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Random walks systems on complete graphs
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Abstract. We study two versions of random walks systems on complete graphs. In
the first one, the random walks have geometrically distributed lifetimes so we define
and identify a non-trivial critical parameter related to the proportion of visited vertices
before the process dies out. In the second version, the lifetimes depend on the past of
the process in a non-Markovian setup. For that version, we present results obtained
from computational analysis, simulations and a mean field approximation. These three
approaches match.
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1 Introduction

We study two versions of a model of discrete-time random walk systems on finite
graphs. This model, known as frog model, has been considered on infinite graphs,
in particular hypercubic lattices and homogeneous trees, for which results as
shape theorem and phase transition have been proved. See for instance [2], [3], [4]
and the references therein.

Our interest in this paper is to study the behavior of this model on complete
graphs. The basic form of the model is described as follows. At time zero there is
one active particle in a fixed vertex of the graph. That particle performs a random
walk up to the time it dies. In all other vertices there are inactive particles. At
each step of the process, active particles disappear with probability(1 − p) or
survive with probabilityp, independently of each other. When an active particle
survives, it jumps to a neighboring vertex randomly chosen. If an active particle
hits a sleeping one, the latter is activated and starts to perform a random walk
independently of everything else.
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In the case of finite graphs, the main object under study is thecoverageof the
graph, that is, the proportion of visited vertices at the end of the process, after all
active particles have died. An important reference for random walks on graphs is
the book of Aldous and Fill [1]. In section 2, we consider the model as described
above and identify, for the class ofn-complete graphs, the critical value ofp
below which the sequence of coverage{αn(p)} converges in distribution to 0 as
n → ∞. The section 3 is devoted to a version in which the lifetime of an active
particle depends on the past of the process. It survives up to the time it hits a
vertex which has been visited before by an active particle. We present results
obtained from computational analysis, stochastic simulations and a mean field
approximation. These approaches agree remarkably.

2 Geometric lifetime

In this section, we deal with the basic version of the frog model on complete
graphs, whose formal definition follows. Forn ≥ 3, let Kn be then-complete
graph (the graph with vertex setV = {1, 2, . . . , n} and each pair of vertices
linked by an edge). Consider one particle at each vertex ofKn, all but one
being inactive. Let

{(
Sx

t

)
t∈N ; x ∈ V

}
and

{(
τ x

p

)
; x ∈ V

}
be independent sets

of independent identically distributed random objects defined as follows. For
eachx ∈ V ,

(
Sx

t

)
t∈N is a discrete time simple random walk onKn starting fromx

(it describes the trajectory of the particle placed initially atx when it is activated),
andτ x

p , which stands for the lifetime of that particle, is a random variable whose
law is given byP

(
τ x

p = k
)

= (1 − p)pk−1, k = 1, 2, . . ., wherep ∈ [0, 1] is a
fixed parameter. In conclusion, the particle at vertexx, in the event it is activated,
moves as

(
Sx

t

)
t∈N but disappearsτ x

p units of time after being activated.

Definition 2.1.

(i) For a realization of the frog model inKn with parameterp, let Cn(p)

be the set of vertices ofKn visited by active particles and|Cn(p)| be the
number of elements ofCn(p). We define thecoverageof Kn by

αn(p) = |Cn(p)|/n.

(ii) We define thecritical parameterof the model by

pc = sup {p : αn(p) ⇒ 0 as n → ∞} ,

where⇒ denotes convergence in distribution.
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Next we prove thatpc = 1/2, therefore the frog model has phase transition.
To show this assertion, we prove that forp ≤ 1/2 and everyε > 0,

lim
n→∞

P(αn(p) ≥ ε) = 0

and that forp > 1/2, there are constantsε = ε(p) > 0 andδ = δ(p) > 0 such
that, for alln,

P (αn(p) ≥ ε) ≥ δ.

Theorem 2.1. pc =
1

2
.

Proof. First let p ≤ 1/2 and consider the Galton-Watson branching process
that starts with a single individual and in which the family size has geometric
distribution with parameter(1− p). This branching process dies out with proba-
bility 1. Furthermore, if we callZt the size of thet th generation of this branching
process, we have that, for everyε > 0,

P (|Cn(p)| ≥ εn) ≤ P

(
∞∑

t=1

Zt ≥ εn

)
n→∞
−→ 0.

Now let p > 1/2. In this case, we chooseε = ε(p) > 0 such that(1 − ε)

p > 1/2. We let the process develop up to the time when there areεn vertices
visited by active particles, pointing that this event has probability bounded away
from zero. Observe that up to this time the frog model dominates the follow-
ing supercritical branching process. Each individual generates two descendants
with probability (1 − ε)p and no descendant with probability 1− (1 − ε)p.
Observe that at each step before reachingεn visited vertices, each active particle
in the frog model hits an inactive particle (activating it) with probability larger
than(1 − ε)p. In order to avoid correlation considerations, one could consider
that each active particle of the set of active particle at any time, move in its turn,
being the probability of hitting the inactive set of vertices updated, according to
what happened to the last jump. All the computed probabilities would be larger
that (1 − ε)p. So, with bounded away from zero probability, the number of
visited vertices in frog model is at leastεn, for all n. �

Note that, from the first part of the proof,αn(1/2) ⇒ 0 asn → ∞.

3 Non-geometric lifetime

In the model considered so far, the lack of memory of the geometric distribution
plays an important role in the Markovian behavior of the process. In this section,
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we study a model in which the lifetime of an active particle depends on the past
of the process. As far as we know, there are no references about this kind of
model.

We work with the following version of frog model onKn. Initially, there is
one particle at each vertex ofKn; only one is active, the others are inactive. In
the event it is activated, the particle at a vertexx follows an independent simple
random walk onKn and activates the inactive particles that encounters along its
way. However, each active particle dies at the first time it jumps on a vertex
which has been visited before.

3.1 Computational analysis

We defineAt , Dt andIt as the number of active particles at timet , the number of
vertices whose original particles have already died up to timet and the number
of particles still inactive at timet , respectively. Note that{(At , Dt , It)}t≥0 is a
Markov chain (in fact,{(At , It)}t≥0 is) such thatA1 = 2, D1 = 0, andI1 = n−2
with probability 1. Moreover,At + Dt + It = n for all t ≥ 0.

We underline two important features of this Markov chain: first, it has absorb-
ing states, so that it stops at the timeT = min{t > 0 : At = 0}. Second, each
state(a, d, i ) is achieved at most once. For(a, d, i ) such thata + d + i = n,
we define

P(a, d, i ) = P(At = a, Dt = d, It = i for some t ≥ 0)

=
∑

t≥0

P(At = a, Dt = d, It = i ).

We have thatP(2, 0, n − 2) = 1, P(1, 1, n − 2) = 0 andP(0, d, 0) = 0. We
denote byVt = At + Dt = n − It the number of visited vertices at timet , so
that thecoverageof the process isαn = VT/n.

Next we show some relations which are helpful in the computational analysis
we do of the probability of the total coverage event (αn = 1). First observe that
the probability of reaching a numbera of active particles without occurring any
death of particles is

P(a, 0, i ) =
[a/2]∑

j =1

(
i + j

j

)(
1

n − 1

)a− j

f (a− j, j )P(a− j, 0, i + j ) (3.1)

wherea + i = n and

f (s, j ) =
j −1∑

r =0

(−1)r

(
j
r

)
( j − r )s
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can be though as the number of ways of displacings balls into j urns leaving
no empty urns. The last display is an immediate consequence of the inclusion-
exclusion formula. To understand (3.1), observe that one only could reach the
state(a, 0, i ) from a state(a′, d′, i ′) with a′ = a − j , d′ = 0 andi ′ = i + j . For
that to happen,a− j active particles must wake upj particles amongi + j inactive
ones. Besidesj cannot be larger thana/2. In conclusion, (3.1) is obtained by
conditioning on the previous situation of the system.

Our next result shows a general relation forP(a, d, i ).

Theorem 3.1.For (a, d, i ) such thata + d + i = n anda > 0

P(a, d, i ) =
d∑

d′=0

[a/2]∑

j =1

(
d − d′ + a − j

d − d′

) (
i + j

i

) (
1

n − 1

)d+a−d′− j

(d + a − j − 1)d−d′
f (a − j, j )P(a + d − d′ − j, d′, i + j ).

Proof. Again we condition on the previous state. From state(a′, d′, i ′) one
can visit state(a, d, i ) if and only if d′ ≤ d and i < i ′. As a consequence
i ′ = i + j anda′ = a + (d − d′) − j . Observe thatd − d′ particles will die
among thea + (d − d′) − j active ones. Moreovera − j active particles must
wake upj inactive particles among thei + j ones. Of coursej must be smaller
thana/2. �

The last relation deals with the absorbing state since it is the target of the
computational analysis developed next. We claim that ifd + i = n

P(0, d, i ) =
d∑

a=2

(d − 1n − 1)a P(a, d − a, i )

as from state(a′, d′, i ′) one can reach(0, d, i ) if and only if d = a′ + d′ and
i = i ′ which means that all active particles die suddenly.

Finally, note that the probability of total coverage ofKn is given by

ρn = 1 −
n−1∑

d=2

P(0, d, n − d).

Using the formulas given above, we compute the values ofρn for various values
of n ≤ 200 (see Table 1). The quite intensive computational task points to the
fact thatρn is decreasing inn andρ200 is of order 10−14, so we conjecture that

ρn ↓ 0 as n → ∞.
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n ρn

10 2.38561× 10−1

25 2.43941× 10−2

50 5.36173× 10−4

75 1.17556× 10−5

100 2.57646× 10−7

200 5.95080× 10−14

Table 1: Values ofρn.

3.2 Simulations

We perform simulations of the model forn = 500, 1000, 2000 and 5000, keep-
ing track of the evolution of the values ofAt/n andVt/n. We perceive that, for
eachn, the global behavior of the process does not have significant differences
among these simulations. Typical illustrations of this behavior are shown in Fig-
ure 1. Simulations indicate, therefore, the following behavior: up to the time in
which At/n achieves a value close to 0.36,Vt grows fast andAt is less thanVt ,
but very close to it. That characteristic comes from the fact that, up to that time,
there is enough room for the active particles to jump on the set of the unvisited
vertices. From that instant on,Vt begins to grow more slowly, achieving a final
value very close to 0.83n. Hence, it seems clear that the sequence of coverage
{αn} converges in distribution asn → ∞.

3.3 Mean field approximation

In this section we study the model described on section 3 through a mean field
approximation approach. The goal is to obtain rigorous results, consistent with
the simulation performed with the original model, by an analytic and combina-
torial relatively small effort. Such approach must be taken carefully as it does
not consider fundamental correlations presented in the original model. Anyway
it agrees nicely with what is presented in the two precedent subsections.

The Markov chain{(At , Dt , It)}t≥0 defined at the beginning of subsection
3.1, such thatAt is the number of active particles at timet , Dt is the number
of vertices whose original particles have already died up to timet , and It is
the number of particles still inactive at timet , is still under consideration. In
this section, we also consider the system{(at , dt , i t)}t≥0 which is the mean field
approximation for{(At/n, Dt/n, It/n)}t≥0. By vt we denote the sumat + dt .

Remember that{(At , Dt , It)}t≥0 is a Markov chain (in fact,{(At , It)}t≥0 is) such
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Figure 1: Evolution ofAt/n andVt/n in simulations forn = 500, 1000, 2000
and 5000. Levels of 0.36 and 0.83 are indicated.

thatA1 = 2, D1 = 0, I1 = n−2 with probability 1. Moreover,At + Dt + It = n
for all t ≥ 0.

The evolution of the process{(at , dt , i t)}t≥0 is the following:

dt+1 = dt + (at + dt) ∙ at

as in the original model, particles which are active at timet die if they jump into
sites which have been visited up to timet . Besides, a proportion(1− (at + dt))

of the amount of the set of active particles stay active, jumping on sites which
have not been visited by active particles so far. Each one of the inactive particles
has probability (

1 −
1

i t ∙ n

)at ∙i t ∙n

∼ exp(−at)

of not being hit by an active particle. This justifies the following dynamic

i t+1 = i t − i t ∙ (1 − exp(−at))

which implies that

at+1 = at − (at + dt) ∙ at + i t ∙ (1 − exp(−at)).
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The evolution of this system of equations could be studied under any initial
input but our interest is study its behavior fora0 = 2/n andd0 = 0 as this is
analogous to what happens in the first step of the original process.
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Figure 2: Evolution ofat andvt in the mean field approximation forn = 500,
1000, 2000 and 5000. Levels of 0.36 and 0.83 are indicated.

Theorem 3.2.

(i) For all t, at > 0 and lim t→∞ at = 0;

(ii) ∃M = M(n) such that

a0 < a1 < ∙ ∙ ∙ < aM−1 ≤ aM > aM+1 > aM+2 > ∙ ∙ ∙ ;

(iii) ln (0.0005n)/ln 2 < M < ln(0.001n)/ln 1.994+ 30 for n > 1000;

(iv) lim t→∞(at + dt) ∈ (0, 82; 0, 83); besidesaM ∈ (0, 35; 0, 36).

Proof. We present a sketch of the proof as most of it demands ordinary com-
putations. By induction one shows thatat > 0,dt ≥ 0 and that 0< vt < 1 for all
possible values oft . As a consequence of these facts, one proves the existence
for each value ofn (the number of vertices of the graph), of limt→∞ vt and
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lim t→∞ dt . Observing thatdt+1 = dt + (at + dt)at and using the later facts one
proves that limt→∞ at = 0 and from this follows that limt→∞ vt = lim t→∞ dt .
Another consequence is that the sequence{at} follows the pattern

a0 < a1 < ∙ < aM−1 ≤ aM > aM+1 > aM+2 > ∙ ∙ ∙ .

Besides,v = lim t→∞ vt ≥ 1/2, and from this follows thataM > 0.15. By
its turn, this fact together withat+1 < 2at can be used to prove that there
existst1 such that 0.001 < at1 < 0.002. By using two subsequent terms of the
Taylor’s expansion forex, together with the fact thatat < 0.002 implies that
dt < 0.003at (and that happens asa0 = 2/n), one gets that 0.0005n ≤ 2t1

and 1.994t1 < 0.001n. From this(i i i ) follows. Finally one proves thataM ∈
(0, 35; 0, 36) and that limt→∞(at + dt) ∈ (0, 82; 0, 83). �

Figure 2 shows the evolution ofat andvt , quantities that came from the mean
field approximation, forn = 500, 1000, 2000 and 5000. The remarkable resem-
blance between Figures 1 and 2 comes from the fact that the the correlations,
even though presents, are not able to mess up with the global behavior of the
process. Both also agree with Table 1 as they show that the set of active particles
are not able of covering the whole graph as its size increase.
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