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Markov approximation and consistent estimation
of unbounded probabilistic suffix trees

Denise Duarte, Antonio Galves and Nancy L. Garcia

Abstract. We consider infinite order chains whose transition probabilities depend on
a finite suffix of the past. These suffixes are of variable length and the set of the lengths
of all suffix is unbounded. We assume that the probability transitions for each of these
suffixes are continuous with exponential decay rate. For these chains, we prove the
weak consistency of a modification of Rissanen’s algorithmContextwhich estimates
the length of the suffix needed to predict the next symbol, given a finite sample. This
generalizes to the unbounded case the original result proved for variable length Markov
chains in the seminal paper Rissanen (1983). Our basic tool is the canonical Markov
approximation which enables to approximate the chain of infinite order by a sequence
of variable length Markov chains of increasing order. Our proof is constructive and we
present an explicit decreasing upper bound for the probability of wrong estimation of
the length of the current suffix.

Keywords: probabilistic suffix trees, Markovian approximations, variable length
Markov chains, algorithm Context, consistent estimation.

Mathematical subject classification:Primary: 60K99, Secondary: 60F15.

1 Introduction

Unbounded probabilistic suffix trees define an interesting family of stochastic
chains of infinite order on a finite alphabet. The idea is that for each past, only
a finite suffix of the past, calledcontextis enough to predict the next symbol.
These suffixes can be represented by a countable complete tree of finite contexts.
In a probabilistic suffix tree there is a transition probability associated to each
context.

The existence of an infinite order stochastic chain consistent with the prob-
abilistic suffix tree is assured by imposing that the transition probabilities are
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weakly non-null and continuous, with continuity rate decaying exponentially
fast.

For these chains, we prove the weak consistency of a modification of Ris-
sanen’s algorithmContextwhich estimates the context needed to predict the next
symbol, given a finite sample.

Our basic tool is to approximate the chain of infinite order consistent with the
unbounded probabilistic tree, by a sequence of Markov chains, generated by finite
probabilistic trees of increasing height. This idea was introduced by Bressaud,
Fernández and Galves (1999a), Bressaud, Fernández and Galves (1999b) and
Fernández and Galves (2002).

Our proof is constructive and we present an explicit decreasing upper bound
for the probability of wrongly estimating the current context. The use of the
Markov approximation makes the proof simpler and, we hope, clearer.

Probabilistic suffix trees were first introduced by Rissanen (1983) in the finite
case. He called his modelfinitely generated source. In his work, not only he
introduces the model but also he proposes the algorithmContextwhich estimates
the context needed to predict the next symbol, given a finite sample in an effective
way. In his paper, there is a proof of the weak consistency of the algorithm in
the case of a fixed finite tree. Here, we generalize this result to unbounded
probabilistic trees for a modified version of the algorithm Context.

Recently, probabilistic suffix trees became popular in the statistics litera-
ture under the namevariable length Markov chainscoined by Bühlmann and
Wyner (1999). They prove the weak consistent of a variant of the algorithm
Context for finite trees without assuming a known prior on the depths of the
probabilistic tree but using a bound allowed to grow with the sample size.

An extension of Bühlmann and Wyner (1999) for the unbounded case was
obtained by Ferrari and Wyner (2003) using the same technical ideas. However,
they impose rather obscure conditions, which in their own words “may be difficult
to check”. They claim it is enough to assume that the family of probability
transitions is strongly non-null, i.e. the infimum for all symbols and contexts
of the probability of a symbol given the context is strictly positive. This is
definitively more restrictive than the weakly non-nullness property assumed by
us.

A different approach to the problem was recently proposed by Csiszár and
Talata (2006). They show that in the unbounded case, consistent estimation
may be achieved in linear time using two penalized log-likelihood maximization
procedures, namely the Bayesian Information and the Minimum Description
Length criteria.

Probabilistic suffix trees have been recently used by several authors to model
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scientific data coming from many different domain such as linguistics, genomics
and music, see Begleiter, El-Yaniv and Yona (2004), Bejerano and Yona (2001),
Leonardi (2006) among others.

This paper is organized as follows. Section 2 presents the definitions, notation
and the statement of the theorem. The proof of the theorem, as well as the
Markovian approximation, are presented in Section 3. In Section 4 we discuss
the reason why we could not use Rissanen’s original result.

2 Notations, definitions and result

LetA be a finite alphabet. This will be the state space of all the chains consid-
ered in this paper. We will use the shorthand notationwn

m to denote the string
(wm, . . . , wn) of symbols in the alphabetA. The length of this string will be
denoted by|wn

m| = n − m + 1.

Definition 2.1. A countable subsetτ of ∪∞
k=1A

{−k,...,−1} is acomplete tree with
finite branches if it satisfies the following conditions.

• Suffix property . For now−1
−k ∈ τ , there existsu−1

− j ∈ τ with j < k such
thatw−i = u−i for i = 1, . . . , j .

• Completeness. τ defines a partition ofA{...,−2,−1}. Each element of the
partition coincides with the set of the sequences inA{...,−2,−1} havingw−1

−k

as suffix, for somew−1
−k ∈ τ .

It is easy to see that the setτ can be identified with the set of leaves of a rooted
tree with a countable set of finite labeled branches.

Given a finite tree, itsheight is defined as|τ | = max{|w|; w ∈ τ }.

Definition 2.2. A probabilistic suffix tree onA is an ordered pair(τ, p) such
that,

• τ is a complete tree with finite branches; and

• p = {p(∙|w); w ∈ τ } is a family of probability transitions onA.

A stationary stochastic chain(Xt) is consistentwith a probabilistic suffix tree
(τ, p) if for any infinite pastx−1

−∞ and any symbola ∈ A we have

Pp

{
X0 = a | X−1

−∞ = x−1
−∞

}
= p

(
a | x−1

−`

)
, (2.3)

wherex−1
−` is the only element ofτ which is a suffix of the sequencex−1

−∞. This
suffix is called thecontextof the sequencex−1

−∞. The length of the context
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` = `(x−1
−∞) is a function of the sequence. Observe that the suffix property

implies that the set{`(X−1
−∞) = k} is measurable with respect to theσ -algebra

generated byX−1
−k.

If X0, X1, . . . is a sample from a stochastic chain consistent with a probabilistic
suffix tree(τ, p) we will say thatX0, X1, . . . is arealizationof (τ, p). We shall
use the shorthand notation

P
(
ak

1

)
= P

{
Xk

1 = ak
1

}
(2.4)

to denote the stationary probability of the cylinder defined by the finite string of
symbolsak

1.

Definition 2.5. We say that the probabilistic suffix tree(τ, p) is unbounded if
τ is countable but not finite and therefore, the function` is unbounded.

In the unbounded case, the compactness ofAZ assures that there is at least one
stationary stochastic chain consistent with a continuous probabilistic suffix tree.
Uniqueness requires further conditions, such as the ones presented in Fernández
and Galves (2002).

Definition 2.6. A probabilistic suffix tree(τ, p) onA is of type A if its transi-
tion probabilitiesp satisfy the following conditions.

1. Weakly non-nullness, that is
∑

a∈A

inf
w∈τ

p(a | w) > 0 ; (2.7)

2. Continuity , that is

β(k) := max
a∈A

sup
{∣∣p(a | w) − p(a | v)

∣
∣, v ∈ τ, w ∈ τ

with w−1
−k = v−1

−k

}
→ 0

(2.8)

ask → ∞. We also define

β(0) = max
a∈A

sup
{∣∣p(a | w)− p(a | v)

∣
∣, v ∈ τ,w ∈ τ with w−1 6= v−1

}
.

The sequence{β(k)}k ∈ N is called thecontinuity rate .

For a probabilistic suffix tree of type A with summable continuity rate, the
maximal coupling argument used in Fernández and Galves (2002) implies the
uniqueness of the law of the chain consistent with it.
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Chains consistent with finite probabilistic suffix trees are also calledvariable
length Markov chainsin the literature.

We now present a simplified version of the algorithm Context introduced by
Rissanen (1983) for variable length Markov chains. The goal of the algorithm is
to estimate adaptively the context of the next symbolXn given the past symbols
Xn−1

0 .
We first construct a candidate contextXn−1

n−k(n) wherek(n) = C1 logn with
a suitable positive constantC1. The intuitive reason behind the choice of the
upper bound lengthC1 logn is the impossibility of estimating the probability
of sequences of length much longer than logn based on a sample of length
n. Recent versions of this fact can be found in Marton and Shields (1994),
Marton and Shields (1996) and Csiszár (2002). We then shorten it according to
a sequence of tests based on the likelihood ratio statistics. This is formally done
as follows.

Let X0, X1, . . . , Xn−1 be a sample from the finite probabilistic tree(τ, p).
For any finite stringw−1

− j with j ≤ n, we denoteNn(w
−1
− j ) the number of occur-

rences of the string in the sample

Nn

(
w−1

− j

)
=

n− j∑

t=0

1
{

Xt+ j −1
t = w−1

− j

}
. (2.9)

If
∑

b∈A Nn

(
w−1

−kb
)

> 0, we define the estimator of the transition probabil-
ity p by

p̂n
(
a|w−1

−k

)
=

Nn

(
w−1

−ka
)

∑
b∈A Nn

(
w−1

−kb
) (2.10)

wherew−1
− j a denotes the string(w− j , . . . , , w−1, a), obtained by concatenating

w−1
− j and the symbola. If

∑
b∈A Nn

(
w−1

−kb
)

= 0, we definep̂n
(
a|w−1

−k

)
=

1/|A|.
We also define

3n(i, w) = −2
∑

w−i ∈A

∑

a∈A

Nn

(
w−1

−i a
)

log

[
p̂n

(
a|w−1

−i

)

p̂n
(
a|w−1

−i +1

)

]

. (2.11)

Notice that3n(i, w) is the log-likelihood ratio statistic for testing the consis-
tency of the sample with a probabilistic suffix tree(τ, p) against the alternative
that it is consistent with(τ ′, p′) whereτ andτ ′ differ only by one set of sibling
nodes branching fromw−1

−i +1.
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We now define the length of the estimated current contextˆ̀ as

ˆ̀
(
Xn−1

0

)
= max

{
i = 2, . . . , k(n) : 3n

(
i, Xn−1

n−k(n)

)
> C2 logn

}
, (2.12)

whereC2 is any positive constant.

Using a random upper bound for length of the candidate context, instead of
k(n) = C1 logn Rissanen (1983) proved the following result.

Theorem. Given a realizationX0, . . . , Xn−1 of a probabilistic suffix tree(τ, p)

with finite height, then

P
{

ˆ̀
(
Xn−1

0

)
6= `

(
Xn−1

0

)}
−→ 0 (2.13)

asn → ∞.

Unfortunately, Rissanen’s definition of the candidate context and the corre-
sponding proof of the result only applies to the case of a fixed finite probabilistic
suffix tree. Using our definition together with the canonical Markov approxi-
mation, we can extend Rissanen’s result for unbounded probabilistic suffix tree.
This is our main result.

Theorem 1. Let X0, X2, . . . , Xn−1 be a sample from a type A unbounded
probabilistic suffix tree(τ, p) with continuity rateβ( j ) ≤ f ( j ) exp{− j }, with
f ( j ) → 0 as j → ∞. Then, for any choice of positive constantsC1 andC2 in
the definition(2.12), there exist positive constantsC and D such that

P
{

ˆ̀
(
Xn−1

0

)
6= `

(
Xn−1

0

)}
≤ C1 logn(n−C2 + D/n) + C f (C1 logn) .

3 Proof of Theorem 1

We will use the canonical approximation of the chain of infinite order consistent
with (τ, p) introduced by Fernández and Galves (2002). We start by adapting
their definitions and theorem to the framework of probabilistic suffix trees.

Definition 3.1. Thecanonical Markov approximation of order k of a chain
(Xt)t∈Z is the Markov chain of orderk, X[k] = (X[k]

t )t∈Z having as transition
probabilities,

p[k]
(
a | x−1

−k

)
:= P

{
X0 = a | X−1

−k = x−1
−k

}
(3.2)

for all k ≥ 1 and all a ∈ A andx−1
−k ∈ Ak.
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Notice that, when(Xt) is consistent with a probabilistic suffix tree(τ, p), then
(X[k]

t ) is consistent with a finite probabilistic suffix tree(τ [k], p[k]) where

τ [k] = {w ∈ τ ; |w| ≤ k} ∪
{
w−1

−k; w ∈ τ, |w| ≥ k
}
. (3.3)

Observe also, that for contextsw ∈ τ which length does not exceedk, we have

p[k] (a | w) = p (a | w) .

However, for sequencesw−1
−k which are internal nodes ofτ , there is no easy

explicit formula expressingp[k](∙|w−1
−k) in terms of the family{p(∙|v), v ∈ τ }.

The main result of Fernández and Galves (2002) that will be crucial in the
proof of Theorem 1 can be stated as follows.

Theorem. Let (Xt)t∈Z be a chain consistent with a type A probabilistic suffix
tree(τ, p) with summable continuity rate, and let(X[k]

t ) be its canonical Markov
approximation of orderk. Then there exists a coupling between(Xt) and(X[k]

t )

and a constantC > 0 such that

P
{

X0 6= X[k]
0

}
≤ Cβ(k) . (3.4)

From now on, we will always assume that(τ, p) is of type A with summable
continuity ratesβ(∙) and(τ [k], p[k]) is its canonical Markov approximation of
orderk.

The proof of Theorem 1 will follow from the following lemma together with
a control on the error of the Markov approximation.

Lemma 3.5. For any choice of positive constantsC1 andC2 used in the defini-
tion of ˆ̀, we have

P
{

ˆ̀(X[k]
0 , . . . , X[k]

n−1) 6= `(X[k]
0 , . . . , X[k]

n−1)
}

≤ k(n)
(
n−C2 + D/n

)
(3.6)

wherek = k(n) = C1 logn.

Proof. We know that for fixed(i, w), under the null hypothesis, the statistic
3n(i, w), given by(2.11), has asymptotically chi-square distribution with|A|−1
degrees of freedom (see, for example, van der Vaart (1998)). We recall that, for
each(i, w) the null hypothesis (Hi

0) is that the true context isw−1
−i +1.

Since we are going to perform a sequence ofk(n) sequential tests where
k(n) → ∞ asn diverges, we need to control the error in the chi-square approxi-
mation. For this, we use a well-known asymptotic expansion for the distribution
of 3n(i, w) due to Hayakawa (1997) which implies that

P
{
3n(i, w) ≤ x | Hi

0

}
= P

{
χ2 ≤ x

}
+ D/n , (3.7)
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whereD is a positive constant andχ2 is random variable with distribution chi-
square with|A| − 1 degrees of freedom.

Therefore, it is immediate that

P {3n(i, w) > C2 logn} ≤ e−C2 logn + D/n .

By (2.12), in order to find ˆ̀
(
Xn−1

0

)
we have to perform at mostk(n) tests.

We want to give an upper bound for the overall probability of type I error in a
sequence ofk(n) sequential tests. An upper bound is given by the Bonferroni
inequality, which in our case can be written as

P

(
k(n)⋃

i =2

{3n(i, w) > C2 logn} | Hi
0

)

≤
k(n)∑

i =2

P
{
3n(i, w) > C2 logn | Hi

0

}
.

This last term is bounded above byC1 logn(n−C2 + D/n). This concludes the
proof. �

We are finally ready to prove Theorem 1.

Let
(
τ [k], p[k]

)
be the canonical Markov approximation of orderk of (τ, p).

Takek = k(n) = C1 log(n). Then,

P
{

ˆ̀
(
Xn−1

0

)
6= `

(
Xn−1

0

)}

≤ P
{

ˆ̀
(
Xn−1

0

)
6= `

(
Xn−1

0

)
, Xi = X[k]

i , 1 ≤ i ≤ n
}

+ P

(
n⋃

i =1

{
Xi 6= X[k]

i

}
)

.

The first term equals to

P
{

ˆ̀
(

X[k]
0 , . . . , X[k]

n−1

)
6= `

(
X[k]

0 , . . . , X[k]
n−1

)
, Xi = X[k]

i , i = 1, . . . , n
}

.

Using Lemma 3.5 this last expression can be bounded by

P
{

ˆ̀
(

X[k]
0 , . . . , X[k]

n−1

)
6= `

(
X[k]

0 , . . . , X[k]
n−1

)}
≤ n−C2 + D/n . (3.8)

Inequality(3.4) provides a bound for the second term

P

(
n⋃

i =1

{
Xi 6= X[k]

i

}
)

≤ n Cβ(k(n)) , (3.9)

whereC is a suitable positive constant independent ofk(n).
Since we tookk(n) = C1 log(n) and by hypothesisβ(k) ≤ f (k) exp{−k},

the result follows immediately from inequalities(3.8) and(3.9). �
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4 Discussion

The way the algorithm Context is introduced in Rissanen (1983) is slightly dif-
ferent. He first constructed a candidate contextXn−1

n−M(n) whereM(n) is a random
length defined as follows

M(n) = min

{

i = 0, 1, . . . , bC1 lognc : Nn

(
Xn−1

n−i

)
>

C2 n
√

logn

}

, (4.1)

whereC1 andC2 are arbitrary positive constants. In the case the set is empty we
takeM(n) = 0. Then, the length of the estimated current contextˆ̀ is estimated
as we did, using(2.12).

Imposing that the length of the candidate context is bounded above byM(n)

is a technical condition used by Rissanen to obtain the following upper bound
which appears in his proof of(2.13). Rissanen writes it as

P
{

ˆ̀
(
Xn−1

0

)
6= `

(
Xn−1

0

)}

≤ P

{

ˆ̀
(
Xn−1

0

)
6= `

(
Xn−1

0

)
| Nn

(
Xn−1

n−`
(

Xn−1
0

)

)
>

C2n
√

logn

}

P

{

Nn

(
Xn−1

n−`
(

Xn−1
0

)

)
>

C2n
√

logn

}

+ P

{
⋃

w∈τ

{

Nn (w) ≤
C2n

√
logn

}}

.

(4.2)

The point here is that Rissanen (1983) does not use the fact that the law of
3n converges to chi-square distribution as we did. Instead of that, Rissanen
provides the following explicit upper bound for the conditional probability in the
right-hand side of(4.2).

P

{

ˆ̀
(
Xn−1

0

)
6= `

(
Xn−1

0

)
| Nn

(
Xn−1

n−`
(

Xn−1
0

)

)
>

C2n
√

logn

}

≤ C1 logn e−C′
2

√
logn ,

(4.3)

whereC1, C2 andC′
2 are positive constants independent of the height of the

probabilistic suffix tree(τ, p).
With respect to the second term he only observes that, by ergodicity, for each

w ∈ τ we have

P

{

Nn (w) ≤
C2n

√
logn

}

−→ 0 (4.4)

Bull Braz Math Soc, Vol. 37, N. 4, 2006



“main” — 2006/12/11 — 16:41 — page 590 — #10

590 DENISE DUARTE, ANTONIO GALVES and NANCY L. GARCIA

asn → ∞. Sinceτ is finite the convergence in(4.2) implies the desired result.
In the case of unbounded trees,(4.2) is not enough to assure the result. Now

we need an explicit upper bound for

P

{

N[k(n)]
n (w) ≤

C2n
√

logn

}

,

wherek(n) is the height of the Markov approximation estimated with the sample
of sizen. The heightk(n) diverges withn and to assure that the limit in(4.2)

is really zero, using Rissanen’s estimation we need to takek(n) = c log log(n)

instead ofk(n) = c log(n).
The fact thatk(n) increases very slowly has a consequence on the quality of

the Markov approximation. Ifk(n) = c log log(n), then to assure that the upper
bound(3.9) vanishes asn diverges, we must assume that the continuity rate of
the chain decreases with a super exponential rateβ(k) ≤ exp{− expck}} .

Our alternative approach, using directly the chi-square approximation works
assuming only thatβ(k) decreases exponentially fast. And this together with
the canonical Markov approximation provides a very simple proof for the re-
sult in case of type A unbounded probabilistic suffix tree with continuity rate
decreasing exponentially fast.
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