
“main” — 2006/10/19 — 16:35 — page 351 — #1

Bull Braz Math Soc, New Series 37(3), 351-359
© 2006, Sociedade Brasileira de Matemática

A characterization of isometries on
an open convex set

Soon-Mo Jung

Abstract. Let X be a real Hilbert space with dimX ≥ 2 and letY be a real normed
space which is strictly convex. In this paper, we generalize a theorem of Benz by proving
that if a mappingf , from an open convex subset ofX into Y, has a contractive distance
ρ and an extensive oneNρ (whereN ≥ 2 is a fixed integer), thenf is an isometry.
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1 Introduction

Let X andY be normed spaces. A mappingf : X → Y is called an isometry
(or a congruence) iff satisfies

‖ f (x) − f (y)‖ = ‖x − y‖

for all x, y ∈ X. A distanceρ > 0 is said to be contractive (or non-expanding)
by f : X → Y if ‖x − y‖ = ρ always implies‖ f (x) − f (y)‖ ≤ ρ. Similarly,
a distanceρ is said to be extensive (or non-shrinking) byf if the inequality
‖ f (x) − f (y)‖ ≥ ρ is true for allx, y ∈ X with ‖x − y‖ = ρ. We say thatρ is
preserved (conserved or conservative) byf if ρ is contractive and extensive by
f simultaneously.

If f is an isometry, then every distanceρ > 0 is preserved byf , and conversely.
We can now raise a question:

Is a mapping that preserves certain distances an isometry?
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In 1970, A. D. Aleksandrov [1] had raised a question whether a mapping
f : X → X preserving a distanceρ > 0 is an isometry, which is now known
to us as the Aleksandrov problem. Without loss of generality, we may assume
ρ = 1 whenX is a normed space (see [15]).

Indeed, earlier than Aleksandrov, F. S. Beckman and D. A. Quarles [2] solved
the Aleksandrov problem for finite-dimensional real Euclidean spacesX = En:

If a mapping f : En → En (2 ≤ n < ∞) preserves distance1,
then f is a linear isometry up to translation.

For n = 1, they suggested the mappingf : E1 → E1 defined by

f (x) =

{
x + 1 for x ∈ Z,

x otherwise

as an example for a non-isometric mapping that preserves distance 1. For
X = E∞, Beckman and Quarles also presented an example for a unit distance
preserving mapping that is not an isometry (cf . [12]).

We may find a number of papers on a variety of subjects in the Aleksandrov
problem (see [5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] and also the
references cited therein).

In 1985, W. Benz [3] introduced a sufficient condition under which a mapping,
with a contractive distanceρ and an extensive oneNρ, is an isometry (see also
[4]):

Let X and Y be real normed spaces such that dimX ≥ 2 and Y is
strictly convex. Supposef : X → Y is a mapping andN > 1 is a
fixed integer. If a distanceρ > 0 is contractive andNρ is extensive
by f , then f is a linear isometry up to translation.

Recently, the author and Th. M. Rassias proved in [9] that the theorem of
Benz is also true when the relevant domain is restricted to a half space of a real
Hilbert space with dimension≥ 3.

In this paper, we will generalize the above theorem of Benz; More precisely, let
X be a real Hilbert space with dimX ≥ 2 and letY be a real normed space which
is strictly convex. We prove that if a mapping, from an open convex subset ofX
into Y, has a contractive distanceρ and an extensive oneNρ (whereN ≥ 2 is a
fixed integer), then the restriction off to an open convex subset of the domain
is an isometry.
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2 Preliminaries

From now on, letX be a real Hilbert space with dimX ≥ 2. For a fixed integer
N ≥ 2 and a constantρ > 0, let us define a sequence(dn) by

d1 = Nρ and dn = N3−nρ for n ∈ {2, 3, . . .}.

Let (Xn) be a sequence of open convex subsets ofX with

X0 ⊃ X1 ⊃ ∙ ∙ ∙ ⊃ Xn ⊃ Xn+1 ⊃ ∙ ∙ ∙ and d(Xn+1, ∂ Xn) ≥ dn+1

for all n ∈ N ∪ {0}, whered(Xn+1, ∂ Xn) = inf {‖x − y‖ : x ∈ Xn+1, y ∈ ∂ Xn}
and∂ Xn denotes the boundary ofXn. (If one of Xn+1 and∂ Xn is unbounded,
we will setd(Xn+1, ∂ Xn) = ∞.)

Furthermore, we assume

X∞ :=

(
∞⋂

n=0

Xn

)◦

6= ∅.

We know that the intersection of any family of convex subsets of a topologi-
cal vector space is convex. Moreover, the interior of any convex subset of a
topological vector space is a convex set. Thus,X∞ is an open convex subset of
X.

Let Y be a real normed space with the following property:

(P1) If unit vectorsa, b ∈ Y satisfy‖a + b‖ = 2, thena = b.

Using (P1) and an idea from(c) in the proof of the theorem in [3], we may
easily prove the following lemma.

Lemma 1. For all a, b, c ∈ Y, ‖b − a‖ = β = ‖c − b‖ and ‖c − a‖ = 2β

implyc = 2b − a, whereβ is a positive real number.

In the proof of the following lemma, we apply the mathematical induction
many times.

Lemma 2. Suppose a mappingf : X0 → Y satisfies both the following
properties:

(P2) ρ is contractive byf ;

(P3) Nρ is extensive byf .
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The following assertions are true for any givenn ∈ N and for all x, y ∈ Xn:

(A1) If ‖x − y‖ = N1−nρ, then‖ f (x) − f (y)‖ = N1−nρ;

(A2) If ‖x − y‖ = 2N1−nρ, then‖ f (x) − f (y)‖ = 2N1−nρ;

(A3) If ‖x − y‖ = N1−nρ andx + m(y − x) ∈ Xn for somem ∈ N, then we
have f (x + i (y − x)) = f (x) + i ( f (y) − f (x)) for i ∈ {0, 1, . . . , m}.

Proof. (a) We first prove(A1) for n = 1, i.e., we show that for allx, y ∈ X1,
‖x − y‖ = ρ implies‖ f (x) − f (y)‖ = ρ. Define pi = y + i (x − y) for i ∈
{0, 1, . . . , N}. It then follows that‖pN − y‖ = Nρ, pi ∈ X0 for i ∈ {0, . . . , N},
and that‖pi − pi −1‖ = ρ for i ∈ {1, . . . , N}. Using(P2) and(P3) we have

Nρ ≤ ‖ f (pN) − f (y)‖ ≤
N∑

i =1

‖ f (pN+1−i ) − f (pN−i )‖ ≤ Nρ.

Hence, we conclude that‖ f (x) − f (y)‖ = ‖ f (p1) − f (p0)‖ = ρ.
We prove (A2) forn = 1, i.e., we prove that for allx, y ∈ X1, ‖x − y‖ = 2ρ

implies‖ f (x)− f (y)‖ = 2ρ. Let pi = y + (i /2)(x − y) for i ∈ {0, 1, . . . , N}.
Then, it follows that‖pN − y‖ = Nρ, pi ∈ X0 for i ∈ {0, . . . , N}, and that
‖pi − pi −1‖ = ρ for i ∈ {1, . . . , N}. Now, we make use of (P2) and (P3) to get

Nρ ≤ ‖ f (pN) − f (y)‖ ≤
N∑

i =1

‖ f (pN+1−i ) − f (pN−i )‖ ≤ Nρ,

i.e.,

‖ f (pN) − f (y)‖ =
N∑

i =1

‖ f (pN+1−i ) − f (pN−i )‖. (1)

If we assume‖ f (p2) − f (p0)‖ < ‖ f (p2) − f (p1)‖ + ‖ f (p1) − f (p0)‖, then
it should beN ≥ 3 in view of (1) and further

‖ f (pN) − f (y)‖ ≤
N−2∑

i =1

‖ f (pN+1−i ) − f (pN−i )‖ + ‖ f (p2) − f (p0)‖

<

N∑

i =1

‖ f (pN+1−i ) − f (pN−i )‖,
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which is contrary to (1). Therefore, we conclude by using (A1) forn = 1 that

‖ f (x) − f (y)‖ = ‖ f (p2) − f (p0)‖ =

= ‖ f (p2) − f (p1)‖ + ‖ f (p1) − f (p0)‖ = 2ρ,

sincep0 = y ∈ X1, p2 = x ∈ X1 and p1 = (x + y)/2 ∈ X1 (X1 is a convex
set).

We now prove (A3) forn = 1, i.e., we prove by induction that ifx, y ∈
X1 satisfy ‖x − y‖ = ρ and x + m(y − x) ∈ X1 for somem ∈ N, then
f (x + i (y − x)) = f (x) + i ( f (y) − f (x)) for i ∈ {0, 1, . . . , m}. There is
nothing to prove fori = 0 or 1. We now assume that our assertion is true for
i ∈ {0, 1, . . . , k} (1 ≤ k < m). Put pl = x + l (y − x) for l ∈ N. Then, since
X1 is convex, we havep2, . . . , pk+1 ∈ X1 and we get

‖pk − pk−1‖ = ρ = ‖pk+1 − pk‖ and ‖pk+1 − pk−1‖ = 2ρ.

According to (A1) and (A2) forn = 1, we have

‖ f (pk)− f (pk−1)‖ = ρ = ‖ f (pk+1)− f (pk)‖ and‖ f (pk+1)− f (pk−1)‖ = 2ρ.

Hence, it follows from Lemma 1 that

f (pk+1) = 2 f (pk) − f (pk−1) = f (x) + (k + 1)( f (y) − f (x)),

which completes the proof of (A3) forn = 1.

(b) We now assume that for anyn ∈ {1, . . . , q}, our assertions (A1), (A2) and
(A3) are true for allx, y ∈ Xn, whereq is a given positive integer.

(c) We consider (A1) forn = q + 1. Assume thatx, y ∈ Xq+1 are given with
‖x − y‖ = N−qρ. It is to show that‖ f (x)− f (y)‖ = N−qρ. Choosez, x′, y′ ∈
Xq such that‖x − z‖ = ‖y − z‖ = N1−qρ, ‖x′ − z‖ = ‖y′ − z‖ = N2−qρ,
‖x′ − y′‖ = N1−qρ, and such thatx and y lie on the segmentsx′z and y′z,
respectively. In view of (A1), (A2) and (A3) forn = q − 1 andq, we see that

‖ f (x) − f (z)‖ = ‖ f (y) − f (z)‖ = N1−qρ,

‖ f (x′) − f (z)‖ = ‖ f (y′) − f (z)‖ = N2−qρ,

‖ f (x′) − f (y′)‖ = N1−qρ,

and that f (x) and f (y) lie on the segments f (x′) f (z) and f (y′) f (z), respec-
tively. These facts imply that the trianglesf (x) f (z) f (y) and f (x′) f (z) f (y′)

are similar. Therefore, we conclude that‖ f (x) − f (y)‖ = N−qρ.
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Let us consider (A2) forn = q + 1. Assume thatx, y ∈ Xq+1 are given
with ‖x − y‖ = 2N−qρ. Similarly as the proof of (A1) forn = q + 1 (see the
last paragraph), choosez, x′, y′ ∈ Xq such that‖x − z‖ = ‖y − z‖ = N1−qρ,
‖x′ − z‖ = ‖y′ − z‖ = N2−qρ, ‖x′ − y′‖ = 2N1−qρ, and such thatx andy lie
on the segmentsx′z andy′z, respectively. By a similar argument as in the proof
of (A1) for n = q + 1, we get‖ f (x) − f (y)‖ = 2N−qρ.

Finally, we consider (A3) forn = q + 1, i.e., we prove that ifx, y ∈ Xq+1

satisfy‖x − y‖ = N−qρ and x + m(y − x) ∈ Xq+1 for somem ∈ N, then
f (x + i (y − x)) = f (x) + i ( f (y) − f (x)) for i ∈ {0, 1, . . . , m}. There is
nothing to prove fori = 0 or 1. Suppose our assertion is true fori ∈ {0, 1, . . . , k}
(1 ≤ k < m). Put pi = x + i (y − x) for i ∈ N. By the convexity ofXq+1, we
see thatp2, . . . , pk+1 ∈ Xq+1 and

‖pk − pk−1‖ = N−qρ = ‖pk+1 − pk‖ and ‖pk+1 − pk−1‖ = 2N−qρ.

According to (A1) and (A2) forn = q + 1, we have

‖ f (pk) − f (pk−1)‖ = N−qρ = ‖ f (pk+1) − f (pk)‖

and
‖ f (pk+1) − f (pk−1)‖ = 2N−qρ.

Hence, it follows from Lemma 1 that

f (pk+1) = 2 f (pk) − f (pk−1) = f (x) + (k + 1)( f (y) − f (x)),

which completes the proof of(A3) for n = q + 1.

3 Generalization of a theorem of Benz

In this section, letX, X0, Xn, X∞, Y, N andρ be the same ones as in the previous
section. We are ready to prove the main theorem of this paper.

Theorem 3. If a mapping f : X0 → Y satisfies both the properties(P2)and
(P3), then f |X∞ is an isometry.

Proof. (a) We assert that ifx, y ∈ X∞ are separated from each other by a
distancemN1−nρ then‖ f (x) − f (y)‖ = mN1−nρ, wherem andn are arbitrary
positive integers. SinceX∞ is convex, we can choose az ∈ X∞ on the segment
xy such that‖x − z‖ = N1−nρ. Definepi = x + i (z− x) for i ∈ {0, 1, . . . , m}.
The convexity ofX∞ again implies thatpi ∈ X∞ ⊂ Xn for i ∈ {0, 1, . . . , m}. By
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(A3) of Lemma 2, we getf (pi ) = f (x)+ i ( f (z)− f (x)) for i ∈ {0, 1, . . . , m}.
Hence, using (A1) of Lemma 2, we have

‖ f (x) − f (y)‖ = ‖ f (x) − f (pm)‖ = m‖ f (z) − f (x)‖ = mN1−nρ.

(b) Assume thatx, y ∈ X∞ are distinct. For thesex and y, choose the
sequences,(ki ), (mi ) and(ni ), of non-negative integers with the following prop-
erties:

(K) ki N1−ni ρ ≤ ‖x − y‖ < (ki + 1)N1−ni ρ for all sufficiently large integers
i ;

(M) (mi −1)N1−ni ρ < ‖x − y‖ ≤ mi N1−ni ρ for all sufficiently large integers
i ;

(N) (ni ) increases strictly (to infinity.)

SinceX∞ is open, we can select azi on the segmentxy and awi ∈ X∞ such
that

‖x − zi ‖ = ki N
1−ni ρ and ‖zi − wi ‖ = ‖wi − y‖ = N1−ni ρ

for any sufficiently largei . It then follows from(a) that

‖ f (x) − f (zi )‖ = ki N
1−ni ρ

and
‖ f (zi ) − f (wi )‖ = ‖ f (wi ) − f (y)‖ = N1−ni ρ

for any sufficiently large integeri . Thus, it follows from(K ) that

‖ f (x) − f (y)‖ ≤ ‖ f (x) − f (zi )‖ + ‖ f (zi ) − f (wi )‖ + ‖ f (wi ) − f (y)‖

≤ ‖x − y‖ + 2N1−ni ρ

for any sufficiently large integeri , i.e., we get‖ f (x) − f (y)‖ ≤ ‖x − y‖.
On the other hand, sinceX∞ is open, we can choose avi ∈ X∞ such that

‖x − vi ‖ = mi N
1−ni ρ and ‖y − vi ‖ = N1−ni ρ

for all sufficiently large integersi . From(a) we get

‖ f (x) − f (vi )‖ = mi N
1−ni ρ and ‖ f (y) − f (vi )‖ = N1−ni ρ.

Hence, it follows from(M) that

‖ f (x) − f (y)‖ ≥ ‖ f (x) − f (vi )‖ − ‖ f (y) − f (vi )‖ ≥ ‖x − y‖ − N1−ni ρ

for all sufficiently large integersi , i.e., we get‖ f (x)− f (y)‖ ≥ ‖x − y‖, which
completes the proof. �
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