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A simple proof of Sanov’s theorem*
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Abstract. A simple self-contained proof of Sanov’s theorem inτ -topology is given,
well suited for a first course on large deviations.
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1 Intoduction, notation

A simple proof of Sanov’s theorem inτ -topology will be given. Its main ideas
appear in Groeneboom et al. [4], a novelty is that the use of topological concepts
is reduced to the most basic ones. In my experience, this proof is ideally suited
for a first course on large deviations or a course on applications of information
theory in probability and statistics. After my course at the 2005 Brasilian School
of Probability, its organizer and host Antonio Galves, to whom I am pleased to
thank for his hospitality, has encouraged me to publish this proof.

The set of all probability measures (PMs) on a given measurable space(X,F)

will be denoted byP, and the set of all partitionsA = (A1, . . . , Ak) ofX into a
finite number of setsAi ∈ F is denoted by

∏
. For P ∈ P,A ∈

∏
, andε > 0,

denote

U (P,A, ε) = {P′ ∈ P : |P′(Ai ) − P(Ai )| < ε, i = 1, . . . , k}. (1)

The τ -topology onP is the coarsest topology in which the mappingsP 7→
P(F) are continuous for allF ∈ F ; a base for this topology is the collection of
the sets (1). The interior and closure inτ -topology of a set0 ⊂ P are denoted
by intτ0 andcl τ0.
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For probability distributions on the finite set{1, . . . , k}, sayP = (p1, . . . , pk)

and Q = (q1, . . . , qk), information divergence (also called Kullback-Leibler
distance or relative entropy) is defined as

D(P||Q) =
k∑

i =1

pi log
pi

qi
,

with the conventions 0 log 0= 0 log 0
0 = 0, t log t

0 = +∞ if t > 0. The
information divergence of PMsP ∈ P andQ ∈ P is defined as

D(P||Q) = sup
A∈

∏
D(PA||QA) (2)

where PA = (P(A1), . . . , P(Ak)), QA = (Q(A1), . . . , Q(Ak)). The well-
known integral representation

D(P||Q) =

{∫
log dP

d Q d P if P � Q

+∞ otherwise

will not be used in this paper.
The cardinality of a finite setT is denoted by|T |. The empirical distribution

of ann-tuplex = (x1, . . . , xn) ∈ Xn is the PMP̂x ∈ P defined by

P̂x(F) =
1

n
|{i : xi ∈ F}|, F ∈ F .

The following version of Sanov’s theorem (Sanov [5]) is addressed, see
Dembo and Zeitouni [3], Theorem 6.2.10:

Sanov’s Theorem. For independent drawings from a distributionQ ∈ P,
the empirical distributions of the resulting samples satisfy the large deviations
principle in τ -topology, with the good rate functionD( . ||Q).

This means that for0 ⊂ P

lim inf
n→∞

1

n
log Qn({x : P̂x ∈ 0}) > − inf

P∈intτ 0
D(P||Q), (3)

lim sup
n→∞

1

n
log Qn({x : P̂x ∈ 0}) 6 − inf

P∈clτ 0
D(P||Q), (4)

and the “divergence balls”

B(Q, α) = {P : D(P||Q) 6 α} (5)

are compact in theτ -topology.
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Remark 1. To make sure thatQn({x : P̂x ∈ 0}) is well defined, usually a
measurability condition is imposed on the permissible sets0 ⊂ P. Alternatively,
0 may be any subset ofP if Qn({x : P̂x ∈ 0}) is interpreted as inner measure in
eq. (3) and as outer measure in eq. (4), see [4]. The proof in Section 2 covers
also this stronger version of the theorem.

Remark 2. The lower bound (3) can be sharpened, replacing interior inτ -
topology by interior inτ0-topology, see Csiszár [1]; a base for that topology
is the collection of setsU0(P,A, ε) defined forA = (A1, . . . , Ak) ∈

∏
and

ε > 0 by

U0(P,A, ε) = {P′ ∈ U (P,A, ε), P′(Ai ) = 0 if P(Ai ) = 0}.

2 Proof of Sanov’s theorem

The only prerequisites are two simple combinatorial lemmas, stated below.
These are standard tools in information theory, and in a course on large de-
viations they are introduced early on, to prove a version of Sanov’s theorem for
the case whenX is a finite set (see [2], Lemmas 1.2.2 and 1.2.6 or [3], Lemmas
2.1.2 and 2.1.9.)

Let Pn(k) denote the set of probability distributions on{1, . . . , k} of form
P = (n1

n , . . . , nk
n ), with integersn1, . . . , nk. For suchP, let Tn(P) denote

the set of those length-n sequences of elements of{1, . . . , k} in which each
i ∈ {1, . . . , k} occursni times.

Lemma 1. |Pn(k)| 6 (n + 1)k.

Lemma 2. For P ∈ Pn(k) and any distribution Q on{1, . . . , k},

(n + 1)−ke−nD(P||Q) 6 Qn(Tn(P)) 6 e−nD(P||Q).

We procced to prove

(i) the lower bound (3), in the stronger form mentioned in Remark 2;

(ii) the compactness inτ -topology of the divergence balls (5);

(iii) the upper bound (4).
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The proof of (i), included to keep the paper self-contained, is the same as
that of Lemma 4.1 in [1]. The proofs of (ii) and (iii) are simplified versions
of corresponding proofs in [4], using only basic concepts from topology, in
particular in the proof of the key inequality (8).

(i) The claim is that

lim inf
n→∞

1

n
log Qn({x : P̂x ∈ 0} > −D(P||Q) (6)

for all PMs P ∈ intτ0(0), see Remark 2, or equivalently, forP ∈ P such that
U0(P,A, ε) ⊂ 0 for someA ∈

∏
andε > 0. Now, pick P̄n ∈ Pn(k), n =

1, 2, . . . such thatP̄n → PA, with P̄n(i ) = 0 whenP(Ai ) = 0. Then|P̄n(i ) −
P(Ai )| < εn, i = 1, . . . , k, for suitableεn → 0, thus for alln with εn 6 ε

Qn({x : P̂x ∈ 0}) > Qn({x : P̂x ∈ U0(P,A, εn)}) > Qn({x : P̂A
x = P̄n})

= (QA)n(Tn(P̄n)) > (n + 1)−ke−nD(P̄n||QA);

the last inequality holds by Lemma 2. As the choice ofP̄n makes sure that
D(P̄n||QA) → D(PA||QA), andD(PA||QA) 6 D(P||Q) by (2), the claim
(6) follows.

(ii) Let M denote the set of all finitely additive set functions on(X,F) with
values in the interval[0, 1]. Clearly,M is a closed subset of the set[0, 1]F of
all functions f : F → [0, 1] endowed with the product topology, the coarsest
one in which all mappingsf 7→ f (F) (F ∈ F) are continuous. As[0, 1]F is
compact (Tychonoff’s theorem, see [3], p.345), so is alsoM.

The definition (2) of information divergence extends unchanged toP andQ in
M. Clearly, for any partitionA ∈

∏
, the subset{P ∈ M : D(PA||QA) 6 α}

of M is closed, hence compact, and therefore

K = {P ∈ M : D(P||Q) 6 α},

the intersection of the above sets for allA ∈
∏

, is compact, too. WhenQ ∈ P,
this compact setK is a subset ofP and hence equals the divergence ball (5).
Indeed, ifP ∈ M is notσ -additive, there exists a decreasing sequence of sets
Fn ∈ F with empty intersection and limn→∞ P(Fn) > 0, while theσ -additivity
of Q impliesQ(Fn) → 0. It follows thatD(PAn ||QAn) → ∞ for the partitions
An = (Fn, Fc

n ), henceD(P||Q) = ∞ thusP /∈ K .
This completes the proof of the claim (ii), since the subspace topology of

P ⊂ M ⊂ [0, 1]F equals theτ -topology, by definition.
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(iii) With the notation

0A = {PA : P ∈ 0}, 0(A) = {P ∈ P : PA ∈ 0A}, (7)

it holds for each partitionA ∈
∏

that

Qn({x : P̂x ∈ 0}) 6 Qn({x : P̂x ∈ 0(A)}) = Qn({x : P̂A
x ∈ 0A ∩ Pn(k)})

6 (n + 1)k max
P̄∈0A∩Pn(k)

(QA)n(Tn(P̄)) 6 (n + 1)ke−n inf P∈0 D(PA||QA),

the last two inequalities by Lemmas 1 and 2. Hence

lim sup
n→∞

1

n
log Qn({x : P̂x ∈ 0}) 6 inf

A∈
∏[− inf

P∈0
D(PA||QA)]

= − sup
A∈

∏
inf
P∈0

D(PA||QA).

The key part of the proof of (4) is to show that

sup
A∈

∏
inf
P∈0

D(PA||QA) > inf
P∈clτ 0

D(P||Q). (8)

Assuming w.l.o.g. that the left hand side is finite, it suffices to show that

cl τ0 ∩ B(Q, α) 6= ∅ (9)

whenever
α > sup

A∈
∏

inf
P∈0

D(PA||QA); (10)

recall thatB(Q, α) denotes the divergence ball (5).
To this end, we first show that

cl τ0 =
⋂

A∈
∏
cl τ0(A), (11)

see (7). The inclusion⊂ is obvious since0 ⊂ 0(A). The reverse inclu-
sion means that ifP ∈ cl τ0(A) for eachA ∈

∏
then allτ -neighborhoods

U (P,A, ε) of P intersect0. To verify this, fix anyA = (A1, . . . , Ak) ∈
∏

,
and pick a PMP′ inU (P,A, ε)∩0(A) which is nonempty due toP ∈ cl τ0(A).
ThenP′ ∈ 0(A) implies by (7) thatP′(Ai ) = P̃(Ai ), i = 1, . . . , k, for some
P̃ ∈ 0, moreover, this andP′ ∈ U (P,A, ε) imply by (1) thatP̃ ∈ U (P,A, ε),
thusU (P,A, ε) intersects0 as claimed.
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Next we show that, for eachA = (A1, . . . , Ak) ∈
∏

,

0(A) ∩ B(Q, α) 6= ∅. (12)

On account of (10), there exists̃P ∈ 0 such thatD(P̃A||QA) < α. From such
a P̃ construct a PMP ∈ 0(A) via

P(F) =
k∑

i =1

P̃(Ai )

Q(Ai )
Q(F ∩ Ai ), F ∈ F; (13)

if Q(Ai ) = 0 for somei (when alsoP̃(Ai ) = 0 as D(P̃A||QA) is finite)
the corresponding term in (13) is set equal to 0. ThisP belongs to0(A)

due toPA = P̃A, and the claim (13) follows, asP belongs also toB(Q, α),
due toD(P||Q) = D(P̃A||QA). The last equality, obvious from the integral
representation ofD(P||Q), easily follows also directly from the definition (2) of
D(P||Q), because (13) impliesD(PB||QB) = D(P̃A||QA) for each partition
B ∈

∏
that refinesA.

For any finite collection of partitionsAi ∈
∏

, i = 1, . . . , m, andA ∈
∏

refining eachAi , clearly each0(Ai ) contains0(A). Hence (12) implies

m⋂

i =1

(0(Ai ) ∩ B(Q, α)) 6= ∅. (14)

Finally, the setscl τ0(A) ∩ B(Q, α), A ∈
∏

are compact inτ -topology due
to the compactness ofB(Q, α), and any finite collection of them has nonempty
intersection by (14). It follows that the intersection of all these sets is also
nonempty. This and (11) complete the proof of (9), and thereby of (4).
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