

A characterization of isometries on an open convex set

Soon-Mo Jung

Abstract. Let *X* be a real Hilbert space with dim $X \ge 2$ and let *Y* be a real normed space which is strictly convex. In this paper, we generalize a theorem of Benz by proving that if a mapping *f*, from an open convex subset of *X* into *Y*, has a contractive distance ρ and an extensive one $N\rho$ (where $N \ge 2$ is a fixed integer), then *f* is an isometry.

Keywords: Aleksandrov problem, isometry, distance preserving mapping.

Mathematical subject classification: Primary: 51K05; Secondary: 51F20, 51M25.

1 Introduction

Let X and Y be normed spaces. A mapping $f : X \to Y$ is called an isometry (or a congruence) if f satisfies

$$||f(x) - f(y)|| = ||x - y||$$

for all $x, y \in X$. A distance $\rho > 0$ is said to be contractive (or non-expanding) by $f : X \to Y$ if $||x - y|| = \rho$ always implies $||f(x) - f(y)|| \le \rho$. Similarly, a distance ρ is said to be extensive (or non-shrinking) by f if the inequality $||f(x) - f(y)|| \ge \rho$ is true for all $x, y \in X$ with $||x - y|| = \rho$. We say that ρ is preserved (conserved or conservative) by f if ρ is contractive and extensive by f simultaneously.

If f is an isometry, then every distance $\rho > 0$ is preserved by f, and conversely. We can now raise a question:

Is a mapping that preserves certain distances an isometry?

Received 11 October 2005.

In 1970, A. D. Aleksandrov [1] had raised a question whether a mapping $f: X \to X$ preserving a distance $\rho > 0$ is an isometry, which is now known to us as the Aleksandrov problem. Without loss of generality, we may assume $\rho = 1$ when X is a normed space (see [15]).

Indeed, earlier than Aleksandrov, F. S. Beckman and D. A. Quarles [2] solved the Aleksandrov problem for finite-dimensional real Euclidean spaces $X = E^n$:

If a mapping $f : E^n \to E^n$ $(2 \le n < \infty)$ preserves distance 1, then f is a linear isometry up to translation.

For n = 1, they suggested the mapping $f : E^1 \to E^1$ defined by

$$f(x) = \begin{cases} x+1 & \text{for } x \in \mathbb{Z}, \\ x & \text{otherwise} \end{cases}$$

as an example for a non-isometric mapping that preserves distance 1. For $X = E^{\infty}$, Beckman and Quarles also presented an example for a unit distance preserving mapping that is not an isometry (*cf*. [12]).

We may find a number of papers on a variety of subjects in the Aleksandrov problem (see [5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] and also the references cited therein).

In 1985, W. Benz [3] introduced a sufficient condition under which a mapping, with a contractive distance ρ and an extensive one $N\rho$, is an isometry (see also [4]):

Let X and Y be real normed spaces such that dim $X \ge 2$ and Y is strictly convex. Suppose $f : X \to Y$ is a mapping and N > 1 is a fixed integer. If a distance $\rho > 0$ is contractive and $N\rho$ is extensive by f, then f is a linear isometry up to translation.

Recently, the author and Th. M. Rassias proved in [9] that the theorem of Benz is also true when the relevant domain is restricted to a half space of a real Hilbert space with dimension ≥ 3 .

In this paper, we will generalize the above theorem of Benz; More precisely, let X be a real Hilbert space with dim $X \ge 2$ and let Y be a real normed space which is strictly convex. We prove that if a mapping, from an open convex subset of X into Y, has a contractive distance ρ and an extensive one $N\rho$ (where $N \ge 2$ is a fixed integer), then the restriction of f to an open convex subset of the domain is an isometry.

2 Preliminaries

From now on, let *X* be a real Hilbert space with dim $X \ge 2$. For a fixed integer $N \ge 2$ and a constant $\rho > 0$, let us define a sequence (d_n) by

$$d_1 = N\rho$$
 and $d_n = N^{3-n}\rho$ for $n \in \{2, 3, ...\}$.

Let (X_n) be a sequence of open convex subsets of X with

$$X_0 \supset X_1 \supset \cdots \supset X_n \supset X_{n+1} \supset \cdots$$
 and $d(X_{n+1}, \partial X_n) \ge d_{n+1}$

for all $n \in \mathbb{N} \cup \{0\}$, where $d(X_{n+1}, \partial X_n) = \inf\{||x - y|| : x \in X_{n+1}, y \in \partial X_n\}$ and ∂X_n denotes the boundary of X_n . (If one of X_{n+1} and ∂X_n is unbounded, we will set $d(X_{n+1}, \partial X_n) = \infty$.)

Furthermore, we assume

$$X_{\infty} := \left(\bigcap_{n=0}^{\infty} X_n\right)^{\circ} \neq \emptyset.$$

We know that the intersection of any family of convex subsets of a topological vector space is convex. Moreover, the interior of any convex subset of a topological vector space is a convex set. Thus, X_{∞} is an open convex subset of X.

Let *Y* be a real normed space with the following property:

(P1) If unit vectors $a, b \in Y$ satisfy ||a + b|| = 2, then a = b.

Using (P1) and an idea from (c) in the proof of the theorem in [3], we may easily prove the following lemma.

Lemma 1. For all $a, b, c \in Y$, $||b - a|| = \beta = ||c - b||$ and $||c - a|| = 2\beta$ imply c = 2b - a, where β is a positive real number.

In the proof of the following lemma, we apply the mathematical induction many times.

Lemma 2. Suppose a mapping $f : X_0 \to Y$ satisfies both the following properties:

- (P2) ρ is contractive by f;
- (P3) $N\rho$ is extensive by f.

Bull Braz Math Soc, Vol. 37, N. 3, 2006

The following assertions are true for any given $n \in \mathbb{N}$ *and for all* $x, y \in X_n$ *:*

(A1) If $||x - y|| = N^{1-n}\rho$, then $||f(x) - f(y)|| = N^{1-n}\rho$;

(A2) If
$$||x - y|| = 2N^{1-n}\rho$$
, then $||f(x) - f(y)|| = 2N^{1-n}\rho$;

(A3) If $||x - y|| = N^{1-n}\rho$ and $x + m(y - x) \in X_n$ for some $m \in \mathbb{N}$, then we have f(x + i(y - x)) = f(x) + i(f(y) - f(x)) for $i \in \{0, 1, ..., m\}$.

Proof. (*a*) We first prove (A1) for n = 1, i.e., we show that for all $x, y \in X_1$, $||x - y|| = \rho$ implies $||f(x) - f(y)|| = \rho$. Define $p_i = y + i(x - y)$ for $i \in \{0, 1, ..., N\}$. It then follows that $||p_N - y|| = N\rho$, $p_i \in X_0$ for $i \in \{0, ..., N\}$, and that $||p_i - p_{i-1}|| = \rho$ for $i \in \{1, ..., N\}$. Using (P2) and (P3) we have

$$N\rho \le ||f(p_N) - f(y)|| \le \sum_{i=1}^N ||f(p_{N+1-i}) - f(p_{N-i})|| \le N\rho.$$

Hence, we conclude that $||f(x) - f(y)|| = ||f(p_1) - f(p_0)|| = \rho$.

We prove (A2) for n = 1, i.e., we prove that for all $x, y \in X_1$, $||x - y|| = 2\rho$ implies $||f(x) - f(y)|| = 2\rho$. Let $p_i = y + (i/2)(x - y)$ for $i \in \{0, 1, ..., N\}$. Then, it follows that $||p_N - y|| = N\rho$, $p_i \in X_0$ for $i \in \{0, ..., N\}$, and that $||p_i - p_{i-1}|| = \rho$ for $i \in \{1, ..., N\}$. Now, we make use of (P2) and (P3) to get

$$N\rho \le ||f(p_N) - f(y)|| \le \sum_{i=1}^N ||f(p_{N+1-i}) - f(p_{N-i})|| \le N\rho,$$

i.e.,

$$\|f(p_N) - f(y)\| = \sum_{i=1}^N \|f(p_{N+1-i}) - f(p_{N-i})\|.$$
(1)

If we assume $||f(p_2) - f(p_0)|| < ||f(p_2) - f(p_1)|| + ||f(p_1) - f(p_0)||$, then it should be $N \ge 3$ in view of (1) and further

$$\begin{split} \|f(p_N) - f(y)\| &\leq \sum_{i=1}^{N-2} \|f(p_{N+1-i}) - f(p_{N-i})\| + \|f(p_2) - f(p_0)\| \\ &< \sum_{i=1}^N \|f(p_{N+1-i}) - f(p_{N-i})\|, \end{split}$$

which is contrary to (1). Therefore, we conclude by using (A1) for n = 1 that

$$\|f(x) - f(y)\| = \|f(p_2) - f(p_0)\| =$$

= $\|f(p_2) - f(p_1)\| + \|f(p_1) - f(p_0)\| = 2\rho,$

since $p_0 = y \in X_1$, $p_2 = x \in X_1$ and $p_1 = (x + y)/2 \in X_1$ (X_1 is a convex set).

We now prove (A3) for n = 1, i.e., we prove by induction that if $x, y \in X_1$ satisfy $||x - y|| = \rho$ and $x + m(y - x) \in X_1$ for some $m \in \mathbb{N}$, then f(x + i(y - x)) = f(x) + i(f(y) - f(x)) for $i \in \{0, 1, ..., m\}$. There is nothing to prove for i = 0 or 1. We now assume that our assertion is true for $i \in \{0, 1, ..., k\}$ $(1 \le k < m)$. Put $p_l = x + l(y - x)$ for $l \in \mathbb{N}$. Then, since X_1 is convex, we have $p_2, ..., p_{k+1} \in X_1$ and we get

$$||p_k - p_{k-1}|| = \rho = ||p_{k+1} - p_k||$$
 and $||p_{k+1} - p_{k-1}|| = 2\rho$.

According to (A1) and (A2) for n = 1, we have

$$||f(p_k) - f(p_{k-1})|| = \rho = ||f(p_{k+1}) - f(p_k)||$$
 and $||f(p_{k+1}) - f(p_{k-1})|| = 2\rho$.

Hence, it follows from Lemma 1 that

$$f(p_{k+1}) = 2f(p_k) - f(p_{k-1}) = f(x) + (k+1)(f(y) - f(x)),$$

which completes the proof of (A3) for n = 1.

(b) We now assume that for any $n \in \{1, ..., q\}$, our assertions (A1), (A2) and (A3) are true for all $x, y \in X_n$, where q is a given positive integer.

(c) We consider (A1) for n = q + 1. Assume that $x, y \in X_{q+1}$ are given with $||x - y|| = N^{-q}\rho$. It is to show that $||f(x) - f(y)|| = N^{-q}\rho$. Choose $z, x', y' \in X_q$ such that $||x - z|| = ||y - z|| = N^{1-q}\rho$, $||x' - z|| = ||y' - z|| = N^{2-q}\rho$, $||x' - y'|| = N^{1-q}\rho$, and such that x and y lie on the segments $\overline{x'z}$ and $\overline{y'z}$, respectively. In view of (A1), (A2) and (A3) for n = q - 1 and q, we see that

$$\|f(x) - f(z)\| = \|f(y) - f(z)\| = N^{1-q}\rho,$$

$$\|f(x') - f(z)\| = \|f(y') - f(z)\| = N^{2-q}\rho,$$

$$\|f(x') - f(y')\| = N^{1-q}\rho,$$

and that f(x) and f(y) lie on the segments $\overline{f(x')f(z)}$ and $\overline{f(y')f(z)}$, respectively. These facts imply that the triangles f(x)f(z)f(y) and f(x')f(z)f(y') are similar. Therefore, we conclude that $||f(x) - f(y)|| = N^{-q}\rho$.

SOON-MO JUNG

Let us consider (A2) for n = q + 1. Assume that $x, y \in X_{q+1}$ are given with $||x - y|| = 2N^{-q}\rho$. Similarly as the proof of (A1) for n = q + 1 (see the last paragraph), choose $z, x', y' \in X_q$ such that $||x - z|| = ||y - z|| = N^{1-q}\rho$, $||x' - z|| = ||y' - z|| = N^{2-q}\rho$, $||x' - y'|| = 2N^{1-q}\rho$, and such that x and y lie on the segments $\overline{x'z}$ and $\overline{y'z}$, respectively. By a similar argument as in the proof of (A1) for n = q + 1, we get $||f(x) - f(y)|| = 2N^{-q}\rho$.

Finally, we consider (A3) for n = q + 1, i.e., we prove that if $x, y \in X_{q+1}$ satisfy $||x - y|| = N^{-q}\rho$ and $x + m(y - x) \in X_{q+1}$ for some $m \in \mathbb{N}$, then f(x + i(y - x)) = f(x) + i(f(y) - f(x)) for $i \in \{0, 1, \dots, m\}$. There is nothing to prove for i = 0 or 1. Suppose our assertion is true for $i \in \{0, 1, \dots, k\}$ $(1 \le k < m)$. Put $p_i = x + i(y - x)$ for $i \in \mathbb{N}$. By the convexity of X_{q+1} , we see that $p_2, \dots, p_{k+1} \in X_{q+1}$ and

$$||p_k - p_{k-1}|| = N^{-q}\rho = ||p_{k+1} - p_k||$$
 and $||p_{k+1} - p_{k-1}|| = 2N^{-q}\rho$.

According to (A1) and (A2) for n = q + 1, we have

$$||f(p_k) - f(p_{k-1})|| = N^{-q}\rho = ||f(p_{k+1}) - f(p_k)||$$

and

$$||f(p_{k+1}) - f(p_{k-1})|| = 2N^{-q}\rho.$$

Hence, it follows from Lemma 1 that

$$f(p_{k+1}) = 2f(p_k) - f(p_{k-1}) = f(x) + (k+1)(f(y) - f(x)),$$

which completes the proof of (A3) for n = q + 1.

3 Generalization of a theorem of Benz

In this section, let $X, X_0, X_n, X_\infty, Y, N$ and ρ be the same ones as in the previous section. We are ready to prove the main theorem of this paper.

Theorem 3. If a mapping $f : X_0 \to Y$ satisfies both the properties (P2) and (P3), then $f|_{X_{\infty}}$ is an isometry.

Proof. (*a*) We assert that if $x, y \in X_{\infty}$ are separated from each other by a distance $mN^{1-n}\rho$ then $||f(x) - f(y)|| = mN^{1-n}\rho$, where *m* and *n* are arbitrary positive integers. Since X_{∞} is convex, we can choose a $z \in X_{\infty}$ on the segment \overline{xy} such that $||x - z|| = N^{1-n}\rho$. Define $p_i = x + i(z - x)$ for $i \in \{0, 1, ..., m\}$. The convexity of X_{∞} again implies that $p_i \in X_{\infty} \subset X_n$ for $i \in \{0, 1, ..., m\}$. By

(A3) of Lemma 2, we get $f(p_i) = f(x) + i(f(z) - f(x))$ for $i \in \{0, 1, ..., m\}$. Hence, using (A1) of Lemma 2, we have

$$||f(x) - f(y)|| = ||f(x) - f(p_m)|| = m ||f(z) - f(x)|| = mN^{1-n}\rho.$$

(b) Assume that $x, y \in X_{\infty}$ are distinct. For these x and y, choose the sequences, (k_i) , (m_i) and (n_i) , of non-negative integers with the following properties:

- (K) $k_i N^{1-n_i} \rho \le ||x y|| < (k_i + 1)N^{1-n_i} \rho$ for all sufficiently large integers *i*;
- (M) $(m_i 1)N^{1-n_i}\rho < ||x y|| \le m_i N^{1-n_i}\rho$ for all sufficiently large integers *i*;
- (N) (n_i) increases strictly (to infinity.)

Since X_{∞} is open, we can select a z_i on the segment \overline{xy} and a $w_i \in X_{\infty}$ such that

$$||x - z_i|| = k_i N^{1-n_i} \rho$$
 and $||z_i - w_i|| = ||w_i - y|| = N^{1-n_i} \rho$

for any sufficiently large i. It then follows from (a) that

$$||f(x) - f(z_i)|| = k_i N^{1-n_i} \rho$$

and

$$||f(z_i) - f(w_i)|| = ||f(w_i) - f(y)|| = N^{1-n_i}\rho$$

for any sufficiently large integer i. Thus, it follows from (K) that

$$\|f(x) - f(y)\| \le \|f(x) - f(z_i)\| + \|f(z_i) - f(w_i)\| + \|f(w_i) - f(y)\|$$

$$\le \|x - y\| + 2N^{1 - n_i}\rho$$

for any sufficiently large integer *i*, i.e., we get $||f(x) - f(y)|| \le ||x - y||$.

On the other hand, since X_{∞} is open, we can choose a $v_i \in X_{\infty}$ such that

$$||x - v_i|| = m_i N^{1 - n_i} \rho$$
 and $||y - v_i|| = N^{1 - n_i} \rho$

for all sufficiently large integers i. From (a) we get

$$||f(x) - f(v_i)|| = m_i N^{1-n_i} \rho$$
 and $||f(y) - f(v_i)|| = N^{1-n_i} \rho$.

Hence, it follows from (M) that

$$||f(x) - f(y)|| \ge ||f(x) - f(v_i)|| - ||f(y) - f(v_i)|| \ge ||x - y|| - N^{1 - n_i}\rho$$

for all sufficiently large integers *i*, i.e., we get $||f(x) - f(y)|| \ge ||x - y||$, which completes the proof.

References

- [1] A.D. Aleksandrov, *Mapping of families of sets*. Soviet Math. Dokl. **11** (1970), 116–120.
- [2] F.S. Beckman and D.A. Quarles, On isometries of Euclidean spaces. Proc. Amer. Math. Soc. 4 (1953), 810–815.
- [3] W. Benz, *Isometrien in normierten R\u00e4umen*. Aequationes Math. 29 (1985), 204–209.
- [4] W. Benz and H. Berens, *A contribution to a theorem of Ulam and Mazur*. Aequationes Math. **34** (1987), 61–63.
- [5] R.L. Bishop, *Characterizing motions by unit distance invariance*. Math. Mag. **46** (1973), 148–151.
- [6] K. Ciesielski and Th. M. Rassias, *On some properties of isometric mappings*. Facta Univ. Ser. Math. Inform. **7** (1992), 107–115.
- [7] D. Greewell and P.D. Johnson, *Functions that preserve unit distance*. Math. Mag. 49 (1976), 74–79.
- [8] A. Guc, On mappings that preserve a family of sets in Hilbert and hyperbolic spaces. Candidate's Dissertation, Novosibirsk, 1973.
- [9] S.-M. Jung and Th. M. Rassias, *On distance-preserving mappings*. J. Korean Math. Soc. **41** (2004), 667–680.
- [10] A.V. Kuz'minyh, On a characteristic property of isometric mappings. Soviet Math. Dokl. 17 (1976), 43–45.
- [11] B. Mielnik and Th. M. Rassias, *On the Aleksandrov problem of conservative distances*. Proc. Amer. Math. Soc. **116** (1992), 1115–1118.
- [12] Th. M. Rassias, *Is a distance one preserving mapping between metric spaces always an isometry?* Amer. Math. Monthly **90** (1983), 200.
- [13] Th. M. Rassias, *Some remarks on isometric mappings*. Facta Univ. Ser. Math. Inform. **2** (1987), 49–52.
- [14] Th. M. Rassias, *Mappings that preserve unit distance*. Indian J. Math. **32** (1990), 275–278.
- [15] Th. M. Rassias, Properties of isometries and approximate isometries. in Recent Progress in Inequalities (Edited by G. V. Milovanovic), Kluwer, 1998, pp. 341–379.
- [16] Th. M. Rassias, Properties of isometric mappings. J. Math. Anal. Appl. 235 (1999), 108–121.
- [17] Th. M. Rassias and C.S. Sharma, Properties of isometries. J. Natur. Geom. 3 (1993), 1-38.
- [18] Th. M. Rassias and P. Šemrl, On the Mazur-Ulam theorem and the Aleksandrov problem for unit distance preserving mapping. Proc. Amer. Math. Soc. 118 (1993), 919–925.

- [19] E.M. Schröder, *Eine Ergänzung zum Satz von Beckman and Quarles*. Aequationes Math. **19** (1979), 89-92.
- [20] C.G. Townsend, Congruence-preserving mappings. Math. Mag. 43 (1970), 37–38.

Soon-Mo Jung

Mathematics Section College of Science and Technology Hong-Ik University 339-701 Chochiwon KOREA

E-mail: smjung@hongik.ac.kr