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Variance and exponential estimates via coupling

Pierre Collet

Abstract. We give a proof of Devroye and exponential inequalities based on a coupling.
We mostly deal with the case of continuous random variables with dynamical systems
in mind (and their rather special mixing properties) although the approach is more
general.
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1 Introduction

The central limit theorem and large deviations are very powerful methods to
analyse the fluctuations of large sums of random variables. However there are
interesting quantities which are not of this form and for which one would like to
have an estimation of the fluctuations. Here are two important examples among
many others. Consider a real valued discrete time stationary stochastic process
(Xn). The power spectrum is defined as the Fourier transform of the correlation
function. An estimator of the integral of the power spectrum is the integral of
the periodogram given by (in the case whereE(X j ) = 0)

Wn(u) =
∫ u

0

1

n

∣
∣
∣
∣
∣
∣

n∑

j =1

e−i js X j

∣
∣
∣
∣
∣
∣

2

ds . (1)

Under some mild hypothesis (see [1]) it is known thatWn(u) converges almost
surely whenn tends to infinity, and the limitW is the integral of the Fourier
transform of the correlation function. One would like to estimate the size of the
random variable

In = sup
u∈[0,2π ]

∣
∣Wn(u)− W(u)

∣
∣ . (2)
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Note that one cannot apply directly the central limit theorem toWn, and the
situation becomes even worse forIn due to the presence of the supremum.

Another well known example is the kernel density estimate. Assume the
random variablesX j have a (common) densityg. An often used estimator for
g is constructed using a kernelψ (a non negative integrable function) and is
given by

gn(s) =
1

nαn

n∑

j =1

ψ

(
s − X j

αn

)
(3)

where the sequence(αn) of positive numbers converges to zero. Here one would
like to estimate for example theL1 norm ofg − gn.

In each of the above examples, one can design a particular method to build
an estimation, based for example on correlations (see for example [3], [14],
[24]). However for dynamical systems this is sometimes cumbersome due to
the fact that mixing properties often depend on the regularity properties of the
observables. In these cases it would be interesting to have a general method to
approach such questions.

We will describe below one possible method and will formulate the results for
a discrete time stochastic process(Xn)with value inRd. It is convenient to state
the following definitions.

Definition 1.1. For a functionK from
(
Rd

)n
toR, we define the uniform Lipschitz

constantLip j (K ) with respect to the variablexj by

Lip j (K ) = sup
u,v

sup
x1,...,x̂ j ,...,xn

∣
∣K

(
x1, . . . , xj −1, u, xj +1, . . . , xn

)
− K

(
x1, . . . , xj −1, v, xj +1, . . . , xn

)∣∣

‖u − v‖

We say that a functionK of n variables is componentwise Lipschitz if its
uniform Lipschitz constants with respect to all its variables are finite.

Note that if on
(
Rd

)n
we use thè 1 norm defined by

∥
∥(x1, . . . , xn)

∥
∥ =

n∑

j =1

∥
∥xj

∥
∥ ,

then a function is componentwise Lipschitz on
(
Rd

)n
if and only if it is Lipschitz.

There are however situations where one gets more precise results by using the
Lipschitz constants Lipj (K ) when they depend on the indexj .
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Definition 1.2. The stochastic process(Xn) satisfies the Devroye inequality if
there is a constantC > 0 such that for any integern and for any componentwise
Lipschitz functionK of n variables, we have

Var (K) ≤ C
n∑

j =1

Lip j (K )
2

whereK is the random variable

K = K
(
X1, . . . , Xn

)
,

andVar (K) denotes the variance ofK.

There is a similar definition for the exponential inequality, namely

Definition 1.3. The stochastic process(Xn) satisfies the exponential inequality
if there are constantsC1 > 0 andC2 > 0 such that for any integern and for any
componentwise Lipschitz functionK of n variables, we have

E
(

eK−E
(
K

))
≤ C1e

C2
∑n

j =1 Lip j (K )
2
.

We now make some remarks about these definitions.

i) One can of course make similar definitions using Hölder constants instead
of Lipschitz constants.

ii) In the case where the random variables take values in a finite set, the same
definitions are used replacing the Lipschitz constants by the oscillations.

iii) Both inequalities keep the right dependence inn with respect to the case
where the observableK is a sum of functions of one variable, namely

K
(
x1, . . . , xn

)
=

n∑

j =1

u
(
xj

)
.

In the independent case for example, the variance of a sum is the sum
of the variances, and for the exponential estimate one gets immediately a
product ofn terms (to which one can apply the Hoeffding inequality, see
below).

iv) Note that the definitions ask for an estimate valid for anyn, not only
asymptotically. Of course for smalln the bound may be quite pessimistic
due to bad constants.
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v) The exponential bound may be seen as a rough large deviation result.
Note however that it involves observables which are of much more general
nature than the observables used in the usual large deviations results and
also as mentioned above the bound is required to be not only asymptotic.

vi) In many situations, one exploits the bounds using some Chebyshev’s in-
equality. This leads for example to concentration results.

The Devroye and exponential inequalities have been proved in a variety of
situations. They are closely related to the phenomenon of concentration of
measures. There are many works for the case of independent variables using a
wealth of different techniques. We refer to [12], [19], [5], [18], [27], [22] for
details and references.

The first result in the non independent case, in relation with concentration is
probably [20] for finite state Markov chains. This was later extended to one
dimensional Gibbs sates [21]. The proof is based on information inequalities.

For8-mixing processes the results were obtained in [26], and for the Ising
model in dimension larger than one at high temperature in [17]. The proof of
this last result relies on the Dobrushin uniqueness argument. The more general
case of random fields was studied in [8] using coupling. See also [25] for related
results.

The exponential inequality for the mixing absolutely continuous invariant mea-
sures of piecewise expanding maps of the interval was obtained in [9] using
Perron Frobenius operators.

The Devroye inequality for SRB measures of some non uniformly hyperbolic
systems was obtained in [6]. This covers unimodal maps, Hénon maps, and
more generally systems with Young’s tower and exponential mixing (spectral
gap). The proof uses Perron Frobenius operators.

The Devroye inequality and higher moment inequalities for the low tempera-
ture Ising model were proved in [8]. In this case, it is known that the exponential
inequality fails for some observables (in particular the magnetisation, see [16]).
The proof is by coupling. Estimates of higher moments were also derived in [8]
(see [13] and [11] for analogous results).

We also mention that the case of dynamical systems requires in general special
proofs since the mixing conditions depend often on some kind of regularity of
the observables.

In the next section we will show how the Devroye and exponential inequal-
ities can be derived from a coupling with some properties of a coupling time.
In the last section we will describe processes for which couplings are known to
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exist which lead to a proof of the inequalities. We will also give an example of
application.

2 A coupling argument

It is convenient to assume that the stochastic process(Xm) is defined for all
integer (positive and negative) times. Also for a sequence(xq, . . . , xp) (may be
infinite), we will use the short hand notationxp

q .
A time of approximate coupling (in the past) between two infinite sequences

x∞
−∞ andz∞

−∞ is defined by

T
(
x+∞

−∞ , z
+∞
−∞

)
= inf

{
q ≥ 1

∣
∣
∣
∣ ∀m ≤ −q ,

∣
∣ym − zm

∣
∣ ≤

1

(q + m − 1)2

}
. (4)

For two generic sequences this quantity is of course infinite, however this will
not be the case under some adequate coupling.

We can now formulate a sufficient condition for the Devroye inequality to
hold.

Theorem 2.1.Let
(
X j

)
be a mixing stationary stochastic process such that for

some (finite) constantA > 0 we have almost surely‖X‖l∞ ≤ A. Let
(
Yj

)
and(

Z j

)
be two independent copies of the process

(
X j

)
. Then for any componentwise

Lipschitz functionK of n variables and for any coupling between
(
Yj

)
and

(
Z j

)
,

we have

Var (K) ≤ 4(2A + 1)2E
(
E

(
T

∣
∣Y0, Z0,Y

∞
1 = Z∞

1 = X∞
1

)2
) n∑

r =1

Lipr (K )
2 .

This estimate is of course only useful if one can find a coupling such that the
right hand side is finite (note that sinceK is bounded the left hand side is always
finite). We will give an example in the next section.

Proof. For each integerm, we denote byFm the sigma algebra generated by
the random variablesXm, Xm+1, . . . Since the functionK depends only on the
variablesx1, . . . , xn and is bounded, if the process is mixing we have in theL2

sense
lim
j →∞

E
(
K

∣
∣ F j

)
= E

(
K

)
.

Indeed, an easy computation leads for any integerN to the identity

Var (K) =
N∑

j =1

E
([

E
(
K

∣
∣ F j

)
− E

(
K

∣
∣ F j +1

)]2
)

+ E
([

E
(
K

∣
∣ FN+1

)
− E (K)

]2
)
.
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This implies that the sequence
(
E

(
K

∣
∣ F j

)
− E (K)

)
is Cauchy inL2 and con-

verges to zero since it converges weakly to zero by the mixing assumption. In
particular, we have

Var (K) =
∞∑

j =1

E
([

E
(
K

∣
∣ F j

)
− E

(
K

∣
∣ F j +1

)]2
)

(5)

We are now going to estimate separately each term of this series. Although
K depends only on the variablesxn

1, it is convenient to assume that it depends
on all the variablesx+∞

−∞ , observing that the Lipschitz constants corresponding
to variables with indices outside the set{1, . . . , n} vanish. We will denote this
extended function again byK (in other wordsK (x+∞

−∞) = K (x1, . . . , xn)). Using
stationarity, it is therefore enough to estimate the quantity (with the notation as
beforeM = M(X+∞

−∞))

E
([

E
(
M

∣
∣ F0

)
− E

(
M

∣
∣ F1

)]2
)
, (6)

in terms of the Lipschitz constants of the functionM
(
x+∞

−∞

)
= K

(
S −qx+∞

−∞

)

whereS is the shift (the indexq will become relevant only later on). If we
denote by

(
Yn

)
and

(
Zn

)
two independent copies of

(
Xn

)
, we get

E
([

E
(
M

∣
∣ F0

)
− E

(
M

∣
∣ F1

)]2
)

= E
([

E
(
M

∣
∣ X∞

0

)
− E

(
M

∣
∣ X∞

1

]2
)

= E
([

E
(
M

∣
∣ Y∞

0 = X∞
0

)
− E

(
M

∣
∣ Z∞

1 = X∞
1

)]2
)

= E
([

E
(
M

∣
∣ Y∞

0 = X∞
0

)
− E

(
E

(
M

∣
∣ Z0 , Z∞

1 = X∞
1

) ∣
∣ Z∞

1 = X∞
1

)]2
)

≤ E
(
E

([
E

(
M

∣
∣ Y∞

0 = X∞
0

)
− E

(
M

∣
∣ Z0 , Z∞

1 = X∞
1

)]2 ∣
∣ Z∞

1 = X∞
1

))

= E
(
E

([
E

(
M

∣
∣ Y∞

0

)
− E

(
M

∣
∣ Z∞

0

)]2 ∣
∣ Y∞

1 = Z∞
1 = X∞

1

))
.

(7)

Since by hypothesis‖Y‖l∞ ≤ A, ‖Z‖l∞ ≤ A, andYj = Z j for any j ≥ 1,
we get

∣
∣M

(
Y+∞

−∞

)
− M

(
Z+∞

−∞

) ∣
∣ ≤ 2A

0∑

j =−T
(

Y+∞
−∞ ,Z+∞

−∞

)
+1

Lip j (M)

+

−T
(

Y+∞
−∞ ,Z+∞

−∞

)
∑

j =−∞

Lip j (M)
(

j + T
(
Y+∞

−∞ , Z+∞
−∞

)
− 1

)2 .
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Assume now we have a couplingμY0,Z0,X∞
1

betweenP
(
Y−1

−∞|Y0,Y∞
1 = X∞

1

)

andP
(
Z−1

−∞|Z0, Z∞
1 = X∞

1

)
, then we can write whenY∞

1 = Z∞
1 = X∞

1

E
(
M

∣
∣ Y∞

0

)
− E

(
M

∣
∣ Z∞

0

)
=

∫ (
M

(
Y∞

−∞

)
− M

(
Z∞

−∞

))
dμY0,Z0,X∞

1

(
Y−1

−∞, Z−1
−∞

)

and using the above estimation we get
∣
∣
∣
∣E

(
M

∣
∣ Y∞

0

)
− E

(
M

∣
∣ Z∞

0

)
∣
∣
∣
∣

≤
∞∑

p=0

μY0,Z0,X∞
1

(
T = p

)


2A
0∑

j =−p+1

Lip j (M)+
−p∑

j =−∞

Lip j (M)

( j + p − 1)2





≤ (2A + 1)
∞∑

p=0

−p∑

j =−∞

μY0,Z0,X∞
1

(
T ≥ p

) Lip j (M)

( j + p − 1)2
.

(8)

ReplacingM by K ◦ S q and using equations (7) and (5) we get

Var (K)

≤ (2A + 1)2
∑

q

E









∞∑

p=0

−p∑

j =−∞

μY0,Z0,X∞
1
(T ≥ p)

Lip j +q(K )

( j + p − 1)2





2



 .

Using Schwarz inequality we get

Var (K) ≤ (2A + 1)2
∑

q

E








∞∑

p=0

−p∑

j =−∞

μY0,Z0,X∞
1

(
T ≥ p

) 1

( j + p − 1)2





×




∞∑

p=0

−p∑

j =−∞

μY0,Z0,X∞
1

(
T ≥ p

) Lip j +q(K )
2

( j + p − 1)2









≤ 2(2A + 1)2
∑

q

E
(

E
(
T

∣
∣Y0, Z0,Y

∞
1 = Z∞

1 = X∞
1

)

∞∑

p=0

−p∑

j =−∞

μY0,Z0,X∞
1

(
T ≥ p

) Lip j +q(K )
2

( j + p − 1)2





≤ 4(2A + 1)2E
(
E

(
T

∣
∣Y0, Z0,Y

∞
1 = Z∞

1 = X∞
1

)2
) n∑

r =1

Lipr (K )
2 .

�

Note that under similar assumptions on the above coupling, one can derive
(θ,F , ψ) weak dependence properties in the sense of [13], see also [11].
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The exponential inequality can be established under a stronger assumption on
the coupling (see also [25] for analogous results).

Theorem 2.2.Let
(
X j

)
be a stationary mixing stochastic process such that for

some (finite) constantA > 0 we have almost surely‖X‖l∞ ≤ A. Let
(
Yj

)
and(

Z j

)
be two independent copies of the process

(
X j

)
. Then for any componentwise

Lipschitz functionK of n variables and for any coupling between
(
Yj

)
and

(
Z j

)
,

we have

E
(
eK−E(K)) ≤ e

2(2A+1)2
(

1+
∥
∥E

(
T2

∣
∣Y0,Z0,Y∞

1 =Z∞
1 =X∞

1

)∥∥
L∞

)2
∑n

r =1 Lipr (K )
2

.

Proof. The proof is rather similar to the proof of the previous Theorem. For any
finite integerN we have sinceK does not depend onX0

−∞

E
(
eK−E(K)) = E




N−1∏

q=1

eE(K|Fq)−E(K|Fq+1) eE(K|FN )−E(K)



 ,

= E



eE(K|FN )−E(K)
N−1∏

q=1

E
(
eE(K|Fq)−E(K|Fq+1)

∣
∣
∣Fq

)


 .

Using Hoeffding’s inequality (see [12]) we get

E
(
eK−E(K)) ≤ E



eE(K|FN )−E(K)
N−1∏

q=0

eOscXq E(K|Fq)
2/8



 . (9)

As before, by stationarity it is enough to estimate OscX0E(M|F0). This is given
by equation (8), and we get using Schwarz inequality

OscX0E(M|F0)

≤ (2A + 1)
∞∑

p=0

−p∑

j =−∞

√
(p + 1) μY0,Z0,X∞

1

(
T ≥ p

)

( j + p − 1)

Lip j (M)
√
μY0,Z0,X∞

1

(
T ≥ p

)

( j + p − 1)
√

p + 1

≤ 2(2A + 1)
(
1 + E

(
T2

∣
∣Y0, Z0,Y

∞
1 = Z∞

1

))1/2
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×




∞∑

p=0

−p∑

j =−∞

Lip j (M)
2μY0,Z0,X∞

1

(
T ≥ p

)

( j + p − 1)2(p + 1)





1/2

≤ 4(2A + 1)
(
1 +

∥
∥E

(
T2

∣
∣Y0, Z0,Y

∞
1 = Z∞

1

)∥∥
L∞

)



0∑

j =−∞

Lip j (M)
2

(1 − j )2





1/2

since for j ≤ −p we have( j + p − 1)2(p + 1)2 ≥ (1 − j )2. It now follows
from (9) that for any integerN we have

E
(
eK−E(K))

≤
N−1∏

q=0

e
2(2A+1)2

(
1+

∥
∥E

(
T2

∣
∣Y0,Z0,Y∞

1 =Z∞
1

)∥∥
L∞

)2 0∑

j =−∞

Lip j +q(L)
2

(1− j )2 E
(
eE(K|FN )−E(K)) ,

≤ e
2(2A+1)2

(
1+

∥
∥E

(
T2

∣
∣Y0,Z0,Y∞

1 =Z∞
1

)∥∥
L∞

)2
∑

r
Lipr (L)

2

E
(
eE(K|FN )−E(K)) .

SinceK is bounded, we have

∣
∣E

(
eE(K|FN )−E(K)) − 1

∣
∣ ≤ e2‖K‖L∞ E

((
K|FN)− E(K)

)2
)

and as explained before, it follows from the mixing property that the right hand
side tends to zero whenN tends to infinity. �

Estimations for higher moments in the case where the exponential inequality
fails can be obtained by similar coupling techniques using the Marcinkiewicz-
Zygmund inequality (see [8]) or the Dedecker Doukhan inequality [10], [13],
[11]. See also [23] for related results.

3 Examples and applications

Couplings satisfying the condition
∥
∥E

(
T2

∣
∣Y0, Z0,Y

∞
1 = Z∞

1

)∥∥
L∞ < ∞ (10)

have been obtained for piecewise expanding maps of the interval (taken as[0, 1]).
We recall that these are mapsf such that there exists an increasing sequence
a0 = 0< a1 . . . < ak = 1 such that on each subinterval]aj ,aj +1[ (0 ≤ j < k),
the map is continuous and monotone and the graph extends to aC2 map in a
neighborhood of]aj ,aj +1[. Moreover we assume that there is a constants> 1
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such that in all intervals]aj ,aj +1[ the modulus of the slope (of some iterate) is
larger than one. If the transformation has a dense orbit, it is known that there is
a unique absolutely continuous invariant probability measure. We refer to [15]
or [4] for more details and properties of these dynamical systems. Using the
density of these invariant measures one can define a Markov chain describing
the backward orbits of the dynamical system (see [2]). Although these chains
have rather singular transition probabilities (each transition probability is atomic
with a finite number of atoms less than or equal tok − 1), it was proved in [2]
that there are two constantsC > 1 andρ < 1 such that for anyx andy in [0, 1],
except may be for a finite number of points, there is a couplingμx,y such that

μx,y
(

sup
q>n

ρ−q|X−q − Y−q| > C−1
)

≤ Cρn ,

where (X−n) and (Y−n) are the processes of preimages ofx and y, namely
f (X−n) = X−n+1. It then follows easily that condition (10) is satisfied.

Several applications have already been developed for these inequalities, we
mention in particular the estimation of the fluctuations of the empirical covari-
ance, of the empirical integrated periodogram, of the empirical measure, and of
the kernel density estimate. One can also use these estimates to prove almost
sure central limit theorems (with estimates on the velocity of convergence), and
concentration. We refer to [12] and [7] for details and references. We will derive
below an estimate for the fluctuation of the kernel density estimator, and show a
relation with concentration.

Assume we have a real valued discrete time stationary stochastic process(Xn)

which satisfies the Devroye inequality. Assume also that the random variables
have a (common) densityg, and consider a kernel density estimategn (see 3)
with a kernelψ which is a Lipschitz function with compact support. In order to
estimate the variance of‖g − gn‖L1, we consider the function

K
(
x1, . . . , xn

)
=

∫
∣
∣
∣
∣
∣
∣

1

nαn

n∑

j =1

ψ

(
s − xj

αn

)
− g(s)

∣
∣
∣
∣
∣
∣
ds .

It is easy to see thatK is Lipschitz and moreover

Lip j (K ) ≤
1

nαn
M(ψ) ,

where

M(ψ) = sup
x,y

1

|x − y|

∫ ∣
∣ψ(t − x)− ψ(t − y)

∣
∣dt < ∞ .
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Applying Devroye’s inequality (1.2) we get

Var
(
‖g − gn‖L1

)
≤ C

1

nα2
n

M(ψ)2 .

One would like now to use the Chebyshev inequality in order to estimate the
fluctuation of‖g−gn‖L1. For this purpose, one needs to estimateE

(
‖g−gn‖L1

)
.

There are several ways to obtain such an estimate, here we will use again the
Devroye inequality. We refer to [9] and [7] for estimates using correlations. We
will from now on assume that the random variables(Xn) are bounded, namely
there are constantsa > 0 andb such that almost surelyXn ∈ [b,a + b]. We
also assume that the kernelψ has support in the interval[−c, c] for somec > 0.
Using Schwarz inequality, we get

E
(
‖g − gn‖L1

)2
≤

∫ b+a+cαn

b−cαn

E
(
(gn(s)− g(s))2

)
ds .

As mentioned before, if information on correlations are available, they can be
used at this point, and they eventually give better estimates than what is obtained
below(see [14], [24] and references therein for results in these directions). Here
we will derive a rough estimate applying again the Devroye inequality (1.2) to
gn(s)− g(s) for each fixeds. Defining the functionK (for fixeds) by

K (x1, . . . , xn) =

∣
∣
∣
∣
∣
∣

1

nαn

n∑

j =1

ψ

(
s − xj

αn

)
− g(s)

∣
∣
∣
∣
∣
∣
,

we get for anys ∈ R

Lip j (K ) ≤
Lip(ψ)

nα2
n

.

Therefore applying the Devroye inequality we get

Var
(
g(s)− gn(s)

)
≤ C

1

nα4
n

Lip j (ψ)
2 .

Combining the above estimates, we get

E
(
‖g − gn‖

2
L1

)
≤
O(1)

nα4
n

+
∫ b+a+cαn

b−cαn

[
E

(
g(s)− gn(s)

)]2
ds .

For the last term, we have

E
(
g(s)− gn(s)

)
=

∫
ψ(v)

(
g(s + αnv)− g(s)

)
dv.
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If g is known to be Lipschitz for example, we get
∣
∣E

(
g(s)− gn(s)

)∣∣ ≤ O(1)αn,

and finally using the optimal choice for the boundαn = O(1)n−1/6 we obtain
the following result.

Theorem 3.1.Assume the stationary mixing process(Xn) satisfies the Devroye
inequality, and the random variableX0 is almost surely bounded with a Lipschitz
densityg. Let gn be the kernel density estimate(3), with ψ non negative, of
integral one, Lipschitz with compact support. Then

E
(
‖g − gn‖

2
L1

)
≤
O(1)

n1/3
.

As we already mentioned, the Devroye and exponential estimates have many
interesting consequences. Another one is the so called concentration of measure.
Although this is a well known result, for the convenience of the reader we now
give a simple example. ForE a subset ofRn andε a positive number, we denote
by Eε theε neighborhood ofE (in thel 1 norm) defined by

Eε =
{
(
x1, . . . , xn

)
∈ Rn

∣
∣ ∃ (y1, . . . , yn) ∈ E

such thatn−1
n∑

j =1

∣
∣xj − yj

∣
∣ ≤ ε

}
.

Theorem 3.2.Let (Xm) be a real valued mixing process satisfying the Devroye
inequality(1.2). Let E be a measurable subset ofRn and letTE be the subset
of the probability space defined by

TE =
{
(X1, . . . , Xn) ∈ E

}
.

Assume thatP (TE) > 0, then for anyε > 0, the complementT c
Eε

ofTEε satisfies

P
(
T c

Eε

)
≤

(
1 +

1

P (TE)

)
C

nε2

whereC is the constant in the Devroye inequality(1.2).

Roughly speaking this means that in large dimension, if we have a set of
positive measure, a small neighborhood is almost of full measure.
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Proof. Consider the function

K
(
x1, . . . , xn) = inf

(y1,...,yn)∈E
n−1

n∑

j =1

∣
∣xj − yj

∣
∣ .

This function is componentwise Lipschitz, and the Lipschitz constants are all
bounded by 1/n. Applying the Devroye inequality, we conclude that

Var (K) ≤
C

n
.

In order to apply the Chebyshev inequality, we need to estimateE(K). We
observe thatK

(
xn

1

)
= 0 if

(
xn

1

)
∈ E, therefore

E(K)2P
(
TE

)
≤ E

(
χTE

(
K − E(K)

)2)
≤ Var (K) ≤

C

n
.

Combining the two estimates, we get

E(K2) ≤

(

1 +
1

P
(
TE

)

)
C

n
.

We now observe thatT c
E =

{
K > ε

}
and the result follows using Chebyshev’s

inequality. �
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