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2-fold and 3-fold mixing: why 3-dot-type
counterexamples are impossible in one dimension

Thierry de la Rue

Abstract. V.A. Rohlin asked in 1949 whether 2-fold mixing implies 3-fold mixing for
a stationary process(ξi )i ∈Z, and the question remains open today. In 1978, F. Ledrappier
exhibited a counterexample to the 2-fold mixing implies 3-fold mixing problem, the so-
called3-dot system, but in the context of stationary random fields indexed byZ2.

In this work, we first present an attempt to adapt Ledrappier’s construction to the one-
dimensional case, which finally leads to a stationary process which is 2-fold but not
3-fold mixing conditionally to theσ -algebra generated by some factor process. Then,
using arguments coming from the theory of joinings, we will give some strong obstacles
proving that Ledrappier’s counterexample can not be fully adapted to one-dimensional
stationary processes.
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1 Introduction:
Rohlin’s multifold mixing problem and Ledrappier’s two-dimensional
counterexample

The following work is based on two recent results concerning Rohlin’s multifold
mixing problem which are contained in [17] and [19]. It seemed to me interesting
to put these results together and show them in a different light, emphasizing
mainly on the underlying ideas rather than on technical details.

The object of our study is a stochastic process, that is to say a familyξ = (ξi )i ∈Z

of random variables indexed by the set of integers, and we will always assume that
these random variables take their values in a finite alphabetA. If two integers
i ≤ j are given, we will denote byξ j

i the finite sequence(ξi , ξi +1, . . . , ξ j ).
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Obvious generalization of this notation to the case wherei = −∞ or j = +∞
will also be used.

We are more particularly interested in the case where the stochastic process
is stationary, which means that the probability of observing a given cylindrical
event E (i.e. an event depending only on finitely many coordinates) at any
positioni ∈ Z does not depend oni :

∀` ≥ 0, ∀E ⊂ A`+1, ∀i ∈ Z, P
(
ξ i +`

i ∈ E
)

= P
(
ξ`

0 ∈ E
)
. (1)

Another way to characterize the stationarity of the process is to say that its
distribution is invariant by the coordinate shift: LetT : AZ → AZ be the
transformation defined byT(ξ) = ξ̃ , where for alli ∈ Z, ξ̃i := ξi +1. Then the
stochastic processξ is stationary if and only if the distribution ofT(ξ) is the
same as the distribution ofξ .

The stochastic processξ is said to bemixing if, considering two windows of
arbitrarily large sizè , what happens in one window is asymptotically indepen-
dent of what happens in the second window when the distance between them
tends to infinity:

∀` ≥ 0, ∀E1, E2 ⊂ A`+1,

P
(
ξ`

0 ∈ E1, ξ
p+`
p ∈ E2

)
− P

(
ξ`

0 ∈ E1

)
P
(
ξ p+`

p ∈ E2

)
−−−→
p→∞

0.
(2)

1.1 Rohlin’s question

In 1949, V.A. Rohlin [14] proposed a strengthening of the previous definition
involving more than two windows:ξ is said to be3-fold mixingif

∀` ≥ 0, ∀E1, E2, E3 ⊂ A`+1,

P
(
ξ`

0 ∈ E1, ξ
p+`
p ∈ E2, ξ

p+q+`
p+q ∈ E3

)

−P
(
ξ`

0 ∈ E1

)
P
(
ξ p+`

p ∈ E2

)
P
(
ξ

p+q+`
p+q ∈ E3

)
−−−−→
p,q→∞

0.

(3)

A straightforward generalization tok windows naturally gives rise to the property
of being k-fold mixing. To avoid any confusion, we will henceforth call the
classical mixing property defined by (2):2-fold mixing1.

1We must point out that in Rohlin’s article, the definition ofk-fold mixing originally involvedk+1
windows, thus the classical mixing property was called1-fold mixing. However it seems that the
convention we adopt here is used by most authors, and we find it more coherent when translated
in the language of multifold self-joinings (see section 3.1).
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Rohlin asked whether any stationary process which is 2-fold mixing is also 3-
fold mixing. This question is still open today, but a large number of mathematical
works have been devoted to the subject. Many of these works show that 2-fold
mixing implies 3-fold mixing for special classes of stationary processes (seee.g.
[13] and [22] for Gaussian processes, [7] for processes with singular spectrum,
[9] and [20] for finite-rank processes).

1.2 Ledrappier’s counterexample in 2 dimensions: the 3-dot system

In the opposite direction, Ledrappier [12] produced in 1978 a counterexample
showing that in the case of stationary processes indexed byZ2 (we should rather
speak of stationaryrandom fieldsin this context), 2-fold mixing does not neces-
sarily imply 3-fold mixing. Here is a description of his example: Consider

G :=
{(

ξi, j
)

∈ {0, 1}Z
2
: ∀(i, j ), ξi, j + ξi +1, j + ξi, j +1 = 0 mod 2

}
.

Let us describe a probability lawμ onG by the way we pick a random element in
G: First, use independent unbiased coin tosses to choose theξi,0 on the horizontal
axis (one coin toss for eachi ∈ Z: these random variables are independent).
Now, note that the “3-dot rule"ξi, j + ξi +1, j + ξi, j +1 = 0 mod 2 for each(i, j )
completely determines the coordinatesξi, j on the upper-half planej ≥ 0. It
remains to choose theξi, j for j < 0. For this, observe that we have yet no
constraint onξ0,−1. We choose it with an unbiased coin toss, and then the entire
line ξ−1, j is completely determined by the 3-dot rule. To complete the whole
plane, we just have to pick each of theξ0, j ( j < −1) with a coin toss, and then
inductively fill each horizontal line with the 3-dot rule.

01 0 0 0 01 1
1

0

1
0

1 0 0 1 1 1 1 0 1
1 0 1 0 0 0 1 1 0
1 1 1 0 0 1 0 1 1
0 0 1 0 1 1 1 0 1

1110 0 0 1 1
0100 0 0 0 1
0111 1 1 1 1

Figure 1: Generation of a random configuration inG. First, use independent
coin tosses to choose the values of the shaded cells, then apply the 3-dot rule to
complete the others: Three adjacent cells disposed as the three dotted ones must
contain an even number of 1’s.
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The addition mod 2 on each coordinate turnsG into a compact Abelian group.
We let the reader check that the probability lawμ defined above onG is invariant
by addition of an arbitrary element ofG, thusμ is the unique normalized Haar
measure onG. Since any shift of coordinates inZ2 is an automorphism of the
groupG, such a shift preservesμ. Henceμ turns(ξi, j ) into a stationary random
field.

The definition ofk-fold mixing for a stationary random field is formally the
same as in the case of processes, except that a window is no longer an interval
on the line but a square in the plane:{(i0 + i, j0 + j ) : 0 ≤ i, j ≤ `} for some
(i0, j0) ∈ Z2 and somè ≥ 0. Let us sketch a geometric argument showing
why the 2-fold mixing property holds for(ξi, j ). Starting with the cells on the
horizontal axis and the lower-half vertical axis filled with independent coin tosses,
we observe that, when filling the other cells using the 3-dot rule,

• the regionR1 := {(i, j ) : i < 0, 0 < j < −i } only depends on the cells
(i, 0), for i < 0;

• the regionR2 := {(i, j ) : j < 0, 0 < i < − j } only depends on the cells
(0, j ), for j < 0;

• the regionR3 := {(i, j ) : 0 < i, 0 < j } only depends on the cells(i, 0),
for i ≥ 0. (See Figure 2.)

These three regions are therefore independent. Now, if we take two windows
of size `, and if the distance between them is large enough (“large enough"
depending oǹ), it is always possible to shift the coordinates in such a way that
each of the shifted windows entirely lies in one of these three regions, and not
both in the same region. The two shifted windows are then independent, and
sinceμ is preserved by coordinate shift, this means that the two windows we
started with are also independent.

It remains to see why Ledrappier’s example is not 3-fold mixing. For this,
apply the 3-dot rule from corner(i, j ), from corner(i + 1, j ) and from corner
(i, j + 1), then add the three equalities (see Figure 3). In the sum, the random
variablesξi +1, j , ξi +1, j +1 andξi, j +1 are counted twice, thus they vanish since we
work modulo 2. We get the following equality, which could be called thescale-2
3-dot rule:

ξi, j + ξi +2, j + ξi, j +2 = 0 mod 2. (4)

A straightforward induction then shows that for anyn ≥ 0, thescale-2n 3-dot
rule holds:

ξi, j + ξi +2n, j + ξi, j +2n = 0 mod 2. (5)

Bull Braz Math Soc, Vol. 37, N. 4, 2006
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R1 R3

R2

Figure 2: 2-fold mixing for the 3-dot system: If the distance between them is
large enough, the two square windows can be shifted in such a way that one lies
in one of the three colored regions, and the other one in another, independent,
region.

(i, j)

(i, j + 1)

(i+ 1, j)

Figure 3: Applying the 3-dot rule from three different corners(i, j ), (i + 1, j )
and(i, j + 1), and adding the three equalities gives the scale-2 3-dot rule.

But this shows that the three windows of size 1{(i, j )}, {(i +2n, j )} and{(i, j +
2n)} are always far from being independent, although the distance between them
can be made arbitrarily large. Hence the random fieldξ is not 3-fold mixing.

2 Attempt to construct a 3-dot-type one-dimensional process

2.1 Block construction of a 2-fold but not 3-fold mixing process

In this section we describe a naive attempt to mimic the 3-dot construction on a
one-dimensional process. Our process will take its values in the same alphabet
A = {0, 1} as for Ledrappier’s example, and we start by randomly picking the

Bull Braz Math Soc, Vol. 37, N. 4, 2006
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two random variablesξ0 andξ1 with two independent unbiased coin tosses:ξ0

andξ1 are independent, and each one is equal to 1 with probability 1/2. Then,
we set

ξ2 := ξ0 + ξ1 mod 2.

Each random variableξi is called a 0-block, and the triple(ξ0, ξ1, ξ2) is called a
1-block. We pick the second 1-block(ξ3, ξ4, ξ5) in the same way as the first one,
but independently. The third 1-block(ξ6, ξ7, ξ8) is now set to be the pointwise
sum of the first two 1-blocks:

ξ6 := ξ0 + ξ3 mod 2,

ξ7 := ξ1 + ξ4 mod 2,

ξ8 := ξ2 + ξ5 mod 2.

Observe that this third 1-block follows the same distribution as the first two:
ξ6 andξ7 are two independent Bernoulli random variables with parameter 1/2,
andξ8 is the sum mod 2 of these variables. Note also that the third 1-block is
independent of the first one, independent of the second one, but of course not
independent of the first two together. The 9-tuple(ξ0, ξ1, . . . , ξ8) is called a
2-block.

We can repeat this procedure inductively to constructk-blocks for eachk ≥ 0:
Suppose that for somek we already have constructed the firstk-block, which is
the 3k-tuple(ξ0, . . . , ξ3k−1). Then, choose the secondk-block(ξ3k, . . . , ξ2×3k−1)

with the same probability distribution, but independently of the first one, and
set the thirdk-block (ξ2×3k, . . . , ξ3k+1−1) to be the pointwise sum of the first two
k-blocks:

ξ2×3k+ j := ξ j + ξ3k+ j mod 2(0 ≤ j ≤ 3k − 1). (6)

This inductive procedure gives the construction of a stochastic one-dimen-
sional process(ξi )i ≥0. (This construction can easily be extended to a process
indexed byZ: Set the negative coordinates independently of the nonnegative ones
by a similar symmetric construction.) Let us sketch the proof that our process
is 2-fold mixing. For this, we use the two following facts, whose verification is
left to the reader:

• Two differentk-blocks are always independent.

• Call ak-overlappingthe concatenation of two consecutive(k − 1)-blocks
lying in two differentk-blocks. Anyk-overlapping is independent of any
concatenation of two consecutive(k − 1)-blocks lying in otherk-blocks.

Bull Braz Math Soc, Vol. 37, N. 4, 2006
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first
2−block

0 1 1 1 1 0 1 0 1 1 1 0 0 1 1 1 0 1 1 11 0 1 0 0 0 0

1−block
first

1−block
second

1−block
third

second
2−block

third
2−block

first
3−block

Figure 4: Block construction of a stochastic process: The shaded coordinates
are given by independent coin tosses. The non-shaded coordinates are computed
from the shaded ones by 3-dot-type rules.

Now, take two windows of fixed sizè, and letk be an integer such that` ≤ 3k−1.
Then, if the distance between the two windows is greater than 3k, either they lie
in two differentk-blocks, or at least one of them lie in ak-overlapping. In both
cases the two windows are independent.

However, the stochastic processξ is clearly not 3-fold mixing, since for any
k ≥ 0, we have

ξ0 + ξ3k + ξ2×3k = 0 mod 2.

This, of course, does not makeξ a counterexample to Rohlin’s question: The
process we have just constructed is not a stationary one! Indeed, the pattern
‘111’ for example can not be seen in the sequenceξ0ξ1ξ2, but it can occur in the
sequenceξ1ξ2ξ3 with probability 1/8.

2.2 How to make the construction stationary

The example described in the preceding section can be turned into a stationary
process by applying some trick which is presented here. The process is still
inductively constructed withk-blocks which follow the same distribution as
before. The difference consists in the wayk-blocks are extended to(k + 1)-
blocks. Observe that ak-block lying in a given(k + 1)-block can have three
positions, which will be denoted by ‘0’ (the firstk-block in the(k+1)-block), ‘1’
(the second one) and ‘2’ (the third one). We are going to define the increasing
family of k-blocks (k ≥ 0) containing the coordinateξ0 by using a sequence
S = (Sk)k≥0 of independent, uniformly distributed random variables, taking
their values in{0, 1, 2}.

We start the construction by picking the first 0-blockξ0 in the usual way, with
a coin toss. Now, we have to decide whether this 0-block is in the first, second or
third position in the 1-block. This is done by using the first random variableS0.

Bull Braz Math Soc, Vol. 37, N. 4, 2006
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Next, we complete the 1-block by tossing a coin for the first missing variable,
and setting the last one to be the sum mod 2 of the two others. The extension
from thek-block to the(k + 1)-block containingξ0 goes on in a similar way:
Once we have determined thek-block, we use the random variableSk to decide
whether thisk-block is in the first, second or third position in the(k + 1)-block.
Then the first missingk-block is chosen independently, and the last one is set to
be the pointwise sum of the two otherk-blocks.

1 11 0 0 0 0 1 001 11 1 01 1 10 1 1 1 0 0 10 1

ξ0

Figure 5: Beginning of the construction with the skeleton sequenceS0 = 1,
S1 = 2, andS2 = 0.

The embedding ofk-blocks ink+1-blocks is called theskeletonof the process,
and the i.i.d. sequence(Sk)k≥0 coding this embedding is theskeleton sequence.
Since almost every realization of the skeleton sequence contains infinitely many
1’s, the preceding procedure applied for allk ≥ 0 gives rise tok-blocks extending
arbitrarily far away from 0 on both sides with probability one. This defines the
whole processξ = (ξi )i ∈Z.

Let us see how the skeleton sequence evolves when a coordinate shift is applied
to the processξ . It is not difficult to convince oneself that a shift of one coordinate
to the left corresponds to the addition of ‘1’ on the 3-adic number defined by the
sequence(Sk). (Write the sequence from right to left, and see it as a “number”
written in base 3 with infinitely many digits,S0 being the unitary digit; then add
‘1’ to the sequence as you would do it for an ordinary number: Add ‘1’ toS0, and
if S0 reaches 3, then setS0 = 0 and add ‘1’ toS1, and so on.) Observe that the
distribution of the skeleton sequence is the same after this addition of ‘1’, hence
the distribution of the skeleton is invariant under the action of the coordinate
shift. But once the skeleton is fixed, the distribution of the process is entirely
determined by giving the distribution ofk-blocks for everyk ≥ 0, which is the
distribution described in the preceding section. Therefore the whole distribution
of the process is invariant under the coordinate shift, and the process we get now
is stationary.

Unfortunately, making the process stationary has a cost: We have lost the 2-
fold mixing property! Indeed, if for example we look at the rightmost coordinate
S0 of the skeleton sequence, we see that any realization of the processξ gives rise
for S0 to the periodic sequence∙ ∙ ∙ 012012012∙ ∙ ∙ . So, the process we get when

Bull Braz Math Soc, Vol. 37, N. 4, 2006
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01 11 1 01 1 10 1 1 1 0 0 10 11 11 0 0 0 0 1 0

t = 0, S = ∙ ∙ ∙ 0 2 1

t = 1, S = ∙ ∙ ∙ 0 2 2

t = 2, S = ∙ ∙ ∙ 1 0 0

t = 3, S = ∙ ∙ ∙ 1 0 1

Figure 6: Action of the coordinate shift on the skeleton sequence. The arrows
denote the position ofξ0 at successive times during the iteration of the shift.

we only observeS0 is periodic. But ifξ was 2-fold mixing, then everyfactor of
ξ (that is to say, every stationary process which can be seen as a function ofξ ,
such as the process generated byS0 for example2) would also be 2-fold mixing.

2.3 A relative counterexample to Rohlin’s question

The stationary process generated by the whole skeleton sequenceS is well-
known in ergodic theory, and is called the3-adic odometer. (Be careful:Sdoes
not take its values in a finite alphabet, it has infinitely many coordinates taking
their values in{0, 1, 2}.) This process, which has appeared as a factor ofξ in
our new construction, is far from being mixing, since each of its coordinates is
periodic. However, we can notice some interesting facts regarding the 2-fold and
3-fold mixing properties ofξ . Namely, once the skeleton is fixed (that is to say,
conditionally to theσ -algebra generated byS), the mixing properties ofξ are
similar to those of the non-stationary process constructed in Section 2.1. Thus,
the processξ is 2-fold, but not 3-fold mixingrelatively to the factorσ -algebra
generated byS. (More details on relativek-fold mixing can be found in [17].)

It is a common idea in abstract ergodic theory to say that the study of stationary
processes relatively to their factorσ -algebras gives rise to similar results as in
the absolute study (one of the best examples of this fact is Thouvenot’s relative
version of Ornstein’s isomorphism theorem [21]; another example is the proof of
Proposition 3.2 presented below). Therefore, the process that we have just con-
structed could make us think that a one-dimensional counterexample to Rohlin’s
question should exist. However, we are going to show in the next Section that,
if such a process exists, it must be of a different nature than this one, or than

2We leave as an exercise for the reader the verification of the fact that the skeleton sequence is
indeed a function ofξ .
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Ledrappier’s counterexample inZ2.

3 Obstruction to the construction of a 3-dot-type one-dimensional coun-
terexample

3.1 Multifold mixing and self-joinings

We need now to present a powerful tool which has been introduced in ergodic
theory by Furstenberg [4]: The notion of self-joining of a stationary process. Let
ξ = (ξi )i ∈Z be a stationary process taking its values in the alphabetA, and denote
by μ its probability distribution onAZ. Takeξ ′ another process defined on the
same probability space, taking its values in the same alphabetA, and following
the same distributionμ. Then we can consider the joint process(ξ, ξ ′), taking
its values in the Cartesian squareA × A. If this joint process is still stationary,
then we say that its distributionλ onAZ×AZ ≈ (A×A)Z is a2-fold self-joining
of ξ . In other words, a 2-fold self-joining ofξ is a probability distribution on
AZ ×AZ whose marginals are both equal toμ, and which is invariant under the
coordinate shift.

Let us see some simple examples of such self-joinings. The first idea is to take
the two processesξ andξ ′ independent of each other. Then we getμ ⊗ μ as our
first example of a 2-fold self-joining. Another very simple example is obtained
by takingξ ′ = ξ , and we denote by10 (“diagonal measure”) the 2-fold self-
joining of ξ concentrated on the diagonal ofAZ × AZ. This can be generalized
by considering the case whereξ ′ is equal to a shifted copy ofξ : We fix some
p ∈ Z, and we setξ ′

i := ξi +p for eachi ∈ Z. We denote by1p the shifted
diagonal measure obtained in this way.

The setJ2(ξ) of all 2-fold self-joinings ofξ is endowed with the metrizable
topology defined by the following distance:

d(λ1, λ2) :=
∑

n≥0

∑

n′≥0

1

2n+n′

∣
∣λ1(ξ ∈ Cn, ξ

′ ∈ Cn′) − λ2(ξ ∈ Cn, ξ
′ ∈ Cn′)

∣
∣ ,

where(Cn)n≥0 is the countable collection af all cylinder sets inAZ. This topology
(which is nothing else than the weak topology restricted to the set of 2-fold self-
joinings ofξ ) turnsJ2(ξ) into a compact metrizable topological space. The link
with the 2-fold mixing property is now straightforward: The stationary process
ξ is 2-fold mixing if and only if the sequence(1p) of shifted diagonal measures
converges inJ2(ξ) to the product measureμ ⊗ μ as p → +∞.

To translate the 3-fold mixing property into the language of joinings, we have
to generalize the notion of self-joining to the case where 3 processesξ , ξ ′ andξ ′′

Bull Braz Math Soc, Vol. 37, N. 4, 2006
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with the same distributionμ are involved. This naturally leads to the definition
of a3-fold self-joining ofξ . (We can of course define anr -fold self-joining ofξ
for anyr ≥ 2, but for our purpose the casesr = 2 andr = 3 will suffice.) The
setJ3(ξ) is also turned into a compact metrizable space when endowed with the
restriction of the weak topology. Particularly simple and interesting elements of
J3(ξ) are again the product measureμ⊗μ⊗μ and the shifted diagonal measures
1p,q, p, q ∈ Z, the latter denoting the distribution of the triple(ξ, ξ ′, ξ ′′) when
for all i ∈ Z,

ξ ′
i = ξi +p and ξ ′′

i = ξi +p+q. (7)

The processξ is 3-fold mixing if and only if the following convergence holds
in J3(ξ):

1p,q −−−−−→
p,q→+∞

μ ⊗ μ ⊗ μ. (8)

Now, let us assume thatξ is a 2-fold mixing stationary process which is not 3-
fold mixing. Then, since1p,q does not converge to the product measure, we can
find a subsequence1pn,qn converging to some 3-fold self-joiningλ 6= μ⊗μ⊗μ.
But the 2-fold mixing property ofξ tells us that, underλ, the 3 processesξ , ξ ′

andξ ′′ have to be pairwise independent. Hence, we get the following conclusion:

Proposition 3.1. If ξ is a 2-fold mixing stationary process which is not 3-fold
mixing, thenξ has a 3-fold self-joiningλ 6= μ⊗μ⊗μ with pairwise independent
coordinates.

3.2 Restriction to zero-entropy processes

The natural question now is whether stationary processes satisfying the conclu-
sion of Proposition 3.1 can exist. But, without extra requirements, it is easy to
find examples of such pairwise independent self-joinings which are not the prod-
uct measure: Letξ consist of i.i.d. random variables(ξp)p∈Z, taking their values
in {0, 1}, each one with probability 1/2. Take an independent copy(ξ ′

p)p∈Z of
this process and set

ξ ′′
p := ξp + ξ ′

p mod 2.

Then the three processesξ , ξ ′ andξ ′′ have the same distribution, are pairwise
independent, but the 3-fold self-joining ofξ we get in this way is not the product
measure.

However, this process is not a counterexample to Rohlin’s question. Indeed,
all its coordinates being independent,ξ is of coursek-fold mixing for anyk ≥ 2.
It was Thouvenot who explained that this kind of Bernoulli shift situation could
be avoided when one studies Rohlin’s question, because it is always possible to
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restrict the analysis to the case of zero-entropy stationary processes. A stationary
processξ = (ξi )i ∈Z taking its values in a finite alphabet has zero entropy if and
only if ξ0 is measurable with respect to thepast, i.e. with respect to theσ -algebra
σ(ξi , i < 0). (Main definitions and results concerning entropy in ergodic theory
can be founde.g. in [2, 5, 8].)

Proposition 3.2. If there exists a stationary processξ which is 2-fold, but not 3-
fold mixing, then one can find such a counterexample in the class of zero-entropy
stationary processes.

Proof. One of the main ingredient to prove this result is the so-calledPinsker
σ -algebra(or tail field) of the process, which is theσ -algebra

5(ξ) :=
⋂

p∈Z

σ(ξ
p
−∞) =

⋂

p∈Z

σ(ξ+∞
p ).

The Pinskerσ -algebra ofξ is invariant by the coordinate shiftT : (ξn) 7→
(ξ̃n), whereξ̃n := ξn+1. Therefore, if we choose any5(ξ)-measurable random
variableζ0, taking its value in a finite alphabetB, and if we set for alli ∈ Z

ζi := ζ0 ◦ Ti ,

then the whole stationary processζ = (ζi )i ∈Z is 5(ξ)-measurable. What is
remarkable is that such a process always has zero entropy, and that any station-
ary processζ with zero entropy which is a factor ofξ is automatically5(ξ)-
measurable (seee.g. [5], Theorem 18.6). Besides, Krieger’s finite generator
theorem ensures that it is always possible to find such a factor processζ , taking
its values in an alphabetB containing only two letters, and generating the whole
Pinskerσ -algebra (nice proofs of Krieger’s theorem can be found in [5], [8], or
[16]). We henceforth fix such a processζ with

5(ξ) = σ(ζi , i ∈ Z).

As a factor ofξ , ζ automatically inherits the 2-fold mixing property. It remains
to show that ifζ is 3-fold mixing, then so isξ .

For this, let us fix three cylinder eventsE1, E2 andE3, which are measurable
with respect toξ`

0 for somè ≥ 0. We have to compute the limit, asp andq go
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to +∞, of the quantity

P
(
ξ`

0 ∈ E1, ξ
p+`
p ∈ E2, ξ

p+q+`
p+q ∈ E3

)

= E
[
E

[
1ξ`

0∈E1

∣
∣ σ(ξ+∞

p )
]
1

ξ
p+`
p ∈E2

1
ξ

p+q+`
p+q ∈E3

]

= E
[(
E

[
1ξ`

0∈E1

∣
∣ σ(ξ+∞

p )
]

− E
[
1ξ`

0∈E1
| 5(ξ)

])
1

ξ
p+`
p ∈E2

1
ξ

p+q+`
p+q ∈E3

]

+ E
[
E

[
1ξ`

0∈E1
| 5(ξ)

]
1

ξ
p+`
p ∈E2

1
ξ

p+q+`
p+q ∈E3

]
.

The martingale convergence theorem gives

E
[
1ξ`

0∈E1

∣
∣ σ(ξ+∞

p )
]

L1

−−−−→
p→+∞

E
[
1ξ`

0∈E1
| 5(ξ)

]
,

hence the first term can be bounded byε if p is large enough. We are left with

E
[
E

[
1ξ`

0∈E1
| 5(ξ)

]
1

ξ
p+`
p ∈E2

1
ξ

p+q+`
p+q ∈E3

]

= E
[
E

[
1

ξ
−p+`
−p ∈E1

| 5(ξ)
]
E

[
1ξ`

0∈E2

∣
∣ σ(ξ+∞

q )
]
1

ξ
q+`
q ∈E3

]
,

and again the martingale convergence theorem allows us to replace

E
[
1ξ`

0∈E2

∣
∣ σ(ξ+∞

q )
]

with E
[
1ξ`

0∈E2
| 5(ξ)

]

if q is large enough. We thus have proven

P
(
ξ`

0 ∈ E1, ξ
p+`
p ∈ E2, ξ

p+q+`
p+q ∈ E3

)

−E
[
E

[
1ξ`

0∈E1
| 5(ξ)

]
E

[
1

ξ
p+`
p ∈E2

| 5(ξ)
]
E

[
1

ξ
p+q+`
p+q ∈E3

| 5(ξ)
]]



yp, q→ +∞

0

(9)

Note that in this equation, the expectation can also be written as

E
[
E

[
1ξ`

0∈E1
| 5(ξ)

]
E

[
1ξ`

0∈E2
| 5(ξ)

]
◦ T p E

[
1ξ`

0∈E3
| 5(ξ)

]
◦T p+q

]
.

Now, if the processζ generating5(ξ) is 3-fold mixing, we get that this expec-
tation converges, asp andq go to+∞, to the product

E
[
E

[
1ξ`

0∈E1
| 5(ξ)

]]
E

[
E

[
1ξ`

0∈E2
| 5(ξ)

]]
E

[
E

[
1ξ`

0∈E3
| 5(ξ)

]]

= P
(
ξ`

0 ∈ E1
)
P

(
ξ`

0 ∈ E2
)
P

(
ξ`

0 ∈ E3
)
,

which means thatξ is also 3-fold mixing. �
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Let us make some comment about this proof. The main argument is a nice
illustration of the principle that the behaviour of a stationary process conditionally
to one of its factors gives rise to similar results as in the non-conditioned case.
The key notion here is the so-calledK-property: We say that the stationary
processξ has theK -property if its Pinskerσ -algebra5(ξ) is trivial. It is easy
to show that thisK -property implies 3-fold mixing: Just write the preceding
proof until (9) in the case where5(ξ) is trivial, and you get the result. (In
fact, the same argument gives that theK -property impliesk-fold mixing for any
k). Now, when a factorζ of ξ is given, we can also define theK -property of
ξ relatively toζ (seee.g. [18]), and check thatξ always has theK -property
relatively to its Pinskerσ -algebra: This comes from the fact that any factor of
ξ with zero entropy is5(ξ)-measurable. But this in turn gives thatξ is 3-fold
mixing relatively to5(ξ): This is more or less what (9) says. The end of the
proof consists in checking that, ifζ is 3-fold mixing, and ifξ is 3-fold mixing
relatively toζ , thenξ is 3-fold mixing.

Now that we have reduced Rohlin’s problem to the case of zero-entropy pro-
cesses, we can ask the question of pairwise independent self-joinings in this
zero-entropy class.

Question 3.3. Does there exist a zero-entropy, 2-fold mixing stationary pro-
cessξ , and a 3-fold self-joiningλ of ξ for which the coordinates are pairwise
independent but which is different from the product measure?

Note also that if the assumption of 2-fold mixing is dropped, we can again find
some counterexample: Take a periodic stationary processξ taking its values in
{0, 1, 2}, whereξ0 is uniformly distributed in the alphabet, andξi +1 = ξi + 1
mod 3 for alli ∈ Z. Take an independent copyξ ′ of ξ , and set

ξ ′′
i := 2ξ ′

i − ξi mod 3.

Thenξ , ξ ′ andξ ′′ share the same zero-entropy distribution, they are pairwise
independent but the 3-fold self-joining they define is not the product measure.

3.3 3-dot-type pairwise independent self-joinings

Let us consider now the two-dimensional example of Ledrappier from the point
of view of self-joinings. The definition of the shifted diagonal 3-fold self-joining
1p,q is formally the same as in (7), but in this casep andq are both elements of
Z2. Particularly interesting is the sequence1pn,qn , where for alln ≥ 0,

pn := (0, 2n) and qn := (2n, 0).
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From the relation (5), we see that the sequence1pn,qn converges asn → +∞ to
the 3-fold self-joiningλ of ξ under which the three coordinatesξ , ξ ′ andξ ′′ are
pairwise independent (becauseξ is 2-fold mixing), but which is not the product
measure since, for alli ∈ Z2,

ξ ′′
i = ξi + ξ ′

i mod 2. (10)

Observe also that, for the non-stationary process constructed in Section 2.1,
the sequence of 3-fold self-joinings13n,2×3n also converges to a joining with
pairwise independent marginals which, by (6), satisfies a relation similar to
(10). Since this kind of self-joining seems to appear naturally when one tries
to construct examples which are 2-fold but not 3-fold mixing, we introduce the
(slightly more general) following definition;

Definition 3.4. Letξ be a stationary process taking its values in a finite alphabet
A. We call3-dot-type self-joininga 3-fold self-joiningλ of ξ which has pairwise
independent marginals, and for which there exists a mapf : A×A −→ A such
that

∀i ∈ Z, ξ ′′
i = f (ξi , ξ

′
i ) (λ-a.s.). (11)

The result that we shall prove now shows that there is no hope to find a 2-fold
but not 3-fold zero-entropy stationary process which admits a 3-dot-type self-
joining: The only 3-dot-type self-joinings which can be seen in zero entropy are
those arising fromperiodic (therefore non 2-fold mixing) processes, like in the
example presented at the end of Section 3.2.

Theorem 3.5.If the stationary processξ admits a 3-dot-type self-joining, then

• eitherξ is a periodic process,

• or ξ has entropy at leastlog 2.

The proof of the theorem is based on the following lemma.

Lemma 3.6.Let X, Y and Z be 3 random variables, sharing the same distribu-
tion on the finite alphabetA. Assume that these random variables are pairwise
independent, and that there exists a mapf : A× A −→ A such that

Z = f (X, Y) (a.s.). (12)

Then their common distribution is the uniform distribution on a subset ofA.
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Proof. Taking a subset ofA instead ofA if necessary, we can assume that each
letter ofA is seen with positive probability. Let us fix somey ∈ A, and condition
with respect to the event(Y = y). SinceX, Y andZ are pairwise independent,
we get for anyx, z ∈ A

P(X = x|Y = y) = P(X = x) and P(Z = z|Y = y) = P(Z = z).

But knowing(Y = y), we have the equivalence

(Z = z) ⇐⇒ ( f (X, y) = z).

SinceX andZ can take the same number of values, we deduce that for anyz ∈ A,
there exists a uniquex such that

f (x, y) = z,

and that furthemore, thisx satisfies

P(X = x) = P(Z = z). (13)

Finally, observe that we can condition on(Y = y) for any y ∈ A, and therefore
that (13) holds for anyx andz in A for which we can find ay ∈ A satisfying
f (x, y) = z. But sinceX andZ are independent, this is true foranyx, z ∈ A.�

Proof of Theorem 3.5.Fix somem ≥ 1, and apply Lemma 3.6 withX := ξm−1
0 ,

Y := ξ ′ m−1
0 andZ := ξ ′′ m−1

0 under the 3-dot-type self-joining ofξ : We get that
ξm−1

0 is uniformly distributed on the subset of sequences inAm which are seen
with positive probability. Denote bypm the number of such sequences. The
same argument applied withm + 1 in place ofm gives that each of thepm+1

possible sequences of lengthm+ 1 is seen with probability 1/pm+1. Therefore,
any possible sequence of lengthm has exactlyam := pm+1/pm different ways
to extend to some possible sequence of lengthm + 1, and each of the possible
extensions has a conditional probability 1/am. Now, observe that sinceξ is
stationary, the number of possible extensions of a sequence of lengthm+ 1 can
not be greater than the number of possible extensions of the sequence of length
m obtained by removing the first letter, which gives the inequalityam+1 ≤ am.
Therefore, there are two cases:

• Eitheram = 1 form large enough, and in this case the processξ is periodic;

• Or am is always greater than or equal to 2, and then the entropy ofξ is at
least log 2. �
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3.4 Difference between dimension one and two

It seems interesting to analyze the result proved in the preceding section, to see
precisely which obstacle prevents us from constructing a 3-dot-type counterex-
ample in dimension one, although it is allowed in dimension two. At which point
does the one-dimensional argument developped above stop applying to the case
of dimension two?

First, note that the reduction of Rohlin’s question to zero-entropy processes is
still valid in the case of two-dimensional random fields: We can still consider in
this case the Pinskerσ -algebra5(ξ), with respect to which every zero-entropy
factor of ξ is measurable, and prove that ifξ is 2-fold but not 3-fold mixing,
then this property comes from5(ξ). (For some presentations of the Pinsker
σ -algebra in the multidimensional case, we refer the reader to [1, 6, 10, 11]. For
the generalization of Krieger’s finite generator theorem toZd-actions, seee.g.
[15, 3].) As far as Ledrappier’s 3-dot example is concerned, there is no need to
take a factor since this stationary random field already has zero entropy.

Next, Lemma 3.6 gives that ifξ is a finite-valued stationary random field
indexed byZ2 admitting a 3-dot-type self joining, then the distribution ofξ

on any finite window is uniform on all the configurations which are seen with
positive probability. And indeed, we can easily check that this is the case for
Ledrappier’s construction (for example, any allowed configuration in a rectan-
gular `1 × `2 window has probability 2−(`1+`2−1)). And this seems to be the
point of the argument where there is a difference betweenZ andZ2: Although
this uniform-probability property implies periodicity for one-dimensional zero-
entropy stationary processes, this is no more true for two-dimensional stationary
random fields, as we can see with Ledrappier’s example.

We can also observe that in the one-dimensional case, if the stationarity prop-
erty is dropped the argument fails at the same point: The relative counterexample
constructed in Section 2.2, that is to say the process conditioned on the skele-
ton sequence, also has the uniform-probability property (which means in the
non-stationary setting that for anyi ≤ j , all the possible configurations for the
sequenceξ j

i have the same probability). However, this process has zero entropy:
There exists almost surely somek such thatSk = 2, thereforeξ0 lies in the third
k-block in its(k+1)-block. Thenξ0 can be computed from the first twok-blocks,
which are measurable with respect to the past of the process.
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4 Further questions

Many important results have already been presented around Rohlin’s multifold
mixing problem. Most of them consider some special category of stationary
processes (e.g. finite-rank processes, or processes with singular spectrum), and
prove that in this category a pairwise-independent 3-fold self-joining has to be
the product measure.

We hope that the work presented here can be the beginning of a slightly different
approach: Consider a stationary process which admits some kind of pairwise-
independent 3-fold self-joining which is not the product measure, and see which
other properties on the process this assumption entails. In this direction, the most
natural generalization of the present study should be the following situation: Take
a stationary processξ which admits a pairwise-independent 3-fold self-joining
λ, and assume that the three coordinatesξ , ξ ′ andξ ′′ of this self-joining satisfy

ξ ′′ = ϕ(ξ, ξ ′) λ-a.s. (14)

for some measurable functionϕ : AZ × AZ → AZ. Then what can be said on
the processξ? Can it have zero entropy and be 2-fold mixing?

Since this general question seems to be quite difficult, some more restricted
classes of pairwise independent self-joinings could be considered first, satisfy-
ing (14) with some regularity assumption onϕ. For example, what happens if
underλ, the coordinateξ ′′

0 is a function of finitely many coordinates ofξ andξ ′?
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