regularity, then dichotomy between
uniform hyperbolicity and zero exponents is no longer true — either fixdng
and varyingT or fixing T and varyingA. This is shown by the following two
examples:

1. LetT: X — X be a volume-preserving? Anosov diffeomorphism.
Then the exponent is positive on an open and dense sub€et Xt G),
by results of Bonatti and Viana [BnV].

2. Consider Schrodinger cocycles on théorus:

S.v(®) = (/\vl(e) _01) , #eTd reR (1)

If V(0) is a hon-constant trigonometrical polynomial, and the dynamics
in the base is restricted to real analytic maps in a neighborhood of the unit
polydisc inCY, then Herman [Hel] showed that there exists a positive
lower bound on the exponent, provideds greater than somag,.

In our setting, we can ask:

Question 1.11. AssumeA: X — G is a C! map that assumes both elliptic
and hyperbolic values. (A concrete interesting example in the tares TY is

A = S, given by(1) with V(#) = cost, andr > 1.) When is it possible
to find a volume-preserving® mapT: X — X such that LEA, T) is exactly
zero?

We mention here two results obtained by Herman proving abundance of zero
exponents in the absence of uniform hyperbolicity for smooth cocycles above
uniquely ergodic diffeomorphisms of the circle. (Here the exponents are com-
puted above the unique invariant probability measure.) The results are based
on Baire category arguments and the method used is to approximate the base
dynamics by periodic maps and concentrate the measure on orbits above which
the product of matrices are elliptic.

Define

Fe = {f e Diff 2(TY; p(f) e R\ Q}

wherep (f) denotes the rotation number &f We consider map8 e C;OO('IFl,
G), that is, smooth maps that are not homotopic to a constant matrix séthe
F> x C;"O(’H‘l, G) is a Baire space with thé>-topology. Then:
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Theorem 1.12 ([HeZ2]). There is a dens&; setG C ﬁ X C;%(Tl, G) of
cocycleq f, A) such thatf is uniquely ergodic and L&A, f, i ¢) = O with ¢
the unique invariant probability of. Here the absence of uniform hyperbolicity
is granted by the fact that the cocycle is not homotopic to identity — see [Hel,
proposition 4.2].

The set of smooth maps that are homotopic to a constant matrix is denoted
by C5°(T?, G). Then:

Theorem 1.13 ([He2]). There exists a séf C F® x C (T, G) whoseC™
closue F is C° dense in the subset of non-uniformly hyperbolic cocycles in
F2° x Cgo(’JI‘l, G), and such that there is@> denseG; setG c F of cocycles

(f, A) such thatf is uniquely ergodic and L&, f, i) = Owith ¢ the unique
invariant measure of .

1.4 The discrete case

We return to the measurable case and consider this time the situation where
A: X — G assumes dinite number of values. Sucl cannot satisfy the
richness condition, so the previous results do not apply. Nevertheless we can
prove that measurable dichotomy holds generically.

Definition 1.14. A bounded sekE C G is calleduniformly hyperbolicif there
existsh > 1 such that

| Ay Agl > A" forall Ay, ..., Ay e X.

(Notice that the first option in definition 1.3 just amounts to saying &)
is a uniformly hyperbolic set.)

Given anN-tuple of matrice = (Ay, ..., Ay), for simplicity we also write
Y forthe set{Aq, ..., An).

Theorem 7. Let N > 2 be an integer. There exists a residual et GN such
that for everyx € R:

« either X is uniformly hyperbolic;

« or for every measurable maf: X — X which assumes every valuein
on a set of positive measure, there is a residualisgtc Aut(X, n) such
that LE(A, T) = Ofor everyT € R.

Remark 1.15. For the reader’s information, we mention a characterization of
uniform hyperbolicity obtained in [AvBY]: A compact s& c G is uniformly
hyperbolic iff there exists an open ggt ¢ P! with finitely many connected
componentandU # P!, suchthat A(U) c U for eachA € .
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1.5 Structure of the paper

In section 2 we prove theorem 1. In section 3 we prove proposition 1.6 and then
theorem 2. Section 4 deals with the continuous case and contains the proof of
theorem 4 (that uses again theorem 1 and proposition 1.6). The proofoftheorem 7
is given in section 5 and it is independent of the other results. In the appendix
we present some technical results that are used throughout the paper.

2 Proof of theorem 1

In all this section(X, ) denotes a non-atomic Lebesgue space (not necessarily
with 1 (X) = 1).

The following are roughly the main steps of the proof:

* In § 2.1, we show that givel\: (X, u) — G, the existenceof some
dynamicsT e Aut(X, p) for which LE(A, T) is small depends only on
the push-forward measurA,. in G. That is very useful, because it
allows us to address the questions in Lebesgue spgaces) and maps
A: (X, u) — G that are convenient for our constructions.

* In § 2.2, we show that if a measuve= A,u is 1-rich then there exists
T e Aut(X, ) for whichLE(A, T) is small.

* In8§2.3, we collect abstractlemmas on perturbation of measures and maps.
Then, in § 2.4, we relate the convolution measuif® that appears in the
definition of richness with a dynamical construction.

* In § 2.5, we conclude the proof. We apply the result from § 2.4 to obtain
an induced cocycle whose push-forwardés a measure which is close
to an 1-rich one. A specific argument of continuity is used to allow the use
of the results of § 2.2 despite the fact that we are dealing with a measure
that is only close to a 1-rich one.
2.1 Least exponent of ordek
We begin introducing some notation: A: (X, u) — G is a bounded measur-
able mapk € N, andT € Aut(X, ), let
1 k
A(AT) = P log | ATl de .
X

Observe that by subadditivity gf log ||A'}||duwe haveLE(A, T) < Ax(A, T).
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We define thdeast exponent of ordéds of A

Ax(A) = inf A(A, T).
TeAut(X, 1)

The continuity property of\ states as follows:

Lemma 2.1. Givenk € N, C > 1lands > 0, there exists; > 0 with the
following properties: IfA, B: (X, ) — G are measurable maps withA| .,
IBll« <Cand

IA— Bl 2/ IA—=Bldu <n then [A(A) — A(B)| <3.
X

Proof. Taken = C**15. FixanyT e Aut(X, ). We can estimate pointwise

log [ A% || — log B[] < [IIA% ) —IBX ]|
< [IA% — BY|
=<

k—1
CIY IBoT — Ao T'|.
i=0

Dividing by k and integrating oveK we obtain|Ax(A, T) — Ax(B, T)| < 4.00

Remark 2.2. If A: X — G is measurable and bounded, a8d(X, u) —
(X', ) is an isomorphism, it is clear thatx(A o S) = Ax(A), because
A(Ao S T) = A(A, SoT o S foreveryT e Aut(X, ).

In fact, we will prove in lemma 2.5 a stronger resulti (A) depends only on
the push-forward measum, .. To prove that, we will need lemma 2.3 below.

In what follows I denotes the unit intervdD, 1] and m denotes Lebesgue
measure ofi or (by abuse of notation) on the squéfe

Lemma 2.3.Let A: I — G be measurable and bounded. kzetI? — I be the
projection on the first coordinate, and consider the map

Aom: (I, m) — G.

ThenAx(Ao ) = Ax(A) for everyk € N.

The idea of the proof is to approximateby something invertible and to use
remark 2.2 and the continuity property from lemma 2.1.
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Proof. It is clear thatAx(A o ) < Ax(A), becauseAy(Ao 7, T x id) =
A(A, T) forany T e Autl, m). Fix$s > 0. LetT e Aut(I? m) be such
that Ak(Aom, T) < Ax(Aom) + 6. Forn € N, define an isomorphism
Pn: (I2, m) — (I, m) such that ifl c Iis a dyadic interval withl | = 2" then
Po(I x I) = I. Then the functiong andP,: I?> — I are uniformly 2"-close.
This impliesL!-convergence:

nlﬂ‘)l‘lOo |AoP,— Aom|,=0.
Indeed, givere > 0 there exists, by Lusin’s theorem, a compactiset 1 such
thatA|k is continuous anth(K°) < ¢. If nislarge enough then forevexyy €
K thatare 2"-close we hav# A(x) — A(y)|| < ¢. LetG, = 7 1{(K)NP;1(K);
thenm(G{) < 2¢. Thus

||AoPn—Aon||dm=f (---)+/ (o) < &+ 2] Al
12 Gn G

By lemma 2.1, ifn is sufficiently large them\ (Ao P, T) < § + Ax(Ao ).
Let T’ = PyoT o P;L thenAx(A, T') = Ak(Ao P,, T). This shows that
Ak(A) < § + Ax(Ao ). Sinces > 0 is arbitrary, the lemma follows. O

Let us record for later use something we have proved:

Lemma 2.4. There exists a sequence of isomorphigtps (I2, m) — (I, m)
such that for any measurable bound&d I — G we havd| Ao P,— Ao |y — 0
asn — oo.

Now we can state and prove the:

Lemma 2.5.Let A, B: (X, u) — G be such thatA,iu = B,u. ThenAg(A) =
Ax(B).

Proof. We can assume that(X) = 1. By remark 2.2, we can assume that
and B are defined ove(X, u) = (I, m). SinceA.m = B.m, by lemma A.4
there is an automorphis® of the squard? such thatAo 7 = Bom o S. In
particular,Ax(Ao ) = Ax(B o). So, by lemma 2.3A«(A) = Ax(B). O

Based on lemma 2.5, we can introduce the following notatiom:i¢fa finite
measure iz with bounded support, arlde N, we write

Ak(v) = Ax(A),

where A: (X, u) — G is some map, defined on some non-atomic Lebesgue
space, such thak,u = v. (Notice the existence of sudh)
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The mapAg has the following convexity properties:

Lemma 2.6. Letv, v’ be finite measures i, with bounded supports, and let
t > 0. Then

(i) Ak(tv) =tAx();
(i) Ak +v") < Ak(v) + Ac(V).

Proof. The first part is obvious, so let us show the second onel LEtC R
be disjoint intervals with lengths(G), v'(G), respectively. Take a maf: | U
I” - G such thatA,m|, = v, A,m|;» = V' (wWherem is Lebesgue measure).
Then (L) Ax(v + V'), (2) Ax(v) + Ax(v'), are the infimum ofA(A, T) where
T runs over (1) all automorphisns € Aut(l u I, m), (2) the automorphisms
T suchthaff (1) =1, T(l") = I, respectively. O

2.2 An existence result

If vis a finite measure o& with bounded support, we write
v =v(G) and |v|s =Inf{C > 1; ||A|| < Cforv-a.e.Aec G},

where||-|| is some fixed operator norm.

Proposition 2.7.LetC > 1,8 > 0, ando be al-rich measure withjo ||, < C.
Then there existk € N with the following properties: It is a measure iz
such thafw| < 1and||wl|«» < C then

Ax(w + o) < |w|s + |o|logC.

The proposition implies thagiven A: (X, u) — G, such thatv = A,u is
1-rich, there existdI € Aut(X, u) such that LEA, T) is small. Indeed, takel
small. The measure = §v is 1-rich as well, so we can apply the proposition to
w=(1-35v.

The fact thak depends uniformly om, provided|w| - < C, willbe important
in the proof of theorem 1.

For the reader’s convenience, we will give an informal sketch of the proof:

» We first deal with the case whetgis a Dirac measure on some hyperbolic
H € G. We use 1-richness af and the abstract lemma A.4 to find pro-
ducts of length 2 that send the expanding directioHoéxactly to the
contracting one. Then we construct a dynamics so that orbits spend a long
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time in the (hyperbolicd-part of the space, then spend two iterates in the
o-part, then return to the-part. This makea\y(w + o) small fork large
enough.

» To reduce the general case to the previous one, we (essentially) approxi-

mate a giverw by a linear combination of Dirac measures, and use lem-
mas 2.1 and 2.6.

Given a matrixH € G, denote byp(H) € [1, co) its spectral radius. (That
is, p(H) = max(|A1], |A2]) if A1, A, are the eigenvalues éf.)

Proof of proposition 2.7. Definition ofk: GivenC > 1 andé > 0, there is
£y € N with the following properties: IH, R € G are matrices such that

* [H| <C,|IR| =C?%
« H is a hyperbolic matrix and moreove(H) > €/4;

« R(e") = €°, wheree" ande® e P! denote respectively the expanding and
contracting eigendirections &f;

then the matrixR H* is elliptic for every¢ > ¢o. To prove this fact, take a basis
0 c
b d
betweem" andv® cannot be too small, hence we can give bounds, to, d
depending only o€ ands. Then|tr RH!| = |d|p(H)~¢ < 2 for sufficiently
large?.

Given the 1-rich measure with ||o |« < C, letk > 0 be as in definition 1.5.
Fix an integer

{vY, v5} of unit eigenvectors oA . In this basisR becomes( ) The angle

¢ > max({o, 2/k).

By proposition A.6, there exists € N such that ifE € G is an elliptic matrix
with ||E|| < C“*2 then

£+ 2)6

Vp>K.

1
—log | EP|l <
p

Fix p > K large enough so that definikg= (¢ + 2) p, we have
1
k

Let us verify thak has the stated properties.

5
log|H| <5 forallH e Gst|H| <C and p(H) <€
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First case: We will first prove the proposition in the case whesdas a Dirac
measuréy on someH € G, with ||H|| < C. We will exhibit a Lebesgue space
(X, w), amapA: X — G with A,u = 84 + o, and a dynamic¥ < Aut(X, u)
such thatAx (A, T) < §/2+ |o|logC.

If p(H) < €4 (e.g.H is elliptic or parabolic), we simply tak& = id, and
the claim follows.

So we assumel is a hyperbolic matrix, withh (H) > €”/4. Lete" ande® e P!
be its expanding and contracting eigendirections, respectively. Siiscke-rich,
we have

ox€">m, o lxe>xm.

There are measures, o, < o suchthakm = o7 x € andem = 02‘1 xesl Let

L1 C J, Lo C hbeintervalswithLi| = 3« = 3loil, [J| = 3lo], hN I = 2.
Choose two measurable mafss J — G (i = 1, 2) suchthatA).(m|,) =

2o; and(A).(M[3L) = 3(0 —0i). BylemmaA.4, there exists anisomorphism

Ssuch that the following diagram commutes a.e:

A()e!
leH”—>L1L>]P>1

S
l /zwles

LoxI——L>
Thatis, fora.eze L x I,
(A2 om)(S(2) - (Arom)(2) - € =€
Define a convenient Lebesgue space to work on:
X=Tuh xDhu(kxD,

The measurg on X restricted tdl, resp.J; x I, is one-, resp. two-, dimensional
Lebesgue measure. ThemAp X — GisdefinedasA = Honl, A= Ajom
onJ; xI,andA= Ayomr onJ, x I. ThenA.u =8y + o. Atlast, we define
the measure-preserving dynamical systemX — X. Breakl into disjoint
intervalsly, ..., |, of equal measuren(l;) = 1/¢. Since ¥¢ < «/2, we can
take aseZ c L, x Iwithm(Z) = m(l,). LetU;: |, — Z be an isomorphism.
We defineT as being the identity on

Xig = (h xD N 2Z)U (& xD\ S(2)),

1Given a homomorphisni : (X, u) — (Y, v) andvy < v, define a measurey in X by % =

415 f; then freg = vy
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and in the rest as
Uz S Us
h—=>lh—=-- >, > Z=> SZ) —= I,

where the unspecified arrows are translations and the isomorphiane chosen
so thatT “2|,, is identity.

Let us estimate\ (A, T).

Note that

If ze I, then

AT(2) = ASo T @) AT ) H,
with A(So T¢"12)A(T!"1z) - & = €. By our choice of¢, A7 (z) is elliptic

for everyz € I;. In fact this holds for ang € X \ Xjq. Sincep > k' and
k= (+ 2)p, we have, forang € X \ X,

1 )
. log | A% (2)|| = log I[AST2(2)1P) < >

1
£+2p
On the other hand,%fxid log | A |du < Jx,109lAlldu < [o|logC.

This shows that\((A, T) < § + |o|logC, as claimed.

General caseNow letw be any measure satisfying the hypotheses of the propo-
sition. Letl, =[O, |o]), |2 = [|o], o] + |w|], andA: I; U I, — G be such
that
A.m[)) =0 and A.(mM[,) = w.
Letn = n(k, C, 8lw|/2) be given by lemma 2.1.
LetB: I, — G be asimple function such thiB| ., < C and||A|;, — BJ1 <

n. ExtendB to 11 U I, by takingB = A on I;. We can write

n n
B.m=o + ZtiSHi =(1-|o)o + Zti Bp +0),
i=1 i=1
whereH; € G,t > 0and) [t = |o| < 1.
By lemma 2.6 and the case already considered,

Ak(B) = (= [@)Ak(e) + )t Ak(By; +0)
< (1—|w)lo|logC + (Zti) (4 + lo|logC)

= 1|w|s + |o|logC.

Since| A — BJl1 < 5, we obtainAx(A) < |w|§ + |o|logC. This proves the
proposition. O
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2.3 Perturbing measures

In this subsection, we introduce a definition of closeness in the space of measures
which is suitable to our purposes, and prove a couple of useful properties.

Definition 2.8. Let vy, v, be measures i with bounded support and same
mass|v;| = |vz] = a. Givenn > 0, we say thab; andv, are n-closeif there
existAs, Az: ([0,a], m) — G such that(A).u = vy and || A1 — Az|l1 < 7.

We can define a distanaivq, v») as the infimum of the such thatv; and
v, aren-close in the sense above. That this is indeed a metric follows from the
lemma below:

Lemmg 29.LetA: (X, n) > G gndv = A.u. Ifvis n:close tov then there
existsA: (X, u) - G such thatj A — Al|1 < nandb = A,m.

Proof. Without loss of generality we assurhg = 1, and moreover X, ) =
(I, m). By assumption, there ar8;, A;: T — G such that(A;),m = v,
(A2).m=1"b,andn’ =n — AL — Axll. > 0.

By lemma A.4, there exist§ € Aut(I2, m) such that andd; o 7 0 S =
Aom ae. LetP,: I2 — I be given by lemma 2.4 and choose= N so that
|Aom — Ao Pylly < 1. DefineA= Ayom oSo Pt ThenA,m= 7 and

IA— Al = [AoPy— Ao Pyll1=[|Azor 0 S— Ao Pylz
|AcomroS—AjomoY|i|]Aomr — Ao Pyl O

IA

<Az = Aglls+n'=n.
We will also need the following:

Lemma 2.10.Let A: (X, u) — G, v = A,u ando < v. Then for every; > 0
there exists a measurable sétc X such thatA, (u|y) is n-close too.

Proof. There is no loss of generality in assuming that = |v| = 1. So we
can also assume théX, u) = (I, m). Let f: G — I be the Radon-Nikodym
derivative 9. DefineYy = {(x,t) € X x[; 0 <t < f o AX)}. Let
P.: X xI — X beasinlemma 2.4, with € N large enough so thétA o & —
Ao Pplls < n. LetY = Py(Yo). ThenA,(uly) = (Ao Pp).((n x M)|yy) is
n-close to(A o m)..((u x m)ly,). The later measure equaits Indeed,

((Aom)((u x Mi))(Z) = (uxm(Yonz HA(Z))

=/ foAdu:/fdv:a(Z),
A-1(2Z) z

for any measurablg c G. O
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2.4 Towers and convolutions

In this subsection we show that convolution measures can be approximately
obtained in a dynamical way, in the following sense:

Lemma 2.11. Let A: I — G be bounded and = A.m. GivenN € N and
n > 0 there exist e Aut(I, m) and a setZ c I such thatFN = id, the sets
Z, F(2), ...,FN-1(Z) are disjoint, and the measur\}),(m|z) is n-close to
1 1)>i<N.

N

Proof. If N = 1 there is nothing to prove; assuriNe> 2. Let us first consider
the case wheré has a special form, namely thereMse N such thatA restricted

toeachinterval; = [‘W’l, %), j =1,..., M,isconstant, say equal . Then
1 !
V= M Z(SAJ- and v = W Z 5A1N"'Ajl .
j=1 jefl,...MN

Break each interval; into N MN~! disjoint intervals of equal length,; x,
k=1,..., NMN-1 Take a bijection

(1...,N}x{1,... MmN > {1, ..., M} x{1,...,NMN"1}

of the form(i, j) — (ji, k@, j)), wherej = (ju, ..., jn).

Write J; = 1 ki) then{J;}i; is a partition ofl. DefineF: 1 — I by
mapping eachlyj to Jj, Jj to Jgj, ..., andJy j to Jyj by translations.
Let
z= || &
je(l,...,M}N

ThenZ, F(2), ..., FN71(Z) are disjoint and A}).(m|z) = & v*N.

General case:Given any bounded\: I — G, defineC = ||A|,, and assume
thatN € N andn > O are arbitrarily chosen. Leh: I — G be a bounded
simple function which ig(C, N, n) — L*-close toA and such thaf hasM level
sets, all with the same measuré&\; whereM is some integer ane(C, N, )
will be defined later.

Take S € Aut(Il, m) that maps these level sets to intervalsfse: A o Sfalls
in the later case. Accordingly there exite Aut(I, m) and a se?Z c I such
thatZ, F(2), ..., FN=1(2) are disjoint anc{Ag)*(mQ) = L(Am)*N,

LetF = S*oFoSandZ = SY(2). Then(AM).(m[z) = & (A.m)*N.
From point 2 of the proof of lemma 2.1 we see théL, N, n) can be chosen
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so that thes(C, N, ) — L® closeness ofA and A implies that(A,m)*N and
(A*m)j'\l aren/2-close (in the sense of definition 2.8) as well(aé)*(mu)
and(AY).(m|z). This concludes the proof. O

2.5 End of the proof

An interval permutation of rankM is an automorphisnt e Aut(l, m) which
sends each interval of the form

| A
— —1,]=0,1,...,M -1,
[M M ) :

onto another by an ordinary translation. We daltyclic if the induced permu-
tation of the intervals is cyclic. We are going to use the following fact:

Theorem 2.12 (Halmos).Cyclic interval permutations are dense in Autm),
in the weak topology.

For the proof, see Halmos [H, p. 65], or [AP, lemmas 6.4 and 3.2].

Proof of theorem 1. Since we are working in the measurable category we can
assume thaX is the unit intervall andu is the Lebesgue measure on it.

SupposeA: I — G is such thav = A,mis rich. Due to proposition A.2, we
only have to show that giveh € Aut(ll, m) andé > 0, there exist3 e Aut(l, m)
arbitrarily close toT in the weak topology such thaE(A, T) < 6.

So letT andg, and also an arbitrary > 0. By theorem 2.12, we can assume
thatT is a cyclic interval permutation and assume its rdhkatisfieaM > 4/¢.

Let N be such that*N is 1-rich.

Before going into the details of the proof let us sketch how we will obtain the
perturbationl thatwill actually satisiym[T # T] < e. The perturbation is done
in two steps. In the first one, we will use richness of the meastweroduce a
mapT; that is close td and that has two cyclic towers: (1) a (big) cyclic tower
of heightM that fills most of the space and that comes from the original tower
of T; (2) a (small) cyclic tower of heighiN such that the push forward of the
measure on its base by the productXd along itsN levels is a measure close
to a 1-rich one, namely /N, whereo = ¢'v*N ande’ is small. (Actually, there
is a third invariant set that can be disregarded because it has small measure.)

Let W be the union of the basis of the big and the small tower. Then we
consider the first return on the 3&t we obtain a derived cocycle ové/ with
identity for dynamics and a matrix malsuch thatA, (m|w) contains a part that
is close tao/N.
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Here we pass to the second step and peffitio T, keeping the two towers
aboveW invariant but modifying the first return map to a m&pso that the
Lyapunov exponertE(A, S) of the derived cocycle becomes small (this is done
by takingT equal toT; except orT,*W with nevertheles$ T, "W = W). Since
Unez T"W = U,z T'W has almost full measure, the Iatter implies smallness
of LE(A, T). The mapT that we obtain is close {6, since we only modify the
dynamics onT; *w.

To understand how the mais obtained, replace for a momeAt(m|w) by
a mapA such thatA, (m|w) containss/N so that proposition 2.7 applies and
identity onW can be replaced by a dynamics that redutgsA, S) close to zero
(for somek that depends on/N). Now, the fact thak depends only on the
1-rich part of the measure and a careful choice of quantifiers allow to use the
continuity of Ax and derive the same conclusion fArinstead ofA. Now we
give the exact proof.

LetC = ||All» and

' — min £ )
e=m <<4M>’ <MlogC>)‘

Let o = &v*N. We will use that the measure/N is 1-rich. Letk =
k(o/N, 8, CM) be given by proposition 2.7, and lgt = n(k, §, C"XM.N))
be given by lemma 2.1.

Using lemma 2.11, we finB e Aut(I, m) such thafFN = id, andaseZ c I
such thatz,..., FN=1(Z) are disjoint and A})..(m|7) is n-close to=v*N. By
lemma 2.10, there exists a 9étC Z such that(AE‘)*(m|y) is n-close toﬁa
(from definition 2.8 this requires that(Y) = |o|/N).

Let T = ||\ FI(Y); this set is anF-tower of heightN, and has small
measure:
M(Te) = Nm(Y) = |o| < ¢'.

Let Tt = N, T (TS). This set has almost full measuren(7<) <
Mm(Tr) < Me’ < g/4. Itis also invariant byl' (sinceTM = id) and we can
write it as aT-tower of heightM over | N 71 wherel is any interval of the
cyclic permutationT .

Consider a first perturbation af:

Tx) if xeTT,
TiX) =3 FXx) if xe Tg,
X otherwise.
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ThenT7 and7F are two disjoint invariant towers foF;, with heightsM andN
respectively, and basisN 77 andY respectively. We defing = 71 U T,
andW = NnT7)uY.

The first-return map of; to W is the identity. The return-time function is
nw(X) = M for x € | N 77 andnw(X) = N for x € Y. Hence we define oW
the following map:

M .
Axx) — A;T\j(X) !f XxelnTr,
Af(x) If xeY.

BecausegAN) (m|y) ando /N aren- -close, lemma2.9givesamdp Y - G
such thatA, (mly) = o/N and|[A— AN|y|l1 < 5. LetB: W — G be such that

M .
é(X):{e\T(X) ?f xelNnTr,
A(X) if xe.

By proposition 2.7, since we todk= k(o/N, §, CM), we get
Ak(B) = Ak(B.(Mlw))

o s ¢
= A ((AY).mlioz) + 35) < 17+ 1 logCM < 2.

Since||A— BJ|1 < 27, with n = n(k, §, C™>M-N)) \we conclude by lemma 2.1,
Ax(A) < 38.

This means that there exists an automorph&nW — W such thatA (A,
S) < 38, and conseguentllyE(A, S) < 36.
Finally, we definel onl:

0 = | STON i x e T W),
T1(X) otherwise.

The setT = T+ U T¢ is still invariant byT, the return time to the s&V is
still the functionny, as forT; and the products of matrices abowebefore the
first return are still given byA. But the first return map t&V by T is now S.
Hence, by proposition A.1, we ha€ (A7, T|r) = LE(A, S).

Recall thatm(7°) < m(7F) < Mg’ and that we took’ < §/(MlogC),
therefore

LE(A, T) = LE(A, S) + LE(A|c, Tlzc) < 4.
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We have

mT #T] < mT # Tl +m[Ty #T]

IA

1 /
MW) + m(TE) < (M + %) L8

- <Eé&,
4

as required. O

3 Applying theorem 1
3.1 Proof of the richness criterium

Before deriving any consequences of theorem 1, we have to prove proposition 1.6.
Let us (temporarily) call a measure N-f-rich if there isx > 0 such that
v*N % v > km for everyv € PL. (The difference, compared to definition 1.5,
is that we only consideiorward iterates.) We call f-rich if it is N-f-rich for
someN.
In this paragraphM denotes a compact manifold, ikt = M ~ M, andu
is a smooth volume measure dbh
The following lemma essentially reduces the problem of proving richness to
a one-dimensional case:

Lemma 3.1. Let A: M — G be aC! map. Lett: [-2,2] — intM be aC?
embedded arc. Assume that for ang P?,

[AE®) v te[-1,1]} =P*
and 5
a[A(S(t)) v] #0 Vte[-272]
ThenA,u is 1- f -rich.
Proof. Consider a (normal) tubular neighborhood (map) of thetarc

2:[-2,2 xD* > M

such thatE(t,0) = &(t). (D! denotes the open unit ball iR9-1.) For
0<d§<1landj=12letU) = E([—], ] x sD?). We are going to show
that for sufficiently smalb > 0 there existg > 0 such that
d (AdGuly) *v)
dmpa
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We push the euclidian metric iRY forward by theC*-diffeo &, and without
loss, assume tha1t|Ulz is the Riemannian volume induced by that metric. In the
new metric, we havéé’(t)|| = 1.

For convenience of notation, letw € P! be fixed. LetF : M — P! be given
by F(x) = A(X) - v. Let{t; <... <t} ={t e[-11]; F(®t)) = w}. Let
D¢ c U2 be the connected component®f!(w) NU2 that containg (t;). From
the assumptiorf has no critical points on a neighborhood of the&ife-2, 2]).
So, for smalls, Di‘S is a(d — 1)-submanifold. We have

d <F*(m|U62)> ) :/ _do(x) = Zf _do(x)
DS

dmps F-1anuz IVF OO IVFeOl

whereo is Riemannian(d — 1)-dimensional volume. Using that(D?) >
o (8DY-1) and that|VF || is bounded, we have

/ do (x) _ O'(Dia)
p IVEX)] CIYEYEG)

for someC > 0. All bounds are uniform i andw, hence we can find a small
3 so that (2) holds. O

In what follows, we denote:

R, — (cgs@ —sin9>.

sing cosh

+ 069 > Ccs4t+ 0@1Y),

Remark 3.2. Foreachl € (-2, 2), the setofA € G suchthattrA = T consists
on twoG-conjugacy classes, namélyR,L~*; L € G}and{LR_4L~%; L € G},
for a certaind € (0, 7). (Note also that the set consists on a simglg?2, R)-
conjugacy class.) IA andB are two elliptic matrices in the sani&conjugacy
class then there exists an uniguef the form

a b .
L = <O a‘l) ,  witha > 0, )

suchthatB = LAL™L.
Next we prove the following special case of proposition 1.6:

Lemma 3.3.Let A: M — G be aC! map. Assume there exists a poine M
such thatA(p) is elliptic andtr A is not locally constant ap. ThenA,u is
f-rich.
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Proof. We can assume that € int M and that(Vtr A)(p) # 0. Let&: [—2,
2] — int M be an embedde@? path such tha§(0) = p and

tr A(t)] <2 and %trA(S(t));ﬁO Vt.

Let (t) = arccog 2 tr A(¢(t))). Thené(t) is aC? function with¢’(t) # 0
for all t. For eacht there existsL(t) € G such thatA(£(t)) equals either
Lt)RyyL()"Lor L(t)R_y¢)L (1)~ (see remark 3.2). By continuity, the same
alternative, say the first, occurs for tlk [—2, 2]. Besides, we can choog&t)
sothatlL: [-2, 2] — G is aC! map.

ForN € N, we haveA(& (t))N = L(t)RngyL(t) 7. Itis easy to see that ¥
is large enough then for anye P*,

{AGt)HN -v; te[-1,1]} =P' and (AE@)N -v) £0Vt € [-2,2].

0
Jat
Next define

= Q=X X, (4)

andé:[-2,2] — intM by £(t) = (E(t),....&(1). Applying lemma 3.1

to these data, we obtain th&.i = (A.w)*N is 1-f-rich, that is, A, is

N-f-rich. O
For the last part, we will need the following property about traces:

Lemma 3.4. Let A, B € G be elliptic matrices that are conjugate via a matrix
in G. Then
tr AB < tr A?,

with equality if and only ifA = B.

The reader may check the lemma would be false had we assumed only that the
elliptic matrices have the same trace.

Proof. Write B = LAL™1, with L € G. We can assume th#&t = R, andL is
given by (3). Of course, sifh # 0. Direct calculation gives

trAB=2—(2+a’+a?+b?sinfo <2—4sirfo =tr A%,
with equality if and only ifa = 1 andb = 0. 0
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Now we conclude the:
Proof of proposition 1.6. It clearly suffices to show thah, i is f-rich.

LetM, /i, andAbe asin (4) wittkin the place oN. Letalsop = (P1; - - -5 P-
By assumptlonA( p) is elliptic andA is not locally constant a{ﬁ e M.
If tr A is not locally constant ap in M then, by lemma 3.3A*u = (A.pu)*¥
is f-rich, and therefore so i, 1.
Assume then that tA is constant at a neighborhood pin M. By continuity,
all A(R), with % close top, belong to a sam@&-conjugacy class (see remark 3.2).
Consider

M=MxM, g=axp, p=(p P, and ARy %)= AR)AR).

Then trAis not locally constant gb € M. (Otherwise, by lemma 3.4} would
be locally constant ap.) Applying lemma 3.3 toA we get thatA,u is 2k-
f-rich. O

3.2 Proof of theorem 2

We will need the following:

Lemma 3.5. Let ¥ c G be a compact connected set. Assume that there is no
closed intervall S P! such thatA - | C | for everyA € X. Then there are
, Ay € T such thatA; - - - A, is elliptic.

Proof. We claim that there isy € N such that for albb, w € P?, there exist
A, ..., Ay, € ZsuchthatA; --- Ayyv = w.

Indeed, fix any matrixA; € X, and letvy € P! be such thathovg = vo.
Let I, ¢ P! be the set of directiong\; - - - A,(vg), with Ay € . SinceX is
connected, each, is an interval or the circle. Alsd,, C ln.1, becausey is
invariant by a matrix in=. Let us see that,, = P! for somen;. Assume the
contrary, and let = _J,, In. We haveA(I) c I forall A. Since we are assuming
¥ has no invariant interval, we must have= Pt. Thereforel = P! \ {z} for
somez. By the same assumption, there musibe X such thatA(z) # z. Then
A~1(2) e | and sothere mustexist, ..., A, suchthath; - - - Ay(vo) = A 1(2).
But this impliesz € |, a contradiction.

We have shown that thereng such that for any there is a product of length
n; which sendsy, to w. The same reasoning applied to theSet (which does
not have an invariant interval as well) gives that thers,isuch that for any
there is a product of length, sendingv to vg. Letng = n; + n,. The claim is
proved.
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Next we construct an elliptic product. Fix adye ¥, A £ id. If Ais elliptic,
we are done.

If Alis hyperbolic, lee" ande® be its respectively expanding and contracting
eigenvectors. LeB be a product such th&(e") € Re®. Then a calculation
shows that tA"B — 0 ash — oo, so there exists an elliptic product.

If Ais parabolic then, relative to some bagas, e},

_ 18 .
A_i<o 1), with g8 # 0.

Let B be a product such th&de, € Re,. Write

0O b .
B:(C d)’ with ¢ # 0.

Then|tr A"B| = |Bch + d| — oo ash — oo. This shows thak has a hyper-
bolic product. Then we can repeat the previous reasoning and find an elliptic
product. O

Remark 3.6. We ignore how to extend lemma 3.5 to non-connectedcsedad
that is why we are unable to answer question 1.8.
We are ready now to give the:

Proof of theorem 2. If the function A is constant then the first case holdshif
is hyperbolic or parabolic, and the second case holdsigf elliptic. So we can
assumeA is not constant.

Assume the first case does not hold. Applying lemma 3.2 te= {A(X);
X € X}, we conclude that there is€ N such that the function

(X1, ..., %) € X" = AXp) - - - A(Xp)

assumes an elliptic value. This function is not constant@hd connected, so
proposition 1.6 applies and the exponent vanishes generically by theorem 1.

3.3 Addendum to theorem 2 and proof of corollary 3

We study how the Lyapunov exponent dependsToifi the first alternative in
theorem 2 holds. There are two initial possibilities:

(i.1) There is an invariant point (i.& vy € P! s.t. A(X) - vo = vp VX € X).
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(i.2) There is no invariant point.

In case (i.2), consider an invariant closed intervalle further subdivide case
(i.2) into casegi.2.1), (i.2.2), and(i.2.3) according to whetheA(x) - | c |° for
none some but not allorall x € X, respectively. (Notice that the case in which
A falls may depend on the choice b

Proposition 3.7 (Addendum to theorem 2).Each case has the corresponding
consequence as below:

(i.1) = There ishg > Osuch that LEA, T) = Agforall T e Aut(X, w).
(i.2.1)= LE(A, T) > Ofor all ergodicT € Aut(X, w).
(i.2.2) = There isAg > Osuch that LEA, T) > Ao forall T € Aut(X, ).

(i.2.3) = The setA(X) c G is uniformly hyperbolic (see definition 1.14), so
(A, T) is uniformly hyperbolic for alll € Aut(X, ).

Proof. In case (i.1) we have

VIO Aol wool
llvoll

Next recall some facts about the Hilbert metric. That is a Riemannian metric
d on I ° with the property that ifB € G satisfiesB(l) c | then there exists
g > 1 such that

d(B(x), B(y)) < rg'd(x,y) Vx,yel°.

Besides, ifB(1) c I°thentg > 1. Using these facts, it is not hard to prove the
remaining assertions in the proposition. O

Proof of corollary 3. For an open and dense setdfe C" (X, G), (i) implies
(i.2.3).

4 More consequences: the continuous case

In this sectionX will denote aC!-smooth compact connected manifold, possibly
with boundary, of dimensiod > 2, andu will denote a smooth volume measure.
4.1 Notations and tools

Here we collect some results from the book [AP] that we will use in the proof of
theorem 4.
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Letd be a metric in the manifolX. The uniform topology otHomed@X, w)
is determined by the metrid(T, T) = sup,.x d(T(x), T(x)). If T or T (or
both) are not irHomed X, ) but in Aut(X, «) then the distance above should
be considered with essential supremum instead of sup.

In the proof of theorem 4, we will make a non-continuous perturbation of the
given homeomorphism, and then perturb again to get a homeomorphism. For
that last step we will need Alpern’s [A2] volume-preserving version of Lusin
theorem:

Theorem 4.1 (Theorem 10.2 from [AP]).Let T € Homea@X, u) ande > O.
Then there exists > 0with the following properties: Gives € Aut(X, w), with
d(S, T) < § and a weak neighborhod® of S, there existsS e HomedX, ),
which equalsT in the boundary o, and satisfieS € W andd(S, T) < «.

The following result permits us to carry some geometry from the ¢Ifben)
to the manifold(X, w). (In fact, the proof of theorem 4 would become slightly
easier if(X, n) = (I% m).)

Theorem 4.2 (Theorem 9.6 from [AP]). There exists a continuous mdap:
I9 — X, called aBrown map such that:

1. @ isonto;

2. @iy is a homeomorphism of the interior Bf onto its image;
3. ®(31Y) is a closed nowhere dense set, disjoint frdrint 19);
4. d.m = pu.

Form e N, consider the partition mod 0 of the cuBkinto 2™ cubes of size
2-™. The images of those cubes by the Brown ndaform a mod O partition
of X. Let us indicate this partition b, and call its elementsubesas well.
An automorphisns € Aut(X, n) such that the image of a cube 1, is mod
0 a cube inP, will be called ageneralized cube exchange mdpadditionally
the mapd—1S® sends cubes into cubes by translation®®fwe callS acube
exchange map

Ageneralized cube exchange map induces a permutation of thg sétubes.
We express the permutation as a product of disjoint cycles; corresponding to each
cycle there is ars-invariant subset oM, that we call acyclic tower

An important perturbation result due to Lax [L] is the following:

Theorem 4.3 (Theorem 3.1 from [AP]).Let T € HomedI¢, m). Then for any
8 > Othere is a cube exchandgesuch thad(P, T) < §.
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In fact, it was shown by Alpern [Al] that we can takein Lax theorem with
a single cycle tower. To show that he used the lemma below (which we will also
employ with a slightly different purpose):

Lemma 4.4 (Lemma 3.2 from [AP]). Given any permutatiow of N =
{1, ..., N}, there is a cyclic permutatio of N such thatjo (j) — o (j)] < 2
forall j € V.

4.2 Proof of theorem 4

The proof has three steps:

1. We take a fine partitio®,, of X and approximate the giveh by a gen-
eralized cube exchange m&j. This approximation is taken with the
following additional properties:

« S, equalsT in the (periodic)T -orbit of p (above which there is the
elliptic product) and i<t in a neighborhood of it;

* § has two cyclic cube towers, the smaller of them consisting of the
n cubes that intersect the orbit pf

2. Using theorem 1, we chand® in a set of small diameter to make the
Lyapunov exponent vanish. The new nm&gs still uniformly close toT .

3. Theorem 4.1 provides a homeomorphisrweakly close tdS,;, which by
semicontinuity will have small exponent.

We precise now these three steps. [LetA, and p be as in the statement,
and lete > 0. Lets = §(T,¢) be given by theorem 4.1. Led(p) =
{p, Tp, ..., T"1p}. Without loss of generality, we assume that the minimum
distance between different pointsdn( p) is greater thaa.

Let ® be the Brown map given by theorem 4.2. We can assumeaXfgat N
®(31%) = @ and, moreover, thad(p) does not intersect the cube boundaries,
for any of the partitiongy,.

Step 1. Lax theorem 4.3 provides a cube exchar@jeof rank m such that
d(S, T) < §/10. We assume that the rank is high enough so the diameter of the
cubes (inX) is less thars/10. The partition into cubes is fixed from now on.

Let C; be the cube that contaiiid p, fori € Z,. Let H be the cube exchange
that permutes eac® (C;) with C; 1, and fixes the other cubes. L8t= Ho §;
then$S; has a cyclic tower which contairg(p) andd(S, §) < 3§/10.
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Next number all cubes fror®?y, in such a way that consecutive cubes share
a common face. Then delete thecubesC; and monotonically renumber the
remaining cubes, say &3;. Since distinctC; cubes do not share a common
face, we have that iff — k| < 2 then the diameter (ﬁtj U C, is less than
36/10. Applying the combinatorial lemma 4.4, we find a cube exchagge
which is 3/10-close t0S;, cyclically permutes th€; cubes and still satisfies
$(Ci) = Cis1. | _

Take open neighborhoodd$; > T'p with U; C intC; such that there are
volume-preserving*-diffeomorphismsf; : U; — U, satisfying f;(T' p) =
T+1p. SinceC; \. U; andC; 1 ~ U;, 1 are Lebesgue spaces with the same mea-
sure, we can extend eadhto a volume-preserving map — C;i,1. Changing
Ssinside theC; cubes according to those mapsge obtainS, € Aut(X, w) with
d(&, T) < 8§/10.

Step2. Thegeneralized cube excharg@btained above has two cyclic towers
that cover allX. We select the cubeS; > p andC; as bases of those towers.
We can assume th&l; andC] share a common face. L& = Cy U Cj; then
diamW < 2§/10. Consider the cocycl@J, A) = ((Spw, As,w) induced by
S, onW.

The measure&*(mw) > (As,)?(itlc,) is rich, by proposition 1.6. So theo-
rem 1 yields a measurable dynami¢s W — W such thaLE(A, U) = 0. Let
S € Aut(X, ) be given by

U(Si(x) if x e S;HW),

S0 = Si(X) otherwise.

By proposition A.1, we haveE(A, S) = 0. Moreoverd(Ss, T) < 6.

Step 3. By semicontinuity of the Lyapunov exponent (proposition A.2), there
is a weak neighborhoodV c Aut(X, ) of S such thatLE(A, ) < conW.
Theorem 4.1 then gives sorfiee W N HomedX, x) such thad(T, T) < «.
This concludes the proof.

Remark 4.5. Notice we haven't used the full strength of theorem 1, but the mere
factthat if A, is rich then there exists soriee Aut(X, u) forwhichLE(A, T)
is small.

2This last step would be simpler if the Brown maphappened to be?l.
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4.3 Proof of theorem 6

It is interesting to mention that the following (apparently) stronger form of the-
orem 4 holds:

Theorem 8. GivenT € HomedX, ) ande > 0, there exist$ > 0 with the
following properties: LetA € C(X, G) and assume there exists a periodic
3-pseudo-orbit(Xg, ..., Xn_1, Xn = Xg) for T such that:

o A(Xn_1) - - - A(Xp) is elliptic;

¢ Ais not locally constant at at least one of the poirts

Then there exist§ € HomedX, i) e-C%close toT such that LEA, T) is
arbitrarily close to zero.

Theorem 8 is actually a corollary of theorem 4. Indeed, given a periodic
3-pseudo-orbitXo, ..., Xn_1, Xn = Xg) for T, there exists a perturbatio'ﬁ of
T such thatT (x) = Xipz1 fori = 0,...,n — 1. (This follows from [AP,
theorem 2.4], for instance.).

We are going to use the following result due to Avila. Re¢glldenotes the
rotation of angled, andp(-) denotes spectral radius.

Lemma 4.6 (Lemma 2 from [Y]). For everyn € Nand Ay,...,An_1 € G, there
iSO € R such that

RoAn_1--- RRAiRyAgis elliptic and 0] < %logp(An_l...AO)’

whereC > 0is some constant.

Proof of theorem 6. By proposition A.7, it suffices to prove that the setaf T)

such that eithe(A, T) is uniformly hyperbolic olLE(A, T) = 0 is generic in
C' (X, G) x HomedX, w). The uniformly hyperbolic cocycle@A, T) form an
open set. Also, the function

LE : C"(X,G) x HomedX, u) — R

is an upper semicontinuous function. So to prove the theorem, we have to show
that if (A, T) is not uniformly hyperbolic then for every > 0 there existA
C'-close toA andT C°-close toT such thaLE(A, T) < ¢.

Fix ¢ > 0 and a cocycléA, T) which is not uniformly hyperbolic. Making a
C'-perturbation if necessary, we can assume gigtnowhere locally constant.
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Let§ > 0 be given by theorem 8. BecauEgreserves volume, there is some
£y € N such that for every pair of pointg x € X there exists a-pseudo-orbit
(Yo, Y1, ..., Ye) for T, such that < £o, Yo = y, andy, = X.

Since(A, T) isn't uniformly hyperbolic, there exist arbitrarily large € N
andx € M such thaf] AT (x)|| < (14 8)". Fix nandx with n > £4/8.

By concatenation we obtainsapseudo-orbitxg, X1, ..., Xn4¢) Of lengthn +
£ < n+ £owith Xg = Xn,¢ = X and such that

IAMXnse-1) - - - A) | < 1AlIS, (14 8)".
According to lemma 4.6, there exigtswith |6| < const§ such that

AlXnse-1) Ro - - AX1) Ry A(Xo) Ry

is an elliptic matrix. So thfeorem 8 applies to tﬁéperturkzatipn,& = AR of
A, showing that there exidt §-C°-close toT such thalL.E(A, T) is as small as
we want. O

5 The discrete case. Questions

In this section we prove theorem 7 and, in 8 5.3, we pose related problems.

5.1 Preparation

Uniformly hyperbolic sets, elliptic products. The set of € GN which are
uniformly hyperbolic is open itsN, see [Y]. In fact, we will use the following
result, which is indeed an immediate corollary of Avila’s lemma 4.6:

Theorem 5.1 (Proposition 6 in [Y]). There is an open and dense subiBgtcC
GN such that ifS e R then eitherX is uniformly hyperbolic or there is an
elliptic matrix in the semigroupX) generated by.

Liouville pairs. Recall thato denotes the spectral radius.

Definition 5.2. Lety : N — N, withlim,_ ., ¥ (n) = co. If RandH belong to
G, we say that the paifR, H) is yr-Liouville if R is elliptic and

1
liminf ——logp(R"HY™) = 0.

n—-+o0 ()
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Notice that ifH is not hyperbolic then, for any, (R, H) is ¥ -Liouville for
every ellipticR.

Lemma 5.3. Given anyyr: N — N with lim,_, . ¥(n) = oo, let R be the set
of (R, H) € G? such thatR is not elliptic or (R, H) is y-Liouville. ThenR is
a residual subset of2.

Proof. LetGgy be the subset o formed by elliptic matrices, and let ¢ G?
be the set of/-Liouville pairs. We havel = (.1 ..o Um., where

1
Une = {(R, H) € Gey x G; 3n > ms.t.m logp(R"HY™) < e}.
EachUy, . is open and we have to show it is densé&ig x G. Given(R, H) €
Gen x G, with H hyperbolic, take a basis &? such that we can write

A0
H=(0 )\1)’ A > L

Arbitrarily close toR, there is an elliptic matriR such thatR"(1, 0) € R(0, 1)
for somen > m, that we can choose satisfying<lef¥ ™. Hence

~ 0 c ~ 0 ca v
Rn:(b d) and RnHw(n)Z(bw/f(n) d)h—llf(n)‘)

If nis chosen large enough we have
|tr R"HY™| = |d||A| 7™ < Const: [|R]| [A]7¥™ < 2.

Thereforep(RTHY™) = 1 < &¥™  thatis,(R, H) € Um,. O

Monomials. Let N = {1,2, ..., N}. To every word(ky, ..., k) € N¥,
¢ > 1, we can associate a m&p: GN - G, (A4, ..., Ay) — Ay A,
which is called anonomial For each € N, let us write

m(F)=#{jef{l....e} kj =i},

that is, the number of appearances of the leftein the monomialF. Let us
call two monomialsF;, F>: GN — G independenif the vectors

(M(F1),....,my(Fp)) and (my(Fp), ..., mn(Fp) € RN
are non-collinear.

Lemma 5.4. Let F, Fo: GN — G be independent monomials, and t=
(F1, F2): GN — G?2. Then for every residual subsBtof G2, the setF ~1(R) is
residual inGN.
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Proof. LetC c GN be the set of critical points df. We will show thatC has
empty interior. That implies the lemma, becalseestricted to the open dense
setGN \ C is an open map.

The derivative ofF at(id, ..., id) is easily computed; it is:

N

N
(@, ..., an) € sl R)N (Z mi(Foa, Y m, (Fz)a) e sl2, R)%

i=1 i=1

Due to the independence assumpti@¥: (id, ..., id) is surjective, that is,
(id,...,id) ¢ C. AssumeC has an interior poink. Consider a real-analytic
path[0, 1] — GN from x to (id, ..., id). Bearing in mind tha€ is the zero-set
of some real-analytic function, we reach a contradiction. O

5.2 Proof of theorem 7

In all the proof we fix the functiony (n) = n.

First we define the residual sRtc GN for which we will prove the conclusion
of the theorem. Given two independent monomiBis F,: GN — G, let
R(F1, F») be the set of alE € GN such that

F1(X) is not elliptic or(F1(X), F2(X)) is y-Liouville.

By lemmas 5.3 and 5.8 (F4, F») is a residual subset &". Take the intersec-
tion over all independent paifs, F, and call itR;. Finally, letR = Rog N R4,
whereR is the set from theorem 5.1.

Fromnow onfixsom& € R. If X isuniformly hyperbolic, there is nothing to
do. Inthe other case, sinde e R, there isa monomid, suchthaR = F1(X)
is elliptic. F; will be fixed from now on. By constructior(F1(X2), F(X)) is
y-Liouville for every monomialF, which is independent frorfr; .

Let A: X — X be a measurable function such that every matrixins
attained on a positive measure setXaf As usual, we assumX is the unit
intervall. We can also suppose there is a partifiea |, L - - LI |y into intervals
such thatA|;, = A, whereX = (Aq, ..., An).

Now letT : I — I be any given automorphism. We will explain how to perturb
T in the weak topology to make the exponent small. By proposition A.2, this
will conclude the proof.

Usingtheorem 2.12, we may begin withequal to a cyclic interval permutation
of some arbitrarily high rani.

Bull Braz Math Soc, Vol. 37, N. 3, 2006



UNIFORM HYPERBOLICITY AND ZERO LYAPUNOV EXPONENTS 341

We will of course perturld further, but will work only with automorphisms
that are (not necessarily cyclic) interval permutations. In this regard, a sequence
of disjointintervalsJ, = T'(Jy),i =0,..., ¢ — 1, is called aower of height.
The tower is said to beyclic if in addition T*(J;) = J;. If moreover the map
A: T — X is constant on each intervdl then we can talk about thggroduct of
matrices along the towethat we denote bA(Jy) - - - A(Jy).

Since the rankM is high, most of the intervals

[LJ—H) j=01,...,M -1,

M™ M

will be completely contained in one of the intervélgwhereA is constant). By
changingT on a set of small measure, we may assume the collection of those
“good” intervals is cyclically permuted byy. The union of the “bad” intervals is
now an invariant set of small (less thBif M) measure, and so its contribution to
the mean Lyapunov exponent is small. So, to simplify writing, we will assume
that all intervals are good.

Write F1(Ag, ..., An) = A, - - - Aq- Among the intervals that are permuted
by T, select somels, ..., Jp such thatA|; = Ay. SinceM can be chosen
arbitrarily high compared t@, the measure of ; = |_|ip:1 Ji is small. So, after
another perturbation, we can assume that that the dynamitsdeicomposes
into two cyclic towers, the smaller of which is

J1—> JZ_)"‘_)Jp_)‘]l-

Call this towerT;. The product of matrices along it is precisely the elliptic
matrix F1(X2).

Let T, be the other, bigger, tower. Consider the product of matrices along
T>; as a function of that product is by definition a monomié,(X). We
may assume thdat; and F, are independent monomials. In fact, via a small
perturbation ofT we can remove a single level of the bigger tower to meke
and F, independent. The removed interval becomes an invariant set of small
measure and can be disregarded.

Hence, by definition ok, the pair(R, H) = (F1(Z), F2(X)) is y-Liouville.
That is, there is an integersuch that

Clogp(HRY <. 5)

wheree > 0 is any fixed small number.
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Decompose each interval into n intervals of equal length
Ji = Ji,l L Ji,2 [ I Ji,p.
Modify slightly T in order to form the following tower of heighmtp:

J1’1—>---—> Jp71%
J1’2—>---—> Jp’2—>
- —>

Jl,n — s —> Jp,n — Jl)]_.

The product along this new tower ®'. In the same way we decompose the
tower inn towers that we unfold as above into a single tower along which the
product of matrices will béH". As sets, the two new towers are still the same
Tl and’Tz.

By our construction7; and7; have bases of the same size. So we can actually
concatenate them one on top of the other to get a single cyclic tower along which
the matrix producti$i"R". (Thisis done by composing on the left the dynamics
with a map that permutes the bases of the towers.) Since almost all the space is
covered by this tower, we deduce from (5) that the integrated Lyapunov exponent
corresponding to the perturbed dynamics is small. This proves theorem 7.

5.3 Some open questions

Problem 5.5. Does a finite seE C G with the following properties exist?
1. ¥ cannot be approximated by a uniformly hyperbolic set;

2. there exists a measurable ma@p I — X which assumes every value
in ¥ on a set of positive measure such that(LET) > O for every
T e Aut(l, m). (Or even stronger, suchthat ICB, T) > Ag > Ofor every
T.)

By theorem 7, thos& with #% = N form a meager subset 6fN.
A positive answer to the following more elementary question would, by the
ergodic theorem, answer problem 5.5 (in the stronger form) positively:

Problem 5.6. Does there exist a pair of matrices;, A, € G with the following
properties? A; is hyperbolic,A; is elliptic, and there are constanG< p < 1
and A > 1 such that for every word\, A, - - - A, satisfying thefrequency
condition

#jefl....n} ij =2} <pn, (6)
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we have
||AI1A|2A|n|| >)"n (7)

Fixing some integeN > 2, we can also ask whether the setbk GN that
have the properties as in problem 5.5 has positive, or even full measure in the
complement of the hyperbolicity locus @&N.

Remark 5.7. From lemma 5.3 we see that even if the right hand side in (6) is
replaced by any functios (n) such thatp(n) — oo then the set ok € G? that
satisfy the conclusion of problem 5.6 is meager.

A Appendices
A.1 Derived cocycles

GivenaseW c X of positive measure, we define thest return maply : W —
W by Tw(x) = T™W®(x), whereny(x) = min{n > 1; T"(x) € W}. nyw and
Tw are defined a.e. and we halig € Aut(W, u|w).

Define Arw: W — G asArw(x) = AM®(x). The pair(Tw, Arw) is a
G-cocycle on(W, u|w). This is called thalerivedor induced cocycle

Proposition A.1. We have LEAr w, Tw) = LE(A|7, T|7), whereT is the
T-invariant set ., T~"(W).

In fact, if T is ergodic therZ = X mod 0 and the proposition is lemma 2.2
from [K]. It is easy to adapt that proof to the general case, using Kac'’s formula
in the form:

/ Nw du = u(T).
w
A.2 Semicontinuity
It is well-known that:
.1 N
LE(A, T) =inf —/ log | AT || dpe.
N N X

Among the consequences, we have semicontinuityegfa, -):

Proposition A.2. LetA: X — G be measurable and suchthag || All € L1(w).
Then the functiom € Aut(X, u) — LE(A, T) € R is upper semicontinuous.
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Proof. We may assume that is the unit intervall andu is Lebesgue measure
m. The weak topology iiut(l, m) is then given by theveak metric

d(S,T) =inf{p > 0; m{|S—T| > p}) < p}.

Let A: I — G, T € Aut{, m), ande > 0O be fixed. There existd € N such
that

1 N
LE(A.T) > — + 1 [ logl| A}l dm.
I

Since log| A| is integrable, there i$; > 0 such that ifZ c I has mea-
surem(Z) < 81 then fz log|Alldm < . By Lusin's theorem, there ex-
ists a compact se c I such that the function#\|x and T|« are continu-

ous, andm(K® < 41/(2N). Let C = sug ||All. There iss, > 0 such

that if As,..., Ax, By, ..., By € G are matrices with norm at mo§t and

IA — Bi|| < & for eachi then|| [Ty, A — [Ix Bill < ¢. Letss > 0 be such
that if X,y € K, |[x —y| < 83 then|A(X) — A(Y)| < §,. Take numbers
nyL>--->1NN=1> 0 such thaﬁl = 53/2 and

X,y e K, IX—=yl <2nip1 = |TX) =TI <ni.

Let p = min(nn-1, 81/(2N)).
Now assumé € Aut(ll, m)issuchthatl(S, T) < p. LetW = {|S—T| < p};
thenm(W°¢) < p. Define

N—-1
G= [T'(KNW)NnST(KNW)].
i=0

ThenG° has small measuren(G®) < Nm(K® + W° < §;. We are going
to bound the expressioﬁu f;log |AY || dm. To do so, we are going to split the
integral in two parts/; = ch + fG. For the first part, we have

1
— log||AN| dm < = / log||Alldm < &.
/ s! NZ S (G

For the second part,
1 log |AN| d 1 log |AN | d 1 AN — AN|d
ogllAsfldm < og|lAr(ldm+ Il As Tlldm
N Jo N Jo N Jo

1
< LE(A,T)—I—S—i—N/ IAS — AY | dm.
G
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(We used that lo@g + b) < loga+bfora>1,b>0.)
Letx € G. WeclaimthatT' (x)— S (x)| < 2yn_i foralli = 0,1, ..., N—1.
This is easily shown by induction:

T+ (x) — ST < |T(T' (X)) — T(S (X)) + |T(S (X)) — S(S (X))|

IA

< NN—i—1+ 0 < 29n-i-1.

In particular, for alli we have|T'(x) — S(x)| < 83 and thus| A(T' (x)) —
A(S (X))|| < 82. Thereforg| AY(x) — AY ()| < e.
Summing the two parts, we conclude that

1
LE(A, S) < N/ log || ANl dm < LE(A,T)+£+%.
G

This shows upper semicontinuity. d

Remark A.3. For the semicontinuity dfE(-, T) in theL!-topology, see [ArB].

A.3 An auxiliary result from measure theory

The aim of this section is to establish the lemma A.4 below, which we use a few
times in section 2. In what followd,denotes the unit interv@D, 1], m denotes
Lebesgue measure Iror (by abuse of notation) in the squdfeandr : 12 — 1

the projection in the first coordinate.

Lemma A.4. LetY be eitherG or P1. Let A, A: T — Y be measurable
functions such thah,m = A.m = v. Then there exist§ € Aut(I?, m) such
that A omr 0o S= Ao m-a.e.

The lemma is a straightforward consequence of the work of Rokhlin [R], as
we explain below.

Let (X, u) and(Y, v) be Lebesgue spaces andtet(X, u) — (Y, v) be a
homomorphism (that is, a measurable map with h, ). Consider the Rokhlin
disintegration of the measutealong fibers ofh: Forv-a.e.y € Y we have a
probability measurg., on the seh=(y).

Lemma A.4 is in fact a particular case of the following:

Proposition A.5. Leth, h’: (X, u) — (Y, v) be two homomorphisms between
Lebesgue spaces. Lgiy} and{ué} be the respective Rokhlin disintegrations
of the measurg.. Assume that for-a.e.y € Y, the measuregy and u| are
non-atomic. Then there exists an automorph&mX, u) — (X, ) such that
h"o S=h u-a.e.
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Proof. Consider the two decompositions

¢={"Wlyey and ¢ = {1 (Y)lyey

of the spaceX. The factor spaceX /¢ and X/¢’ are isomorphic (t@Y, v), see

[R, p. 32]). Therefore the result of [R, p. 51], together with the assumption that
wy andpu are non-atomic, gives that the decompositipasid; " are isomorphic
mod 0. This means (see [R, p. 9]) that there exist isomorphisrmasdV which
make the diagram below commutes mod O:

X—X

|

X/t —= X/¢’

(Vertical arrows denote quotient maps.) Frbhwe construct the desired auto-
morphisms. O

A.4 Uniform spectral radius theorem

Let|-|| be an operator norm iBL(d, R), and leto (A) denote the spectral radius
of A e GL(d, R).

Proposition A.6. We havep(A) = lim,_ o || A"||Y" for everyA e GL(d, R),
and the convergence is uniform in compact subsets gtiGR).

Proof. The first part is the spectral radius theorem. NowAixe GL(d, R)
ande > 0. Letng € N be such thaff A’ [|¥™ < p(Ag) + ¢. Lets > 0 be such
that||A — Agll < & implies

AV < p(Ag) +2¢ and p(A) > p(Ag) —e.

Forn € N, we writen = mng+kwithm > 0and 0< k < ng. If nis sufficiently
large andA is §-close toAg then

p(A) < [|AMY" < AR AIMY < (p(Ag) + 28)™/ (|| Ag|l + 8)X/
< p(Ag) + 3¢ < p(A) + 4e.

This shows uniform convergence in the b, |A — Aqll < §}. O
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A.5 Generic measurable dichotomy forL.> or C° cocycles

Here we show proposition 1.7. For that we need the proposition below, which is
also used in the proof of theorem 6.

Proposition A.7. If X, Y are separable Baire spaces a®l ¢ X x Y is
residual, then there is a residual subget C X such that for everx € R/, the
setRy ={y eY; (X,y) € R} is aresidual subset of.

Proof. FirstletA ¢ XxY be anopenanddense set. Forany ope¥ setY, let
Xav = {X € X; there existy € V such thaix, y) € A}. ThenX, v is open
and dense irX. LetV be a countable base of open subset¥ odnd consider
the residual seXKa = (), Xav. Ifwe defineA, ={y e Y; (X,y) € A},
then A, is open and dense i for everyx € Xa.

Now, given a residual seR C X x Y, write R = ),y An, Where A,
are open and dense. L& = [,y Xa,- Then for everyx € R’, the fiber
Ry = [nen(An)x is a residual subset of. O

Proof of proposition 1.7. We will only prove theL*> statement, because the
CP one is analogous. Note that & € L>®(X, G) then one should read the
first alternative in the measurable dichotomy with “a.e. points” in place of “all
points”.

By propositions A.2 and A.7, we only have to show that if the essential image
of A € L*(X, G) is not an uniformly hyperbolic set (see definition 1.14) then
for everyT e Aut(X, u) there existA and T close toA and T respectively in
the L> and weak topologies, such tHaE (A, T) is small.

Fix such anA. GivenT e Aut(X, i), to say that the cocycleA, T) is not
uniformly hyperbolic means that

ve>0, VA > 1, dneNstu{x; AT <cr"} > 0.

Therefore the set of € Aut(X, i) such thal A, T) is not uniformly hyperbolic
is aG; set (in the weak topology). That set is also dense, by Baire and the
assumption that the essential imageAak not an uniformly hyperbolic set.

So given any automorphisif, we can find a weak perturbatiah which is
ergodic (see remark 1.1) and such that T) is not uniformly hyperbolic. By
a result from [B] (mentioned in remark 1.2), there exi8ts.°-close toA such
thatLE(A, T) = 0. O
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