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2-fold and 3-fold mixing: why 3-dot-type
counterexamples are impossible in one dimension

Thierry de la Rue

Abstract. V.A. Rohlin asked in 1949 whether 2-fold mixing implies 3-fold mixing for

a stationary process; )i <z, and the question remains opentoday. In 1978, F. Ledrappier
exhibited a counterexample to the 2-fold mixing implies 3-fold mixing problem, the so-
called3-dot systerrbut in the context of stationary random fields indexed@By

In this work, we first present an attempt to adapt Ledrappier’s construction to the one-
dimensional case, which finally leads to a stationary process which is 2-fold but not
3-fold mixing conditionally to thes-algebra generated by some factor proce$hen,

using arguments coming from the theory of joinings, we will give some strong obstacles
proving that Ledrappier’s counterexample can not be fully adapted to one-dimensional
stationary processes.
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1 Introduction:
Rohlin’s multifold mixing problem and Ledrappier’s two-dimensional
counterexample

The following work is based on two recent results concerning Rohlin’s multifold
mixing problem which are contained in [17] and [19]. It seemed to me interesting
to put these results together and show them in a different light, emphasizing
mainly on the underlying ideas rather than on technical details.

The object of our study is a stochastic process, thatis to say a famil i<z
of random variables indexed by the set of integers, and we will always assume that
these random variables take their values in a finite alphabét two integers
i < j are given, we will denote bgi' the finite sequencés;, &41, ..., &j).
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504 THIERRY DE LA RUE

Obvious generalization of this notation to the case whete—oco or j = +o00
will also be used.

We are more patrticularly interested in the case where the stochastic process
is stationary which means that the probability of observing a given cylindrical
eventE (i.e. an event depending only on finitely many coordinates) at any
positioni € Z does not depend dn

VEz0, VEC AL vieZ P(g* eE) = P(scE). (1)

Another way to characterize the stationarity of the process is to say that its
distribution is invariant by the coordinate shift: L& : AZ? — AZ be the
transformation defined by (¢) = &, where for alli € Z, & := &_,1. Then the
stochastic process is stationary if and only if the distribution oF (¢) is the
same as the distribution &f

The stochastic procegsis said to bemixingif, considering two windows of
arbitrarily large size/, what happens in one window is asymptotically indepen-
dent of what happens in the second window when the distance between them
tends to infinity:

Ve >0, VE;, E; C A,
P(& € Eu 65" € B2) — P(&f € E1)P(65" € E2) — O.

pP—0o0

)

1.1 Rohlin’s question

In 1949, V.A. Rohlin [14] proposed a strengthening of the previous definition
involving more than two windowss is said to be3-fold mixingif

Ve >0, VE;, Ez, Ez c A",
P8 < Ea 60" € B 6013 < Es) ©

L 24 p+qg+¢
—P(& € E1)P(50" € Eo) (015" € Es) —0
A straightforward generalization towindows naturally gives rise to the property
of beingk-fold mixing To avoid any confusion, we will henceforth call the
classical mixing property defined by (2:fold mixind.

Iwe must point out that in Rohlin’s article, the definitionkefold mixing originally involvedk + 1
windows, thus the classical mixing property was callefbld mixing However it seems that the
convention we adopt here is used by most authors, and we find it more coherent when translated
in the language of multifold self-joinings (see section 3.1).
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2-FOLD AND 3-FOLD MIXING 505

Rohlin asked whether any stationary process which is 2-fold mixing is also 3-
fold mixing. This question is still open today, but a large number of mathematical
works have been devoted to the subject. Many of these works show that 2-fold
mixing implies 3-fold mixing for special classes of stationary processe®(gee
[13] and [22] for Gaussian processes, [7] for processes with singular spectrum,
[9] and [20] for finite-rank processes).

1.2 Ledrappier’'s counterexample in 2 dimensions: the 3-dot system

In the opposite direction, Ledrappier [12] produced in 1978 a counterexample
showing that in the case of stationary processes index&d bye should rather
speak of stationargandom fieldsn this context), 2-fold mixing does not neces-
sarily imply 3-fold mixing. Here is a description of his example: Consider

G = {(Si,j)e{o,l}h:v(i,j), G+ +Ei41=0 modz},

Let us describe a probability lawon G by the way we pick a random elementin
G: First, use independent unbiased coin tosses to choogethethe horizontal
axis (one coin toss for eadhe Z: these random variables are independent).
Now, note that the “3-dot rulet; j + &1 + &, j+1 =0 mod 2 for eaclti, j)
completely determines the coordinatgs on the upper-half plang > 0. It
remains to choose thg ; for j < 0. For this, observe that we have yet no
constraint orfp _;. We choose it with an unbiased coin toss, and then the entire
line £&_, ; is completely determined by the 3-dot rule. To complete the whole
plane, we just have to pick each of thg; (j < —1) with a coin toss, and then
inductively fill each horizontal line with the 3-dot rule.

[

(=}
-
S
(=}

Q===

Figure 1. Generation of a random configuration@n First, use independent

coin tosses to choose the values of the shaded cells, then apply the 3-dot rule to
complete the others: Three adjacent cells disposed as the three dotted ones must
contain an even number of 1's.
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The addition mod 2 on each coordinate tuGmto a compact Abelian group.
We let the reader check that the probability lawlefined above o6 is invariant
by addition of an arbitrary element &, thusu is the unique normalized Haar
measure oi. Since any shift of coordinates #¢ is an automorphism of the
groupG, such a shift preservgs Henceu turns(&; ;) into a stationary random
field.

The definition ofk-fold mixing for a stationary random field is formally the
same as in the case of processes, except that a window is no longer an interval
on the line but a square in the planéio +1i, jo+ j) : 0<i, j < £} for some
(i0, jo) € Z? and some > 0. Let us sketch a geometric argument showing
why the 2-fold mixing property holds foi; ;). Starting with the cells on the
horizontal axis and the lower-half vertical axis filled with independent coin tosses,
we observe that, when filling the other cells using the 3-dot rule,

e theregionR; :={(i,j): i <0, 0 < j < —i} only depends on the cells
(i,0), fori < O;

» theregionR, :={(i, j): j <0, 0<i < —j} only depends on the cells
0, j),forj <0;

» the regionRs; := {(i, j) : 0 <, 0 < j} only depends on the celis, 0),
fori > 0. (See Figure 2.)

These three regions are therefore independent. Now, if we take two windows
of size¢, and if the distance between them is large enough (“large enough”
depending or), it is always possible to shift the coordinates in such a way that
each of the shifted windows entirely lies in one of these three regions, and not
both in the same region. The two shifted windows are then independent, and
sincepu is preserved by coordinate shift, this means that the two windows we
started with are also independent.

It remains to see why Ledrappier’s example is not 3-fold mixing. For this,
apply the 3-dot rule from cornét, j), from corner(i + 1, j) and from corner
(i, ] + 1), then add the three equalities (see Figure 3). In the sum, the random
variablest ;1 j, & +1,j+1 and§ j;1 are counted twice, thus they vanish since we
work modulo 2. We get the following equality, which could be calledstale-2
3-dot rule

&j+&ii2j+&ijr2 =0 mod?2 (4)

A straightforward induction then shows that for amy> 0, thescale2" 3-dot
rule holds:

& j+&inj+é&j2r =0 mod2 (5)
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Ry R3

Ry

Figure 2. 2-fold mixing for the 3-dot system: If the distance between them is
large enough, the two square windows can be shifted in such a way that one lies
in one of the three colored regions, and the other one in another, independent,
region.

@)
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Figure 3: Applying the 3-dot rule from three different cornérsj), (i + 1, j)
and(, j + 1), and adding the three equalities gives the scale-2 3-dot rule.

But this shows that the three windows of sizgil j)}, {(i +2", j)} and{(, j +
2"} are always far from being independent, although the distance between them
can be made arbitrarily large. Hence the random fekinot 3-fold mixing.

2 Attempt to construct a 3-dot-type one-dimensional process

2.1 Block construction of a 2-fold but not 3-fold mixing process

In this section we describe a naive attempt to mimic the 3-dot construction on a
one-dimensional process. Our process will take its values in the same alphabet
A = {0, 1} as for Ledrappier's example, and we start by randomly picking the

Bull Braz Math Soc, Vol. 37, N. 4, 2006
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two random variable§, and&; with two independent unbiased coin tossgs:
andé; are independent, and each one is equal to 1 with probabjiy Then,
we set

& = & +& mod 2

Each random variablg is called a 0-block, and the triplgo, &1, &») is called a
1-block We pick the second 1-blodks, &4, &5) in the same way as the first one,
but independently. The third 1-bloaks, &7, &g) is now set to be the pointwise
sum of the first two 1-blocks:

& = & +& mod 2
&7 = &1+& mod 2
&g == & +& mod 2

Observe that this third 1-block follows the same distribution as the first two:
&6 andé&7 are two independent Bernoulli random variables with paramet2r 1
andé&g is the sum mod 2 of these variables. Note also that the third 1-block is
independent of the first one, independent of the second one, but of course not
independent of the first two together. The 9-tugie &1, ..., &) is called a
2-block

We can repeat this procedure inductively to constkdgiocks for eaclk > O:
Suppose that for sontewe already have constructed the fikdblock, which is
the 3-tuple (&, . .., £&x_41). Then, choose the secokeblock (£x, . . ., £5,3_1)
with the same probability distribution, but independently of the first one, and
set the thirdk-block (&5, 5, . . ., Exx+1_1) t0 be the pointwise sum of the first two
k-blocks:

Exezerj = & +Ex;; mod2(0<j <3—1). (6)

This inductive procedure gives the construction of a stochastic one-dimen-
sional processé;)i-o. (This construction can easily be extended to a process
indexed byZ: Setthe negative coordinates independently of the nonnegative ones
by a similar symmetric construction.) Let us sketch the proof that our process
is 2-fold mixing. For this, we use the two following facts, whose verification is
left to the reader:

» Two differentk-blocks are always independent.

 Call ak-overlappingthe concatenation of two consecutike— 1)-blocks
lying in two differentk-blocks. Anyk-overlapping is independent of any
concatenation of two consecutive — 1)-blocks lying in othek-blocks.
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 1-block 1-block 1-block -

first second third
2-block 2-block 2-block
first
3-block

Figure 4: Block construction of a stochastic process: The shaded coordinates
are given by independent coin tosses. The non-shaded coordinates are computed
from the shaded ones by 3-dot-type rules.

Now, take two windows of fixed siz& and letk be an integer such that< 3.
Then, if the distance between the two windows is greater thaeitBer they lie
in two differentk-blocks, or at least one of them lie irkeoverlapping. In both
cases the two windows are independent.
However, the stochastic processs clearly not 3-fold mixing, since for any
k > 0, we have
o+ &x + &2 = 0 mod 2

This, of course, does not makea counterexample to Rohlin’s question: The
process we have just constructed is not a stationary one! Indeed, the pattern
‘111’ for example can not be seen in the sequepRées,, but it can occur in the
sequencé:&,&3 with probability 1/8.

2.2 How to make the construction stationary

The example described in the preceding section can be turned into a stationary
process by applying some trick which is presented here. The process is still
inductively constructed witlk-blocks which follow the same distribution as
before. The difference consists in the wieplocks are extended tk + 1)-
blocks. Observe that la-block lying in a given(k + 1)-block can have three
positions, which will be denoted by ‘0’ (the firktblock in the(k+ 1)-block), ‘1’
(the second one) and ‘2’ (the third one). We are going to define the increasing
family of k-blocks k > 0) containing the coordinat® by using a sequence
S = (&)k=0 Of independent, uniformly distributed random variables, taking
their values in{0, 1, 2}.

We start the construction by picking the first 0-bldgkn the usual way, with
a coin toss. Now, we have to decide whether this 0-block is in the first, second or
third position in the 1-block. This is done by using the first random varighle
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Next, we complete the 1-block by tossing a coin for the first missing variable,
and setting the last one to be the sum mod 2 of the two others. The extension
from thek-block to the(k 4+ 1)-block containings, goes on in a similar way:
Once we have determined theblock, we use the random varialfig to decide
whether thik-block is in the first, second or third position in ttle+ 1)-block.

Then the first missing-block is chosen independently, and the last one is set to
be the pointwise sum of the two othietblocks.

|o 11‘110”@”‘11000011 0H10111001 1‘

T

&o

Figure 5: Beginning of the construction with the skeleton sequéhce 1,
S =2,andS, = 0.

The embedding dé-blocks ink+ 1-blocks is called thekeletorof the process,
and the i.i.d. sequend&)k-o coding this embedding is trskeleton sequence
Since almost every realization of the skeleton sequence contains infinitely many
1's, the preceding procedure applied folkatt O gives rise t-blocks extending
arbitrarily far away from 0 on both sides with probability one. This defines the
whole proces§ = (&)icz.

Letus see how the skeleton sequence evolves when a coordinate shiftis applied
tothe process. Itis notdifficultto convince oneself that a shift of one coordinate
to the left corresponds to the addition of ‘1’ on the 3-adic number defined by the
sequencéS;). (Write the sequence from right to left, and see it as a “number”
written in base 3 with infinitely many digit&, being the unitary digit; then add
‘1’ to the sequence as you would do it for an ordinary number: Add ‘Ht@and
if S reaches 3, then s& = 0 and add ‘1’ toS;, and so on.) Observe that the
distribution of the skeleton sequence is the same after this addition of ‘1’, hence
the distribution of the skeleton is invariant under the action of the coordinate
shift. But once the skeleton is fixed, the distribution of the process is entirely
determined by giving the distribution &fblocks for everyk > 0, which is the
distribution described in the preceding section. Therefore the whole distribution
of the process is invariant under the coordinate shift, and the process we get now
is stationary.

Unfortunately, making the process stationary has a cost: We have lost the 2-
fold mixing property! Indeed, if for example we look at the rightmost coordinate
S of the skeleton sequence, we see that any realization of the pogees rise
for S to the periodic sequence - 012012012 - - . So, the process we get when
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E 11H110H|§||“E|00 0 11 OHlO 111001 1

Figure 6: Action of the coordinate shift on the skeleton sequence. The arrows
denote the position df, at successive times during the iteration of the shift.

we only observes, is periodic. But ifé was 2-fold mixing, then everfactor of
& (that is to say, every stationary process which can be seen as a funcgpn of
such as the process generated®jor examplé) would also be 2-fold mixing.

2.3 Arelative counterexample to Rohlin’s question

The stationary process generated by the whole skeleton seq@eisceell-
known in ergodic theory, and is called tBeadic odometer(Be careful:Sdoes
not take its values in a finite alphabet, it has infinitely many coordinates taking
their values in{0, 1, 2}.) This process, which has appeared as a factdriaf
our new construction, is far from being mixing, since each of its coordinates is
periodic. However, we can notice some interesting facts regarding the 2-fold and
3-fold mixing properties of. Namely, once the skeleton is fixed (that is to say,
conditionally to thes-algebra generated ), the mixing properties of are
similar to those of the non-stationary process constructed in Section 2.1. Thus,
the proces§ is 2-fold, but not 3-fold mixingelatively to the factow -algebra
generated bys. (More details on relativi-fold mixing can be found in [17].)
Itisacommon idea in abstract ergodic theory to say that the study of stationary
processes relatively to their facteralgebras gives rise to similar results as in
the absolute study (one of the best examples of this fact is Thouvenot’s relative
version of Ornstein’s isomorphism theorem [21]; another example is the proof of
Proposition 3.2 presented below). Therefore, the process that we have just con-
structed could make us think that a one-dimensional counterexample to Rohlin’s
guestion should exist. However, we are going to show in the next Section that,
if such a process exists, it must be of a different nature than this one, or than

2\We leave as an exercise for the reader the verification of the fact that the skeleton sequence is
indeed a function of.
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Ledrappier’s counterexample %r.

3 Obstruction to the construction of a 3-dot-type one-dimensional coun-
terexample

3.1 Multifold mixing and self-joinings

We need now to present a powerful tool which has been introduced in ergodic
theory by Furstenberg [4]: The notion of self-joining of a stationary process. Let
& = (& )iz be astationary process taking its values in the alph@band denote
by w its probability distribution om\%. Take&’ another process defined on the
same probability space, taking its values in the same alphgkaid following
the same distributiop. Then we can consider the joint proce&ssé’), taking
its values in the Cartesian squakex A. If this joint process is still stationary,
then we say that its distributionon A% x A% =~ (A x A)% is a2-fold self-joining
of £. In other words, a 2-fold self-joining d&f is a probability distribution on
AZ x A” whose marginals are both equaltpand which is invariant under the
coordinate shift.

Let us see some simple examples of such self-joinings. The firstidea is to take
the two processesandé’ independent of each other. Then we geb 1« as our
first example of a 2-fold self-joining. Another very simple example is obtained
by takingé’ = &, and we denote by (“diagonal measure”) the 2-fold self-
joining of & concentrated on the diagonal&f x AZ. This can be generalized
by considering the case wheféis equal to a shifted copy df: We fix some
p € Z, and we set/ := &, for eachi € Z. We denote byA, the shifted
diagonal measure obtained in this way.

The setJ, (&) of all 2-fold self-joinings of is endowed with the metrizable
topology defined by the following distance:

’

1
d(r1,32) i= ) ) oo [M(E € Cn &' € Cy) — Aa(€ € Cn, &' € Cr)

n>0 n>0

where(C)n=0 is the countable collection af all cylinder setg\ifi. This topology
(which is nothing else than the weak topology restricted to the set of 2-fold self-
joinings of§&) turns J,(¢) into a compact metrizable topological space. The link
with the 2-fold mixing property is now straightforward: The stationary process
¢ is 2-fold mixing if and only if the sequende\ ) of shifted diagonal measures
converges inJ,(¢) to the product measuge ® © asp — +oo.

To translate the 3-fold mixing property into the language of joinings, we have
to generalize the notion of self-joining to the case where 3 procésgéandg”

Bull Braz Math Soc, Vol. 37, N. 4, 2006



2-FOLD AND 3-FOLD MIXING 513

with the same distributiop are involved. This naturally leads to the definition

of a 3-fold self-joining of. (We can of course define arfold self-joining of&

for anyr > 2, but for our purpose the cases= 2 andr = 3 will suffice.) The
setJ;(&) is also turned into a compact metrizable space when endowed with the
restriction of the weak topology. Particularly simple and interesting elements of
J3(¢) are again the product measwre® 1 ® u and the shifted diagonal measures
Apq: P, Q € Z, the latter denoting the distribution of the trigle &', £”) when
foralli € Z,

& =6&yp and & =& piq. (7)
The proces$§ is 3-fold mixing if and only if the following convergence holds

in J3(&):

A _ . 8
2 R U p (8)

Now, let us assume thétis a 2-fold mixing stationary process which is not 3-
fold mixing. Then, since\,  does not converge to the product measure, we can
find a subsequenagy,, o, converging to some 3-fold self-joining# @ u .

But the 2-fold mixing property of tells us that, undek, the 3 processes, &’
andé” have to be pairwise independent. Hence, we get the following conclusion:

Proposition 3.1. If £ is a 2-fold mixing stationary process which is not 3-fold
mixing, thert has a 3-fold self-joining # 1 ® u® u with pairwise independent
coordinates.

3.2 Restriction to zero-entropy processes

The natural question now is whether stationary processes satisfying the conclu-
sion of Proposition 3.1 can exist. But, without extra requirements, it is easy to
find examples of such pairwise independent self-joinings which are not the prod-
uct measure: Lef consist of i.i.d. random variabl&$,) pcz, taking their values

in {0, 1}, each one with probability 1/2. Take an independent c@pypz of

this process and set

&y = & +&, mod2

Then the three processgsé’ and&” have the same distribution, are pairwise
independent, but the 3-fold self-joining ive get in this way is not the product
measure.

However, this process is not a counterexample to Rohlin’s question. Indeed,
all its coordinates being independehts of coursek-fold mixing for anyk > 2.
It was Thouvenot who explained that this kind of Bernoulli shift situation could
be avoided when one studies Rohlin’s question, because it is always possible to
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restrict the analysis to the case of zero-entropy stationary processes. A stationary
process = (& )iz taking its values in a finite alphabet has zero entropy if and
only if & is measurable with respect to thast i.e. with respect to the-algebra

o (&, i < 0). (Main definitions and results concerning entropy in ergodic theory
can be founck.g.in [2, 5, 8].)

Proposition 3.2. If there exists a stationary processvhich is 2-fold, but not 3-
fold mixing, then one can find such a counterexample in the class of zero-entropy
stationary processes.

Proof. One of the main ingredient to prove this result is the so-cdtiedker
o-algebra(or tail field) of the process, which is the-algebra

neE = ()o@ = (oE™.

peZ peZ

The Pinskero-algebra of is invariant by the coordinate shift: (§,) +—
(&n), whereg, := &,,1. Therefore, if we choose any (¢)-measurable random
variable¢y, taking its value in a finite alphab®t and if we set for all € Z

& = ¢ooT,

then the whole stationary process= (¢)icz is IT1(§)-measurable. What is
remarkable is that such a process always has zero entropy, and that any station-
ary procesg with zero entropy which is a factor &f is automaticallyIT(&)-
measurable (see.g. [5], Theorem 18.6). Besides, Krieger’s finite generator
theorem ensures that it is always possible to find such a factor proctdsng

its values in an alphab@&t containing only two letters, and generating the whole
Pinskero -algebra (nice proofs of Krieger’'s theorem can be found in [5], [8], or
[16]). We henceforth fix such a processvith

ME) =0, i €.

As a factor of¢, ¢ automatically inherits the 2-fold mixing property. It remains
to show that if¢ is 3-fold mixing, then so i§.

For this, let us fix three cylinder eveny, E, andEz, which are measurable
with respect ta& for some¢ > 0. We have to compute the limit, gsandq go

Bull Braz Math Soc, Vol. 37, N. 4, 2006



2-FOLD AND 3-FOLD MIXING 515

to +o00, of the quantity
(go € Ep &0 € By &010 ¢ E3)
=E[E[Lyee, |06 | Lpece, :ﬂ.sgi-gMeEs]
=E[(E[1yee, [0E™) ]~ B[ Lgee, 1T® ]) Lprece, Leiavice,
+E B[ Lyee, 11@ | Lpri g, Lopiarce, |-

The martingale convergence theorem gives

E[nggeEl }a(s;‘”)] p:—;g E[JlggeEl IH(S)},

hence the first term can be bounded:h§ p is large enough. We are left with

E [E [lééeEl | H(g)] ILESHEEZHSSL?”EE :|
~E[2[1 g, 1TO]E[Lye, 06™ | Lges,).
and again the martingale convergence theorem allows us to replace
E [ﬂggeEz |G(SJOO)} with E []lggeEz IH(E)]

if q is large enough. We thus have proven
(go €En & e Ep &ll0 ¢ E )

“E [IE [1566& |n(.§)] E[]lggueEz |n(5)] E[ﬂémﬂeEs |n(s)ﬂ ©
lp, g— +oo
0
Note that in this equation, the expectation can also be written as
E[E[Tyee, IT® | E[Lyee, IN@ |0 TP E[Lye, 1T [oT?].

Now, if the procesg generatingl(¢) is 3-fold mixing, we get that this expec-
tation converges, as andq go to+oo, to the product

E[E[Lyee, IT® ]| B[E[Lyee, IT® ]| B[E[14ee, 1T®)]]
=P (& € E1)P (& € E2) P (& € Ea),

which means thaf is also 3-fold mixing. O
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Let us make some comment about this proof. The main argument is a nice
illustration of the principle that the behaviour of a stationary process conditionally
to one of its factors gives rise to similar results as in the non-conditioned case.
The key notion here is the so-calléd-property. We say that the stationary
process has theK -property if its Pinskep -algebrall () is trivial. It is easy
to show that thisk -property implies 3-fold mixing: Just write the preceding
proof until (9) in the case wherH (&) is trivial, and you get the result. (In
fact, the same argument gives that thgproperty impliek-fold mixing for any
k). Now, when a factor of & is given, we can also define thé-property of
& relatively to¢ (seee.g. [18]), and check that always has theK -property
relatively to its Pinsket -algebra: This comes from the fact that any factor of
& with zero entropy id1(£)-measurable. But this in turn gives thats 3-fold
mixing relatively toTI(¢): This is more or less what (9) says. The end of the
proof consists in checking that, §fis 3-fold mixing, and if¢ is 3-fold mixing
relatively toz, thené¢ is 3-fold mixing.

Now that we have reduced Rohlin’s problem to the case of zero-entropy pro-
cesses, we can ask the question of pairwise independent self-joinings in this
zero-entropy class.

Question 3.3. Does there exist a zero-entropy, 2-fold mixing stationary pro-
cesst, and a 3-fold self-joining. of & for which the coordinates are pairwise
independent but which is different from the product measure?

Note also that if the assumption of 2-fold mixing is dropped, we can again find
some counterexample: Take a periodic stationary pracésking its values in
{0, 1, 2}, where&g is uniformly distributed in the alphabet, agd, = & + 1
mod 3 for alli € Z. Take an independent cogyof &, and set

Theng, & and&” share the same zero-entropy distribution, they are pairwise
independent but the 3-fold self-joining they define is not the product measure.
3.3 3-dot-type pairwise independent self-joinings

Let us consider now the two-dimensional example of Ledrappier from the point
of view of self-joinings. The definition of the shifted diagonal 3-fold self-joining
Ap q is formally the same as in (7), but in this cgsandq are both elements of

7. Particularly interesting is the sequentg, 4., Wwhere for alin > 0,

ph := (0,2") and g, := (2",0).
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From the relation (5), we see that the sequefgg,, converges as — 400 to
the 3-fold self-joining, of & under which the three coordinatgst’ and&” are
pairwise independent (becauses 2-fold mixing), but which is not the product
measure since, for alle 72,

§ =& +& mod2 (10)

Observe also that, for the non-stationary process constructed in Section 2.1,
the sequence of 3-fold self-joiningss 2.3 also converges to a joining with
pairwise independent marginals which, by (6), satisfies a relation similar to
(10). Since this kind of self-joining seems to appear naturally when one tries
to construct examples which are 2-fold but not 3-fold mixing, we introduce the
(slightly more general) following definition;

Definition 3.4. Leté be a stationary process taking its values in a finite alphabet
A. We call3-dot-type self-joiningx 3-fold self-joiningh of ¢ which has pairwise
independent marginals, and for which there exists a rhapA x A — A such
that

VieZz, & = (&, &) (h-as). (11)

The result that we shall prove now shows that there is no hope to find a 2-fold
but not 3-fold zero-entropy stationary process which admits a 3-dot-type self-
joining: The only 3-dot-type self-joinings which can be seen in zero entropy are
those arising fronperiodic (therefore non 2-fold mixing) processes, like in the
example presented at the end of Section 3.2.

Theorem 3.5.If the stationary process admits a 3-dot-type self-joining, then
* eitheré¢ is a periodic process,
* or £ has entropy at leadbg 2.

The proof of the theorem is based on the following lemma.

Lemma 3.6.Let X, Y and Z be 3 random variables, sharing the same distribu-
tion on the finite alphabek. Assume that these random variables are pairwise
independent, and that there exists a mfap A x A — A such that

Z = f(X,Y) (a.s). (12)

Then their common distribution is the uniform distribution on a subsét of
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Proof. Taking a subset of instead ofA if necessary, we can assume that each
letter of A is seen with positive probability. Let us fix sorpes A, and condition
with respect to the everiy = y). SinceX, Y andZ are pairwise independent,
we get for anyx, z € A

P(X=X|]Y=y) = P(X=Xx) and P(Z=2zY=y) = P(Z =2).
But knowing(Y = y), we have the equivalence
(Z=2 < ({X,y)=2.

SinceX andZ can take the same number of values, we deduce that far ar,
there exists a unique such that

fx,y) = z
and that furthemore, this satisfies
P(X =x) = P(Z = 2). (13)

Finally, observe that we can condition ovi = y) for anyy € A, and therefore
that (13) holds for any andz in A for which we can find & € A satisfying
f (X, y) = z. ButsinceX andZ are independent, this is true fanyx, z € A.0J
Proof of Theorem 3.5.Fix somem > 1, and apply Lemma 3.6 witK := 5”*1,
Y := & "t andZ := ¢’;"* under the 3-dot-type self-joining ¢t We get that
{)“‘1 is uniformly distributed on the subset of sequencesThwhich are seen
with positive probability. Denote by, the number of such sequences. The
same argument applied with 4+ 1 in place ofm gives that each of th@ny 1
possible sequences of lengtty- 1 is seen with probability Apy.:. Therefore,
any possible sequence of lengthhas exacthan, := pm.1/Pm different ways
to extend to some possible sequence of lemgth 1, and each of the possible
extensions has a conditional probabilityal,, Now, observe that sincg is
stationary, the number of possible extensions of a sequence of length can
not be greater than the number of possible extensions of the sequence of length
m obtained by removing the first letter, which gives the inequaity; < an.
Therefore, there are two cases:

* Eithera,, = 1formlarge enough, and in this case the progeasseriodic;

» Oray is always greater than or equal to 2, and then the entrogyioht
least log 2. O
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3.4 Difference between dimension one and two

It seems interesting to analyze the result proved in the preceding section, to see
precisely which obstacle prevents us from constructing a 3-dot-type counterex-
ample in dimension one, although itis allowed in dimension two. At which point
does the one-dimensional argument developped above stop applying to the case
of dimension two?

First, note that the reduction of Rohlin’s question to zero-entropy processes is
still valid in the case of two-dimensional random fields: We can still consider in
this case the Pinsker-algebrall(¢), with respect to which every zero-entropy
factor of £ is measurable, and prove thatéifis 2-fold but not 3-fold mixing,
then this property comes froi(¢). (For some presentations of the Pinsker
o -algebra in the multidimensional case, we refer the reader to [1, 6, 10, 11]. For
the generalization of Krieger’s finite generator theorenZ{eactions, see.g.

[15, 3].) As far as Ledrappier’'s 3-dot example is concerned, there is no need to
take a factor since this stationary random field already has zero entropy.

Next, Lemma 3.6 gives that § is a finite-valued stationary random field
indexed byZ? admitting a 3-dot-type self joining, then the distribution &of
on any finite window is uniform on all the configurations which are seen with
positive probability. And indeed, we can easily check that this is the case for
Ledrappier’s construction (for example, any allowed configuration in a rectan-
gular ¢1 x £, window has probability 2¢a+2=D)  And this seems to be the
point of the argument where there is a difference betw&andZ?: Although
this uniform-probability property implies periodicity for one-dimensional zero-
entropy stationary processes, this is no more true for two-dimensional stationary
random fields, as we can see with Ledrappier’s example.

We can also observe that in the one-dimensional case, if the stationarity prop-
erty is dropped the argument fails at the same point: The relative counterexample
constructed in Section 2.2, that is to say the process conditioned on the skele-
ton sequence, also has the uniform-probability property (which means in the
non-stationary setting that for amy< j, all the possible configurations for the
sequencé’ have the same probability). However, this process has zero entropy:
There exists almost surely sorkesuch thats, = 2, therefore lies in the third
k-blockinits(k+1)-block. Thert, can be computed from the first tweblocks,
which are measurable with respect to the past of the process.
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4 Further questions

Many important results have already been presented around Rohlin’s multifold
mixing problem. Most of them consider some special category of stationary
processesa.g. finite-rank processes, or processes with singular spectrum), and
prove that in this category a pairwise-independent 3-fold self-joining has to be
the product measure.

We hope thatthe work presented here can be the beginning of a slightly different
approach: Consider a stationary process which admits some kind of pairwise-
independent 3-fold self-joining which is not the product measure, and see which
other properties on the process this assumption entails. In this direction, the most
natural generalization of the present study should be the following situation: Take
a stationary processwhich admits a pairwise-independent 3-fold self-joining
A, and assume that the three coordingtes and&” of this self-joining satisfy

£ = ¢, &) ras. (14)

for some measurable functign: A% x AZ — A%, Then what can be said on
the proces§? Can it have zero entropy and be 2-fold mixing?

Since this general question seems to be quite difficult, some more restricted
classes of pairwise independent self-joinings could be considered first, satisfy-
ing (14) with some regularity assumption gn For example, what happens if
undera, the coordinaté/ is a function of finitely many coordinates &fandg’?
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