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Convergence rates for Markov chain order
estimates using EDC criterion
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Abstract. The Efficient Determination Criterion (EDC) generalizes the AIC and BIC
criteria and provides a class of consistent estimators for the order of a Markov chain with
finite state space. In this note, we derive rates of convergence for the EDC estimates.
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1 Introduction

Let Xn
1 = (X1, ∙ ∙ ∙ , Xn)be a sample from a multiple Markov chainX = {Xn}n≥1

of unknown but finite order 0≤ r ≤ K < ∞. Assume thatX takes values on a
finite state spaceE and that the transition probabilities are given by

p(ar +1|a
r
1) = P(Xn+1 = ar +1|X

n
n−r +1 = ar

1) (1)

wherear
1 = (a1, ∙ ∙ ∙ ,ar ) ∈ Er . For 0 ≤ k ≤ K let L̂(k) be the maximum

log-likelihood function based on the sanpleXn
1 when the chain is assumed to

be of orderk. The approximation of Kullback-Leibler information measure
by Neyman-Pearson statistics along with the asymptoticχ2-distribution of the

maximum log-likelihood ratio 2 logL̂(k)
L̂(r )

form the basis to derive the Akaike
information criterion (AIC, Akaike (1974)),

AIC(k) = −2 log L̂(k)+ 2|E|k
(
|E| − 1

)
, r̂n = arg min

0≤k≤K

AIC(k),
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where|E| denotes the cardinality of the setE,

log L̂(k) =
∑

ak+1
1

N
(
ak+1

1 |Xn
1

)
log

N
(
ak+1

1 |Xn
1

)

N
(
ak

1|X
n
1

) ,

log L̂(0) =
∑

a

N
(
a|Xn

1

)
log

N
(
a|Xn

1

)

n

(2)

and

N
(
ak

1|X
n
1

)
=

n−k+1∑

j =1

1
(
X j = a1, ∙ ∙ ∙ , X j +k−1 = ak

)
(3)

that is, the number of occurrences ofak
1 in Xn

1. If k = 0 defineN
(
∙|Xn

1

)
= n.

For the maximum log-likelihood functions the sums are over positive terms
N

(
ak+1

1 |Xn
1

)
> 0 or N

(
a|Xn

1

)
> 0.

Katz (1981) pointed out the inconsistency of AIC estimates and the BIC esti-
mator proposed by Tong (1975) and Schwarz (1978) has been used in place of
AIC. The BIC estimator replaces 2 by logn in the penalty term and this corrects
the inconsistency of AIC

BIC(k) = −2 log L̂(k)+ 2|E|k (|E| − 1) logn.

Several authors have addressed the consistency problem for BIC, besides Katz
see, for example, Finesso (1992) or Barron, Rissanen and Yu (1998). More
recently, Csiszar and Shields (2000) established the strong consistency for BIC
with no boundness assumption on the orderr . Some works on optimal error
exponents for the probability of errors can also be found in the literature: Mer-
jav, Gutman and Ziv (1989), Finesso, Liu and Narayan (1996) and Gassiat and
Boucheron (2003). More recently, Zhao, Dorea and Gonçalves (2001) proposed
the EDC criterion that, under mild conditions, is a strongly consistent estimator
for r . And, from which we can derive the AIC and the BIC criteria by choosing
appropriately the penalty term. Forcn > 0 define

EDC(k) = −2 log L̂(k)+ γ (k)cn and r̂n = arg min
0≤k≤K

EDC(k). (4)

It is shown that ifγ (k) in the penalty term is taken to be a strictly increasing
function,

cn

n
→ 0 and

cn

log logn
→ ∞ as n → ∞ (5)

thenr̂n is strongly consistent. In this note, by takingγ (k) = 2|E|k (|E| − 1) as
in AIC and BIC cases, we present results for the rate of convergence of EDC
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estimator. Our main result, Theorem 1, shows that for any initial distributionν

we have fork 6= r ,

Pν(EDC(k)− EDC(r ) ≥ d log logn) ≥ 1 − a exp{−b log logn} .

2 Preliminaries

For k ≥ r let Y(k)
n = Xn+k−1

n = (Xn, . . . , Xn+k−1). ThenY(k) =
{
Y(k)

n

}
n≥1 is a

first order Markov chain onEk with transition probabilities

P
(
Y(k)

n+1 = bk
1

∣
∣Y(k)

n = ak
1

)
=

{
p

(
bk

∣
∣ak

k−r +1

)
if ak

2 = bk−1
1

0 otherwise.

We will assume that the derived first order Markov chainY(r ) is ergodic with
stationary (equilibrium) distribution(π(∙)). Denotingaar −1

1 = (a,a1, . . . ,ar −1)

we have

π
(
ar

1

)
=

∑

br
1

π
(
br

1

)
p

(
ar |b

r
1

)

=
∑

a

π
(
aar −1

1

)
p

(
ar |aar −1

1

)
.

For k ≥ r define

π
(
ak

1

)
= π

(
ar

1

)
p

(
ar +1|a

r
1

)
∙ ∙ ∙ p

(
ak|a

k−1
k−r

)
(6)

then,

π
(
ak

1

)
=

∑

a

π
(
aar −1

1

)
p

(
ar |aar −1

1

)
p

(
ar +1|a

r
1

)
∙ ∙ ∙ p

(
ak|a

k−1
k−r

)

=
∑

a

π
(
aak−1

1

)
p

(
ak|a

k−1
k−r

)
.

Which shows that(π(∙)) defined by (6) is a stationary distribution forY(k).
Moreover, from the ergodicity ofY(r ) it easy to verify thatY(k) is also ergodic.
We have just proved the following proposition,

Proposition 1. Assume that the derived Markov chainY(r ) is ergodic then for
k ≥ r the processY(k) is also ergodic and possesses stationary distribution given
by (6).
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Lemma 1. Let Z be an ergodic Markov chain with values onE and transition
matrix(q(∙|∙)). Then given anyρ > 0and any initial distributionν the associated
transition counts satisfy,

Pν
( ∣

∣N
(
ak+1

1 |Zn
1

)
− N

(
ak

1|Z
n
1

)
q (ak+1|ak)

∣
∣ ≥

√
ρn log logn

)

≤ 4 exp
{
−
ρ

2
log logn

}
.

(Pν : probability with initial distributionν.)

Proof.

(a) We will make use of the following result from Devroye (1991): LetF0 =
{φ,�} ⊂ F1 ⊂ F2 ∙ ∙ ∙ ⊂ Fn be a sequence of nestedσ -algebras. LetU
be aFn-measurable and integrable random variable and define the Doob
martingaleUj = E(U |F j ). Assume that there exist aF j −1-measurable
random variableVj and a constantbj such thatVj ≤ Uj ≤ Vj + bj . Then
for anyε > 0,

P ( |U − EU| ≥ ε) ≤ 4 exp

{

−
2ε2

∑n
k=1 b2

j

}

.

(b) Givenak+1
1 ∈ Ek+1 define

η j = 1
(

Z j +k
j = ak+1

1

)
− 1

(
Z j +k−1

j = ak
1

)
q(ak+1|ak)

and

U = Un =
n−k∑

j =1

η j = N
(
ak+1

1 |Zn
1

)
− N

(
ak

1|Z
n
1

)
q (ak+1|ak)+ o(δn).

The termo(δn) stands for

An = o(δn) if
An

δn
→ 0 for any δn → ∞. (7)

LetF j = σ(Z1, ∙ ∙ ∙ , Z j ) andU j = E(U |F j ). ThenUj = 0 for 0 ≤ j ≤ k
andUj =

∑ j −k
l=1 ηl for k ≤ j ≤ n. SinceE{Uj } = 0 we have the hypotheses

of (a) satisfied withVj = Uj −1 − 1 andbj = 2. Result follows by noting that∑n
j =1 b2

j = 4n. �
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Proposition 1 along with above lemma give us:

Corollary 1. If Y(r ) is ergodic andk ≥ r then for anyak+1
1 ∈ Ek+1, any initial

distributionν and anyρn > 0

Pν
( [

N
(
ak+1

1 |Xn
1

)
− N

(
ak

1|X
n
1

)
p

(
ak+1|a

k
k−r +1

) ]2
≥ ρnn log logn

)

≤ 4 exp
{
−
ρn

2
log logn

}
.

(8)

3 Results

First, we derive some bounds for logL̂(k)− log L̂(r ). Leto(δn) as in (7) and for
k ≥ r write the log-likelihood as

log L(k) =
∑

ak+1
1

N
(
ak+1

1 |Xn
1

)
log p

(
ak+1|a

k
k−r +1

)
. (9)

Proposition 2. If Y(r ) is ergodic then fork ≥ r we have for largen log L̂(k)−
log L(k) ≥ 0 and

log L̂(k)− log L̂(r )

≤
∑

ak+1
1

[
N

(
ak+1

1 |Xn
1

)
− N

(
ak

1|X
n
1

)
p

(
ak+1|ak

k−r +1

)]2

N
(
ak+1

1 |Xn
1

) + o(δn).
(10)

Moreover, for0 ≤ k < r

log L̂(k − 1)− log L̂(k) ≤ 0

and, if
cn

n
→ 0, there exists a constantβr > 0 such that forn large

log L̂(k)− log L̂(r ) ≤ −nβr + o(δn). (11)

Proof.

(a) Letk ≥ r then

log L(k) =
∑

ak+1
1

N
(
ak+1

1 |Xn
1

)
log p

(
ak+1|a

k
k−r +1

)

=
∑

ak+1
k−r +1

N
(
ak+1

k−r +1|X
n
1

)
log p

(
ak+1|a

k
k−r +1

)

= log L(r )+ o(δn).
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It follows that

log L̂(k)− log L(r ) =

log L̂(k)− log L(k)− [log L̂(r )− log L(r )] + o(δn).

To prove (10) enough to show that forn large

0 ≤ log L̂(k)− log L(k)

≤
∑

ak+1
1

[
N

(
ak+1

1 |Xn
1

)
− N

(
ak

1|X
n
1

)
p

(
ak+1|ak

k−r +1

)]2

N
(
ak+1

1 |Xn
1

) + o(δn).
(12)

From (2) and (9) we have

log L̂(k)− log L(k) = −
∑

ak+1
1

N
(
ak+1

1 |Xn
1

)
log

(
1 − zn(a

k+1
1 )

)

where

zn

(
ak+1

1

)
=

N
(
ak+1

1 |Xn
1

)
− N

(
ak

1|X
n
1

)
p

(
ak+1|ak

k−r +1

)

N
(
ak+1

1 |Xn
1

) .

By Proposition 1 and the Law of Large Numbers for Markov chains (see, for
example, Dacunha-Castelle and Duflo (1986)) we have almost surely (a.s.),

N
(
ak

1|X
n
1

)

n
→ π

(
ak

1

)
and

N
(
ak+1

1 |Xn
1

)

n
→ π

(
ak

1

)
p

(
ak+1|a

k
k−r +1

)
a.s.

Thuszn
(
ak+1

1

)
→ 0. Now, using the inequality

z ≤ − log(1 − z) ≤ z + z2 , |z| <
1

2

and the identity
∑

ak+1
N

(
ak+1

1 |Xn
1

)
zn

(
ak+1

1

)
= 0 we get (12).

(b) Letk < r . Since the true order isr , for somear +1
1 ∈ Er +1 we must have

π
(
ar +1

2

)

∑
a π

(
aar

2

)
p

(
ar +1|ar

1

) 6= 1

or elsep
(
ar +1|ar

1

)
does not depend ona1 for all ar +1

1 ∈ Er +1. Let

βr = −
∑

ar +1
1

π
(
ar

1

)
p

(
ar +1|a

r
1

)
log

π(ar +1
2 )

∑
a π

(
aar

2

)
p

(
ar +1|ar

1

) .
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By Jensen’s inequality we haveβr > 0. Forr ≥ 1 write

log L̂(r − 1)− log L̂(r )

n

→
∑

ar +1
1

N
(
ar +1

1 |Xn
1

)

n
log

N
(
ar +1

2 |Xn
1

)

N
(
ar

2|X
n
1

)
N

(
ar

1|X
n
1

)

N
(
ar +1

1 |Xn
1

) + o(δn).

From the Law of Large Numbers we get

log L̂(r − 1)− log L̂(r )

n
=

∑

ar +1
1

π
(
ar

1

)
p

(
ar +1|a

r
1

)
log

π
(
ar +1

2

)

∑
a π

(
aar

2

)
p

(
ar +1|ar

1

) = −βr .

To prove (11) enough to show

log L̂(k − 1)− log L̂(k) ≤ 0.

and this follows using again the Jensen’s inequality. �

Theorem 1. Let Y(r ) be an ergodic Markov chain with|E| ≥ 2. Assume that
the sequencecn satisfies,

1 ≤ lim inf
n→∞

cn

log logn
and

cn

n
→ 0. (13)

Then there exista = a(K ) > 0 andb = b(K ) > 0 such that for any initial
distributionν and anyd < γ (r )− 1 we have fork 6= r , 0 ≤ k ≤ K ,

Pν (EDC(k)− EDC(r ) ≥ d log logn) ≥ 1 − a exp{−b log logn}. (14)

Proof.

(a) Letk < r . From (4) and (11) we have

EDC(k)− EDC(r ) ≥ 2nβr + (γ (k)− γ (r ))cn.

Sinceβr > 0 andcn satisfy (13) we have for largen

Pν(EDC(k)− EDC(r ) ≥ d log logn) = 1

and (14) folows.
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(b) Let k > r . Sinceγ (∙) is strictly increasing,|E| ≥ 2 andd < γ (r + 1)−
γ (r ) we have by (13)

ϕn =
(
γ (k)− γ (r )

2

)
cn −

d

2
log logn > 0. (15)

From (10) it follows that for

ψn

(
ak+1

1

)
=

[
N

(
ak+1

1 |Xn
1

)
− N

(
ak

1|X
n
1

)
p

(
ak+1|a

k
k−r +1

) ]2

we have
(
EDC(k)− EDC(r ) ≥ d log logn

)
=

(
log L̂(k)− log L̂(r ) ≤ ϕn

)

⊇ ∪ak+1
1

(

ψn

(
ak+1

1

)
> ϕn

N
(
ak+1

1 |Xn
1

)

|E|k+1

)

.

Let a = 4|E|K+1 and

b =
1

2|E|K+1
min

{
π

(
aK+1

1

)
: aK+1

1 ∈ EK+1 , π
(
aK+1

1

)
> 0

}
.

Since
N

(
ak+1

1 |Xn
1

)

n|E|k+1
→

π
(
ak+1

1

)

|E|k+1
we have

(
EDC(k)− EDC(r ) ≥ d log logn

)
⊆ ∪ak+1

1

(
ψn

(
ak+1

1

)
> ρnn log logn

)
.

whereρn = 4b
ϕn

log logn
.

By Corollary 1

Pν
(
EDC(k)− EDC(r ) < d log logn

)
≤

∑

ak+1
1

Pν
(
ψn

(
ak+1

1

)
> ρnn log logn

)

≤ 4|E|k+1 exp
{
−
ρn

2
log logn

}

≤ a exp{−b log logn} .

In the last inequality we used (13) and (15) to see that

ρn

2
= b

(
(γ (k)− γ (r ))

cn

log logn
− d

)
≥ b(γ (k)− γ (r )− d) ≥ b. �
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Corollary 2. Under hypotheses of Theorem1 we have:

(a) (14) holds with BIC in place of EDC;

(b) the EDC estimate(4) is strongly consistent.

Remark 1.

(a) Corollary 2 shows consistency under condition (13) which is weaker than
condition (5) from Zhao et al. (2001).

(b) For related work on bounds for wrong determination of the order using
EDC criterion see Dorea and Zhao (2006).
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