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Convergence rates for Markov chain order
estimates using EDC criterion

C.C.Y. Dorea* and J.S. Lopes**

Abstract. The Efficient Determination Criterion (EDC) generalizes the AIC and BIC
criteria and provides a class of consistent estimators for the order of a Markov chain with
finite state space. In this note, we derive rates of convergence for the EDC estimates.
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1 Introduction

Let X} = (Xg, - - -, Xn) be asample from a multiple Markov chan= { X }n>1
of unknown but finite order & r < K < co. Assume thak takes values on a
finite state spac& and that the transition probabilities are given by

P(a11la) = P(Xny1 = a4l X)_, 11 = @) (1)

wherea] = (a;,---,&) € E'. For0< k < K let L(k) be the maximum
log-likelihood function based on the sanpt§ when the chain is assumed to
be of orderk. The approximation of Kullback-Leibler information measure
by Neyman-Pearson statistics along with the asymptetidistribution of the

maximum log-likelihood ratio 2lo E'r‘; form the basis to derive the Akaike
information criterion (AIC, Akaike (1974)),

AIC(K) = —2logL (k) +2|E[*(|E| - 1), fn = argminAIC k),

O<k=K
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where|E| denotes the cardinality of the sgt

R N k+1 XN
logL(k) = > N (ak*'X]) log (8 1X3)

N (a3]X7)
e (@) 2
. N (a| X}
_ n
logL(0) = Xa: N (alX}) log— —*
and
n—k+1
N (afIX])) = Y 1(Xj=ag. . Xjske1 = &) (3)

=1

that is, the number of occurrencesafin X{. If k = 0 defineN (-|X}) = n.
For the maximum log-likelihood functions the sums are over positive terms
N (ak™X7) > 0 or N (a|X]) > 0.

Katz (1981) pointed out the inconsistency of AIC estimates and the BIC esti-
mator proposed by Tong (1975) and Schwarz (1978) has been used in place of
AIC. The BIC estimator replaces 2 by lagn the penalty term and this corrects
the inconsistency of AIC

BIC(k) = —2logL (k) + 2|E|“ (|E| — 1) logn.

Several authors have addressed the consistency problem for BIC, besides Katz
see, for example, Finesso (1992) or Barron, Rissanen and Yu (1998). More
recently, Csiszar and Shields (2000) established the strong consistency for BIC
with no boundness assumption on the orderSome works on optimal error
exponents for the probability of errors can also be found in the literature: Mer-
jav, Gutman and Ziv (1989), Finesso, Liu and Narayan (1996) and Gassiat and
Boucheron (2003). More recently, Zhao, Dorea and Gongalves (2001) proposed
the EDC criterion that, under mild conditions, is a strongly consistent estimator
forr. And, from which we can derive the AIC and the BIC criteria by choosing
appropriately the penalty term. Fgr > 0 define

EDC(k) = —2logL (k) + y(k)c, and f, = argminEDC(k).  (4)
O<k<K
It is shown that ify (k) in the penalty term is taken to be a strictly increasing

function,
Cn Cn

— —>0 and
n loglogn

— 00 a n— oo (5)

thenf,, is strongly consistent. In this note, by takipgk) = 2|E|X (|E| — 1) as
in AIC and BIC cases, we present results for the rate of convergence of EDC
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estimator. Our main result, Theorem 1, shows that for any initial distribution
we have folk #r,

P,(EDC(k) — EDC(r) > dloglogn) > 1 — aexp{—bloglogn}.

2 Preliminaries

Fork > r let Y = Xi1 = (X, ..., Xnyk—1). ThenY® = {y] isa
first order Markov chain ofiek with transition probabilities

k ek pk-1
P ( Yoih = bY|Y & = 1) p(bx[ag_r,,) if a5 =1D;
" 0 otherwise.

We will assume that the derived first order Markov chdif is ergodic with
stationary (equilibrium) distributiotr (-)). Denotingaa{[1 =(@ay,...,a_1)
we have

7 (a) = Z (b1) p (&)
Zn p(arlaa, ™).

Fork > r define
7 (&) =7 (&) p(arsslal) - p (alaf=h) (6)
then,

7 (@) = ) 7 (ad ™) p(alag™) p(aala) - p(ala)

a

= D7 (aa™") p(ada’y).

a

Which shows thai(-)) defined by (6) is a stationary distribution for®.
Moreover, from the ergodicity of ) it easy to verify thaty © is also ergodic.
We have just proved the following proposition,

Proposition 1. Assume that the derived Markov chaifi’ is ergodic then for
k > r the proces¥ ¥ is also ergodic and possesses stationary distribution given
by (6).
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Lemma 1. Let Z be an ergodic Markov chain with values @&and transition
matrix(q(-|-)). Thengivenany > Oand any initial distributiorv the associated
transition counts satisfy,

P, (|N (a™Z]) — N (a¥1ZD) g (ar1law) | = v/pnlog Iogn)

< 4exp{—§ log Iogn} .

(P,: probability with initial distributionv.)

Proof.

(a) We will make use of the following result from Devroye (1991): =
{p, R} C F1 C F2--- C Fn be asequence of nestedalgebras. LeU
be af,-measurable and integrable random variable and define the Doob
martingaleU; = E(U|Fj). Assume that there exist fj_i-measurable
random variablé/; and a constarig; such thatv; < U; < V; +b;. Then
foranye > 0,

2¢?
P(lU—-EU|>¢€) < 4exp _—Zn (-
k=1"j

(b) Givena‘™ e EX*! define

nj = (Z,”k alt) —1(z]" = &) g@calan

U=Uy=> n;=N(a""2Z]) - N (a512]) q (a1lak) + 0(n).

The termo(é,,) stands for

A
A, = 0(8,) if 8—” — 0 forany &, — oo. (7)
n
Let Fj = a(Zl,- ,Zj)andU; = E(U|¥)). ThenU; =0for0< j <Kk
andUj = ZI _, m fork < j <n. SinceE{Uj} = 0 we have the hypotheses
of (a) satisfied withv; = U;_; — 1 andb; = 2. Result follows by noting that

> _a bt =4n. 0
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Proposition 1 along with above lemma give us:
Corollary 1. If Y® is ergodic anck > r then for anya‘t* € EX*1, any initial
distributionv and anyp, > 0

P, ([ (a5 1X]) — N (a5IX7) p (awsalaf ;1) ]2 > pnnlog Iogn)
(8
Pn
< 4exp{—?log Iogn}.

3 Results

First, we derive some bounds for lagk) — log L (r). Leto(s,) as in (7) and for
k > r write the log-likelihood as

logL(k) = Z N (al™X7]) log p (awr1lal_, 1) - 9)

k+1

&

Proposition 2. If Y is ergodic then fok > r we have for largen log L (k) —
logL (k) > Oand

logL(k) — logL(r)

k+an an k 2 10
S LS IILLSL S S

k+1

a
Moreover, forO <k <r

logL(k —1) —logL(k) <0

. C ,
and, if F” — 0, there exists a constagt > 0 such that fom large

log L(k) —log L(r) < —nB: + 0(8n). (11)

Proof.
(a) Letk >r then

logL(k) = Y N (ak™|X7) log p (as1laf_ )

k+1

a
= Y N(aIX]) log p (aslal_, 1)

k+1

a‘k—r+1
logL(r) + o(3n).
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It follows that
logL(k) — logL(r) =
log L (k) —log L(k) — [log L(r) — logL(r)] -+ 0(5y).
To prove (10) enough to show that fotarge
0 < IogI:(k) — log L (k)

k+1 X K XD k 2 12
< Z )= ((a|:—+|1|x)n) bl /oore)] + 0(8n). (12)

k+1
From (2) and (9) we have

logL(k) — log L(k) = Z N (2™ X]) log (1 — zy(ak™™))

k+1
a

where

o (i) = NEXD) = N (@1XD) P (@1l o)
1 (k+1|X) :

By Proposition 1 and the Law of Large Numbers for Markov chains (see, for
example, Dacunha-Castelle and Duflo (1986)) we have almost surely (a.s.),

N (@1X3) N (af™*IX])

n — 7 (a) p(aila_ 1) as.

7 (af) and
Thusz, (a*!) — 0. Now, using the inequality
5 1
z<-logl—-—2 <z+4+7, |z < >
and the identityy", N (af™*|X]) z, (a**) = 0 we get (12).

(b) Letk < r. Since the true order is for somea;+l e E"*! we must have

7 (&)

A CEATICE R

or elsep (a +1/a}) does not depend am for all a e BTl Let

ﬂ(a;-Fl
a7 (%) P (arsalal)

Br=—> m(a)) p(ala)) |09
a£+l
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By Jensen’s inequality we haye > 0. Forr > 1 write

logL(r — 1) — logL(r)

n
a; ttx ayttIXT) N (ag x|
- Z l 1 o ((a2|>|<1)) N (;ﬂ&;) +0(8n).
From the Law of Large Numbers we get
logL(r —1) —logL(r)
n
G0 N,

> 7 (af) p(aalaf) log S

r+1
2

(ad) p (ar+alaf)
To prove (11) enough to show
logL(k — 1) —logL(k) < 0.
and this follows using again the Jensen’s inequality. O

Theorem 1. Let Y be an ergodic Markov chain witfE| > 2. Assume that
the sequence, satisfies,

1 <liminf
n—oco log Iogn

Cn
—— 0. 13
" (13)

Then there exish = a(K) > 0 andb = b(K) > 0 such that for any initial
distributionv and anyd < y(r) — 1we have fok #r, 0 <k < K,

P, (EDC(k) — EDC(r) > dloglogn) > 1 — aexp{—bloglogn}. (14)
Proof.
(@) Letk <r. From (4) and (11) we have
EDC(k) — EDC(r) > 2ng; + (y (k) — y(r))cx.
SinceB; > 0 andc, satisfy (13) we have for large
P,(EDC(k) — EDC(r) > dloglogn) = 1
and (14) folows.
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(b) Letk > r. Sincey (-) is strictly increasing|E| > 2 andd < y(r +1) —
y(r) we have by (13)

o (M) cn_%loglogn>0. (15)

From (10) it follows that for

v (a|1<+1) [ ( k+1|Xn) (a‘l‘|X'11) p (ak+1|a||:—r+1) ]2
we have

(EDC(k) — EDC(r) > dloglogn) = (Iog Lk) —logL(r) < (pn>

k+l n
Ua|1<+1 (1//n( kJ’l) > (pnw> .

|E|k+l

V]

Leta = 4/E|**tand

= W mll’l{ (af"’l) a{“‘l S EK+1, T (a]|_<+1) > 0}

( k+l|Xn) (a]|f+1)

Since |E|k+1 - |E|k+1

we have

(EDC(k) — EDC(r) > dloglogn) < U (¥ (&™) > panloglogn).

wherep, = 4b

Iog Iogn
By Corollary 1

IA

P, (EDC(k) — EDC(r) < dloglogn) Z P, (¥ (&) > panloglogn)

k+1

< 4|E|"+1exp{—?”|og Iogn}

< aexp{—bloglogn}.
In the last inequality we used (13) and (15) to see that

Pn
5= b((V(k) y())

Ioglogn ) > b(y(k)—y@r)—d)y>=b. 0O
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Corollary 2. Under hypotheses of Theordmve have:
(&) (14 holds with BIC in place of EDC;

(b) the EDC estimate4) is strongly consistent.

Remark 1.

(a) Corollary 2 shows consistency under condition (13) which is weaker than
condition (5) from Zhao et al. (2001).

(b) For related work on bounds for wrong determination of the order using
EDC criterion see Dorea and Zhao (2006).
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