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Hitting, returning and the short correlation
function

Miguel Abadi

Abstract. We consider a stochastic process with the weakest mixing condition: the
so calledx. Foranyfixed n-string we prove the following results. (1) The hitting time
has approximately exponential law. (2) The return time has approximately a convex
combination between a Dirac measure at the origin and an exponential law. In both
cases the parameter of the exponential law(i&)P(A) whereP(A) is the measure of

the string and\.(A) is a certain autocorrelation function of the string. We show also
that the weight of the convex combination is approximatelyy). We describe the
behavior of this autocorrelation function. Our results hold when the rate of mixing
decays polinomially fast with power larger than the golden number.
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1 Introduction

In the statistical analysis of Poincaré’s recurrence it is well known that “occur-
rence times have exponential limit distribution law”. This rough affirmation thus
stated in some cases leaves many open questions and in others is miss-leading.
For instance we would point out some questions:

(a) Under what hypothesis one has exponential times?
(b) What kind of occurrence time?

(c) Limitin which sense?

(d) Limit for what kind of sets and/or points?

(e) What is the parameter of the exponential law?
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With respect to (a) one would like to have the weakest hypothesis for which
one has exponential times. This immediately impose a second question: we
only have limit exponential law or have a rate of convergence of this limit which
gives an error term for a finite approximation? And moreover, what kind of error
term: total variation distance as was usually taken in the literature (see Abadi
and Galves [3] for a review) or point-wise error as was introduced by the author
in[2]?

With respect to (b) we could mention without exhausting the posibilities the
hitting time (first time a process enters a fixed set), return time (first time the
process comes back to a fixed set), repetition time (first time the process comes
back to their first, non-fixed, state), waiting time (first time the process enters a
set chosen independently from another copy of the process), among others.

The latters were proved to be of major importance due to their relationship
with the entropy of the process (Wyner-Ziv [16], Orstein-Weiss [14], Shields
[15]). Since them can be decomposed conditioning to the initial condition of the
process, the formers are of major importance to describes the latters.

Of course (c) refers to limit in distribution, in probability or almost everywere.

With respect to (d), in general, results in the dynamical systems setting present
nice results that hold for almost every point. However, it turns out that to present
a full description of the repetition and waiting times it is necessary, as appears
in Collet-Galves-Schmitt [6], Haydn-Vaienti [11], Abadi-Vaienti [4], to describe
the statistics of a whole partition of the space without leaving any set or point.

With respect to (e), Kac’s lemma ([13]) is commonly used to guess that the
parameter of the exponential law should be the measure of the observable. How-
ever, since the seminal paper of Galves and Schmitt ([9]), it is known that for
certain observables, the parameter it is not just the measure of the observable,
but a certain correction factor must be introduced to get convergence to the ex-
ponential law, even when the observable could be very simple like a cylinder set.
Later on, Abadi ([1]) shows that this correction factor is non-trivial and describes
the short correlation of the process conditioned to the observable.

In the context (a)-(e), this paper is devoted to explore two questions:

* What is the largest class of systems which have exponential hitting and/or
return times?

* Whatisthe behavior of the short correlation function of a fixed observable?

a-mixing is the weakest hypothesis among several mixing conditions. We refer
the reader to Doukhan ([8]) for a source of definitions and examples of the many
mixing conditions. We prove that the hitting time of arstring A converges
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in distribution, as diverges, to an exponential law. The results holdsfary
string. The results holds for-mixing processes with functiom decreasing
polynomially fast. It is quite surprising for us that the power of the polynomial
must be larger than the golden numbties+/5) /2. We recall that Chazottes ([5])
shows how to construct binarg-mixing processes with arbitrary polynomial
rate of mixing. We concentrate our work mstrings since any observable can
be decomposed in-strings, in particular the whole state space.

The convergence of the hitting time is obtained re-scaling it by a positive
function A (A)P(A) whereP(A) is the measure of the string.(A) is a certain
function related to the short correlation of the process conditioned to start in
physically it represent the mean probability that the process leaves thé\siate
a time not too big. We precise and describe this function.

For the return time td\, we prove that, under the same conditions, the return
time law approaches to a law that is a convex combination of a Dirac measure
concentrated at the origin and an exponential law. The re-scaling factor of the
exponential law is the same as in the hitting time case. The weight of the convex
combination is again a short correlation function related(té).

A remarkable point of our work is that our results hold éserystring. Dy-
namically, this means that we prove exponential limit laws when the limit is
taken alonganypointx, in contrast with previous works which find exponential
law for almostevery point. To get the exponential limit law we only have to
consider the re-scaled functiariA)IP(A) 1 instead of the traditional re-scaled
functionP(A)za. In a recent paper, Haydn, Lacroix and Vaienti ([10]) in a very
general framework prove that the convergence of a sequence of hitting times is
equivalent to the convergence of the return times, without introducing the auto-
correlation function (cask(A) = 1), and relate the limiting distribution of one
with the other.

Another remarkable point of our results is the weakness of the hypothesis
considered.

The results presented in this paper are extensions of those in Hirata, Saussol and
Vaienti ([12]) and Abadi ([2]) which basically proved that hitting and return time
laws are exponentially distributed when the processimixing with exponential
mixing rate.

This paperis organized as follows. In section 2 we establish our framework. In
section 3 we define several short correlation functions and establish some of their
basic properties. In section 4 we establish the limiting hitting time distribution
with its own rate of convergence. This is Theorem 6. In section 5.2 we establish
the limiting return time distribution with its own rate of convergence. This is
Theorem 7.1 Since it depends on certain overlapping properties of the string, we
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first introduce them in section 5.1. The proof is in section 5.3.

2 Framework and notations

Let C be a (non-empty) finite or countable set. But= C%. For eachx =
KXmmez, € Q andm € Z, let X, : @ — C be them-th coordinate, that is
Xm(X) = Xm. We denote byl : Q@ —  the one-step-left shift operator, namely
(TX)m = Xme1.

We say that a subsét C Q is an-string if A € C" and

A={X0=a0,---»xn—l=an—1},

witha € C, i =0,...,n—1. We use the probabilistic notatiofX' = X'} =
{Xn = Xn, - ., Xm = Xm}). FOrt € Z we writety’ to meancp o T'.

We consider an invariant probability measifrever theo -algebra generated
by the strings. We shall assume without loss of generality that there is no singleton
of probability 0.

We say that the procesSXm}mez IS @-mixing if the sequence

a(l) = suplP(BNC) —P(B)P(C)] ,

converges to zero. The supremum is taken @&@ndC such thatB € o (X{),
Cea(X -

For two measurable¥ andW, we denote as usu@l (V|W) = Pw(V) =
P (V; W) /P(W) the conditional measure &f givenW. We writelP (V; W) =
PV NW). We also writeV¢ = Q\V, for the complement o¥. Finally,
logarithms will be taken in base

3 Short correlation functions

In this section we introduce several notions of short correlation functions. De-
spite the fact that they are interesting by itselves, in the next two sections it
will appear their relationship with the hitting and return time distributions of an
onservable.

Given A € C", we define thehitting time ta as the first time the strind\
appears in the infinite sequenceNamely, we definea : 2 — NU {oo} as the
following random variable: For any € Q

ta(X) = inf{k > 1: TXx) € A}.
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For eachn-string A take anyg and f such thah < g < f < 1/P(A), Let
us define the short correlation function introduced by Galves and Schmittin [9]:
Ag, 1 (A) : UnC" — (0, 3) as follows:
—logP(ta> f —0Q)
fP(A)

The nextlemma presents an equivalent (Uupft&@A)) expression fok ¢ g (A).

)\f,g(A) =

Lemma 1. For any process{ Xm}mez

P(za<f -0 P(za< f -0
————————— <At g(A) £ —————— + 2fP(A) .

P(A) < ifg(A) = P(A) + (A)
Proof. Taylor's expansion says thatle ™ < x <1—e X 4 2(1 — e ™>)? for
0 < x <log 3. Applyitwithx = —logP (ta > f — g). The lemma follows]

To understand the expressitiza < f — g)/fP(A) we must compute the
numeratotP(zp < f — Q). In practicef has order much larger th@so we can
replacef — g by f with just introducing a small error.

Lemma 2. For any process{ Xm}mez

<P(TA§ f) P@a=f-9 <g_
- fP(A fP(A) - f

Proof. By stationarity we get

Pta< f)—Pta<f-9g = Pea>f—-g; 3" <09
< Pza<0
< gP(A).
Of course, the other inequality is obvious. O
Lemma 1 and Lemma 2 say that asymptotically(A) has the same behavior

asP(ra < f)/fP(A). Our last lemma says that, physically speakingg(A)
can be regarded as the mean probability the process takes to leave the state

Lemma 3. For any stationary proces$Xm}mez

Paa< ) 1o .
T(M—T;PA(TA> |).
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Proof. Using stationarity it is very simply to see thBtra = t) = P(A; ta >
t — 1) which immediately implies the result. O

The next two lemmas tend to bring some light®Bfra < f). The first one
is more a trivial observation that shows basics lower and upper bounds that hold
for anyprocess. The second one establishesifanixing processes that except
of a factor belonging to the intervél/s, 1], with certains, P(tp < f) behaves
like fP(A).

Lemma 4. For any process{ Xm}mez

P(A) <P(za < f) < fP(A). 1)

Proof. Both inequalities are trivial.
— Lower bound:
P(A)=P(ta=1) <Pa=<f).

— Upper bound:

f
{ra < f}—U{rAzu EU

i=1

Thus the inequality follows by stationarity. 0

Lemma 5. If {Xm}mez IS a-mixing then for anys and f such thatn < s <
f < P(A) the following inequality holds

fP(A) (1 B a(s—n)

! = )fP(rAsf). @)

Proof. Firstly we show a general inequality iterating themixing property.
Suppose tha§ € o (X;gf}) with somet < sand fori =1, ..., m. Then

m m-1
P(ﬂs) P(ﬂ S)P(sn>+a(s—t>
i=1 i=1

2
(ﬂ s) P(Sn-DP(Sn) + P(Sa(s —t) +a(s —1) .
i=1

A

IA
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Iterating this procedure we get

m+1 m

P(ﬂ s) <[[P&®+as-0) []PS).
i=1 i=1

i=3 j=i
where with some abuse of notation \]\‘/[ﬁ-”szrl P(S§) = 1.

Now consider the sdtra > f}. Introducing gaps of length— n in between
the sets§ = T~'S*1AC withi =0, ..., [f/s] we have

Lf/sl
{ta> f)c () ToMA°
i=1
Applying the above inequality we get

[f/s]—-1
A-PAN+a(s—n) > (1-PA)
i=0
1-(1—-P(A)'s
P(A)

P{tp > f}

A

(1—PA)"S+a(s—n)

A

Thus
_ a(s—n)

P(A)
The conclusion follows by Taylor’s expansionef*. O

(1- @ -PA)'S) (1 ) < P{ra < f}.

So far, we have proved that the short correlation funclipg(A) is bounded
from above by a constant.

Under much stronger hypothesis it was firstly shown by Galves and Schmittin
[9] and further by the author in [1] and [2] that it is also bounded from below by
a constant (which only depends on the properties of the me&jukénder our
current much weaker hypothesis, namely assuming without loose generality that
« is decreasing, we only get the lower boung Wheres = «~1(CP(A)) +n
for some constar® < (0, 1).

The crucial point is that in generak 4(A) is difficult to compute explicitly.
We would like to have a way to compute it. Under extra hypothesis, in the
above referred papers [1] and [2], the author shows that it can be replaced by a
much computable quantity (that we will introduce later on in section 5.1 for the
convenience of the exposure) that depends on the overlapping properties of the
considered string.
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4 Hitting time

Theorem 6. Let {Xm}mez be an a-mixing process. Suppose thatx) < x=«
with « > (1+ +/5)/2. Then, there exists a functiaA) : U,C" — (0, 3] such
that for anyA € C",

—t

P (rA > ;> —e
L(AP(A)

Moreover the rate of convergence of the above limit is bounded from above by

gP(A) + a(9) }
= g,
fP(A)

lim sup

N—00 {5

~0. 3)

en(A) =Cy inf [fIP’(A) + (4)

n<g=<f<1/P(A)

wheres = o~ Y(P(A)) + n andCy is a positive constant.

Proof.  First we prove the theorem farof the formkf wherek is a positive
integer andf is a certain "scale’h < f < 1/P(A). Then we prove the theorem
for a generat.

Step 1: First we prove that foralM > 0andM’ >g >0
IP(ta> M+ M) —P(ta> M)P(ta > M —g)| < gP(A) + a(g). (5)

To simplify notation denotea o TX by r,&"]. We introduce a gap of lengthafter
coordinateM to construct the following triangular inequality

IP(ta> M+ M) —P(ta> M)P(ta > M —g)|
< ‘P(rA>M+M’)—]P>(rA> M;r,[\M+g]>M’—g)} (6)
+ ’P(rA > M; Ml S M/—g) —P(ta> M)P(ta > M’—g)‘ ()
Term (6) is equal to
B(ra> Ml < g™ > M —g) P(ra=0) = GP(A).

First inequality follows by stationarity. Term (7) is bounded using &imixing
property bya (g). Thus we conclude (5).
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Now take anyn < g < f < 1/P(A). The triangle inequality leads to

’P(‘L’A >Kkf)—P(tpo> f)P(za> f —g)k_l}
k

<Y [P@a> jf) =P(ta> (j —DFP(ta > f = @)|P(xa > f — ) ).
j=2

By (5) the modulus in the above sum is bounded by
gP(A) + a(9) ,

for all j. Further

k 1
ki
JZ_;IP’(TA>f Q) ilP(fAff—g)'

Step 1 follows.

Step 2: Remember thatt 4(A) = —logP (ta > f — ) /fP(A). Writet =
kf 4+ r with k positive integer. Consider the following triangle inequality
P(tp>t) — e*“g(A)P(A)t‘ < |P(zp>1t) — P(za > k)|

+ |P(za>kf) =P(ta> f — )X
1 g trg(AP(AKS |1 _ e .a(APAX

The first term isP (rA > kf; o < s) which is bounded byP (a < s) <

rP(A) < fP(A). The second term was bounded in step 1. Finally, the modulus
in the third term is bounded using the Mean Value Theorera fy(A)P(A) f.
This ends step 2.

Putting together steps 1 and 2 we get thattfor 0

gP(A) +a(9)

P (tp > t) — e Mo WPM < fp(a) 4 S DT HI)
(ta=D-e = b= -9

Now we recall Lemma 5 to bound the above expression by

gP(A) + a(9)

fP(A
A+ T g

C:s, (8)
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with a constant 1

= a(s—n) °’
1- P(A)

provided thatx(s — n) < P(A) for all n. Thus, in order to prove (3), we have to
chosef, g, s for eachA such that they satisfy the following four constraints:

Cy

(@ fP(A) — 0,asn — oo,

(b) gs/(f —g) — 0,asn — oo,

(€) a(@s/(f —gP(A) — 0,asn — oo,

(d) there exist& € (0, 1) such thate(s — n) = CP(A).

Sincea(x) < x™© we first choses = (CP(A))~Y* 4+ n with any constant
C € (0, 1). This implies (d).

Choosef = P(A)~1*¢, thus we have (a). Then chooge= P(A)~1* with
0 < ¢ < & < 1. With this choice off andg we have that for large enough
there exists a positive consta® such thatf — g > C, f. Constraints (b) and
(c) become

§—e—1/k>0 and 1-8)xk—-1/k—¢e>0,

respectively, where is given. Solving these inequalities we find that there exist
suche ands if and only if« > (1++/5)/2. Foragivenc > (14+/5)/2, among
the possible solutions afands, that is of f andg, chose those that minimize
(8). Then define.(A) = At 4(A) for thesef andg. Now make the change of
variablest’ = A(A)P(A)t Since this holds for alC € (0, 1) of constraint(d),

we can takes = o ~1(P(A)) + n. This ends the proof. O

5 Return times
5.1 Overlapping

For A € C" define the first overlapping position éfas
(A =minfke{L....n} | An T5A) # 0} .
Writen=qt(A) +r,withqg = [n/t(A)]and 0<r < t(A). Thus

_ T(A-1 _ 2t(A-1 _ _ yat(A-1 (A1, yn-1 _ ar-1
A= {Xo =Xin = =Xg-nea = 8 ; Xgen = g } .
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For instance, in the following 15-string one ha®) = 6

T(A) T(A) r
A= (agaabb aaaabb aaa) . 9)

Consider the set of overlapping positionsAf
lkefl,....,n=1 | An TXA) #0}
={t(A),....[In/T(AIT(A}URA),
where
R(A) = (ke {(In/t(AIT(A +1,....n—=1} | An T5A) # 0} .

Observe thatR(A) <r < n/2. Forinstance, in the string given in (9), one has
R(A) = {13, 14}. Further, consider an infinite sequence that begins Witin
such a sequence A can not reappear befg®. Thus,Pp (ta < 7(A)) = 0.
Still, if Adoes notreappear attiméA), then it can not reappear at times(A),
with 1 <k < [n/t(A)], so one has

Pa(z(A) < 1A < [N/T(A)](A) =0.
One concludes that tHest possible return after(A) is

| minR(A) R(A) £0
A= na=n R(A) =

Observe that by constructiom, > n/2.

5.2 Results

Thereturn timeis the hitting time restricted to the s&f namelyra|a. Formally,
given A € C", we define theeturn timezs : A — N U {oo} as the following
random variable: Forany € A

Ta(X) = inf{k > 1: TX(x) € A}.

We remark the difference betweegr andt (A) defined in the previous section:
while Ta(x) is the first timeA appears in the infinite sequencer (A) is the first
overlapping position oA.

It would be useful for the reader to note now that according to the comments
of the previous section, one has

tala € {t(AJURA)U{ke N|k>n}.
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To simplify notation, for anyn < f < 1/P(A) put
def
it = Pa(ta>T(A)+ ).
Theorem 7. Let {Xm}mez b€ @ a-mixing process. Then for ank € C", the

following holds:
n||I’T] Pa(ta>0) =1,

and ¢
- . —t
?EopPA (TA> A(A)IP(A)) ate| e (A, (10)
where f)
(07
& (A = M + 6en(A) ,

and f definese,(A) andA(A). Further, ifa(x) < x ™ withx > (1 + v/5)/2,
thene (A) goes to zero am goes to infinity.

Remark 8. Theorem 7says that in contrast with the (re-scaled) hitting time that
has exponential limit law for any string, the (re-scaled) return time can present
different limiting behaviors.

* When¢a ¢+ remains bounded away from zero and oheA)P(A)ta ap-
proaches to1 — ¢a )30 + ¢a 1 X Wheredy is the Dirac measure at the
origin and X ~ exp(1).

* When¢a ¢ goes to one (and therefoig A) does it too by Lemma 1 and
Lemma 3), thea(A)P(A)ta (and thereford®(A)ta) converges to a purely
exp(l) law.

* Whenga 1 goes to zero, then(A)P(A)t converges to a degenerated law
at the origin.

We say something more about this in the next two lemmas.

As explained at the end of sectiom3 A) and alsa 4 1 are in practice, difficult
to handle. Under extra hypothesis on the mixing rate of the process a much easier
guantity can replace them.

Lemma 9. Suppose thaf Xm}mez iS @-mixing. Then

[Pa(ta > T(A) = tarl < fP(A) +2_inf :nIP’(A(w)) + M} _

P(A)
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Lemma 10. Suppose thaf X} ez IS @-mixing. Then

IPa(ta > T(A)—A(A)] < 3fIP>(A)+%+20 inf {nIP’(A(w)) +

=w=np

a(Np — w)
P(A) }

Remark 11. According to Shanon-Mac-Millan-Breiman Theorem (see e.g. [7]),
almost every string has exponential measure (with rate close to the entropy).
Basically, the above two lemmas say that flecays exponentially fast, then it

is ok to approximatea ¢ andA(A) by P(za > t(A)) (as observed at the end of
section 5.1, one has, > n/2).

Under extra conditions on the rate of mixing of the procass on the over-
lapping properties ofA we have a purely exponential limit law for both hitting
and return times.

Lemma 12. Suppose thaf X} ez IS @-mixing. Then

a(t(A) — w) }

_ i (w)
IPa(ta > 7(A)) — 1 50<$Q£(A>{P(A ) + P(A)

Remark 13. We remark strongly the above three lemmas hold just under the
a-mixing hypothesis. However, lemmas (9) and (9) are only useful whenever
a(na — w)/P(A) is small for somew. In Lemma (12) we need a stronger
condition: 7 (A) must be large enough to maReA™) anda(t (A) — w)/P(A)

small for someaw. This means basically(A) > Cn for some positive constant

C and« decaying exponentially fast.

5.3 Proofs

Proof of Theorem 7. We observe that the distribution af A)P(A)ta is a
discrete one over the se{A)P(A)N and its limit is a distribution ovefi > 0.
ThusPa(L(A)P(A)Ta > 0) = 1. Now we proside to prove the theorem for
t > 0.

First we prove that for alM > 7(A) + f andM’ > f > 0 the following
inequality holds

|]P’A(‘L'A > M + M/) —Pa(7a > M)P('L'A > M — f)|
a(f) (12)
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We use agairr,&” to meanta o Tt. The proof follows the steps of (5). We

introduce a gap of lengtli after M.

|Pa(ta> M+ M) —Pa(ta > M)P(ta > M' — f)]
< |Pa(ta > M+ M) =P (ta> M {1 > M= 1)) (12)

+‘]P’A<tA> M;t'&MH] > M — f) —Pa(ta> M)P(ta> M'— f)‘ 13)

Term (12) is equal to

The a-mixing property applied over the last term bounds itlga < f) +
a(f)/P(A). Term (13) is bounded using the-mixing property by (f)/P(A).
Thus we conclude (11).

Now we prove the theorem for> 7 (A)+2f. Considerthe triangle inequality

Pa(ta > 1) —Pa(ta > T(A) 4 f)e HAPAL
< [Pa(ta>t) —Pa(ta> (A + HP(za >t — (z(A) + 21))|
+ Pa(ta>t(A) + f)|P(ta >t — (z(A) + 2f)) — e HAFAL
Thefirsttermis bounded applying (11) BP(A)+2x( f)/P(A). The secondone
is bounded applying Theorem 6 and then the Mean Value Theoresx(BYy +

A(AP(A)(t(A) + 2f). The change of variablés= A(A)P(A)t shows that for
t’ > A(A)P(A)(z(A) + 2f) one has

t/ o
\P (’A > m) €

Sincer(A)P(A)(t(A)+2f) < 6 fP(A) which goes to zero asgoes to infinity,
(10) follows. We note that with respect to the proof of Theorem 6, we have the
extra constrains

a(f)
54(fIP(A)+M> +en(A).

(e) fP(A)—>0 and (N ax(f)/P(A) .

Of course (e) is the same that (a) in Theorem 6. A straightforward computation
shows that under a polynomial mixing rate (f) is weaker than (b) of Theorem 6.
This concludes the proof. O
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Proof of Lemma 9. A direct computation gives

Pa(ta > T(A)) — Pa(ta > T(A) + f) = Pa(ta > t(A); i ™ < ).
For any 0< w < n, consider thap-string A® = {X"~1 = a"~1} Namely,
the string constructed with tHast w-letters of A belonging too (X2~1). Thus,

according to the description of section 5.1

AN{ta> (A} N{THP < £}

2n—1 . T(A)+f _
c AN U T A® U TA

ieR(A),i=n i=2n
2n—1 . T(A)+f .
= | AN U T AW u(Am U T—'A).
ieR(A),i=n i=2n

Now we bound the probability of the last expression usingitbraixing property
with a gap of sizenp — w over the first set and with a gap of simeover the
second one in betweel and the remaining set. Thus

Pa (rA > 1(A); rE(A)] < f)

wy L ¥MA—w) o o)
< 2nP(A"™) + P(A) + (f n)IP’(A)JrP(A).

This ends the proof. O

Proof of Lemma 10. This follows directly by Lemma 1, Lemma 2, Lemma 3,
Lemma 9 and the fact thBiz(tp > 7(A)) > Pa(ta > j) < Pa(ta > t(A)+f)
forall j suchthat (A) < j <t(A) + f. O

Proof of Lemma 12. By definition ofz (A)

1—Pa(ta > 7(A) = Pa(ta = 7(A)) = PA(T "ACA)Y

The last equality follows since

T(A)—1
A() TTANT WA= ANT T AA= ANT AT
i=1
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Now, forany 0< w < 7(A) one hasA®™) < A®_ Therefore, by the:-mixing

property
a(t(A) —w)

P(A)
The proof follows. O

PA(T"AT) < P(A™) 4+
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