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A characterization of isometries on
an open convex set
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Abstract. Let X be a real Hilbert space with didd > 2 and letY be a real normed
space which s strictly convex. In this paper, we generalize a theorem of Benz by proving
that if a mappingf, from an open convex subset¥finto Y, has a contractive distance

p and an extensive ordp (whereN > 2 is a fixed integer), thef is an isometry.
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1 Introduction

Let X andY be normed spaces. A mappirig: X — Y is called an isometry
(or a congruence) if satisfies

100 — fWI = lIx =yl

forall x, y € X. A distancep > 0 is said to be contractive (or non-expanding)
by f : X — Yif |[x — y|| = p always implieg| f (X) — f(y)|| < p. Similarly,
a distancep is said to be extensive (or non-shrinking) Ibyif the inequality
[ f(xX)— f(y)| = pistrueforallx, y € X with ||x — y|| = p. We say thap is
preserved (conserved or conservative)fbif o is contractive and extensive by
f simultaneously.

If fisanisometry,theneverydistanee- Ois preserved by, and conversely.
We can now raise a question:

Is a mapping that preserves certain distances an isometry?
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In 1970, A. D. Aleksandrov [1] had raised a question whether a mapping
f : X - X preserving a distance > 0 is an isometry, which is now known
to us as the Aleksandrov problem. Without loss of generality, we may assume
o = 1 whenX is a normed space (see [15]).

Indeed, earlier than Aleksandrov, F. S. Beckman and D. A. Quarles [2] solved
the Aleksandrov problem for finite-dimensional real Euclidean spXcesE":

If a mappingf : E" — E" (2 < n < o0) preserves distancd,
then f is a linear isometry up to translation.

Forn = 1, they suggested the mappiig E* — E* defined by

x+1 for xeZ,

f(x) = .
X otherwise
as an example for a non-isometric mapping that preserves distance 1. For
X = E*, Beckman and Quarles also presented an example for a unit distance
preserving mapping that is not an isometcy.([12]).

We may find a number of papers on a variety of subjects in the Aleksandrov
problem (see [5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] and also the
references cited therein).

In 1985, W. Benz [3] introduced a sufficient condition under which a mapping,
with a contractive distance and an extensive ondp, is an isometry (see also

[4]):

Let X andY be real normed spaces such that dm= 2 andY is
strictly convex. Supposke: X — Y isa mappingandN > 1lis a
fixed integer. If a distance > 0is contractive and\p is extensive
by f, thenf is a linear isometry up to translation.

Recently, the author and Th. M. Rassias proved in [9] that the theorem of
Benz is also true when the relevant domain is restricted to a half space of a real
Hilbert space with dimension 3.

In this paper, we will generalize the above theorem of Benz; More precisely, let
X be areal Hilbert space with dick > 2 and letY be a real normed space which
is strictly convex. We prove that if a mapping, from an open convex subsét of
into Y, has a contractive distangeand an extensive ondp (whereN > 2 is a
fixed integer), then the restriction dfto an open convex subset of the domain
is an isometry.
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2 Preliminaries

From now on, letX be a real Hilbert space with diX > 2. For a fixed integer
N > 2 and a constant > 0, let us define a sequeng@s,) by

dp=Np and d,=N3"p for ne{23,...}.
Let (X,) be a sequence of open convex subsets wfith
XoD X1 D+ D XnD Xnp1 D+ and d(Xnta, 9Xn) > nia

forall n € NU {0}, whered(Xn;1, 3Xp) = inf{||X — y|| : X € Xpy1, Y € 0Xpn}
ando X, denotes the boundary &f,. (If one of X,,,.1 andd X, is unbounded,
we will setd(Xpy1, 3Xp) = 00.)

Furthermore, we assume

Xoo 1= (ﬂ xn> £ .
n=0

We know that the intersection of any family of convex subsets of a topologi-
cal vector space is convex. Moreover, the interior of any convex subset of a
topological vector space is a convex set. ThXig, is an open convex subset of
X.

LetY be areal normed space with the following property:

(P1) If unit vectorsa, b € Y satisfy||a + b|| = 2, thena = b.

Using (P1) and an idea froift) in the proof of the theorem in [3], we may
easily prove the following lemma.

Lemmal. Foralla,b,ceVY,|b—al|=8=|c—bjjand|c—al] =28
implyc = 2b — a, whereg is a positive real number.

In the proof of the following lemma, we apply the mathematical induction
many times.

Lemma 2. Suppose a mappindg : Xg — Y satisfies both the following
properties:

(P2) p is contractive byf;
(P3) Np is extensive by .
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The following assertions are true for any givere N and for allx, y € Xu:
(A1) If |x —y|l = N¥"p, then| f(x) — f(y)| = N "p;
(A2) If |x —y| = 2N¥"p, then| f (x) — f(y)|l = 2N "p;

(A3) If || x —y|| = N¥"p andx + m(y — x) € X, for somem € N, then we
havef(x +i(y —x)) = f(x) +i(f(y) — f(x)) fori €{0,1,..., m}.

Proof. (a) We first prove(Al) for n = 1, i.e., we show that for alt, y € Xy,
IX — Y|l = p implies| f(x) — f(y)|| = p. Definep =y+i(x—y)fori e
{0,1,..., N}. Itthen follows that| pn — Y|l = Np, pi € Xofori € {0, ..., N},
and that|p; — pi_1ll = p fori € {1, ..., N}. Using(P2) and(P3) we have

N
No < 1 f(pn) — FOOI < Y I (Prgai) — F(pn-ill < Np.
i=1
Hence, we conclude thatf (x) — f(y)|| = || f(p) — f(po)ll = p.

We prove (A2) fom = 1, i.e., we prove that for all, y € Xy, X — y|| = 2p
implies| f(X) — f(y)|| = 2p. Letp = y+(/2)(x—y) fori € {0, 1,..., N}.
Then, it follows that|pn — Y|l = Np, pi € Xofori € {0, ..., N}, and that
lpi — pi—all = pfori € {1,..., N}. Now, we make use of (P2) and (P3) to get

N
No < [ f(pn) — FI < Y I (pnsai) — fF(pn-i)ll < Np,

i=1

N
(o) = FI =D 1 F(onsai) — Foni)ll- 1)

i=1

If we assume| f (p2) — f(po)ll < I (p2) — f (Pl + I f(p) — f(po)ll, then
it should beN > 3 in view of (1) and further

N-2

(o) — fII < Z I (Pn+a-1) — F(Pn-D I+ 1T (p2) — f(Po)
i=1

Mz

I f(PNg1-i) — F(Pn=i)II,

Il
[N
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which is contrary to (1). Therefore, we conclude by using (Al)fet 1 that

I£0) = fI=11f(p2) — fF(po)ll =
= [f(p2) — f (Pl + I f(p) — F(pPo)ll = 2p,
sincepp =y € Xy, p2=X%X € Xgandp; = (X + y)/2 € Xy (X; is a convex
set).
We now prove (A3) fom = 1, i.e., we prove by induction that i,y €
Xy satisfy [x — y|| = p andx + m(y — X) € X; for somem € N, then
fxX+i(y—x) = fx) +i(f(y)— f(x)) fori € {0,1,...,m}. Thereis
nothing to prove foi = 0 or 1. We now assume that our assertion is true for
i €{0,1,....k} (1 <k <m). Putp = x+1(y —x) forl € N. Then, since
Xy is convex, we have,, ..., pki1 € X and we get

[Pk — Px—1ll = o = IPk+1 — Pxll and || Pxs1 — Pr—1ll = 2p.

According to (Al) and (A2) fon = 1, we have

I (P)—F (-1l = p = I f (Prs-)— F (PO Il @nd |  (Prr1) — F(Pe-2) | = 2p.

Hence, it follows from Lemma 1 that

f(Pe1) = 2F(p) — F(p-n) = £ + (k+ D(F(y) — F(X)),
which completes the proof of (A3) for = 1.

(b) We now assume that for amye {1, ..., q}, our assertions (Al), (A2) and
(A3) are true for allx, y € X,,, whereq is a given positive integer.

(c) We consider (Al) fon = g 4+ 1. Assume thak, y € Xq.1 are given with
X =yl = N~%. Itisto showthaf f (x) — f(y)|| = N~ 9p. Choosez, X', y’ €
Xq such thatx — z|| = |ly — z|l = N* %, X' — z|| = |ly' — z| = NZ’Q,
X — Y| = N¥9p, and such thak andy lie on the sgmentsx’z andy’z,
respectively. In view of (Al), (A2) and (A3) far = q — 1 andq, we see that

1f)—f@Il =1y — f@] =N,
1fxX)— f@I=1f)— f@l =N,

I f(x)— f(y)ll =N,

and thatf (x) and f (y) lie on the sgmentsf (xX’) f (z) and f (y’) f (2), respec-
tively. These facts imply that the triangldgx) f (2) f (y) and f (x) f (2) f (Y)
are similar. Therefore, we conclude thidt(x) — f(y)|| = N~%p.
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Let us consider (A2) fon = g + 1. Assume thak,y € Xg;1 are given
with ||x — y|| = 2N~9. Similarly as the proof of (A1) fon = q + 1 (see the
last paragraph), choogex’, y' € Xq such that|x — z|| = ||y — z|| = N9,
X' —z|| = |y — z|l = N¥ Y%, X' — Y| = 2N1¥9), and such that andy lie
on the sgmentsx’z andy’z, respectively. By a similar argument as in the proof
of (Al)forn=qg+ 1, we get]| f (X) — f(y)|| = 2N"9p.

Finally, we consider (A3) fon = q + 1, i.e., we prove that ik, y € Xg41
satisfy [x — y|| = N~9 andx + m(y — x) € Xq11 for somem € N, then
fxX+i(y—x) = fx)+i(f(y)— f(x)) fori € {0,1,...,m}. Thereis
nothing to prove for = 0 or 1. Suppose our assertionis trueifer {0, 1, . .., k}
(I1<k<m).Putp =x+i(y—x) fori e N. By the convexity ofXq;1, we
see thafy, ..., Pky1 € Xg41 and

P« — Pe—1ll = N9 = I pksr — el @and || pr — Pre—1ll = 2N"%.

According to (A1) and (A2) fon = g + 1, we have

If(p) — F(p-D)ll = N"9p = || f (Pg2) — F (Pl
and
I f(prs1) — F(pr—D) Il = 2N"9p.
Hence, it follows from Lemma 1 that

f(Pr) = 2F(p) = F(p-n) = £ + (k+ D(f(y) = F(x)),

which completes the proof @¢A3) forn = q + 1.

3 Generalization of a theorem of Benz

In this section, leX, Xq, Xn, Xs, Y, N andp be the same ones as in the previous
section. We are ready to prove the main theorem of this paper.

Theorem 3. If a mappingf : Xqg — Y satisfies both the properti¢P2) and
(P3) thenf |x_, is an isometry.

Proof. (a) We assert that ik, y € X, are separated from each other by a
distancem N*~"p then| f (x) — f (y)|| = mN"p, wherem andn are arbitrary
positive integers. Sinck,, is convex, we can choosezae X, on the sgment
Xy such thaf|x — z|| = N1™"p. Definep; = x +i(z—x) fori € {0, 1, ..., m}.
The convexity oiX,, againimpliesthap;, € X, ¢ Xpfori € {0,1,..., m}. By
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(A3) of Lemma2,weget(p) = f(X)+i(f(z)— f(x))fori € {0,1,..., m}.
Hence, using (Al) of Lemma 2, we have

00— fWI =100 — f(pmll =m|f(@ — foOl =mN"p.

(b) Assume thatx,y € X, are distinct. For thes& andy, choose the
sequencegk;), (m;) and(n;), of non-negative integers with the following prop-
erties:

(K) kkNT™Mip < |Ix — y|| < (ki + )N p for all sufficiently large integers
i

(M) (mi —D)N M p < ||x —y|| < mi NI p for all sufficiently large integers
i;

(N) (ny) increases strictly (to infinity.)

SinceX,, is open, we can selectzaon the sgmentXy and aw; € X, such
that

Ix -2zl =kN*"™p and ||z — will = wi — yll = N*"™™p
for any sufficiently large. It then follows from(a) that
Ifx)— f@) =kN"™"p

and
If@)— f)ll=fw)—fyl=N"p
for any sufficiently large integer Thus, it follows from(K) that

100 — FIl < 1T — F@)I+11f@)— F)ll+ 1 fw) — fyl
< Ix =yl +2N¥"p

for any sufficiently large integar, i.e., we gef| f (x) — f(Y)| < X — VII.
On the other hand, sincé,, is open, we can choosevae X, such that

Ix —vill =mN*"p and |ly —vi|| = N*""p
for all sufficiently large integers. From(a) we get
10— f@)l =mN""p and [[f(y)— f@)|=N"p.
Hence, it follows from(M) that
o) = fMI = 1100 — f@ll—If(y) = f@l = lIx—yl—N""p

for all sufficiently large integers i.e., we gef| f (x) — f(y)|| = |Ix — y||, which
completes the proof. O
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