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A simple proof of Sanov’'s theorem*
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Abstract. A simple self-contained proof of Sanov’s theorenxitopology is given,
well suited for a first course on large deviations.
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1 Intoduction, notation

A simple proof of Sanov’s theorem intopology will be given. Its main ideas
appear in Groeneboom et al. [4], a novelty is that the use of topological concepts
is reduced to the most basic ones. In my experience, this proof is ideally suited
for a first course on large deviations or a course on applications of information
theory in probability and statistics. After my course at the 2005 Brasilian School
of Probability, its organizer and host Antonio Galves, to whom | am pleased to
thank for his hospitality, has encouraged me to publish this proof.

The set of all probability measures (PMs) on a given measurable §Fage)
will be denoted byP, and the set of all partitiond = (Aq, ..., Ay) of X into a
finite number of set#\ € F is denoted by [. ForP € P, A € [], ande > 0,
denote

UP, A,e)={P eP:|P(A)—PA) <e,i=1...K. (1

The t-topology on? is the coarsest topology in which the mappirigjs—
P(F) are continuous for alF € F; a base for this topology is the collection of
the sets (1). The interior and closuretiftopology of a sel” c P are denoted
by int.I" andcl/.T.
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For probability distributions on the finite ¢, . . ., k}, sayP = (py, ..., p«)
and Q = (qi, ..., g«), information divergence (also called Kullback-Leibler
distance or relative entropy) is defined as

k
D(PIIQ) =3 plog "
i=1 :

with the conventions 0log G= Olog?J = 0, tlog% = 40 ift > 0. The
information divergence of PMB € P andQ € 7 is defined as

D(P||Q) = supD(P?(|Q™) (2)
Ael]

wherePA = (P(A1), ..., P(A)), Q% = (Q(A), ..., Q(AY). The well-
known integral representation

log9R dpP if P«
D(PIIQ) = ﬁ 9dq Q

otherwise

will not be used in this paper.
The cardinality of a finite seT is denoted byT|. The empirical distribution
of ann-tuplex = (Xq, ..., X,) € X" is the PMPy € P defined by

A 1 .
P«(F) = o {i :x € F}|, FefF.
The following version of Sanov’s theorem (Sanov [5]) is addressed, see

Dembo and Zeitouni [3], Theorem 6.2.10:

Sanov’'s Theorem. For independent drawings from a distributio@ € 2,
the empirical distributions of the resulting samples satisfy the large deviations
principle in t-topology, with the good rate functidd(. || Q).

This means that for c P

lim inf }Iog Q"({x: P,eT) > — inf D(P||Q), (3)
n—oco N Peint.T
1 A
limsup=1logQ"({x: Pk eI'}) < — inf D(P||Q), 4)
nooo N Pecl. T

and the “divergence balls”
B(Q.a) ={P: D(P||Q) < &} (5)

are compact in the-topology.
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Remark 1. To make sure tha@"({x : P, € I'}) is well defined, usually a
measurability condition isimposed on the permissibleBets?. Alternatively,

" may be any subset @t if Q"({x : P.el}is interpreted as inner measure in
eg. (3) and as outer measure in eq. (4), see [4]. The proof in Section 2 covers
also this stronger version of the theorem.

Remark 2. The lower bound (3) can be sharpened, replacing interiar-in
topology by interior intg-topology, see Csiszar [1]; a base for that topology
is the collection of setblo(P, A, €) defined forA = (A1, ..., A € [] and

€ >0hy

Uo(P, A,e) ={P e U(P, A,¢e), P'(A)=0 if P(A) =0}

2 Proof of Sanov’s theorem

The only prerequisites are two simple combinatorial lemmas, stated below.
These are standard tools in information theory, and in a course on large de-
viations they are introduced early on, to prove a version of Sanov’s theorem for
the case whelX is a finite set (see [2], Lemmas 1.2.2 and 1.2.6 or [3], Lemmas
2.1.2and 2.1.9.)

Let P,(k) denote the set of probability distributions ¢t ..., k} of form

P = (%,..., %), with integersny, ..., ny. For suchP, let 7,(P) denote
the set of those length-sequences of elements ¢, ..., k} in which each
i €{1,...,Kk}occursn; times.

Lemmal. |P,(K)| < (n+ Dk
Lemma2. For P € P,(k) and any distribution Q ofl, ..., k},
(n+ )~ e "PEID < QNTR(P)) < eI
We procced to prove

(i) the lower bound (3), in the stronger form mentioned in Remark 2;
(i) the compactness in-topology of the divergence balls (5);

(iii) the upper bound (4).
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The proof of (i), included to keep the paper self-contained, is the same as
that of Lemma 4.1 in [1]. The proofs of (ii) and (iii) are simplified versions
of corresponding proofs in [4], using only basic concepts from topology, in
particular in the proof of the key inequality (8).

(i) The claim is that
1 ~
lim in = logQ"({x : P, e T} > —D(P||Q) (6)

for all PMs P € int,(I"), see Remark 2, or equivalently, fé¥ € P such that
Uo(P, A,¢) C T for someA e [ ande > 0. Now, pick P, € Po(k), n =
1,2, ... such that?, — P#, with Py(i) = 0 whenP(A)) = 0. Then|P,(i) —
P(A)| <en, I =1,..., Kk, forsuitables, — 0, thus for alln with €, < ¢

Q"(x: P eT}) > Q"({x: P eUgP, A, e} = Q({x: |5X;4 — B
= (@)(Ta(Pr) > (04 e ORI,

the last inequality holds by Lemma 2. As the choiceRafmakes sure that
D(Pn[|Q?) — D(PA(|Q™), andD(P*||Q™) < D(P||Q) by (2), the claim
(6) follows.

(i) Let M denote the set of all finitely additive set functions @4, F) with
values in the interval0, 1]. Clearly,’M is a closed subset of the & 1]7 of
all functionsf : F — [0, 1] endowed with the product topology, the coarsest
one in which all mappings$ — f(F) (F € ¥) are continuous. A§0, 117 is
compact (Tychonoff’'s theorem, see [3], p.345), so is &@s0

The definition (2) of information divergence extends unchangé&laadQ in
M. Clearly, for any partitiond < [], the subsetP € M : D(P?||Q?) < «}
of M is closed, hence compact, and therefore

K={PeM:D(P|Q) < a},

the intersection of the above sets fordlle [ [, is compact, too. Whe@ € P,
this compact seK is a subset of” and hence equals the divergence ball (5).
Indeed, ifP € M is noto-additive, there exists a decreasing sequence of sets
Fn € F with empty intersection and lim, . P(F,) > 0, while theo -additivity
of Q impliesQ(F,) — 0. It follows thatD (P ||Q”n) — oo for the partitions
An = (Fn, FY), henceD(P||Q) = oo thusP ¢ K.

This completes the proof of the claim (ii), since the subspace topology of
P C M C [0, 1}F equals ther-topology, by definition.
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(iif) With the notation
A=(PA:PeTl}, T(A) ={PeP:PAecl?}, (7)
it holds for each partitionA € [ that
Q"(Ix: PreTHh < Qx: B e MY = Q"(x: B e T N Pa(k0))

<(M+DX max (QHNTn(P)) < (n+ ke ninfrer DEAIQM,
PelrAn?, (k)

the last two inequalities by Lemmas 1 and 2. Hence

lim sup_ Iog Q"({x: PieT}) < inf [— inf D(P?||Q™M)]

n—oo

— sup |nf D(P?||1Q™M).
Ae€l] Pel

The key part of the proof of (4) is to show that

suplnf D(P?|Q™) > inf D(P||Q). (8)
5451_[ Pecl,. T

Assuming w.l.o.g. that the left hand side is finite, it suffices to show that

c.TNB(Q,a) # 0 9
whenever
o > sup |nf D(PA||1Q™M); (10)
.ﬂeﬂ

recall thatB(Q, «) denotes the divergence ball (5).
To this end, we first show that

cf.T = () cl.T(A), (11)
Ael]

see (7). The inclusiorT is obvious sincd™ ¢ TI'(A). The reverse inclu-
sion means that iP € ¢/,I'(A) for eachA € [] then allz-neighborhoods
U (P, A, ¢€) of P intersectl". To verify this, fix anyA = (Aq, ..., A) € [],
andpickaPMP inU (P, A, e)NI"(A) whichis nonemptyduetB ecl,I'(A).
ThenP’ € I'(A) implies by (7) thatt’(A) = P(A), i = 1,..., k, for some
P e I', moreover, this an® € U (P, 4, ¢) imply by (1) thatP € U(P A, €),
thusU (P, A, ¢) intersectd" as claimed.
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Next we show that, for eacld = (A, ..., AW €[],
I'(A)NB(Q,a) £ 0. (12)

On account of (10), there exisBs € T" such thatD(P*||Q?) < «. From such
a P constructa PMP € T'(A) via

k

P(A)
PF)=) —2QFNA), FeiF; (13)
g;@A)

if Q(Aj) = 0 for somei (when alsoP(A;)) = 0 asD(P#||Q%) is finite)
the corresponding term in (13) is set equal to 0. TRidelongs tol'(A)
due toP? = P#, and the claim (13) follows, aB belongs also tB(Q, «),
due toD(P||Q) = D(P?||Q%). The last equality, obvious from the integral
representation dD (P || Q), easily follows also directly from the definition (2) of
D(P||Q), because (13) implieB(PZ||Q%) = D(P#||Q?) for each partition
B € [] that refinesA.

For any finite collection of partitions1; € [[, i = 1,...,m,andA € []
refining eachA;, clearly eachH(A;) contains"(A). Hence (12) implies

(TN NB(Q. a)) # 0. (14)

i=1

Finally, the sets/,I"(A) N B(Q, @), A € [] are compact irn-topology due

to the compactness &(Q, «), and any finite collection of them has nonempty
intersection by (14). It follows that the intersection of all these sets is also
nonempty. This and (11) complete the proof of (9), and thereby of (4).
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