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Nonexistence of invariantgraphs in all supercritical
energy levels of mechanical Lagrangiandin
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Abstract. Let (T2, g) be a smooth Riemannian structure in the tofds We show
that givene > 0 and anyC™ functionU : T2 — R there exists & functionU, with
Lipschitz derivatives that is-C° close toU for which there are no continuous invariant
graphs in any supercritical energy level of the mechanical Lagrangiad T2 — R
given by L(p,v) = %g(v, v) — Uc(p). We also show that given € N, the set of
C> potentialsJ : T2 — R for which there are no continuous invariant graphs in any
supercritical energy levet < nof L(p, v) = %g(v, v) — U(p) is CY dense in the set
of C* functions.
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Introduction

In a previous article [20], we showed that the set of smooth Riemannian metrics
in the two-torus whose geodesic flows have no continuous invariant graphs is
open and dense in the set of metrics endowed wittCthtopology. Motivated

by this result, it is natural to ask whether the set of mechanical Lagrangians in
the torus without invariant graphs in any supercritical level of energy is dense
in someCk topology. Namely, given a mechanical Lagrangian in the torus,
does there exists a smootbX-close mechanical Lagrangian without invariant
graphs in any supercritical level?. The purpose of this article is to show that
the answer to this question is positive, provided that the considered topology is
the C° topology. Given a mechanical Lagrangianp, v) = %g(v, v) — U(p),
whereg is a smooth Riemannian metric ¢ andU: T? — R is a smooth
positive potential, what we call the critical value of the Lagrangian is the absolute
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420 R. RUGGIERO

critical valueC = max,.r2 U (p).We say that a submanifoll in the tangent
bundleT M of a smooth manifoldM is called a graph if the canonical projection
7: TM — M, m(p,v) = p restricted toSis a homeomorphism. Our main
result is the following.

Theorem 1. Let(T?, g) be aC*> Riemannian structure ifi 2, and letCK(T2, R)

be the set o€X functions fromT 2 to the real numbers. Then, given> 0, the
setofU e C®(T2, R) for which there are no continuous invariant graphs of the
Euler-Lagrange flow in any supercritical energy le¥el< n of the Lagrangian
L: TT? — RgivenbylL(p, v) = g(v, v) —U (p) is dense in th€P topology.
Moreover, giverr > 0andU € C*®(T?, R), there is a functiotJ, € C1(T2, R)
with Lipschitz first derivatives, such that

(1) U —U¢ =€,

(2) There are no continuous invariant graphs in any supercritical energy level
of Le(p, v) = 59(v, v) — Ue(p).

Let us comment briefly some of the main difficulties and ideas concerning the
proof of Theorem 1. The Euler-Lagrange flow in energy levels whose energy
E is greater thai€ is, up to reparametrization, the geodesic flow of a Rieman-
nian metricgg = (E — U(p))gp, called Maupertuis’ metric. This is the well
known Maupertuis’ Principle of reduced action. The elimination of invariant
tori of the geodesic flow of a Riemannian metric by perturbations of the metric
[20] allows us to eliminate continuous invariant graphs in small open subsets of
energy levels: under certalt perturbations ofj we obtain an open subset of
metrics close t@F in the C* topology having no invariant tori. However, the
set of Maupertuis’ metrics is infinite, and although Maupertuis’ metrics are all
conformal to each other, they might have very different geometric features. We
would like to point out that the Gaussian curvature of Maupertuis’ metrics tends
to oo at certain points as the energy gets close to the critical value. With all these
problems it seems unlikely that with a single perturbation of a metric we could
succeed in eliminating invariant tori in all Maupertuis’ metrics simultaneously.
The definition of Maupertuis’ metrics suggests that perturbing the potential could
be more convenient than perturbing a particular Maupertuis’ metric, and pertur-
bations of the potential are somehow more natural from the point of view of
physics. The key idea of the proof of Theorem 1 is to show the existence of
perturbations of the potential which provide what we call in Section 2 uniformly
geodesic neighborhoods: open ballsTiA where the exponential map of the
metricg is a diffeomorphism, where the radigdgeodesics are geodesics of all
Maupertuis’ metrics, and where the Gaussian curvatures of Maupertuis’ metrics
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NONEXISTENCE OF INVARIANT GRAPHS IN ALL SUPERCRITICAL LEVELS 421

are uniformly bounded above. The existence of uniformly geodesic balls allows
us to control the geometry of all the Maupertuis’ metrics simultaneously in a
certain ball. Then, with the help of uniformly geodesic balls and some special
C° bumps we construct in this article (Appendix), we show that gieen C

we can perturb the potential in order to eliminate invariant graphs of constant
energyE simultaneously for alE € (C, €].

We would like to point out that Theorem 1 is the first result, as far as we know,
about the destruction of invariant graphs in all supercritical levels, and that the
proof of Theorem 1 cannot be extended to @letopology. We also think that
without much extra work we can extend Theorem 1 to n-dimensional tori.

1 Conformal metrics, Maupertuis’ principle

The goal of the section is to show some basic facts concerning the geodesics
and curvature of Maupertuis’ metrics. Although some of these results might be
well known we decided to include them in a preliminary section for the sake of
completeness. L&l ?, g) be aC*® Riemannian structure ifi%, letU: T? —

R be a smooth function (that can be assumed to be positive without loss of
generality), and consider the mechanical Lagrandi@p, v) = %g(v, v) —

U (p), where(p, v) are the canonical coordinates of the tangent bundig?of

The energy function df is given byE(p, v) = %g(v, v)+U (p), and the number

C = C(U) = max,cr2 U(p) is called the absolute critical value of the energy.
We shall refer taC simply as the critical value of the energy. The well known
Maupertuis’ principle tells us that the integral curves of the Euler-Lagrange flow
of L in a level of constant energy > C are the geodesics of the Riemannian
metricg® in T2 given by

gy (z. w) = (E —U(P)gp(z, w),

which is usually called a Maupertuis’ metric. All these metrics are conformal
to the metricg, and hence the formulae of conformal geometry can be applied
to study the surface€T?, gF). Let us recall briefly the conformal connection
formula and the conformal curvature formula, we follow [7], [16]. It =

f (p)gp be two conformal metrics, wheré: T2 — R is a smooth positive
function, and letV be the Levi-Civita connection of the metrigz  Writing

f(p) =P soo(p) = %In(f(p)), we have that the Levi-Civita connection
of g can be written in the following way:

Lemma 1.1. The Levi-Civita connectioW of the metriaj evaluated in smooth,
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422 R. RUGGIERO

local vector fieldsX, Y of T2 at the pointp € T2 is given by

§XY|p = vXY|p + gp(grada),
X(p)Y(p) + gp(grado),
Y(P)X(p) — gp(X,Y) grado)p,

wheregrado) is the gradient vector field of the functien

The following lemma that is straightforward from the conformal connection
formula is essentially proved in [16] (see also [17], [19] for instance).

Lemma 1.2. If the gradientgrado) is parallel to the field of vectors tangent
to a geodesig : (0, 1) — T2 of the metricg, then the geodesig(0, 1) is a
geodesic of the metrig = fg.

Now, let R be the curvature tensor of the metgc The curvature tensor @f
is given by the well known conformal curvature formula.

Lemma 1.3. The curvature tensoR of the metricg evaluated in smooth, local
vector fieldsX, Y, Z, W at the pointp € T? is given by
e PR(X,Y,Z,W) = Ry(X,Y,Z,W)
+ [Q(Y, 2)(0) + gp(Y, 2) || grado)p 1gp(X, W)
— [Q(X, Z2)(0) + gp(X, Z) || grado) p 1°1gp(Y, W)
+ 9p(Y, 2)Q(X, W)(0) — gp(X, Z)Q(Y, W)(0),

where|| v [|?>= g(v,v), and Q(X,Y) is the vector field which applied to a
smooth functiom: T2 — R gives the function

Q(X, Y)(h) = X(Y(h)) — (VxY)(h) — X(h)Y(h).

The main lemma of Section 1 contains some elementary properties of the
geodesics and the Gaussian curvature of Maupertuis’ metrics which are very
important for the forthcoming sections. LKt(p) and K E(p) be respectively
the Gaussian curvatures of the metricandg® at p e T2. We shall use the
notationdy to designate the distance associated to the mgtedall ofg-radius
r centered ap will be denoted byB, (p), and agE-ball of radiusr centered at
p by BF(p).

Lemma 1.4.

(1) If the energyE tends to+oo, then the Gaussian curvaturé® tends
uniformly toO.
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NONEXISTENCE OF INVARIANT GRAPHS IN ALL SUPERCRITICAL LEVELS 423

(2) If xo is a local minimum of the potentidl such thatU(xg) < C =
max,cr2 U (p), then there existy > 0, A > 0, K, > O such that

A
: =
mmqurO(xo)(E -U (CI))

KE(p) <

oo

for everyp € By, (Xo).

(3) Assume that the minimum poixg of U is of Morse type. If the curva-
ture K (Xg) of g at X is nonnegative, then there exists > 0 such that
the Gaussian curvaturek E(p) are positive for evenp € B, (xo) and
E > C.

Proof. Let p € T?, and lety : (—e, ¢) — T2 be a geodesic aj parametrized

by g-arc length such that(0) = p. Let¢: (—€,€) x (=6,8) — Vp be a
Fermi coordinate system defined in an open neighborhb,pdf p, such that

¢(t,0) = y(t) for everyt € (— e ¢€). Let us denote by}, respectively, the
coordinate vector fields @f, so3; |V(t) =y'(1t). Letus recall that the coordinate
vector fields are perpendicular along the geodgsanid haveg-norm equal to 1
alongy (for details see for instance [6]). Thisimplies thatthe Gaussian curvature
K (p) can be calculated by

3 9 9 9
K :R e’ A ar? A
(P) p(at s’ ot as>

Clearly, the coordinate vector fields are perpendicular in any metric conformal to
0. Soletg, = f(p)g, be conformal ta, wheref is a positive smooth function,
according to Lemma 1.3 we can calculate the curvature tenspeedluated in

the coordinate fields by

(0 9 3 9

—20(p) —

e R  —— =K
p(at ds’ ot as> (P)

5 9
+ |:Q(8_s >(0)+9p( >||gad0)p||i| (&’8_:3)
9 9
- |:Q<8t 3t>( )+gp( )llgrada)p|l] p<8_88_8)
5 9 9 3 o
+ gp(as 8t) (at 85) (ﬁ’E)Q a_sa_s> ©@).
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Sinceg (&, %) = 0 alongy (t), andg (&, &) = 9 (&, &) = 1 alongy(t), we
get

- (3 9 9 0 3 9
—20(p) g 0o J 0N B
2) Rp (at’ 35’ ot 88) = K(p) [Q (8'[ 8t) (o)+ || grado)p |l ]

-Q (85 as)( )-
Equivalently,

R, (3,3,3,3> — f(P)K(p)

at’ 9s’ ot’ ds
3 9
- f(p [Q<at 8t) (0)+ |l grada)p |l ]

- f(PQ (8_3 a_s> (0).

Let us calculateQ (m, 2) (o). Since is the field of vectorg/(t), we have
thatv%ﬁ =0, and since& = —In(f) We get that

do 1 of 320 1 | 92f af\?
T =" and —- = | (=) [.
at ~ 2f ot otz 2f2 | at2 ot

This yields,

9 9 1 | 02f af\? 1 [of\?
Uzear) @ =3 |5~ ) | ~are ar) -
at~ at 2f at ot 4f at
Recall that by the definition of a Fermi coordinate system, the vectorﬁeiml
tangent to the geodesics in the tubular neighborhgpghich are perpendicular

to y. Moreover, we can assume without loss of generalityslisithe arc length
parameter of such geodesics, @@ 3 = 0. Hence, it is easy to show that the

formula forQ (£, Z) (o) is obtalned from the formula fo@ (Z
by interchanging the parametdrands, i.e.,

s oy L@ ] 1oy’
Q(as as)() 2f2 | 9s2 _(83) _4f2(8s>'
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NONEXISTENCE OF INVARIANT GRAPHS IN ALL SUPERCRITICAL LEVELS 425

Thus we get,

- (3 3 3 3 1 [0?f 3 of

Ro[—=,—, — — ) = f(PK((pP) — = | —F — =(—)?
p(at’as’ 8t’8s) (MK Zf[atz 2(8t)]

1 , 1 |09%F, 3 /03f\?
—H”gradf)ﬂ —ﬁ[gf—§(£>i|

Since the area in the metrigof the parallelogram whose sides are the vectors
%p, éisp, is f(p) at p = y(0) we have that the Gaussian curvaturgat p is

- 1 - /0 9 o 0
K(p)=Tp)2Rp<a9a_S’ava_s>a

and hence we obtain

_ 1 1 [9%2f ., 3 /0f)\?
K(p):TmK(p)_ﬁ[Wfﬁ(ﬁ”

1 1 | a2f 3 /af\?
- VP | —f=2(=) |.
4f3||gract )| 2f3|:832 2(as>:|

To calculate the curvature of the metrigg = (E — U(p))gp we just take

f(p)=E—-U(p),solt = 9 _ 9 and hence we get
- 1
K(p) = ———K(P) -
®=e_0mp P 2E—umy
32U 3 /93U 2
[_W(p)(E_U(p»_E (E(p)) :|
—;n rad,(U) |2 -—
HE—U(p)s 192 2(E —U(p)?

92U 30U \?
[—@(p)(E —-U((p) — > <¥(p)) :|

92U 92U
2E U2 | ot (p) + a2 (P

3 ﬂ 2 ﬂ 2
T2 E—U(P) (at “”) +(8s(p))

I grad,(U) |1

1
= —— K
E—U(p) (p) +

~4(E -U(p)?
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To show item (1) in Lemma 1.3, notice first that there exists a con§ant0
such that| gradU) |l< Q, and such that in any Fermi coordinate system
defined in an open neighborhood®f the first and second partial derivatives of
U with respect to the coordinates are bounded abov® bilhis follows from
the fact that) is C* and the compactness 6f. So we deduce from the above
formula that

Q 4Q°

K ,
P+ EUm? T E—umP?

KE(p) < —
E—U(p)

which clearly implies item (1). )

The proof of item (2) follows from the above formula fiér. Indeed, lety > 0
be such thaE — U (p) > % for everyp € By, (Xo). From the curvature formula
we get

4 2
KE(p) < K(p) + 2 9 )

1
=E- U<p)>< E_U(p) T (E_U(p)?

which implies that

2 1 2Q S_QZ)
“ (mf(E—U(p))( P+ tc

for every p € By, (Xo).

So lettingA = sup,cr2K(q) + 22 + 882 , L = ZA, we prove item (2).

To prove item (3) notice first of aII that the curvature formula and the fact that
Xp is a critical point ofU imply that

g 1 1 9%U 92U
(p) = E—U(p K(p) + 2(E —U(p))?2 [ o2 (p)+ 952 (p):| .

So if Xg is a Morse type minimum dfl, and the curvatur& (Xg) is nonnegative,
there exists; > 0 such that:

(1) the ballB;,(Xo) is contained in a Fermi chart aroumgl

(2) the second derivativesdfin By, (Xo) with respectto the Fermi coordinates
are positive,

(3) the curvaturel (p) is positive for everyp € By, (Xo).

The number; suits the requirements of item (3) of Lemma 1.4, thus finishing
the proof of the lemma. g
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NONEXISTENCE OF INVARIANT GRAPHS IN ALL SUPERCRITICAL LEVELS 427

2 Uniformly geodesic balls for Maupertuis’ metrics

We continue with the notation of Section @2, g) is a smooth Riemannian
structure inT2, U: T? — R is a smooth positive function and(p, v) =
%g(v, v) — U(p) is the mechanical Lagrangian defineddpandU. The goal
of the section is to study Lagrangians with the property that there exists a ball
B/ (p) of g-radiusr > 0 centered at some poimt € T2 such that the radial
geodesics ofy in B, (p) starting atp are in factg®-minimizing geodesics for
all the Maupertuis’ metricg® = (E — U)g. This construction will allow us
to control the behaviour of radial geodesicsBn(p) under perturbations df
simultaneously in all the Maupertuis’ metrics. We shall use the notatighs
designate the distance associated to the mgtdg for the distance of the metric
gF, || v || for the norm of a vectow in the metricg, and|| v | g for the norm ofv

in the metricg®. Metric balls with respect tg, with g-radiusr and centered at
p will be denoted byB;, (p), and metric balls with respect gF with g&-radius

r and centered gb will be denoted byBE (p).

Definition 2.1. Given a family of metric& in T2, we say that a balB; (p)
of g-radiusr > 0 for someg € G is uniformly geodesic for the famil§ if
the g-geodesics irB; (p) containing the poinp are geodesics for every metric
heG.

Our first result is an elementary remark that plays a key role in the proof of
the main theorem.

Lemma 2.1. LetL(p,v) = %g(v, v) — U(p) be the mechanical Lagrangian
defined by the metrig and a smooth potentidl. Suppose that the poing is
a Morse minimum of), and that there exist% > 0 such that

(1) xo is the only singularity ot in the ball Bs(Xo),

(2) the integral curves of the gradient &f in B;s(Xp) are geodesics of the
metricg.

Then the integral curves of the gradientfin Bs(Xo) are geodesics for all the
Maupertuis metricsgg = (E - U(p))g, for everyE > C.

Proof. The proof is straightforward from Lemma 1.2: if the gradientfofs
parallel to the geodesics dfin B;s(xp) throughxg, then the integral curves of
the gradient are geodesics of the me@ic= f(p)gp. Since the gradients of
the functionsfg (p) = E — U (p) are all the same, we get that thegeodesics
throughxo in Bs(Xo) are in factg®-geodesics for ever > C. O
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428 R. RUGGIERO

Next, we proceed to studyF-minimizing properties of the geodesics through
Xo in the ballB;s(xg). We can suppose théis a normal radius fog, i.e., the ball
Bs(Xo) is a normal ball forg: givenx, y in B;(Xo) the geodesic joining and
y is unique, minimizing, and contained By (Xp). In particular, the exponential
map exp : {ll v [[< 8} —> B;(Xo) is a diffeomorphism, and is less than or
equal to the injectivity radius ofT 2, g). We shall denote bl (c) the length of
a curvec in the metricg, and byl g (c) the length ofc in the metricgE.

Lemma 2.2.Let(T?, g) be a smooth Riemannian structurelif, U : T?— R
be aC function, andL(p, v) = %g(v, v) — U (p) be aC* Lagrangian defined
in TT2. Suppose that there exist a poigt € T2, and a normal radius > 0
for the metricg, such that

(1) U(@) < max,ct2U (p) for everyq e B (Xo),

(2) the pointxg is an isolated critical point o) in B; (Xo), and the level curves
of U in this ball are theg-spheres of radiug < r centered akg.

Let E = C be the critical energy level of the Lagrangidn Then for every
E > C there exists (E) > 0 such that theg-geodesics irB; (Xo) throughxg are

gE-minimizing in the balB ¢ (o) = {p € T2, dge (P, Xo) < (E)}. Moreover,
there existd > 0 such that:

( rrB1i(n ),/E—U(p)) D <r(E).
pebr (Xo

Proof. The proof is a consequence of Lemma 2.1 and comparison Theorems
of basic Riemannian geometry. Since the level curvels @f B, (xo) are the
g-spheres centered @, the gradient ol in B, (Xo) is tangent to thg-geodesic

rays throughkg. So by Lemma 2.1, the bal; (xp) is uniformly geodesic for all

the Maupertuis’ metricg®. By Rauch’s comparison Theorem, we have that if
the curvatureK E satisfieskK E < H then the injectivity radiug (E) of (T2, gF)
satisfieso(E) > “=. Choose an enerdy > C. Accordingto Lemma 1.4, item

(2), we get "
T .
p(E) > ﬁ\ qerer(flo) vE-=U(),

for everyE > C. If E = C, although the Maupertius’ principle does not hold
in the energy level, the quadratic forrg§ define indeed metrics iB; (xo) by
the choice ok andr. Therefore, by Lemma 1.4 the above bounds&iig, x,)
still hold for the curvatur&K ©|g, x,). Let Mg = maXpes, ) v'E — U(p), and
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NONEXISTENCE OF INVARIANT GRAPHS IN ALL SUPERCRITICAL LEVELS 429

Mg = MiNpeg, xo) vE — U(P). The injectivity radius of the metricg® re-
stricted toB; (Xg) for C < E < Ep have a common lower bouney > O.

Writing L
po = poy E — U(p)—m > I\/;I;OEmE

we have a lower bound for the injectivity radius of all the metg€sg, x,) for
C < E =< Eg analogous to the lower bound pfE) for E > Eg. Since in
(T2, gF) for E > Eo all geodesics whose length is at mosE) = 1p(E) are
minimizers, this concludes the proof of the Lemma in the dase Ep > C. If
C < E < Ey, since the curvatures E of the ballB, (Xo) are uniformly bounded
above, there is a lower bound for the normal radigép) of p € B, (Xp), i.e.,
there existsy > 0 such thavg(p) > v for everyp € B (Xo). Hence, thegt-
geodesics througky whose length is at mostE) = %v = %po are minimizers,
thus proving the Lemma in the ca€e< E < E,. O
Lemma 2.3.Let(T?, g) be a smooth Riemannian structureTi, U, X, r > 0
andr (E) > 0 be as in Lemma 2.2. Givéh< € < r(E), the ballBE(xo) is
contained in the baIBGE'(xo) for everyC < E’ < E. More precisely,
E E’

B (Xo) C B6 SO T‘T“J,?B

foreveryC < E' < E.

Proof. The proof is an easy calculation using the definitions of the megfics
Given ag-geodesicy : (—e, ) —> BE(xo) with y(0) = xo, parametrized by
gE-arc length, we obtain itgF -length by the following formula:

@W)=A|wnwem
=1;¢E—Uwa»uwmnm
¢ E—U®@W(
=Axm—uwmnwnnw———ﬁiﬁm

E-U@®)
i E-U@®)
t ——dt
IR N e
|[E-U(p _
e max E U ~EV =€

Hence, a subset[0, tg/] of gF -lengthe contains the curve [0, €] of g&-length
€ and parametrized by-arc length. O

IA
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The next result will be very useful in the proof of the main Theorem. It shows
that there exists a system of “nested” uniformly geodesic neighborhoods where
the radial geodesics are minimizing for all the Maupertuis’ metrics.

Lemma 2.4.Let(T?, g) be a smooth Riemannian structureTg, U, Xo,r > 0
andr (E) > Obe asinLemma 2.2. There exists> 0,0 < «(E) < r(E), such
that:

(1) The balls BaE(E)(xo) are subsets oB; (Xp), and the radialg-geodesics
throughxo are g&-minimizers.

(2) ForeveryE > C andC < E’ < E there exist9 < ag(E’) such that
BOI‘E(E)(XO) = Bl)IlEE(E’)(XO) C BrE(E’)(XO)v

3) BaE(E)(xO) contains a ballBy, (xo) of g-radiusr; for everyE > C.

Proof. Let us recall the notations

Mg = max /E—-U(p)=+vE—-U(X), mg = min /E—U(p).

peBr (Xo0) peBr (xo)

We begin by observing that there exists a conskant 0 such thatP > m—g for
everyC < E. This is straightforward from the following two facts:
(1) iMe_ oo ME =1,

(2) by the definition ofB, (xg) there existsr > 0 such thaC — U(p) > o
for everyp € B (Xo), C = max,.2 U (p) which means that

1 1
_<_

Mg \/E

for everyE < C.

By Lemma 2.2, there exis® > 0 such that (E) > Dmg. For our purposes,
we can assume without loss of generality th@) = Dmg andP > 1.

Claim. The numbera(E) = %mE satisfies the requirements of Lemma 2.4.

Indeed, the choice dP implies thate(E) < Dmg = r(E), so according to
Lemma 2.2 the radial geodesics throughn BaE(E)(xo) aregE-minimizing and
this proves partially item (1). To show item (2) notice that the spheres of the
metricsgE in B, (xo) are the level curves of the potentldl so in fact the ball
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NONEXISTENCE OF INVARIANT GRAPHS IN ALL SUPERCRITICAL LEVELS 431

BE(E)(XO) corresponds to a certain szEE’(E,)(XO) with gF -radiusag (E’) > 0
for everyC < E’ < E. By Lemma 2.3, we have that

/ E—U(p) _ m
ce®) = o) BV E-—um ="

< —Mgr=—m —M, Dmg =r(E"),
’ ’ < 4
) E P E » E

A

which shows item (2). To show item (3) observe that by the definition of the
metricg® we have that

Medg(X, Y) < de(X,y) < Medqg(X, y),
for everyx, y € B; (Xg), and hence
a(E) = de (X0, dByg,(X0)) < Medg(Xo, IBg, (%))
This implies

@(E) _Dme _ D

dg(Xo, dBE - (X)) > - .
g( 0 a(E)( O))_ ME PME = p2

by the choice ofP. Therefore, the ba|BEE)(X0) contains the balB 5 (Xo)

of g-radiusr, = P2’ proving item (3). We are left to complete the proof of
item (1), namely, thaBaE(E) (Xo) C By (Xg). The comparison inequality between
the metricggF andg yields

a(E)
dg (%o, aBOt(E)(XO)) = m—E

so if we show that”— <r we are done. Infact, the numbéﬁ might be larger
thanr. However, since all the statements proved by now hold if we mulkipky)

by a constant < A < 1, we can rescale(E) in order to geﬁ"‘n(E =r. Thus,
considering.a (E) instead ofx(E) we get a number that fullfils the requirements
of Lemma 2.4. O

3 Perturbations of the potential preserving uniformly geodesic balls

We follow the notations of Section 2. Given a Lagrandidmp, v) = %g(v, v) —
U (p) where(T?, g) has a uniformly geodesic ba, (xo) for aIJ the Maupertuis’
metrics, we shall show how we can construct perturbatidraf U such that
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B (Xp) is still uniformly geodesic for the Maupertuis’ metrics of the Lagrangian
L(p,v) = 3g(v,v) — U(p). The idea is based in the theory of conformal
perturbations of a metrig which preserve some prescribed subset of geodesics
of g (see for instance [16], [17]).

Proposition 3.1. Let (T2, g) be a smooth Riemannian structure Trf, U :
T2 — R be a smooth positive function having a Morse minimgpsuch that
there exists an embedded bBJl(xg) of g-radiusr > 0 centered aky where

(1) The level curves df in B; (Xg) are theg-spheres centered ab,
(2) U(p) < C for everyp € B (Xp).

Givene > 0, n > 0, there exist-C" perturbationsU of U such that:
(1) The support ot is B; (o),

(2) U(p) <U(p)foreverypinthe interior ofB; (Xo), andminpep, x,) U (p) =
U (Xo),

(3) The level curves dff are theg-spheres centered ag, and hence the
ball B, (xo) i§ uniformly geodesic~for all the Maupertuis’ metrics of the
LagrangianL(p, v) = 2g(v, v) — U (p),

(4) Letg®, §° be respectively the Maupertuis’ metrics associated to the energy
E > CofL andL. Then the difference between the arc-lengthgroéind
gF can be estimated as follows:

minpeBr? (X0) AU (p)
2(E — U (x0))

IA

lge(¥) lge(¥) —lge(¥)

MaXpep, (xo) AU (P)
~ MiNpeg, (xp) (E — U (P))

IgE(V),

whereAU (p) = U (p) — U(p).

Proof. By hypothesis, the radig-geodesics irB; (Xo) throughxg are geodesics
for all the Maupertuis’ metrics of, according to Lemma 2.1: the ba} (xo)

is uniformly geodesic for these metrics. The sph&#e6«) of gE-radiuss > 0
contained inB; (o) are the level curves of the potentidl for everyE > C.
This special feature of the metriz allows us to apply some ideas of [17] to
obtain perturbationt) of the potential that preserve the geodesics of the new
Maupertuis’ metrics of.. Indeed, if we perturb the potential in a way that the
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perturbatiorJ preserves the system of level curveslah B; (xo) we get that the
gradient olJ is parallel to the gradient &f . Since the gradient & is parallel to
the radial geodesics gfin B; (Xo) we apply Lemma 2.1 to conclude that the radial
g-geodesics irB; (xg) are also geodesics for every met@iﬁ =(E-U (P)Yp
whereE > C, C being the critical value of.. Moreover, if we decrease the
value ofU pointwise with the perturbatiod, then the critical values df and

L coincide.

To construct such a perturbation, we proceed as in [17]. Take polar coordinates
(p,0) Iin By (Xo) with p = 0 corresponding to the poing, andp < [0,r].
Consider aC*® bump functionf: R — R* that is even,f(t) = f(0) for
every|t| > 5 and attains its maximum valuetat= 0, f (t) is strictly increasing
in the interval[—r, —5], and f(t) = O for |t| > r. Now, defineU (p) =
U(p) — f(p(p)), that gives a function of the same differentiability clasd off
f is a perturbation of the zero function in tB& topology, thertJ is a perturbation
of U in the same topology. Item (1) in the proposition obviously holds. Since
f is positive and attains its maximum valuetat O item (2) is trivially true.
Since the curvep = rq represent the spheres gfaroundxy which are level
curves ofU, then it is clear that the level curves Of are also these spheres
and hence, the gradient dfin B; (xo) is parallel to theg-geodesics througky.
The same is true for the gradient of the functidhis- U (p) and therefore the
radial g-geodesics irB; (xo) are §E-geodesics for everfg > C. This proves
item (3). The proof of item (4) is a calculation. Lgt [a, b] — B (Xg) be a
differentiable curve. Then,

b
lge(¥) —lge(y) = / [WVE-U@®) - VE-UE)l I y'®) | dt

:(/b Up) - U(p)

= Iy'® | dt
VE-Ux®)+vE-Ux®)

==fb AUPVE-UGO YOl
A E—U(D +(E-UrONE-UFn)
Z/* AU Il 7' llge i

E—U(p) +/(E— U O)NE - U m))

SinceU (p) < U (p) for everyp e B (xo) we haveE — U (p) > E —U(p) and
hence

E—U(p) < {(E—U(p)(E—U(p) < E—U(p.
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Consider a subintervdl’, b'] C [a, b]. Replacing in the above inequalities
we get
MiNtera by AU (v (1))
2Ma%epa ) (E —U(y (1))

|gE()/) < |gE()/)_IgE(V)

MaXera, by AU (v (1))
T MiNpeg, (xo) (E — U (P))

|gE(j/).

In particular, taking ay-geodesicy[—r, r] parametrized byg-arc length with
¥ (0) = Xowe obtain the inequalities initem (4), justreplacfag b'] = [-5, ],

4 Elimination of invariant graphs in large subsets of energy levels

We shall proof Theorem 1 in two steps. The first step, which is the goal of this
section, consists in showing that given> C, whereC is the critical value of

the Lagrangian, there exisG? perturbation of the potential creating a bump for
the Lagrangian action which is avoided by minimizers of the adti@ll energy
levelsC < E’ < E. The second step, that is the subject of the next section,
uses this fact to show the density of Lagrangians with no invariant graphs in any
regular level of energy. So we start with a characterization of a famil@%f
perturbations of the metrig which create bumps.

Proposition 4.1. Let(T?2, g) be a smooth Riemannian structureTii, letp > 0
be anormal radius of T2, g), and letG4 > 1be an upper bound for the Gaussian
curvature ofg. Letp € T?2andL > 0. Then there exi < §(p, Gg) < p such
that if for somed < § < §(p, Gg), andgs is a metric inT?2 satisfying:

(1) The metrig; coincides witlg outside the balBs(p) and|| g—0s || < L§,
(2) The radialg-geodesics througp in B,(p) are alsog;-geodesics,

(3) Thegs-length of each radial geodesie in the ball Bs(p) of g-radius $
around p exceeds thg-length ofy according to the following formula:

lg; (10, 81) — Ig(¥[0, 81) = 8Ggd?,

wherey is parametrized byg-arc length, then no radial geodesic through
p is gs-minimizing.
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The proof of Proposition 4.1 will be given in the Appendix, we prefer to show
how Proposition 4.1 applies to eliminate invariant graphs in large subsets of
energy levels.

Recalling the notation of the previous sectionsldetT? — R be a smooth
potential with an isolated minimupg in B (Xo) With U (Xo) < maXycr2 U (p) =
C, then the equatiog? = (E — U (x))g defines a Riemannian metric in the ball
B: (xo) for everyE > C. Assume that the level curves of the restriction to
B; (xo) of U are theg-spheres centered &§. So theg-geodesic rays i, (Xo)
throughxg are the integral curves &fU in B, (Xg), and this ball is uniformly
geodesic for the family of metriagt, E > C. Letr(E) > 0,«(E) > 0 be the
constants defined in Lemmas 2.2 and 2.4: ragligéodesics irBrE(E) (Xo) aregE-
minimizing, and the balBS ¢, (xo) of g&-radius«(E) is contained irBrE(’E/)(xo)
foreveryC < E’ < E. Let us denote byg a normal radius for the Maupertuis’
metric g€ in B, (Xo), E > C, Gg will denote the supremum of the Gaussian
curvature ofg® in B, (Xp), and observe that we can suppose that= «(E).
Moreover, according to Lemma 1.4, there exists an upper b@urd0 for the
Gaussian curvatures of tligg’s in B, (Xo): G > Gg for everyE > C. Letus
denote by (pe) = 8(pe, G) the constant given in Proposition 4.1 corresponding
to the metricg®. We can apply Proposition 4.1 to each megfein the ball
Br (Xo) takingGge = G for everyE > C. This provides us a sufficient criterion
to decide whether a metrizin B, (Xo) with the same radiad®-geodesics has
the property that radial geodesicslil‘njE (Xg) are noth-minimizing.

Lemma4.1.Let(T? g),U: T2: — R, %Xy € T2,r > Obe as above. Assume
that the Gaussian curvature ¢T?2, g) is nonnegative irB, (Xo). Givene > 0,

E > C, there exisD < rg . < r, and ae-C° perturbationU of the potentialJ
such that:

(1) The support o) is contained in the balB;. . (Xo) = {q € T2, dg(q, Xo) <
rE,e}y

(2) The ballB; (Xp) is uniformly geodesic for the metrig§ = (E-U (P))Yp,
(3) No radial g-geodesic inB; (Xo) is g& -minimizer for evenC < E’ < E.

Proof. The idea is to use Propositions 3.1 and 4.1 to construct a perturbation
of the potential enjoying the properties of assertions (1) and (2) in the statement
which at the same time satisfies item (3). SdHet C and conside$ < §(og),
whered (pg) is the constant defined in Proposition 4.1. We restrict our study to
the ball B, (xo) where the metricg® are all well defined and have curvatures
uniformly bounded from above. Without loss of generality, we can replace
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by the supremun® of the Gaussian curvatures of the metrigsrestricted to

B (o). Lety: [—pe, pe] — BF_(Xo) be a geodesic parametrized gy-arc
length such thay (0) = xo. Let us recall that by Proposition 3.1, the change in
the arc length of the Maupertuis’ metrics induced by a perturbafiofU with
support in the balB£ (xo) can be estimated as follows:

minpeBaE(Xo) AU (p)
2 | e 0, -
2(E — U (x0)) g(” ?>

A

lge (710, 81) — 1= (¥ [0, 31)

MaX, g o) AU (D)
MiNycg ooy (E — U (P))

A

l4e (710, 81),

where AU (p) = U(p) — U(p). Sincel g (v [0, %]) = %Ige(y[o, 8]) we can
rewrite the left inequality in the following way:

MiNpcge xp) AU (P)
AE Y x0) lge ([0, 81) < lge(v[0, 81) — lge (¥ [0, D).
According to Proposition 4.1, if we had that
MiNpege ) AU (P)
W Gog, 008D = 86es”

then the radial geodesics throughin BF g, (o) would be notg®-minimizing,
and hence, these geodesics would nogbeminimizing in B, (xo). The last
inequality can be reduced to

minpeBE(Xo) AU (p)
2

_ 8 > 8Ggé?,
4(E — U (X))

or equivalently, _
mmpeB%(Xo) AU (p)
E — U(x)
Now, recall that by Lemma 1.4 (1), (2) there exists a consfant 0 such that
A
< —
MiNpe, (xp) (E — U (P))
for everyC < E. Therefore, if we had that

minpeBE(Xo) AU (p)
2

> 32GEgS.

Ge

— > 32— A
E — U(xo) MiNpep, (xo) (E — U (P))
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then we would have that the radial geodesic8ix) are notgE-minimizing.
Or equivalently,

E-U
min AU (p) > 32A— (X0) ,
peBf (x0) MiNpep, (x) (E — U (P))
2

for somes < §(pg). Notice that there exists a constdht- 0 such that

E — U(xo)
MiNpep, ) (E —U(P)) —

’

E-U(x0) =1
Br xg) (E-U(p)

since Minep, (x)(E — U(p)) > a > 0 and lime_, 4 i
Hence, we can replace the above inequalities by

min  AU(p) > 32BAS

peBF (xo)
2
without loss of generality.

Claim 1. Givene > 0 there exist$. g € (0, 5(pg))] such that for every
§ < 8. there existb = o(8) > 0, and a smooth potentiél, s g: T> — R
such that

(1) The support ob, s g is B, (Xo) = {p € T2, dg(p, Xo) < o}, and the level
curves ofU, s g are theg-spheres centered &,

(2) I Uese —U [lc=32BAS <c¢,
(3) There exists < A = A(0) < o such that:

min AU (p) = 32B AS,

peB;.(Xo)
whereAU (p) = U (p) — Ues.e(P).

Indeed, using the ideas in the proof of Proposition 3.1, let us first construct a
positive bump functionf : (-1, 1) — R satisfying

D) minItlf f(t) > 32BAS,

1
2

@) Il fllc=e.
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Let us start with a smooth even functidrit) supported irf—1, 1] such that
f (t) is increasing if—1, 0] and takes its maximum value in the interjtal< 3,
where f (1) = 32B A for every|t| < % In this way we have that f ||=
32B A3, and then we calculatesuch that this norm is at most for this purpose
we must have that A5 < ¢ which means thag < §. g = m%x- Now,
recall that the numbe¥ represents a length in the metgg, and we want a ball
Bre(5)(Xo) In the metricg with g-radiusr g (8) which represents the beBIE c (Xo).
As we mentioned in the previous sections, the ballB;ifxy) of the Maupertws
metrics coincide, their boundaries are the level curves of the poté&hti&lo in
fact, there existsg(8) > 0 such thaBF (xo) = B 5)(Xo) for everys < Sg..
So letrg, = re(de.), and givenS < Sg. let f. 5 : R — R be the function
defined by f.s e(t) = f(—5 (8)) for § < . g, whose support is the interval
[—re(8),re(8)]and has the same image as the functiorClearly,rg(§) < re.
foreverys < Sge; |l fes.e o< €,andf. s g(t) = 32B As for every|t| < %
Finally, take polar coordinaté®, 6) in B; (Xg), wherep is theg-radius of points
in B (Xo), and define

Ues.e(P) =U(p) — fese(o(p),

for everyp € B, (Xp). The potential, , g satisfies the requirements of Claim 1.
Following the notation in Claim 1, let= (§) be theg-radius of the ball around
Xo Which coincides with the baBF (o), i.e., BE (Xo) = By, (5 (X0). Let us call
by rE e/(8) the gF -radius of the baIIBE(xo) forC < E' < E, i.e., B (Xg) =
rE E/<8>(X°) Notice thatg g(§) = 8, and by Lemma 2.3 we have th@tE/((S) <
S foreveryE’ < E.

Claim 2. LetU, ;g be the potential defined in Claim 1 fér< §. g. Then we
have that

min  AU(p) > 32BAle/(y[0, 8]),
PEB 3,00

whereAU (p) = U (p) — Ucs.e(p), andy is a radial geodesic parametrized by
gE-arc length.
The proof of Claim 2 is a straightforward calculation.
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Observe that
le(y[0,8]) = 8
= le ([0, 8])%
= leI0.an 5 = e (r10.8D.

Combining this estimate with Claim 2 we get that for edth< E’ < E,
every g&'-geodesicy [0, re g/($)] parametrized byg®'-arc length in the ball
BrE/ (5)(x0) with y (0) = xo, satisfies the inequality in Proposition 4.1:

E.E'\2

(%) lger (¥) — lger (¥) = 8Gglye ().

Since we chosé < «(E), andrg g(¢(E)) = ag(E") < «(E’) according to
Lemma 2.4, we get that

1)
re g (E) <ree(®) <reeg@(E) <a(E),

which means that the baIBrE’ 3, (X0) is contained in theg® -normal ball
E,E'\2

BaE(’E,)(xo). The final step of the proof of Claim 2 is to apply Proposition 4.1
to the metricg® in the ballBE ¢, (), where we take:(E') = p(E’) as normal

radius ofgE’ in B, (xg). By the inequality (*) it would be enough to show that
re.er(6) < 8(a(E).

Claim3. We canchoosé < §(x(E")) suchthatg g/(8) < §(«(E")) for every
C<FE <E.

In fact, there exists a minimumdy of the valuess («(E’), Gg) = §(x(E))
in C < E’ < E defined in Proposition 4.1, simply because the set of met-
rics {9% |g, xp)» C < E’ < E} is co-compact with bounded curvatur&$’ <
Gg' < G. Hence, we can take @ § < 8, and this implies by Lemma 2.3

ree(d) <8 <é <é8(E))

for everyC < E’ < E, thus proving the Claim and Lemma 4.1. O
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5 The proof of the main Theorem

Let us start the proof of the main Theorem by the following remark.

Lemma 5.1. Let g be a smooth Riemannian metricTit. LetU: T? — R
be a smooth function who? norm isA > 0. Givene > 0, D > 2A, and
a point p € T?, there existr = t(¢,U,D) > 0,0 < § = 8(¢,U, D) < 1,
W = W(A) > 0and a functiorlJ : T2 — R such that:

(1) The functionJ is e-C° close toU,
(2) The functionJ has a Morse minimum g,

(3) The functions) andU coincide in the complement of the ballgfadius
T centered afp,

(4) TheC? norm ofU in the ball ofg-radius$ around p is bounded above
by W, and the eigenvalues of the Hessiarlofn this ball are bounded
below byD,

(5) The level curves dj_i_in B;s(p) are theg-spheres centered gitand hence
integral curves ovU in Bs(p) are theg-geodesics throughp.

Proof. The proof is quite elementary, we shall just sketch the reasoning for the
sake of completeness. Lete T2, and letf: B, (p) — R be the square of
the distance fronp, f(x) = dgy(X, p)2. This function is smooth and strictly
convex and the poinp is a Morse minimum. The level curves df are the
spheres aroung and the integral curves of the gradientfofare the geodesics

of g in B;(p). Moreover, by compactness, there exists> 0 such that the

C2 norm of f is bounded above by regardless of the poinp. Consider

the family of functionsf;: B, — R given by f,(x) = a + Bf(x), where

a < U(p), andB > 0 is a constant such that the eigenvalues of the Hessian of
fa in B (p) are bounded below by”&2 = D. Hence, the functiorf, is more
convex than the functiokd, and it is clear that there exis¢ = W(A) > 0

such that theC? norm of f, is bounded above bW. Let us consider the sets
Qa = {X € Bi(p), fax) <= U(p)}. By the implicit function theorem, there
existu = w(A) > 0,v = v(A) such that for every. < a < U(p) the graphs

of fy andU meet tranversally at a compact &t diffeomorphic to a circle,
having diameted(a) < v which is the boundary of a subsgf, of the graph of

fa containing(p, fa(p)). Moreover, the numberd(a) tend to zero as tends
toU(p). Let X, be the graph off,(V (a)), whereV (a) is an open subset of

Br (p) containing a ball of maximal radius of the forBy 4 (p). Clearly,V (a)
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is diffeomorphic to an open ball, and let us define the functign T? — R
byUa(2) = U@ if z¢ V(a),Ua(2) = fa(2) if ze V(a). The functionU, is
continuous, andl, is within C° distancela — U (p)| from U. U, has a Morse
minimum atp, and we can smooth the functity by changing it a little in a
tubular neighborhood of the boundary\fa) of radius@ for instance, which
does not meet the balB@(p). Let U, be such a function. It is clear thatis

still a local minimum ofU,, and with this construction we get Lemma 5.1 taking

e:|a—U(p)|,8:? and r:d(a)-i—?. O

Proof of Theorem 1. First of all, let B(p) € T2 be an open ball where the
curvature of(T?2, g) is nonnegative. Let us choose a sequence of disjoint balls
Bs, (Pn) contained inB(p). Givene > 0, A > 0, py, letW = W(A), 7,, 8, be

the constants defined in Lemma 5.1. According to Lemmas 5.1 and 2.1, there
exists a family of potentialg),: T? — R such that:

(1) Un(x) — U(x) = 0 for everyx in the complement oB,,(p,), for every
n> C,

(2) Uy —U |lso< € for everyn > C,
(3) the pointp, is a Morse minimum ob,,, which is unique inB, (pn),
(4) TheC? norm ofUy, in B, (pn) is at mostw,

(5) the critical value oL, (p, v) = %g(v, v) — Un(p) is C, the critical value
of L, foreveryn > C,

(6) the level sets ad, in B, (pn) are theg-spheres centered pf, and there-
fore the ballsB,, (pn) are uniformly geodesic for all the Maupertuis’ met-
ricsgf = (E — Up)gfor E > C.

We can assume, by shrinkirgy p) if necessary, that mgxr2 U (q) — maXcp(p)
Un(X) = m > 0 for everyn > C.

Applying Claim 1 in Lemma 4.1, we have that there exdstB > 0, N =
N(A, B) > 0, such that for everg > C, there exist O< o (8,) < §,, and a new
LagrangianL,(p, v) = 3g(v, v) — Un(p) such that

(1) The support o), is By s, (Pn) = {P € T2, dg(p. pn) < 0(8n)}, and the
level curves olJ, are theg-spheres centered g,

(2) I Un — Up [leo= 32B Asy,,
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(3) | Un — Uy llcz< N(A, B), for everyn,
(4) There exists B< A < o (8,) such that:
AUn(p) = Un(p) — Un(p) = 32B Ay,
for everyp € B;,(pn).

(5) The radialgE-geodesics througip, in Bs,(pn) are no longeigE-mini-
mizers for evenC < E <n, WheregnE = (E —Up)g.

The next assertion is the proof of the first part of Theorem 1.

Claim. There are no continuous invariant graphs of the Euler-Lagrange flow
of the LagrangiarL, in any level of energC < E < n.

Indeed, it is enough to show that the geodesic flow of each Maupertuis’ metric
gt for C < E < n has no invariant graphs. This is straighforward from the
construction olU,: if the geodesic flow off = (E — Up)g had a continuous
invariant graph for som€ < E < n, then there would exist a continuous
flow in T2 by globally E-minimizing geodesics. In fact, the projection of the
geodesic flow restricted to the invariant graph ifitowould give acontinuous
non-singular vector field whose orbits ajg-geodesics. Such vector fields in
calculus of variations are called Mayer fields, and a complete proof of the fact
that the orbits of such vector fields are minimizers is made in [18]. The fact
that smooth Mayer vector fields in surfaces have minimizing orbits is a well
known fact in the theory of calculus of variations (see for instance [14], [13]).
In particular, this flow would cover the baB,, (p,) and hence there would
exist gE-minimizing geodesics throughy, which is impossible by the choice
of the metricsgE. In the critical levelE = C the Euler-Lagrange flow has
no singularities inB(p) and hence a continuous invariant graph would project
into a continuous vector field without singularitiesBip). The same previous
argument would give that the orbits of such a vector field would be minimizers
in the set of rectifiable curves containedBiip), contradicting Proposition 4.1
and Lemma 4.1. The above contradictions prove the Claim.

The proof of the second part of Theorem 1 is slightly more delicate. Let us
suppose for simplicity that the poinpg lie on a singleg-geodesigy: [0, €] —>
T2 with ¥5(0) = X = liMp_ 100 Pn- L€t Py = y0(2,). Since the balls;, (pn)
are disjoint we have thgt_,, 8, < € is a convergent series.

Now, lethn(p) = U(p) — Un(p), and letU (p) = > . cU(p) — hn(p)).
Consider the Lagrangian

_ 1 -
L(p.v) = 59(v.v) —U(p).
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The potentiall coincides withU, in the ball B., (pn), and coincides witiJ
outside the union of the balB,, (p,). Moreover, from the construction of the
potentialsU,, we have thatl U — U || < ¢, and from the Claim there are no
invariant graphs in supercritical energy levels.

We have to show thai is aC? function. By item (3) before Claim 1 we know
that theC? norm of the restriction ob) to each ballB;, is bounded above by a
constani for everyn. Since outside the union of the baBs, ( p,) theC? norm
of U is already bounded by some constlgt we have that fot < sin [0, 6],

I grad,, U — grad, U [|< Ndg(yo(t), pn,)
ns—1

+ Y N&i + Ndg(vo(zn, — 8n,), 70(9) + NoT (¢, 5)

i =Nt +1

wheren; is defined byyo(t) € Bs, (pr), andT(t, s) is the g-length of the
complement of
Uzsznt BSn ( pn)

with respect to the geodesjg[t, s]. From this formula it is easy to get that
I grad,, U — grad, U [I< (N + No)dg(3o(t), ¥0(S)).

Since the potentialt), were constructed with radial symmetries By, with
respect to the pointp,, we obtain a constart; > 0 such that

I grad, U —grad, U | < Nidy(q, 2)

for everyq, z in the union of the ball;,(p,). Therefore, we deduce that the
family of gradients of the functions

Vin =Y _(U(p) — ha(p)),

n>C

wherem > C + 1, is an equicontinuous, uniformly bounded family of functions
in T2. By Arzela-Ascoli theorem, there is a convergent subsequence bf{be
which isC. But since the series of functioN, is uniformly convergent ttJ

in the C° topology, any convergent subsequence tends tous proving that

is CL. Notice that the above argument grants that the gradidntisf Lipschitz
function. This finishes the proof of Theorem 1.
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6 Appendix: The proof of Proposition 4.1

Let (T2, g) be aC> Riemannian structure in the two dimensional tofifs let

p > 0 be the injectivity radius of T2, g), and letp € T2. Consider a normal balll

B: (p) centered ap with radiusr < p, i.e., a metric ball where each two points

X, yin B; (p) determine a unique minimizing geodepicy] C B, (p) of (T2, g)
joining x andy. The existence of normal balls is an elementary consequence
of the properties of the exponential map of the metyic Let us consider a
geodesio : [0, 2r] — B (p) parametrized by arc length, wifh(r) = p, and
ageodesia: (—¢, ) —> B (p) parametrized by arc length such th@d) = p,
g(y'(r), «’(0)) = 0. Denote byq(c) the length in the metrig of a curvec. We

start with the following estimate of lengths of geodesics.

Lemma 6.1. Let G4 be an upper bound for the Gaussian curvaturéBf, g).
Givenr > 0, there exist > § > 0, a constantD = D(r) > 0 such that
for every|s| < § the g-length of the broken geodedii in B, (p) given by the
union of the geodesidy (0), «(s)] and[«(S), y (2r)] satisfies the following two
properties:

(1) 0<Ilg(Ts) —lg(y[0, 2r]) = 14(Ts) — 2r < 4G4S?,

(2) The length of the intersection Df with the ball Bs(p) can be estimated

by
Ig(rs N Bs(p) < Ds?.

The inequality on the left in item (1) is obvious since the geodgs&min-
imizing in B; (p). The right inequality in item (1) is essentially a consequence
of the second variation formula. Lemma 6.1 (1) can be regarded as an estimate
of the increase of length of variations ¢f0, 2r] by a certain type of broken
geodesics. Although its proof is based in the well known first and second vari-
ation formulas for the length of geodesics, we include a complete proof for the
sake of completeness.

We shall subdivide the proof of Lemma 6.1 in two parts. To show item (1) let
us introduce some notations. Let (—e¢, €) x[0,r] —> B; (p) be the variation
of y by geodesics given by

(1) f((—e,€) x {0}) = y(0),
(2) f({s}x[0,r]) isthe geodesicjoining (0) andw(s) for everys € (—e¢, ¢).

Notice that the family of first derivatives of the variatidn g—fs(so, t) = Jg, (1)
defines a family of Jacobi vector fields along the geode&igs) = f(so, t),
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t € [0, r]. We claim that the collection of first derivatives
0
{aJS(t)’ |S| < G’t S [Oa r]} )

is uniformly bounded. Namely, there exists a constant- 0 such that if
n:[0,r] — T2andy, : (—e, ) — T?are geodesics ¢f 2, g) parametrized

by arc length withy, (0) = n(r) andg(n'(0), ', (0)) = 0O; then the norms of the

first derivatives of the Jacobi fields tangent to the variatipof », constructed

as above, by geodesics joining0) andn_ (s), are bounded above hy. Let us
remind briefly the proof of this assertion. The famfl, s € (—¢, €)} of such
Jacobifields is determined by the boundary conditi@®) = 0, Js(r) = 1, (S),

so|l Js(r) ||= 1 for every|s| < e. Sincen’ (0) = Jo(r) is perpendicular to
n'(r), we have by compactness ©f that there exists a small constant> 0

such thag( f{(t), Js(t)) < o foreverys € (—¢, €),t € [0, r], and every pair of
geodesicg, n, as above. Since Jacobifields in normal neighborhoo@E%fg)
depend continuously on their boundary conditions, there eltist9 such that

| Js(t) ||< bforevery(s,t) € (—¢,¢) x [0,r] andn, n, as above. Now, it is
easy to get a uniform bound ¢ for the norms of the second derivativeslgft)

by means of the Jacobi equation, and hence we can derive a uniform estimate for
the first derivatives as we wished. This elementary observation yields the first
step towards the proof of Lemma 6.1, which can be viewed as a local version of
the Theorem of Pithagoras.

Lemma 6.2. Let (T2, g) be aC> Riemannian structure if2. LetG4 be an
upper bound for the Gaussian curvature. There exists a normal radis<0,
€0 > 0 such that giverp € T2, a normal ballB, (p), geodesics : [0,r] —>
B/ (p), a: (—€,€) —> By (p) such thaty (r) = «(0), g(y’'(r), «’(0)) = 0, and
a variation f of y as above, we have that

lg(fs) —lg(¥)| < (ZGg)Sz,
for every|s| < «.

Proof. The proof of this lemma is straightforward from basic calculus of varia-
tions of Riemannian geometry. Indeed, by the second variation formula we have
that there exists; > 0 such that

lq(fs) = lg(¥[0,1]) + %szl (Jo, Jo) + O(s¥),

for every|s| < ¢;. Here,
1 (Jo, Jo) =/0 (I B® 17 —g(K ('), o)y’ 1), Jo)))dt < r(L>+b*Gy)
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is the index formula evaluated in the Jacobi fidld K is the curvature tensor
of the metricg, andL, b > 0 are the constants defined in the proof of Lemma
6.1 (namely, upper bounds f@rJy(t) || and|| Jo(t) || for everyt € [O,r]). By

the definition of the variatiorfs we have thatl;(0) = O for everys € (—e¢, ¢€).

By the local expansion of Jacobi fields (see for instance [4]) there éMistsO
such that

I Jo(®) I7<]l J(0) [I* t? + MGyq || J5(0) |7 t* < L%2(1 + MGgt?).

So by the continuity off Js(t) || we can assume without loss of generality that
b < 2 (by shrinking the intervdl0, r ] if necessary).

By standard comparison theorems in Riemannian geometry (see for instance
[5]) we have that

I 3 1< /Gg Il Iot) II< by/Gg < 2,/Gy,

for everyt € [0,r]. From this inequality and the index formula we get the
lemma. O

Clearly, item (1) in Lemma 6.1 follows from Lemma 6.2. Item (2) will follow
from the next result of the section, which concerns the length of intersections of
the geodesicds with the ballsBs(p), for s very small. The result is obvious for
the Euclidean metric and follows from elementary trigonometry. In the general
case the proof leads to some technical estimates involving lengths of geodesics.

Lemma 6.3. Then there exists a constabt= D(r) such thaty( fsN Bs(p)) <
Ds? for every0 < s < «.

Proof. Since the proof is elementary we just make a sketch of proof for the sake
of completeness. Let us consider the megria T,T2, and let us consider the
pullbackg* of the metricg in T, T2 by the exponential map exp T, T? — T2
Both metrics are equivalent ifi, T2 in balls of radius at most one. Notice that
the g* balls of small radius are round balls by the elementary properties of the
exponential map.

Let us consider g*-ball E5(p) of radiusa > 0, whose interior i€3(p). Let
r > aandq € T,T2with || q ||>r, letq’ € Ea(p) be any of the points of
intersection ofE, (p) with the straight line througtD, 0) which is perpendicular
to the straight line determined loyand(0, 0). Letq; be the point of intersection
betweenE,(p) and the straight line determined loyandq’. SinceE,(p) is
a circle, an easy calculation shows that gidength of the intersection of the
segmenfas, q'] (whose endpoints ap, q') with EZ(p) satisfies

2
lon—a' = 2%,
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Now, the equivalence between the metmgcandg*, and the application of the
above estimate to the geodesics of the variafipimply Lemma 6.3. O

Proof of Proposition 4.1. So let(T?, g) be a smooth Riemannian structure in
T2, letp > 0 be a normal radius afT 2, g), and letG4 > 0 be an upper bound
for the Gaussian curvature gf Let p € T2 and letL > 0. We want to show
that there exist O< (p, Gg) < p suchthatif forsome 6< § < §(p, Gy), there
exists a metrig; in T2 with support inB;(p) satisfying:

1) 19—05 lle=< LS,

(2) The radialg-geodesics throughp in B,(p) are alsogs-geodesics,

(3) Thegs-length of each radial geodesjcin the ball Bs(p) of g-radiuss
aroundp exceeds thg-length ofy according to the following formula:

lg(¥ [0, 81) — I(¥10, 81) = 8Ggd?,

wherey is parametrized bg-arc length, then no radial geodesic througis
gs-minimizing.

Following the notation in the section, let> 0 be a normal radius afT?, g),
letO<r < p,lety: [0, 2r] — B (p) be ag-geodesic with/(r) = p, and let
[s: [0, 2r] — B; (p) be the variation by-geodesics of defined in Lemma
6.1 (recall thal'g = y).

Let us consider a metrigs satisfying the assumptions of Proposition 4.1. We
proceed to compare thgg-lengths ofl's[0, 2r] andy [0, 2r]. First of all, by the
assumption of Proposition 4.1, tige-length ofy can be estimated by

2L8% > 1g(y[0,2r]) — Ig(¥[0, 2r]) > 8G482.
Next, let us estimate thg;-length of the geodesids;:
Igg(rs) = Igg(FS N Ba(p)) + Ig,;(Fs N B(S(p)c),

whereB;(p)° is the complement oB;(p). The above expression can be written
as

Igg(rs) = Ig(Fs) + |g5(Fs N B&(p)) - Ig(rs N B&(p)),

and by the assumptions (item (1)), we observe that the difference

ds = llg,(T's N Bs(p)) — Ig(T's N Bs(p))|
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is bounded above by
dé = 2L8|g(rs N B(S(p)))

Hence, by Lemma 6.1, (2), we get that

llg,(T's) — Ig(T's)| = ds < 2L8Ds? < 2L D&3
for every|s| < §. Finally, we can writdg (y) — |4 (I's) in the following way:
lg, (10, 2r]) — g, (T's) = lg,(¥) — lg(¥) +1g(¥) —1g(T's) +1g(Ts) — g, (T's).
Therefore, by Lemma 6.1, (1), and the estimatdsofve get

8Gy8% — 4G48% — 2L D§3
4G482 — 2L DS > G2,

|95 ()/[0, 2r]) - Ig,s (F(S)

v

\%

foreverys < é(p, Gg) < p suitably small. This inequality shows that the curve
y[0, 2r] is no longergs-minimizing: theg;-length of the curvds joining the
pointsy (0) andy (2r) is smaller than thes-length ofy [0, 2r ], as we wished to
show.
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