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Hitting, returning and the short correlation
function

Miguel Abadi

Abstract. We consider a stochastic process with the weakest mixing condition: the
so calledα. Foranyfixed n-string we prove the following results. (1) The hitting time
has approximately exponential law. (2) The return time has approximately a convex
combination between a Dirac measure at the origin and an exponential law. In both
cases the parameter of the exponential law isλ(A)P(A) whereP(A) is the measure of
the string andλ(A) is a certain autocorrelation function of the string. We show also
that the weight of the convex combination is approximatelyλ(A). We describe the
behavior of this autocorrelation function. Our results hold when the rate of mixing
decays polinomially fast with power larger than the golden number.
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1 Introduction

In the statistical analysis of Poincaré’s recurrence it is well known that “occur-
rence times have exponential limit distribution law”. This rough affirmation thus
stated in some cases leaves many open questions and in others is miss-leading.
For instance we would point out some questions:

(a) Under what hypothesis one has exponential times?

(b) What kind of occurrence time?

(c) Limit in which sense?

(d) Limit for what kind of sets and/or points?

(e) What is the parameter of the exponential law?
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With respect to (a) one would like to have the weakest hypothesis for which
one has exponential times. This immediately impose a second question: we
only have limit exponential law or have a rate of convergence of this limit which
gives an error term for a finite approximation? And moreover, what kind of error
term: total variation distance as was usually taken in the literature (see Abadi
and Galves [3] for a review) or point-wise error as was introduced by the author
in [2]?

With respect to (b) we could mention without exhausting the posibilities the
hitting time (first time a process enters a fixed set), return time (first time the
process comes back to a fixed set), repetition time (first time the process comes
back to their first, non-fixed, state), waiting time (first time the process enters a
set chosen independently from another copy of the process), among others.

The latters were proved to be of major importance due to their relationship
with the entropy of the process (Wyner-Ziv [16], Orstein-Weiss [14], Shields
[15]). Since them can be decomposed conditioning to the initial condition of the
process, the formers are of major importance to describes the latters.

Of course (c) refers to limit in distribution, in probability or almost everywere.
With respect to (d), in general, results in the dynamical systems setting present

nice results that hold for almost every point. However, it turns out that to present
a full description of the repetition and waiting times it is necessary, as appears
in Collet-Galves-Schmitt [6], Haydn-Vaienti [11], Abadi-Vaienti [4], to describe
the statistics of a whole partition of the space without leaving any set or point.

With respect to (e), Kac’s lemma ([13]) is commonly used to guess that the
parameter of the exponential law should be the measure of the observable. How-
ever, since the seminal paper of Galves and Schmitt ([9]), it is known that for
certain observables, the parameter it is not just the measure of the observable,
but a certain correction factor must be introduced to get convergence to the ex-
ponential law, even when the observable could be very simple like a cylinder set.
Later on, Abadi ([1]) shows that this correction factor is non-trivial and describes
the short correlation of the process conditioned to the observable.

In the context (a)-(e), this paper is devoted to explore two questions:

• What is the largest class of systems which have exponential hitting and/or
return times?

• What is the behavior of the short correlation function of a fixed observable?

α-mixing is the weakest hypothesis among several mixing conditions. We refer
the reader to Doukhan ([8]) for a source of definitions and examples of the many
mixing conditions. We prove that the hitting time of ann-string A converges
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in distribution, asn diverges, to an exponential law. The results holds forevery
string. The results holds forα-mixing processes with functionα decreasing
polynomially fast. It is quite surprising for us that the power of the polynomial
must be larger than the golden number(1+

√
5)/2. We recall that Chazottes ([5])

shows how to construct binaryα-mixing processes with arbitrary polynomial
rate of mixing. We concentrate our work inn-strings since any observable can
be decomposed inn-strings, in particular the whole state space.

The convergence of the hitting time is obtained re-scaling it by a positive
functionλ(A)P(A) whereP(A) is the measure of the string.λ(A) is a certain
function related to the short correlation of the process conditioned to start inA:
physically it represent the mean probability that the process leaves the stateA in
a time not too big. We precise and describe this function.

For the return time toA, we prove that, under the same conditions, the return
time law approaches to a law that is a convex combination of a Dirac measure
concentrated at the origin and an exponential law. The re-scaling factor of the
exponential law is the same as in the hitting time case. The weight of the convex
combination is again a short correlation function related toλ(A).

A remarkable point of our work is that our results hold foreverystring. Dy-
namically, this means that we prove exponential limit laws when the limit is
taken alonganypoint x, in contrast with previous works which find exponential
law for almostevery point. To get the exponential limit law we only have to
consider the re-scaled functionλ(A)P(A)τA instead of the traditional re-scaled
functionP(A)τA. In a recent paper, Haydn, Lacroix and Vaienti ([10]) in a very
general framework prove that the convergence of a sequence of hitting times is
equivalent to the convergence of the return times, without introducing the auto-
correlation function (caseλ(A) = 1), and relate the limiting distribution of one
with the other.

Another remarkable point of our results is the weakness of the hypothesis
considered.

The results presented in this paper are extensions of those in Hirata, Saussol and
Vaienti ([12]) and Abadi ([2]) which basically proved that hitting and return time
laws are exponentially distributed when the process isα-mixing with exponential
mixing rate.

This paper is organized as follows. In section 2 we establish our framework. In
section 3 we define several short correlation functions and establish some of their
basic properties. In section 4 we establish the limiting hitting time distribution
with its own rate of convergence. This is Theorem 6. In section 5.2 we establish
the limiting return time distribution with its own rate of convergence. This is
Theorem 7.I Since it depends on certain overlapping properties of the string, we
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first introduce them in section 5.1. The proof is in section 5.3.

2 Framework and notations

Let C be a (non-empty) finite or countable set. Put� = CZ. For eachx =
(xm)m∈Z ∈ � andm ∈ Z, let Xm : � → C be them-th coordinate, that is
Xm(x) = xm. We denote byT : � → � the one-step-left shift operator, namely
(T(x))m = xm+1.

We say that a subsetA ⊆ � is an-string if A ∈ Cn and

A = {X0 = a0, . . . , Xn−1 = an−1} ,

with ai ∈ C, i = 0, . . . , n−1. We use the probabilistic notation:{Xm
n = xm

n } =
{Xn = xn, . . . , Xm = xm}. For t ∈ Z we writeτ

[t]
A to meanτA ◦ Tt .

We consider an invariant probability measureP over theσ -algebra generated
by the strings. We shall assume without loss of generality that there is no singleton
of probability 0.

We say that the process{Xm}m∈Z is α-mixing if the sequence

α(l ) = sup|P(B ∩ C) − P(B)P(C)| ,

converges to zero. The supremum is taken overB andC such thatB ∈ σ(Xn
0),

C ∈ σ(X∞
n+l+1).

For two measurablesV and W, we denote as usualP (V |W) = PW(V) =
P (V; W) /P(W) the conditional measure ofV givenW. We writeP (V; W) =
P (V ∩ W). We also writeVc = �\V , for the complement ofV . Finally,
logarithms will be taken in basee.

3 Short correlation functions

In this section we introduce several notions of short correlation functions. De-
spite the fact that they are interesting by itselves, in the next two sections it
will appear their relationship with the hitting and return time distributions of an
onservable.

Given A ∈ Cn, we define thehitting time τA as the first time the stringA
appears in the infinite sequencex. Namely, we defineτA : � → N∪ {∞} as the
following random variable: For anyx ∈ �

τA(x) = inf {k ≥ 1 : Tk(x) ∈ A} .
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For eachn-string A take anyg and f such thatn ≤ g ≤ f ≤ 1/P(A), Let
us define the short correlation function introduced by Galves and Schmitt in [9]:
λg, f (A) : ∪nC

n → (0, 3) as follows:

λ f,g(A) =
− logP (τA > f − g)

f P(A)
.

The next lemma presents an equivalent (up to 2f P(A)) expression forλ f,g(A).

Lemma 1. For any process{Xm}m∈Z

P (τA ≤ f − g)

f P(A)
≤ λ f,g(A) ≤

P (τA ≤ f − g)

f P(A)
+ 2 f P(A) .

Proof. Taylor’s expansion says that 1− e−x ≤ x ≤ 1 − e−x + 2(1 − e−x)2 for
0 ≤ x ≤ log 3. Apply it withx = − logP (τA > f − g). The lemma follows.�

To understand the expressionP(τA ≤ f − g)/ f P(A) we must compute the
numeratorP(τA ≤ f − g). In practicef has order much larger thang so we can
replacef − g by f with just introducing a small error.

Lemma 2. For any process{Xm}m∈Z

0 ≤
P(τA ≤ f )

f P(A)
−
P(τA ≤ f − g)

f P(A)
≤

g

f
.

Proof. By stationarity we get

P(τA ≤ f ) − P(τA ≤ f − g) = P(τA > f − g ; τ
[τA]
A ≤ g)

≤ P(τA ≤ g)

≤ gP(A) .

Of course, the other inequality is obvious. �

Lemma 1 and Lemma 2 say that asymptoticallyλ f,g(A) has the same behavior
asP(τA ≤ f )/ f P(A). Our last lemma says that, physically speaking,λ f,g(A)

can be regarded as the mean probability the process takes to leave the stateA.

Lemma 3. For any stationary process{Xm}m∈Z

P(τA ≤ f )

f P(A)
=

1

f

f −1∑

i =0

PA(τA > i ) .

Bull Braz Math Soc, Vol. 37, N. 4, 2006



“main” — 2006/12/11 — 16:55 — page 598 — #6

598 MIGUEL ABADI

Proof. Using stationarity it is very simply to see thatP(τA = t) = P(A; τA >

t − 1) which immediately implies the result. �

The next two lemmas tend to bring some light onP(τA ≤ f ). The first one
is more a trivial observation that shows basics lower and upper bounds that hold
for anyprocess. The second one establishes forα-mixing processes that except
of a factor belonging to the interval[1/s, 1], with certains, P(τA ≤ f ) behaves
like f P(A).

Lemma 4. For any process{Xm}m∈Z

P(A) ≤ P(τA ≤ f ) ≤ f P(A) . (1)

Proof. Both inequalities are trivial.
– Lower bound:

P(A) = P(τA = 1) ≤ P(τA ≤ f ) .

– Upper bound:

{τA ≤ f } =
f⋃

i =1

{τA = i } ⊆
f⋃

i =1

T−i A .

Thus the inequality follows by stationarity. �

Lemma 5. If {Xm}m∈Z is α-mixing then for anys and f such thatn ≤ s <

f < P(A) the following inequality holds

f P(A)

s

(
1 −

α(s − n)

P(A)

)
≤ P (τA ≤ f ) . (2)

Proof. Firstly we show a general inequality iterating theα-mixing property.
Suppose thatSi ∈ σ(Xis+t

is+1) with somet < s and fori = 1, ..., m. Then

P

(
m⋂

i =1

Si

)

≤ P

(
m−1⋂

i =1

Si

)

P(Sm) + α(s − t)

≤ P

(
m−2⋂

i =1

Si

)

P(Sm−1)P(Sm) + P(Sm)α(s − t) + α(s − t) .
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Iterating this procedure we get

P

(
m⋂

i =1

Si

)

≤
m∏

i =1

P (Si ) + α(s − t)
m+1∑

i =3

m∏

j =i

P(Sj ) ,

where with some abuse of notation we
∏m

j =m+1P(Sj ) = 1.

Now consider the set{τA > f }. Introducing gaps of lengths − n in between
the setsSi = T−is+1Ac, with i = 0, . . . , [ f/s] we have

{τA > f } ⊆
[ f/s]⋂

i =1

T−is+1Ac .

Applying the above inequality we get

P{τA > f } ≤ (1 − P(A)) f/s + α(s − n)

[ f/s]−1∑

i =0

(1 − P(A))i

≤ (1 − P(A)) f/s + α(s − n)
1 − (1 − P(A)) f/s

P(A)
.

Thus
(
1 − (1 − P(A)) f/s

)
(

1 −
α(s − n)

P(A)

)
≤ P{τA ≤ f } .

The conclusion follows by Taylor’s expansion ofe−x. �

So far, we have proved that the short correlation functionλ f,g(A) is bounded
from above by a constant.

Under much stronger hypothesis it was firstly shown by Galves and Schmitt in
[9] and further by the author in [1] and [2] that it is also bounded from below by
a constant (which only depends on the properties of the measureP). Under our
current much weaker hypothesis, namely assuming without loose generality that
α is decreasing, we only get the lower bound 1/s wheres = α−1(CP(A)) + n
for some constantC ∈ (0, 1).

The crucial point is that in generalλ f,g(A) is difficult to compute explicitly.
We would like to have a way to compute it. Under extra hypothesis, in the
above referred papers [1] and [2], the author shows that it can be replaced by a
much computable quantity (that we will introduce later on in section 5.1 for the
convenience of the exposure) that depends on the overlapping properties of the
considered string.
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4 Hitting time

Theorem 6. Let {Xm}m∈Z be an α-mixing process. Suppose thatα(x) ≤ x−κ

with κ > (1 +
√

5)/2. Then, there exists a functionλ(A) : ∪nC
n → (0, 3] such

that for anyA ∈ Cn,

lim
n→∞

sup
t≥0

∣
∣
∣
∣P

(
τA >

t

λ(A)P(A)

)
− e−t

∣
∣
∣
∣ = 0 . (3)

Moreover the rate of convergence of the above limit is bounded from above by

eh(A) = C0 inf
n≤g≤ f ≤1/P(A)

[
f P(A) +

gP(A) + α(g)

f P(A)
s

]
, (4)

wheres = α−1(P(A)) + n andC0 is a positive constant.

Proof. First we prove the theorem fort of the formk f wherek is a positive
integer andf is a certain "scale",n ≤ f ≤ 1/P(A). Then we prove the theorem
for a generalt .

Step 1: First we prove that for allM ≥ 0 andM ′ ≥ g ≥ 0

∣
∣P

(
τA > M + M ′

)
− P (τA > M)P

(
τA > M ′ − g

)∣∣ ≤ gP(A) + α(g). (5)

To simplify notation denoteτA ◦ Tk by τ
[k]
A . We introduce a gap of lengthg after

coordinateM to construct the following triangular inequality

∣
∣P

(
τA > M + M ′

)
− P (τA > M)P

(
τA > M ′ − g

)∣∣

≤
∣
∣
∣P

(
τA > M + M ′

)
− P

(
τA > M; τ

[M+g]
A > M ′ − g

)∣
∣
∣ (6)

+
∣
∣
∣P

(
τA > M; τ

[M+g]
A > M ′ − g

)
− P (τA > M)P

(
τA > M ′ − g

)∣∣
∣ . (7)

Term (6) is equal to

P
(
τA > M; τ

[M]
A ≤ g; τ

[M+g]
A > M ′ − g

)
≤ P (τA ≤ g) ≤ gP(A) .

First inequality follows by stationarity. Term (7) is bounded using theα-mixing
property byα(g). Thus we conclude (5).
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Now take anyn < g < f ≤ 1/P(A). The triangle inequality leads to

∣
∣P (τA > k f ) − P (τA > f )P (τA > f − g)k−1

∣
∣

≤
k∑

j =2

|P(τA > j f ) − P(τA > ( j − 1) f )P(τA > f − g)|P(τA > f − g)k− j .

By (5) the modulus in the above sum is bounded by

gP(A) + α(g) ,

for all j . Further

k∑

j =2

P (τA > f − g)k− j ≤
1

P (τA ≤ f − g)
.

Step 1 follows.

Step 2: Remember thatλ f,g(A) = − logP (τA > f − g) / f P(A). Write t =
k f + r with k positive integer. Consider the following triangle inequality

∣
∣
∣P (τA > t) − e−λ f,g(A)P(A)t

∣
∣
∣ ≤ |P (τA > t) − P (τA > k f )|

+
∣
∣P (τA > k f ) − P (τA > f − g)k

∣
∣

+ e−λ f,g(A)P(A)k f
∣
∣
∣1 − e−λ f,g(A)P(A)r

∣
∣
∣ .

The first term isP
(
τA > k f ; τ

[k f ]
A ≤ s

)
which is bounded byP (τA ≤ s) ≤

rP(A) ≤ f P(A). The second term was bounded in step 1. Finally, the modulus
in the third term is bounded using the Mean Value Theorem byλ f,g(A)P(A) f .
This ends step 2.

Putting together steps 1 and 2 we get that fort ≥ 0

∣
∣
∣P (τA > t) − e−λ f,g(A)P(A)t

∣
∣
∣ ≤ f P(A) +

gP(A) + α(g)

P(τA ≤ f − g)
.

Now we recall Lemma 5 to bound the above expression by

f P(A) +
gP(A) + α(g)

( f − g)P(A)
C1 s , (8)
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with a constant

C1 =
1

1 − α(s−n)

P(A)

,

provided thatα(s− n) < P(A) for all n. Thus, in order to prove (3), we have to
chosef, g, s for eachA such that they satisfy the following four constraints:

(a) f P(A) → 0, asn → ∞,

(b) gs/( f − g) → 0, asn → ∞,

(c) α(g)s/( f − g)P(A) → 0, asn → ∞,

(d) there existsC ∈ (0, 1) such thatα(s − n) = CP(A).

Sinceα(x) ≤ x−κ we first choses = (CP(A))−1/κ + n with any constant
C ∈ (0, 1). This implies (d).

Choosef = P(A)−1+ε, thus we have (a). Then chooseg = P(A)−1+δ with
0 < ε < δ < 1. With this choice off andg we have that for large enoughn,
there exists a positive constantC2 such thatf − g ≥ C2 f . Constraints (b) and
(c) become

δ − ε − 1/κ > 0 and (1 − δ)κ − 1/κ − ε > 0 ,

respectively, whereκ is given. Solving these inequalities we find that there exist
suchε andδ if and only ifκ > (1+

√
5)/2. For a givenκ > (1+

√
5)/2, among

the possible solutions ofε andδ, that is of f andg, chose those that minimize
(8). Then defineλ(A) = λ f,g(A) for these f andg. Now make the change of
variablest ′ = λ(A)P(A)t Since this holds for allC ∈ (0, 1) of constraint(d),
we can takes = α−1(P(A)) + n. This ends the proof. �

5 Return times

5.1 Overlapping

For A ∈ Cn define the first overlapping position ofA as

τ(A) = min
{
k ∈ {1, . . . , n} | A ∩ T−k(A) 6= ∅

}
.

Write n = q τ(A) + r , with q = [n/τ(A)] and 0≤ r < τ(A). Thus

A =
{

Xτ(A)−1
0 = X2τ(A)−1

τ(A) = ∙ ∙ ∙ = Xqτ(A)−1
(q−1)τ (A) = aτ(A)−1

0 ; Xn−1
qτ(A) = ar −1

0

}
.
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For instance, in the following 15-string one hasτ(A) = 6

A = (

τ(A)
︷ ︸︸ ︷
aaaabb

τ(A)
︷ ︸︸ ︷
aaaabb

r
︷︸︸︷
aaa ) . (9)

Consider the set of overlapping positions ofA:
{
k ∈ {1, . . . , n − 1} | A ∩ T−k(A) 6= ∅

}

= {τ(A), . . . , [n/τ(A)]τ(A)} ∪R(A) ,

where

R(A) =
{
k ∈ {[n/τ(A)]τ(A) + 1, . . . , n − 1} | A ∩ T−k(A) 6= ∅

}
.

Observe that #R(A) ≤ r < n/2. For instance, in the string given in (9), one has
R(A) = {13, 14}. Further, consider an infinite sequence that begins withA. In
such a sequence A can not reappear beforeτ(A). Thus,PA (τA < τ(A)) = 0.
Still, if A does not reappear at timeτ(A), then it can not reappear at timeskτ(A),
with 1 ≤ k ≤ [n/τ(A)], so one has

PA (τ (A) < τA ≤ [n/τ(A)]τ(A)) = 0.

One concludes that thefirst possible return afterτ(A) is

nA =
{

minR(A) R(A) 6= ∅
nA = n R(A) = ∅

.

Observe that by constructionnA > n/2.

5.2 Results

Thereturn timeis the hitting time restricted to the setA, namelyτA|A. Formally,
given A ∈ Cn, we define thereturn timeτA : A → N ∪ {∞} as the following
random variable: For anyx ∈ A

τA(x) = inf {k ≥ 1 : Tk(x) ∈ A} .

We remark the difference betweenτA andτ(A) defined in the previous section:
while τA(x) is the first timeA appears in the infinite sequencex, τ(A) is the first
overlapping position ofA.

It would be useful for the reader to note now that according to the comments
of the previous section, one has

τA|A ∈ {τ(A)} ∪R(A) ∪ {k ∈ N | k ≥ n} .
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To simplify notation, for anyn ≤ f ≤ 1/P(A) put

ζA, f
de f
= PA(τA > τ(A) + f ) .

Theorem 7. Let {Xm}m∈Z be a α-mixing process. Then for anyA ∈ Cn, the
following holds:

lim
n→∞

PA(τA ≥ 0) = 1 ,

and

sup
t>0

∣
∣
∣
∣PA

(
τA >

t

λ(A)P(A)

)
− ζA, f e

−t

∣
∣
∣
∣ ≤ er (A) , (10)

where

er (A) =
α( f )

P(A)
+ 6eh(A) ,

and f defineseh(A) andλ(A). Further, if α(x) ≤ x−κ with κ > (1 +
√

5)/2,
thener (A) goes to zero asn goes to infinity.

Remark 8. Theorem 7says that in contrast with the (re-scaled) hitting time that
has exponential limit law for any string, the (re-scaled) return time can present
different limiting behaviors.

• WhenζA, f remains bounded away from zero and one,λ(A)P(A)τA ap-
proaches to(1 − ζA, f )δ0 + ζA, f X whereδ0 is the Dirac measure at the
origin and X ∼ exp(1).

• WhenζA, f goes to one (and thereforeλ(A) does it too by Lemma 1 and
Lemma 3), thenλ(A)P(A)τA (and thereforeP(A)τA) converges to a purely
exp(1) law.

• WhenζA, f goes to zero, thenλ(A)P(A)τA converges to a degenerated law
at the origin.

We say something more about this in the next two lemmas.

As explained at the end of section 3,λ(A) and alsoζA, f are in practice, difficult
to handle. Under extra hypothesis on the mixing rate of the process a much easier
quantity can replace them.

Lemma 9. Suppose that{Xm}m∈Z is α-mixing. Then

|PA(τA > τ(A)) − ζA, f | ≤ f P(A) + 2 inf
0≤w≤nA

{
nP(A(w)) +

α(nA − w)

P(A)

}
.
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Lemma 10. Suppose that{Xm}m∈Z is α-mixing. Then

|PA(τA > τ(A))−λ(A)| ≤ 3 f P(A)+
g

f
+2 inf

0≤w≤nA

{
nP(A(w)) +

α(nA − w)

P(A)

}
.

Remark 11. According to Shanon-Mac-Millan-Breiman Theorem (see e.g. [7]),
almost every string has exponential measure (with rate close to the entropy).
Basically, the above two lemmas say that ifα decays exponentially fast, then it
is ok to approximateζA, f andλ(A) byP(τA > τ(A)) (as observed at the end of
section 5.1, one hasnA > n/2).

Under extra conditions on the rate of mixing of the processand on the over-
lapping properties ofA we have a purely exponential limit law for both hitting
and return times.

Lemma 12. Suppose that{Xm}m∈Z is α-mixing. Then

|PA(τA > τ(A)) − 1| ≤ inf
0≤w≤τ(A)

{
P(A(w)) +

α(τ(A) − w)

P(A)

}
.

Remark 13. We remark strongly the above three lemmas hold just under the
α-mixing hypothesis. However, lemmas (9) and (9) are only useful whenever
α(nA − w)/P(A) is small for somew. In Lemma (12) we need a stronger
condition: τ(A) must be large enough to makeP(A(w)) andα(τ(A) − w)/P(A)

small for somew. This means basicallyτ(A) ≥ Cn for some positive constant
C andα decaying exponentially fast.

5.3 Proofs

Proof of Theorem 7. We observe that the distribution ofλ(A)P(A)τA is a
discrete one over the setλ(A)P(A)N and its limit is a distribution over< ≥ 0.
ThusPA(λ(A)P(A)τA ≥ 0) = 1. Now we proside to prove the theorem for
t > 0.

First we prove that for allM ≥ τ(A) + f and M ′ ≥ f ≥ 0 the following
inequality holds

∣
∣PA

(
τA > M + M ′

)
− PA (τA > M)P

(
τA > M ′ − f

)∣∣

≤ f P(A) + 2
α( f )

P(A)
.

(11)
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We use againτ [t]
A to meanτA ◦ Tt . The proof follows the steps of (5). We

introduce a gap of lengthf after M .
∣
∣PA

(
τA > M + M ′) − PA (τA > M)P

(
τA > M ′ − f

)∣∣

≤
∣
∣
∣PA

(
τA > M + M ′) − PA

(
τA > M; τ

[M+ f ]
A > M ′ − f

)∣
∣
∣ (12)

+
∣
∣
∣PA

(
τA > M; τ

[M+ f ]
A > M ′ − f

)
− PA (τA > M)P

(
τA > M ′ − f

)∣∣
∣ . (13)

Term (12) is equal to

PA

(
τA > M; τ

[M]
A ≤ f ; τ

[M+ f ]
A > M ′ − f

)
≤ PA

(
τA > τ(A); τ

[M]
A ≤ f

)
.

The α-mixing property applied over the last term bounds it byP(τA ≤ f ) +
α( f )/P(A). Term (13) is bounded using theα-mixing property byα( f )/P(A).
Thus we conclude (11).

Now we prove the theorem fort ≥ τ(A)+2 f . Consider the triangle inequality
∣
∣
∣PA (τA > t) − PA (τA > τ(A) + f ) e−λ(A)P(A)t

∣
∣
∣

≤ |PA (τA > t) − PA (τA > τ(A) + f )P (τA > t − (τ (A) + 2 f ))|

+ PA (τA > τ(A) + f )

∣
∣
∣P (τA > t − (τ (A) + 2 f )) − e−λ(A)P(A)t

∣
∣
∣ .

The first term is bounded applying (11) byf P(A)+2α( f )/P(A). The second one
is bounded applying Theorem 6 and then the Mean Value Theorem byeh(A) +
λ(A)P(A)(τ (A)+ 2 f ). The change of variablest ′ = λ(A)P(A)t shows that for
t ′ > λ(A)P(A)(τ (A) + 2 f ) one has

∣
∣
∣
∣P

(
τA >

t ′

λ(A)P(A)

)
− e−t ′

∣
∣
∣
∣ ≤ 4

(
f P(A) +

α( f )

P(A)

)
+ eh(A) .

Sinceλ(A)P(A)(τ (A)+2 f ) ≤ 6 f P(A) which goes to zero asn goes to infinity,
(10) follows. We note that with respect to the proof of Theorem 6, we have the
extra constrains

(e) f P(A) → 0 and (f) α( f )/P(A) .

Of course (e) is the same that (a) in Theorem 6. A straightforward computation
shows that under a polynomial mixing rate (f) is weaker than (b) of Theorem 6.
This concludes the proof. �
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Proof of Lemma 9. A direct computation gives

PA(τA > τ(A)) − PA(τA > τ(A) + f ) = PA(τA > τ(A); τ
[τ(A)]
A ≤ f ) .

For any 0≤ w ≤ n, consider thew-string A(w) = {Xn−1
n−w = an−1

n−w}. Namely,
the string constructed with thelast w-letters ofA belonging toσ(Xn−1

n−w). Thus,
according to the description of section 5.1

A ∩ {τA > τ(A)} ∩ {τ [τ(A)]
A ≤ f }

⊆ A ∩




2n−1⋃

i ∈R(A),i =n

T−i A(w)

τ(A)+ f⋃

i =2n

T−i A





=



A ∩
2n−1⋃

i ∈R(A),i =n

T−i A(w)



 ∪

(

A ∩
τ(A)+ f⋃

i =2n

T−i A

)

.

Now we bound the probability of the last expression using theα-mixing property
with a gap of sizenA − w over the first set and with a gap of sizen over the
second one in betweenA and the remaining set. Thus

PA

(
τA > τ(A); τ

[τ(A)]
A ≤ f

)

≤ 2nP(A(w)) +
α(nA − w)

P(A)
+ ( f − n)P(A) +

α(n)

P(A)
.

This ends the proof. �

Proof of Lemma 10. This follows directly by Lemma 1, Lemma 2, Lemma 3,
Lemma 9 and the fact thatPA(τA > τ(A)) ≥ PA(τA > j ) ≤ PA(τA > τ(A)+ f )

for all j such thatτ(A) ≤ j ≤ τ(A) + f . �

Proof of Lemma 12. By definition ofτ(A)

1 − PA(τA > τ(A)) = PA(τA = τ(A)) = PA(T−n A(τ (A))) .

The last equality follows since

A
τ(A)−1⋂

i =1

T−i Ac ∩ T−τ(A) A = A ∩ T−τ(A) A = A ∩ T−n A(τ (A)) .
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Now, for any 0≤ w ≤ τ(A) one hasA(τ (A)) ⊆ A(w). Therefore, by theα-mixing
property

PA(T−n A(τ (A))) ≤ P(A(w)) +
α(τ(A) − w)

P(A)
.

The proof follows. �
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