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Phase separation in one-dimensional stochastic
particle systems?

G.M. Schütz

Abstract. A class of interacting particle systems modelling driven diffusive systems
with short range interactions has been suggested to exhibit macroscopic phase sepa-
ration in d = 1 dimensions. Unlike all previously studied models exhibiting similar
phenomena, there the phase separated state is fluctuating in the bulk of the macroscopic
domains. We discuss a recently introduced sufficient criterion for the existence of such
phase separation and point out some assumptions which require rigorous proof. We also
introduce a new model for strong phase separation into essentially nonfluctuation states.
We informally describe its exact invariant measure.
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For a very long time it was generally believed that in translation invariant noisy
one-dimensional systems with short-range interaction and finite local state space
one has a unique invariant measure unless judiciously chosen local transitions
have zero probability. This is the essence of the so-called positive rates conjecture
which is a more precise version of the well-known statistical physics verdict “No
phase transition in one dimension at positive temperature”. Only very recently a
rigorous proof has been given (by providing a counterexample) that the positive
rates conjecture is not true in such generality [1].

Nevertheless there are reasons why the positive rates conjecture continues to
intrigue. Firstly, the counterexample constructed by Gacs is rather complicated.
It is a lattice model requiring either a very large local state space of the order of
m = 106 or a correspondingly large rangeR (in lattice units) of interaction [2].
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Therefore there is interest in finding more natural models motivated by physical
problems that would contradict the positive-rates conjecture. “Nice” models
could be fairly straightforward generalizations of the exclusion process [3, 4].
Secondly, the main argument in favor of the conjecture is quite generic and, as
factual evidence tells us, rather robust: In order to have a phase transition (i.e.,
at least two invariant measures for the same set of parameters of the model) one
needs a mechanism that suppresses the growth of islands of the minority phase
inside the majority phase. In two and more dimensions such a suppresion can
be taken care of by the interplay of entropy and surface energy of the minority
islands. However, in one dimension the “surface” are just two points and thus the
surface energy does not depend on the size of the “island”. Hence surface energy
cannot limit island growth if interactions are local, unless forbidden transitions
(zero rates) would somehow dynamically restrict the accessibility of the state
space.1

This argument is so simple that it is tempting to apply it to conservative stochas-
tic particle systems and argue that no phase transition is expected to occur, unless
one makes very elaborate assumptions on either local state space or range of in-
teraction as in the model of Gacs. Since, however, conservative particle systems
have a build-in violation of the positive rates assumption we first have to clarify
what we mean. Let us assume a particle system with conserved particle number.
Clearly, the conservation law imposes zero rates since transitions that change the
particle number are not permissible. Nevertheless, in a finite system (i.e. with
finite local state space and a periodic lattice withL lattice points) which allows
for all local transitions that do preserve particle number, one has ergodicity for
each sector of fixed particle number. If one demands positive rates for all tran-
sitions compatible with the conservation law then the island growth argument
suggests that this ergodicity survives in the thermodynamic limitL → ∞.

A violation of this modified positive rates conjecture in a translation invariant
conservative system – if it exists – would manifest itself in macroscopic phase
separation, somewhat analogous to what happens in the two-dimensional zero-
field Ising model below criticality. Recently a general criterion for the existence
of phase separation in driven one-dimensional models has been introduced [6].
The criterion relates the existence of phase separation in a given model to the rate
at which domains of various sizes exchange particles with each other. Assuming
that for a domain of lengthn this rate is given by the steady state currentJn which

1Such zero rates would keep the system “frozen” within some domain of state space and are not
subject of the positive rates conjecture. See e.g. [5] for a nontrivial example of this kind for which
some precise information is known about a system which, like the model of Gacs, is not defined
in terms of a Hamiltonian but in terms of transition rates.
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flows through it, phase separation was suggested to exist only in the following
cases: either the current vanishes in the thermodynamic limit,

Jn → 0 as n → ∞ (Case I) (1)

or the behavior of the current for large domains is of the form

Jn ∼ J∞ (1 + b/nσ ) (Case II) (2)

for eitherσ < 1 andb > 0, or forσ = 1 andb > 2. This conjecture has been
applied with some success to various exclusion processes with two conserved
species of particles.

First we consider Case I. It corresponds to strong phase separation charac-
terized by coexistence of pure domains, each consisting of a single type of
particles [7, 8, 9, 10]. Thus, the particle density in the interior of a domain
is non-fluctuating like in a zero-temperature Ising system. The noisy dynamics
is reflected only in density fluctuations that are limited to finite regions around
the domain boundaries. Moreover, in this case phase separation is expected to
take place atanydensity, no matter how small. Interestingly all the models where
strong phase transition has so far been established have two conserved currents.
Not much is known about dynamics in such systems on a rigorous level. With
a view on dynamical phenomena in strong phase separation it would thus be of
great interest to establish this phenomenon in a one-component system. For such
systems the hydrodynamic theory is quite developed [11] and it may be possible
to study such a system under Eulerian scaling.

To this end we propose a generalized asymmetric exclusion process with next-
nearest neighbor interaction and period boundary conditions as follows: (1)
Particles move with ratep (q) to the right (left) across the bond(x, x + 1),
provided that the target sitex + 1 (x) is empty and that there is either a vacancy
on sitex − 1 or a particle on sitex + 2. The invariant measure can be explicitly
computed. Forp = q it is a product measure, corresponding to disordered state
with finite mean cluster size given by the particle density. Forp 6= q the nature of
the invariant measure is more easily described in terms of an associated anchored
growth process. In this process the bonds of the exclusion process becomes sites
in an interface model where each site carries a height variablehx. A particle
on sitex corresponds to a negative local height gradienthx+1 − hx = 1 while a
vacancy corresponds to a positive unit gradient. For particle numberN = L/2
the height model is periodic, forN 6= L/2 one hashx+L = hx −(N −L/2). (We
assumeL to be even.) The particle configuration then defines a height profile,
with its minimum always defined to be at height 0. The hopping dynamics
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thus turn into a growth dynamics such that the interface remains anchored on
a substrate at height 0. The invariant measure is a translation invariant sum of
measures which give exponential weight to the area under the interface, with a
parameter determined by the logarithm of the hopping asymmetry. This can be
proved by direct computation [12]. Forp > q the interface tries to grow, but
cannot grow indefinitely due to the anchoring. Thus it reaches (almost) maximal
height before growth stops. In particle language this corresponds to strong phase
separation with mean domain sizeN whereN is the number of particles in the
system.

This observation is in agreement with the criterion (1) since the current inside
a cluster is exponentially small in the size of the cluster. It would be interesting to
investigate whether a hydrodynamic limit at least for weak hopping asymmetry
could be proved. Unlike the two-component ABC model of Ref. [13] this model
has a genuine transition from the phase-separated state through a disordered state
into a state that corresponds to an interface attracted by the substrate. Notice,
however, that this model is not quite in the spirit of the introduction, since it
has vanishing local rates compatible with particle conservation. In interface
language this constraint ensures anchoring. If this constraint would be relaxed
the interface would be able to grow and one would expect strong phase separation
to disappear.

On the other hand, in Case II the phase separated state is expected to be
fluctuating in the bulk of the macroscopic domains, as is normally expected in
a noisy system. It exists only at high enough densitiesρ > ρc, while at low
densities 0< ρ < ρc the system is homogeneous. This phase was termed
condensedas the mechanism of the transition is similar to that of the Bose-
Einstein condensation. We refer to this phenomenon as soft phase separation. We
note that in many models which carry a non-zero current in the thermodynamic
limit the current of a finite domain of sizen takes the formJn = J∞(1+ b/n) to
leading order in 1/n and we shall focus here on this case. Forb > 0 the current
of long domains is smaller than that of short ones, which leads to a tendency
of the longer domains to grow at the expense of smaller ones. This is clearly a
necessary condition for phase separation. According to the criterion (2) phase
separation may take place only forb > 2. This is motivated by a careful analysis
of condensation in the zero-range process [14].

What is missing is a rigorous proof of the existence of soft phase separation.
In order to prepare the ground that may serve as starting point for achieving
this goal we explain in this work the mechanism that leads to the criterion for
soft phase withσ = 1 and discuss some related open questions that we hope
can be proved rigorously with some generality. To keep the exposition simple
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we consider two specific two-component exclusion processes, defined on a one-
dimensional ring withL sites. Each sitei can be either vacant (0) or occupied by
at most one positive (+) or at most one negative (−) particle (or charge). Hence
a configurations = {s1, . . . , sL} ∈ {−1, 0, 1}L is given in terms of local states
si = +1 (−1) if site i is occupied by a+ (−) particle, andsi = 0 if site i is
vacant. We impose periodic boundary conditions by identifying siteL + 1 with
site 1. We shall see that both models have zero rates for some local transitions,
but unlike in the one-component model for strong phase separation this is not
believed to relevant for the qualitative properties of these models.

For defining the stochastic continuous-time dynamics of the process we follow
standard probabilistic notation and definesi j as the configuration withsi andsj

interchanged, i.e.,

si j
k =






sk if k 6= i, j
sj if k = i
si if k = j

(3)

Then the infinitesimal generatorL acting on functionsf (s) is given by

L f (s) =
L∑

i =1

c(i, i + 1; s)
[

f (si,i +1) − f (s)
]

(4)

Herec(i, i + 1; s) are the particle exchange rates which are different in the two
models. In both models positive particles are driven to the right while negative
particles are driven to the left. The dynamics conserves the number of particles
of each species,N+ and N−. The total density of particles in the system is
ρ = (N+ + N−)/L. We consider the case where the number of positive and
negative particles is equal,N+ = N− =: N.

In model A, known as AHR model [8], particles have asymmetric hopping
dynamics with mutual hard-core repulsion and hopping rates

c(i, i + 1; s) =
α

2

[(
s2
i + si

) (
1 − s2

i +1

)
+

(
1 − s2

i

) (
s2
i +1 − si +1

)]

+
1

4

[
q

(
s2
i + si

) (
s2
i +1 − si +1

)
+

(
s2
i − si

) (
s2
i +1 + si +1

)]
.

(5)

More intuitively the nonvanishing jump rates can be represented as follows

+ 0 → 0+ with rate α

0− → − 0 with rate α

+− → −+ with rate 1
−+ → +− with rate q

(6)
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The invariant measure of the process is rather complicated but known explic-
itly [15].

In model B [16] particles are subject to short-range interactions in addition
to the hard-core repulsion. These interactions are “ferromagnetic”, in the sense
that particles of the same kind attract each other. They are not given in terms of
a Hamiltonian, but are encoded in the hopping rates

c(i, i + 1; s) =
α

2

[(
s2
i + si

) (
1 − s2

i +1

)
+

(
1 − s2

i

) (
s2
i +1 − si +1

)]

+
1

4

(
s2
i + si

) (
s2
i +1 − si +1

) [
1 −

ε

4

(
s1+1 − si

) (
si +2 − si −1

)]
.

(7)

This generator describes a hopping process with the following jump rates:

+ 0 → 0+ with rate α

0− → − 0 with rate α

+− → −+ with rate 1− 1H
(8)

The quantity1H is the difference in the “ferromagnetic” interactions between
the final and the initial configurations given by

H = −ε/4
∑

i

si si +1 . (9)

The interaction parameterε satisfies 0≤ ε < 1 to ensure positive transition
rates. The model is a generalization of the Katz-Lebowitz-Spohn (KLS) model,
introduced in [17] and studied in detail in [18, 19], in which the lattice is fully
occupied by particles and no vacancies exist. Notice that the process is not
reversible and hence the quantityH is not simply related with the invariant
measure of the process. This measure is expected to have a complicated structure
for N 6= 0, 1, L, known explicitly only forε = 0 where it coincides with the
AHR model withq = 0.

In the context of these models we define as a (particle) cluster of sizen a
consecutive set ofn occupied sites, bounded by vacancies on each side. No
assumption on the distribution of±-particles inside the domain is implied in
this definition. Macroscopic phase separation between a condensed phase and
a homogeneous phase then manifests itself by an invariant measure that is con-
centrated on configurations which have (at least) one cluster of sizen = cL
with 0 < c ≤ ρ asL tends to infinity. This means that a finite fraction of par-
ticles condenses into a macroscopic cluster. Anticipating the arguments given
below one expects a single cluster, hencec = ρ − ρc. Strong phase separation
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(c = ρ and further separation inside the macroscopic cluster) is included in this
definition but is not envisaged here.

Based on numerical simulations and mean field approximation in which the
true invariant measure of the process is approximated by a product measure it
was suggested that the AHR model exhibits a condensed phase separated state at
sufficiently high densities [8]. However, a subsequent exact computation of the
invariant measure [15] shows that what numerically seems like a condensed state
is in fact homogeneous, with a very large but finite mean cluster size. Further
analysis of this model along the lines discussed below shows that the currentsJn

corresponding to this model are given by the form II, withσ = 1 andb = 3/2
[6]. Therefore, according to the criterion and in agreement with the exact result,
no phase separation takes place.

On the other hand, model B has a parameter range (ε > 0.8 and sufficiently
largeα) whereσ = 1 andb > 2. According to the criterion (2) a condensation
transition occurs as the densityρ is increased above a critical densityρc. To our
knowledge, this is the first example of a genuine transition of this type in one-
dimensional driven systems. Typical configurations obtained during the time
evolution of the model starting from a random initial configuration are given in
Fig. 1. This figure suggests that a coarsening process takes place, leading to
a phase separated state as described above. However, this by itself cannot be
interpreted as a demonstration of phase separation in these models. The reason
is that this behavior may very well be a result of a very large but finite correlation
length, as is the case in the AHR model [8, 15].

tim
e 

i 

Figure 1: Evolution of a random initial configuration of model (8) with near-
est-neighbor interactions, on a ring of 200 sites. Hereε = 0.9, α = 2, and the
particle density isρ = 0.5. Positive particles are colored black, and negative
particles are colored grey. One hundred snapshots of the system are shown every
100 Monte-Carlo sweeps.
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In order to show nonrigourously that phase separation takes place in model
B we argue that the currentJn corresponding to a cluster of lengthn may be
determined by studying an open chain ofn sites, only occupied by positive and
negative particles, with entrance and exit ratesα at its ends. This is just the
one-dimensional KLS model with open boundaries. We considerα such that
the system is in its maximal current state, wherebyJ∞ assumes its maximum
possible value, and is independent ofα.

To evaluateJn we first consider the KLS model on a periodic chain ofn sites
with no vacancies. We then extend these results to study the behavior of an open
chain. On a ring particle number is conserved and one has a canonical invariant
measure for each fixed particle number. From these canonical measures one
can construct in standard fashion grandcanonical ensembles parametrized by a
chemical potentialμ. Under rather general conditions, requiring only a sin-
gle sharply peaked particle number distribution in the grandcanonical ensemble
with finite compressibilityκ = limn→∞ n−1

(
〈n2

+〉 − 〈n+〉2
)

at its maximum one
can show that expectations of thermodynamic observables in the canonical and
grandcanonical ensembles respectively differ by an amountO(1/n) to leading
order in particle numbern. This is essentially the leading deviation from the
law of large numbers. Specifically, the currentJn takes the following form for
largen,

Jn = J∞

(
1 −

λ κ

2J∞

1

n

)
. (10)

Hereλ = ∂2J∞/∂ρ2
+ is the second derivative of the current with respect to the

density of positive particlesρ+ in the system.
Hand wavingly this can be derived by considering the currentJn(n+) for

charge densities close ton+ = n− = n/2. ExpandingJn(n+) in powers of
1n+ = n+ − n/2 one has

Jn(n+) = Jn

(n

2

)
+ J ′

n 1n+ +
1

2
J ′′

n (1n+)2 (11)

where the derivativesJ ′
n and J ′′

n are taken with respect ton+ and evaluated at
n/2. We average (11) overn+ with the steady state weights of a grand canonical
ensemble. This is done by introducing a chemical potentialμ which ensures that
the average density satisfies〈n+〉 = n/2. We find

〈Jn(n+)〉μ = Jn

(n

2

)
+

1

2
J ′′

n 〈(1n+)2〉μ . (12)
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Noting that〈Jn(n+)〉μ is J∞ in the n → ∞ limit, and Jn(n/2) is just Jn,
Eq. 10 is obtained.2

The result (10) can be used to evaluateJn for the KLS model. For periodic
boundary conditions the grandcanonical invariant measure is an Ising measure
with weight [17, 18, 19]

P({si }) = e−βH ; H = −
n∑

i =1

si si +1 − μ

n∑

i =1

si , (13)

with si = ±1 for positive and negative charges respectively, ande4β = (1 −
ε)/(1 + ε). The chemical potentialμ controls the density of, say, the positive
particles. It vanishes for the casen+ = n−. Using (13) explicit expressions for
κ(ε) andJ∞(ε) of this model have been obtained in [18, 19].

We now consider the KLS model in an open chain, which is the relevant
geometry in applying the phase-separation criterion. It has been argued [21]
that the finite size correction to the current of an open chain is given by the
corresponding correction in a ring geometry, up to a universal multiplicative
constantc which depends only on the boundary conditions. In the maximal
current phase,c was found to be 3/2 [22, 23]. Thus the current of an open
system is given by (2) withσ = 1 and

b(ε) = −c
λ(ε)κ(ε)

2J∞(ε)
. (14)

Using the values ofJ∞ andκ obtained in [18, 19] andc = 3/2 we find

b(ε) =
3

2

(2 + ε)υ + 2ε

2(υ + ε)
; υ =

√
1 + ε

1 − ε
+ 1 . (15)

It is readily seen that forε > 0.8 the value ofb is larger than 2. This result –
which relies on the identification of the stationary cluster current of fluctuating
lengthn with the stationary current of an open chain with fixed lengthn – has
been confirmed to high accuracy by Monte carlo simulation [16]. The same line
of reasoning may be applied to the AHR model. Here the cluster dynamics are
that of the partially asymmetric simple exclusion process whereκ = ρ(1 − ρ)

andJ ′′ = −2, independent ofq. In the maximal current phase whereρ = 1/2
this yieldsb = 3/2.

2The result Eq. 10 has first been obtained with a different argument in the context of interface
growth in 1+ 1 dimensions using that in these modelsJn corresponds to the growth velocity of
the interface [20].
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This description of the internal cluster dynamics gives the cluster current en-
tering the criterion (2), but does not give the distribution of clusters inside the
original three-states model The final step in establishing (nonrigorously) soft
phase separation is a description of the cluster dynamics in terms of a non-
Markovian zero-range process. This is done by identifying vacant sites with
the sites ofi a zero-range particle system and a cluster of sizen to the right of
vacancyi with an occupation numberni of the zero-range process (Fig. 2). In
this mapping zero-range particles hop randomly and strongly correlated in time
to neighboring clusters. Approximating these correlated jumps by uncorrelated
jumps with exponential waiting time distribution with mean 1/Jn one arrives
at the usual zero-range process with symmetric jump ratewn = Jn [24, 25].
Soft phase separation then corresponds to condensation which occurs under the
assumptions of (1), (2) [14, 26, 27].

− 0 + −− 0 0 + − 0++

Figure 2: A typical configuration of the three-state model (bottom) and its cor-
responding configuration in the ZRP (top). Periodic boundary conditions are
imposed on the two models.

Surprisingly this seemingly crude picture yields theexactinvariant measure
of the AHR model, i.e., the cluster sizes are distributed independently according
to the invariant measure of the zero-range process with jumps rates given by the
cluster current of an exclusion process with open boundaries. The distribution
of positive and negative particles inside a cluster is equal to that of the particles
in the open exclusion process [15].

Apparently the Markovian zero-range process and the highly correlated cluster
jump dynamics of the AHR model have the same invariant cluster distribution.
Therefore it is conceivable that a prove of soft phase separation is possible in
a more general setting. The arguments presented above suggest the following
steps:

(1) Identify a family of particle systems with (a) factorized cluster size dis-
tribution and (b) such that the distribution of particles inside a cluster is
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given by the distribution of the corresponding reduced process with open
boundaries.

(2) Prove suitable bounds on current and compressibility in the periodic re-
duced system

(3) Prove universal relation between current corrections in open and periodic
systems

(4) Prove that the non-Markovian zero-range process defined by cluster dy-
namics has the same invariant measure as the usual zero-range process
with rateswn = Jn.

Proving only items (1) and (2) would already constitute substantial progress. The
proof of items (3) and (4) would be of great interest in their own right. In order to
establish soft phase separation it may be sufficient to prove weaker results than
those suggested here.

For further study of strong phase separation it would be interesting to investi-
gate the hydrodynamic limit under Eulerian scaling of the one-component model
proposed above. This would shed insight into the far-from equilibrium process of
phase separation from a disordered fluctuating state into nonfluctuating domains.

Finally, we remark that even for soft phase separation the vacancy density in
the condensed domain does not fluctuate. It would be very interesting to explore
the possibility of stationary phase separated states where all conserved quantities
fluctuate in all domains.
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