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1 Introduction

Suppose thaX is a real vector space with did > 2 and_L is a binary relation
on X with the following properties:

(O1) totality of L for zera x 1L 0,0 L x for all x € X

(02) independenceif x,y € X — {0}, x L vy, thenx, y are linearly indepen-
dent;

(O3) homogeneityif X,y € X,x L vy, thenax L By for all «, 8 in the real
line R;

(O4) the Thalesian propertylet P be a 2-dimensional subspaceXf If x € P
anda in the nonnegative real numbeRs , then there existyy € P such
thatx L yp andx + yo L AX — Yo.
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Then the paixX, L) is called arorthogonality spacecf. [25]. By anorthog-
onality normed spacee mean an orthogonality space equipped with a norm.
Some examples of special interest are

(i) Thetrivial orthogonality on a vector spagédefined by (O1), and for non-
zeroelements, y € X, x L yifandonlyifx, y are linearly independent.

(i) The ordinary orthogonality on an inner product sp&ag (., .)) given by
x L yifand onlyif (x, y) = 0.

(i) The Birkhoff-James orthogonality on a normed spé&e |.||) defined by
x L yifand only if |[x 4+ Ay| > ||x]|| for all A € R; cf. [15].

The relationL is calledsymmetriaf x L y implies thaty L x for all x, y €
X. Clearly examples (i) and (ii) are symmetric but example (iii) is not. It is
remarkable to note, however, that a real normed space of dimension greater
than or equal to 3 is an inner product space if and only if the Birkhoff-James
orthogonality is symmetric; see [2].

Let X be a vector space (an orthogonality space) @d+) be an abelian
group. A mappingf : X — & is called(orthogonally) additivef it satisfies
the so-calledorthogonal) additive functional equatiofi(x + y) = f(x) +
f(y) forall x,y € X (with x L y). Amappingf : X — & is said to be
(orthogonally) quadratidf it satisfies the so-callefbrthogonally) Jordan-von
Neumann quadratic functional equatidriix + y) + f (X —y) = 2f (X) + 2 (y)
forall x,y € X (with x L y).

The problem of “stability of functional equations” is that “when the solu-
tions of an equation differing slightly from a given one must be close to an
exact solution of the given equation?”. In 1941, S.M. Ulam [28] posed the first
guestion on the subject concerning the stability of group homomorphisms. In
1941, D.H. Hyers [12] gave a partial solution of Ulam’s problem in the context of
Banach spaces. In 1978, Th.M. Rassias [23] generalized the theorem of Hyers to
an unbounded situation. The result of Rassias has provided a lot of influence in
the development of what we now chliers-Ulam-Rassias stabilitf functional
eqguations. Following Hyers and Rassias approaches, during the last decades, the
stability problem for several functional equations have been extensively investi-
gated by many mathematicians; cf. [13]. Nowadays, there may be found several
applications in actuarial and financial mathematics, sociology, psychology, and
pure mathematics [1].

The first author who treated the stability of the quadratic equation was F.
Skof [26]. P.W. Cholewa [3] extended Skof's theorem to abelian groups. Skof’s
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resultwas also generalized by S. Czerwik [5] in the spirit of Hyers-Ulam-Rassias.
S.M. Jung [17, 18] investigated the stability of the quadratic equation. K.W. Jun
and Y.H. Lee [16] proved the stability of quadratic equation of Pexider type. The
stability problem of the quadratic equation has been extensively investigated by
some mathematicians; cf. [6, 7, 24].

The orthogonal quadratic equation

fX+y)+ f(x—y) =2f(x)+2f(y), x Ly

was first investigated by F. Vajzdvi29] whenX is a Hilbert space® is the
scalar field,f is continuous and. means the Hilbert space orthogonality. H.
Drljevi¢ [9] proved the following stability result:

Let $ be a complex Hilbert space of dimension 3, andA: $ — $ a
bounded self-adjoint linear operator with divi$)) > 2, and letthe real numbers
6 > 0andp € [0, 2) be given. Suppose thdt: §§ — C is continuous and
satisfies the inequality

1fx+y)+ fx—y) —2f(x) = 2f ()] < O [1(x, x)P? + [y, )IP?],

whenever(Ax, y) = 0. Then the limitT (X) = lim_ f%:x) exists for each

X € $ and the functional is continuous and satisfi@gx +y) + T(x — y) =

2T (X) + 2T (y) whenever(Ax, y) = 0. Moreover, there exists a real number
¢ > 0 such that

| f(X) — T(X)| < el(AX, X)|P/?,

forallx € 9.

Later H. Drljevic [8], M. Fochi [10] and G. Szabd [27] obtained more results
on the subject.

One of the significant conditional equations is the so-catigtiogonally
guadratic functional equation of Pexider tygéx + y) + g(X — y) = h(x) +
k(y), x L y. Recently, the second author investigated this equation with
“g = f”. Using some ideas from [11, 19, 21, 22, 20, 4], we aim to use the
alternative of fixed point theorem to establish the stability of this equation in
the spirit of Hyers—Ulam under certain conditions. The first systematic study of
fixed point theorems in nonlinear analysis is due to G. Isac and Th.M. Rassias;
cf. [14].

2 Main results

We start our work with a known fixed point theorem which will be needed later:
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Theorem 2.1. (The alternative of fixed point) Suppog&g, d) be a complete
generalized metric space aidd: € — ¢ be a strictly contractive mapping with
the Lipschitz constant L. Then, for each given elemeat&, either

(A1) d(J"x, IJ"*!x) = oo foralln> 0, or
(A2) There exists a natural numbag such that:
(A20) d(J"x, IJ"1x) < oo, for all n > ng;
(A21) The sequencgl]"x} is convergent to a fixed poigt of J;
(A22) y*isthe unique fixed point inthe sety = {y € € : d(J"X, y) < oo};
(A23) d(y, y*) < 2rd(y, Jy) forally € Y.

Suppose thaX denotes an orthogonality real space ahdenotes a Banach
space. Consider the sét := {¢ : X — VY : ¢(0) = 0} and introduce a
generalized metric o by

d(p, ¥) =inf{c e (0,00) : lp(x) =¥y (Xl =, VX € X}.

It is easy to see that®, d) is complete. Given a numberf A < 1, define the
following mappingJ, : € — € by (J,¢)(X) := A@(2x). For arbitrary elements
@, ¥ € € we have

dig,¥) < ¢ = [l¢X)—¢¥ X =<c, xeX
o 22X — AP @X)]| <AC, Xe€X
= d(J)L(p, ka) < AC.

Therefore

d(‘Jva ka) E )\'d((p’ w)v (28 W € Q:"

HenceJ, is a strictly contractive mapping o0& with the Lipschitz constamt
and we can use the fixed point alternative theorem.

We are just ready to prove the orthogonal stability of the Pexiderized equation
f(xX+y) +gx+y) =hX + k(y) wheref, g, h, k are mappings fronx to
VY under certain condition.

We use the notation(x) < ¢ in the sense that there exists a constastich
thate(x) < ae for all x in the domain ofp.
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Theorem 2.2. Suppose thak is a real orthogonality space with a symmetric
orthogonal relationl. and VY is a Banach space. Let the mappinfg, h, k :
X — V satisfy the following inequalities

[fX+Y) +9gX—y)—hXx) —k(yl| <e, (2.1)

forall x, y € X withx L y. Then there exists an orthogonally additive mapping
T such that

[fO) =TI e
if and only if
[ f(2x) — f(=2x) —4f(X) —4f(=x)|| Qe.
Indeed, if
I f(2%) — f(=2x) — 4f(x) — 4f (=%)| < e. (2.2)

holds for allx € X, then there exist orthogonally additive mappifigst’, T” :
X — VY such that

1100 = £(0) = TOoll < 1—208,

98
lgx) — g0 — T'X)| < 38
256
Ih(x) + k(x) —h(0) — k() — T"(X)|| < B

forall x € X.

Proof. Suppose that2.2) holds. Define
Fx) = f(x)—f(0), GX = gx) —g(0),
H(x) = h(x) —h(©0), KX = kXx)—k(0).

ThenF(0) = G(0) = H(0) = K(0) = 0. SetL(x) = HX1KX,

Use (O1) and pux = y = 0 in (2.1) and subtract the argument of the norm
of the resulting inequality from that of inequali¢2.1) to get

IFX+Yy) +GX—y) - H(X) — Kyl = 2. (2.3)
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Let p&(x) = 242X andpO(x) = 2X=£EX) denote the even and odd parts of
a given functionp, respectively.

If x L ythen, by (O3)—x L —y. Hence we can replaceby —x andy by
—yin (2.3) to obtain

IF(=X=Yy) +G(=x+y) = H(=X) = K(=y)|| < 2. (2.4)

By virtue of triangle inequality an¢2.3) and(2.4) we have
IF°(X+y) +G°(x —y) — H°(X) — K°(Y)|| < 2e, (2.5)
IFe(X +y) + G%(x —y) — H*(X) — K& (Y|l < 2e, (2.6)

forallx,y e X.
Step (l). Approximating F°
Letx L y. Theny L x, and by (2.5)

[FO(X+y) — G°(x —y) — H(y) — K°(X)|| < 2. (2.7)
It follows from (2.5) and(2.7) that

12F°(x +y) — H°(X) — K°(x) — H°(y) — K°(y)||

< IF°(X+y) + G°(x —y) — H°(x) = K°(y)||
+ IF°(x+y) = G°(x —y) — H°(y) = K°(X)|

< 4.

(2.8)

for all x, y € X with x L y. In particular, for arbitrarx andy = 0 we get
I2F°() — H°(x) — K°(x))|| < 4e. (2.9)
By (2.8) and(2.9), we have
IFe(X +y) — F°(x) = Fe(y)|
< % I2F°(x +y) — H(x) — K°(x) — H°(y) — K°(y)||

1
+t53 I2F°(x) — HO(x) — K°(x) | (2.10)

1
+ 5 12F°(y) — H°(y) — K°(y)l
< be

forall x,y € X with x L y.
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Givenx € X, by (O4), there existyy € X such thatx L yp andx + yp L
X — Yo. Replacingk andy by x + yg andx — yg in (2.10), we have
IF°(2x) — FO(X + ¥o) — F°(X — Yo)|| < 6e. (2.11)
Sincex L yp andx L —yy, it follows from (2.10) that
IF°(X + Yo) — F°(X) — F°(yo)Il < 6, (2.12)
and
IFC(X = ¥o) — F°(X) + F°(Yo)|l < 6e. (2.13)

By (2.11), (2.12) and(2.13),

1 1
HEFO(ZX) - F°00| = > IF°(2x) — F°(X + Yo) — F°(x — Yo

1
5 FO(X + Yo) — F°(x) — F°(yo)ll

1
+5 IF°(x — yo) — F°(x) + F°(yo)l|

< Oe.

Henced(F°, J;»2F°) < 9¢ < oo. Using the fixed point alternative we conclude
the existence of a mappirf@ : X — VY such thatR is a fixed point ofJ » that
is R(2x) = 2R(x) for all x € X. Since lim_ d(J{‘/ZFO, R) = 0 we easily
deduce that lim, .. 2% = R(x) for all x € X.

Indeed, the mapping is the unique fixed point 08y, in the setY = {¢ €
¢: d(F° ¢) < oo}. HenceRis the unique fixed point a}; » such thaf| F°(x) —
R(X)| < K for someK > 0 and for allx € X. Again, by applying the fixed
point alternative theorem we obtain

d(F°, R) < 2d(F°, J;2F°) < 18&.
Thus
[F°(x) — R < 18, (2.14)

forall x € X. Letx L y andn be a positive integer. Therd'2 L 2"y and
so we can replace andy in (2.10) by 2"x and 2'y, respectively. Dividing the
both sides by 2and lettingn tend tooo we infer thatR(x + y) = R(X) + R(y).
HenceR is orthogonally additive.
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Step (I). Approximating G°
Letx L y. Thenx L —y and(2.5) yields the following.
IG°(X +y) + FO (X —y) — H°(X) — (=K)°(Y)|| < 2e.

Using the same argument as in Step (1), we conclude that there exists a unique
orthogonally additive mapping’ : X — VY such that

1G°(x) — R(X)|| < 18&. (2.15)

Step (IlI). Approximating L°
Using 29 we get

[FO(X) — L°OX)|| < 2e, (2.16)
so, by(2.14),
IL°() — RO < [IF?(X) = L°)1l + [[F°(X) — R(X)| (2.17)
< 2+ 18 = 20e.

Step (IV). Approximating G¢

Now we use inequality2.6) concerning the even parts. betl y. Theny L X
and by(2.6) we get

[FEX +y) + G(x — y) — H%(y) — KE(X)|| < 2. (2.18)
By (2.6) and(2.18) we infer that
IFE(X +y) + Go(x —y) — L%(X) — LS(Y)|| < 2, (2.19)
forall x, y € X with x L y. In particular, it follows fromx L O that
[FE(0) + GE(x) — LEXO| < 2e, (2.20)
for all x € X. Applying (2.19) and(2.20) we get

[(Fe(x+y) = F°00) = Fo(y)) 4+ (G°(x — y) — G*(x) — G*(y))|
< IF*(X+y) + G*(x —y) — L°(x) — L*(Y)|
+ IF°00 + G5 — L°0OIl + IFE(y) + G°(y) — LEY)

< 6,

(2.21)

forall x,y € X with x L y.
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Givenx € X, by (O4), there existyy € X such thatx L yp andx + yp L
X —Yo. Hence, by (O3)x L —yo X+ Yo L Yo—X and so, by repeatedly applying
(2.21), we get

I(FE(X + Yo) — FE(x) — F4(y0))

R o o (2.22)
+ (G*(X — Yo) — G*(x) — G"(Yo) |l < 6,
l(FE(x ; Yo) — F (X)e— F (YO)e) (2.23)
+ (G*(X + Yo) — G*(x) — G"(Yo) || < 6,
I(F5(2y0) — F*(X + Yo) — F*(X — Yo)) (2.24)

+ (G*(2x) — G*(X + Yo) — G°(X — Yo)) || < 6e.

By (03), %32 1L +*3* and so by using2.21), we obtain

2 2
. e (2.25)

(rom(152) - (:52)

and

oo (02) e () cwe
2 2 -
It follows from (2.25) and(2.26) we infer that

[(FEX) — FE(¥0)) — (G®(X) — GE(Yo))Il < 12=. (2.27)

Using the triangle inequality, we infer fro(2.22), (2.23), (2.24) and(2.27) that
I(F®(2y0) — 4F°(yo)) 4 (G°(2x) — 4G°(x)|| < 42s. (2.28)

So far, we do not us€.2). Now we may apply2.2) and(2.28) to get

A

1 1 42
H 28720 — G| = 7 IF(2y0) — 4F°(yo)ll + e

4

e 2l
-+ — =1le.
2 2

IA
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Therefored(G®, J1,4G®) < 1le < oo. Using the fixed point alternative we
conclude the existence of a mappiig X — V such thatS is a fixed point of
Jy/a that isS'(2x) = 4S(x) for all x € X. Since lim,_, d(J{‘/4Ge, S) =0we
easily deduce that lig... £33 = S(x) forall x € X.

Indeed, the mappin§ is the unique fixed point 08,4 in the setY = {y €
¢: d(G®, ¥) < oo}. HenceS is the unique fixed point af; /4 such thaf] G(x) —
S(x)| < K for someK > 0 and for allx € X. Again, by applying the fixed
point alternative theorem we obtain

4 44
d(G% S) < éd(Ge, J1/aG®) < 3¢
Thus
44
G®(x) — SX)|| < 38- (2.29)

Letx | y andn be a positive integer. Thed'2 | 2"y and so we can replace
andy in (2.10) by 2'x and 2'y, respectively. Dividing the both sides b§"2nd
taking the limit asn — oo we infer thatS'(x + y) = S(X) + S(y). HenceS
is orthogonally additive.

Step (V). Approximating F¢
Letx L y. Thenx L —y and(2.6) yields the following.
IG*(X +y) + Fé(x —y) — H®(X) — K&(y)|| < 2e.
By (2.28), we have
IG®(2x) — 4G ()|l < [IF®(2y0) — 4F°(Yo)|| + 42¢ < 44e. (2.30)

Using the same argument as in Step (IV) and noting280), we conclude
the existence of a unique orthogonally additive mapngX — VY such that
S(x) = limn_. T2 and

86
IFe(X) — S|l < 3& (2.31)

Step (VI). Approximating L€
Inequalities(2.20), (2.29) and(2.31) yield the following.
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L) — S(x) = S < IFE(X) + G°(x) — L°(X) |
+ IF00 = SOl = 1IG%(x) — Sl

86 44
< 2¢ + 3 + 388 (2.32)
136
= —=¢.
3

Step (VII). Approximating f, g, h+k

PutT (x) = R(X)+ S(X), T'(X) = R(X)+ S(x) andT”(X) = 2R(X) +2S(x) +
2S(x). ThenT, T andT” are orthogonally additive and (2.14), (2.15), (2.17),
(2.29), (2.31) and (2.32) yield the following inequalities for each X:

100 = f(0) =TI < IF°(X) — RGO + [FE() — SO

86 140
1 —e = —
<18 + 3 e 3 g,
19(x) —g(0) — T'X) | < IG°(x) — R + IG%(x) — S(X)||
44 98
1 —e = —
<18 + 3 e 3 g,

Ih(X) + k(x) = h(0) = k(0) = T"() |
< 2|L°(%) — ROl + 2 LX) — S(x) — S(X) |
136 256

54084-?8:?8

Step (VIII). Necessity

Let T be an orthogonally additive mapping such th&t{x) — T (x)|| < e. Then
I fe(x) — T®(x)|| < . Note thatT € is an orthogonally additive mapping.

Letx € X. Using (O4), there exists a vectgs € X such thatx L y, and
X+ Yo L X —yo. Then, by (03)3 L %, X% | XX andx + yp L yo — X.
Hence

_ X+Y X—=Yo\ L (X+Yo X—Yo
T(x)—T( 5t >_T< 5 >+T( 5 )

-1+ 1377 (F)
=7 (3) 2 (3).
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T(ye) = T(yo;rx+yOZ—X>ZT(yo;rX)JrT(yoz—X)
-1+ (DT (F)

()

T(@2X) = T((X+Yo) + (X—Y¥0) = T(X+ Yo) + T(X— Yo)
= T(X)+ T(yo) + T(X) + T(=Yo)
= 2T (X) + 2T (Yo) = 4T (X),

and soT ¢(2x) = 4T¢(x). Therefore,

(@2 — F(=2x) —4f(x) —4f (=) < [ f92x) — 4f°X)|
= | 523 — TE20)|| + [4T(x) — 4f°00 | D e.

Remark 2.3. Let the binary relationl’ is defined by
X1y (xLyorylx)

Then clearlyl’ is a symmetric orthogonality in the sense of Ratzf,1§, h, k

are even mappings, thef.19) shows that if(2.1) holds for allx, y € X with

X Ly, then the same holds for adl y € X with x 1" y. Now if T is an orthog-
onally additive mapping with respect tb’ then it is trivially an orthogonally
additive mapping with respect tb. To prove the theorem therefore, in the case
that all mappings are even, we may omit the assumptionlthiatsymmetric.

Remark 2.4. In 1985, Ratz (cf. Corollary 7 of [25]) stated that(i¥, +) is
uniquely 2-divisible (i.e. the mapping : Y — Y, w(y) = 2y is bijective), in
particularY is a vector space, then every orthogonally additive mappitngs
the formT = A+ P with A additive andP quadratic.

The first corollary gives us a sufficient and necessary condition to approximate
an orthogonally quadratic mapping by orthogonally additive and orthogonally
quadratic mappings.

Corollary 2.5. Suppose thaX is a real orthogonality space with a symmetric
orthogonal relation and Y is a Banach space. L&) : X — VY be an
orthogonally quadratic mapping. Then a necessary and sufficient condition for
the existence of an additive mappiAgand an quadratic mappin@ with

QM) — AX) — Pl L&,
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is that

1Q(2x) —4QMX)| L e.
Proof. Setf = g = Q andh = k = 2Q in Theorem 2.1. Then, by remark
2.3, there exist an additive mappirgand an quadratic mappirfg such that
QM) — AX) — P Je.

Conversely, if there exists the orthogonally additive mapping= A + P
such that|Q(x) — T(X)|| < ¢, then the computations in the Step (VIII) of
Theorem 2.1 gives rise

1QR(2x) —4Q(X)|l Je.

Note thatQ is orthogonally quadratic and so is clearly even, Q&.= Q.
The second corollary gives a solution of the stability of Pexiderized Cauchy
equation (see also [21]).

Corollary 2.6. Suppose thaX is a real orthogonality space with a symmetric
orthogonal relationL andV is a Banach space. Let the mappinfsh, k :
X — V satisfy the following inequality

[f(X+Yy) —hX) -kl <e

for all X,y € X with x L y. Then there exists a unique orthogonally additive
mappingT : X — VY such that

[fx)— (0 —TX)| <32
[h(x) + k(x) — h(0) — k(0) — 2T (x)|| < 16¢

forall x € X.

Proof. The proof of Step (IV) of Theorem 2.1 states that the condition
If@2x) = f(=2x) —4f(x) —4f(=x)[ =<¢
holds if and only if so does

19(2X) — 9(=2x) — 49(x) —4g9(—=x)| = J&.
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Hence we may leG = 0 in Theorem 2.2. ThelR = S = 0 and the con-
structions in(2.28) and (2.32) of the proof of the theorem allow us to have
IFE&(X) — S(X)|| < 14¢ and||L®(X) — S(X)|| < 16¢. Then

[f)— FO) —TXI < IIF°(X) — RX)|| + [IF(X) — SX)||
< 18¢ + 14¢ = 32,
and
[h(x) + k(x) = h(0) — k(0) — 2T (x)||
< 2|IL°(x) = RO + 2ILE(x) — SX) ||
< 40s 4+ 328 = 72s.
forall x € X. 0

The third corollary concerns the case thais assumed to be an ordinary inner
product space.

Corollary 2.7. Suppose tha is areal inner product space of dimension greater
than or equal 3 and/ is a Banach space. Let the mappinfjg, h,k: H — VY
satisfy the following inequalities

[f(X+Y)+9(x—y) —hx) -kl <,

and
[ f(2x) — f(=2x) —4f(xX) —4f(=Xx)| <&,

for all x,y € $ with x L y. Then there exist orthogonally additive mappings
T, T, T” : X - VY such that

1100 — F(O) = T < 1—308,

98
1900 = 9(0) = Tl = .

2
IhG) + k) — h(0) — k(@) — T" ()l < %68,

forall x € 5.
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