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1 Introduction

The problem of (unique) integrability of a one dimensional distribution (or vector
field) is an old problem that goes back to the 19th century. For a non-one
dimensional distribution the problem has been solved by Frobenius who gave
a necessary and sufficient condition for the integrability (see [AM] and [L]).
Nevertheless this conditions is not easy to check. When the distribution is related
to a dynamical system§ : M — M the integrability has been solved under
some dynamic assumptions like hyperbolicity by many authors and proofs along
the 20th century (see for instance [HPS]). More preciselyf M = E &
F is an invariant dominated decomposition under the tangent Diaand F
has a uniform expanding behavior it follows tHats uniquely integrable (this
is the so called strong stable manifold theorem for.) The problem of the
integrability comes out when we consider the “central’distribution. In other
words no condition for the unique integrability is known whiérma priori has
not a uniform hyperbolic behavior, and moreover, there exist examples where it
fails to be integrable.

In this paper we deal with the case that the distributtois one-dimensional.
By Peano’s Theorem (see [KF]) it is integrable, but we shall be concerned with
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2 ENRIQUE R. PUJALS and MARTIN SAMBARINO

the unique integrability (and, as it is well known, we can not expect the central
distribution to be smooth, even Lipchitz.)

Before stating our result, let us recall some definitions. L.etM — M be a
diffeomorphisms. Arf -invariant setA is said to have dominated splittingf we
can decompose its tangent bundle in two invariant subbufidiéé = E @ F,
such that:

ID /e DT i fng Il < CA", forall x € A,n>0,

withC >0andO< A < 1.

We say that the dominated splitting i€adimension one dominated splitting
if the dimension ofF is one and we shall say that it iscantractiveif E is a
contractive subbundle, i.e., there exi€ts> 0 and O< A < 1 such that for any
x and anyn it holds that|Dfjg | < CA".

A periodic pointp is a semi-attractoror attractor provided that the set of
pointsy that verifies thatist(f"(p), f"(y)) — 0 contains an open set M.

Main Theorem. Letf : M — M be aC' diffeomorphismg, > 1, exhibiting
a codimension one dominated splittifig = E & F over the whole manifold.
ThenF is uniquely integrable provided one of the following conditions holds:

1. Q(f) = M (where2(f) denote the non-wandering set bf.
2. The dominated splitting is contractive.

3. There are neither semi-attracting or attracting periodic points ant
C" withr > 2.

The paperis organized as follows. Insection 2 we state a series of results proved
somewhere else. In section 3 we prove a codimension one Denjoy Property
regarding the existence of wandering intervals (a similar result has already been
proved in dimension two and with some adjustments the proof works in the
codimension one case). In the same section, we derive some consequences
regarding the central unstable invariant manifolds. Inthe last sectionwe conclude
the proof of the main theorem.

2 Preliminaries

Letl; = (=1, 1) andl. = (—e, €), and denote bfEmb' (11, M) the set ofC?-
embedding of; on M, and denote bEmbB (1], M) the set ofC*-embedding
of I{“l on M, wheren is the dimension oM.
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INTEGRABILITY ON CODIMENSION ONE DOMINATED SPLITTING 3

Recall by [HPS] that codimension one dominated splitting implies the next
lemma:

Lemma 2.1. There exist two continuous functiop® : A — Embl(lln‘l, M)
andp® : A — Emb'(l;, M) such that if defineVS(x) = ¢°S(x)I"1 and
W2 (x) = ¢®(x) |, the following properties holds:

1. TYWS(x) = E(x) and TyW(x) = F(x),

2. for all 0 < €; < 1there exisk, such that and

fOWES(X)) € WES(T (x)).

3. forall 0 < ¢; < 1there exisk, such that and
f WS () € WEUCF ().
In particular, there exists = 3(e1) such that ify € WS(x) anddist(f~I(y),
f=I(x)) <sfor0<j <nthenf-i(y) e WH(f-I(x)) for0O<j <n.

Corolary 2.0.1. For any0 < y < 1, there existg = ¢(y) such that forx € A
holds that
||Df/nE(x)|| =< yn, vn > 0,

then follows that
WES(x) € W2(x) = {y : dist(f"(x), f"(y)) < edist(f"(x), f"(y)) — 0}

i.e., the central stable manifold of sizes in fact a stable manifold.

Sometimes, one needs the central manifold to be of €&sJhis is guar-
anteed, foIC?—diffeomorphisms, by the so called 2-domination: the splitting
E @ F is 2-dominated if there exists € o < 1 such that

-1 2
”Df/nE(x)”” Df/F(fn(x))” = CUn, n=>0.

Remark 2.0.1. It follows that if f is a C? diffeomorphisms and is a compact
invariant manifold exhibiting a codimension one dominated splitting which is
also 2-dominated then the magf" in Lemma 2.1 is indeed a mag" : A —
EmF(l1, M) (see [HPS] for details).

The following result in [PS1] guarantee that a codimension one dominated
splitting is 2-dominated:

Bull Braz Math Soc, Vol. 38, N. 1, 2007



4 ENRIQUE R. PUJALS and MARTIN SAMBARINO

Lemma 2.2. Let f be aC? diffeomorphisms and let be a compact invariant
manifold exhibiting a codimension one dominated splitting. Then, there exists
at most finitely many periodic attractors (sinks) Ansuch that any compact
invariantsetAo C A and disjoint from these periodic attractorsdsiominated.

We will need also the following beautiful result form Pliss:

Lemma2.3. Pliss’'sLemma ([Pl]):Given adiffeomorphismsand0 < y1 < y»
there existN = N(y1, y», f) andc = c(y1, y», f) > 0 with the following
property: givenx € M, a subspaces C TxM such that for soma > N we
have (denotings = Df'(S))

n
[TIDfsl <»
i=0

then there exish < n; < Ny < .... < Ny < nsuch that

j
l_[ IDf/sll <y ™ r=21..,I;n<j<n.

i=n,
Moreover,| > cn.

The next lemma is a classical one about the existence of admissible neighbor-
hood for sets having dominated splitting.

Lemma 2.4. Let A be a set with dominated splitting. Then there exists a
neighborhoodv of A such that any compact invariant setVhhas dominated
splitting. This type of neighborhood is called an admissible neighborhoad of

3 Denjoy’s Property

A C'-arcis aC" embedding of the interval1, 1). We denote by(l) the length
ofaCr-arcl.

Definition 3.1. Let f : M — M be aC' diffeomorphisms and leA be a
compact invariant set having dominated splitting and\febe an admissible
neighborhood (see lemma 2.4). llétbe an open set containing suchthat
U c V.Wesaythat&"-arc| in M is as- E-arc provided the next two conditions
hold:

1. f")cU,n>0and £(f"(l)) <§ forall n> 0.
2. (1) is always transverse to the-direction.
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INTEGRABILITY ON CODIMENSION ONE DOMINATED SPLITTING 5

In other words, &-E-arc is an arc that does not growth in length in the future
and always remains transversal to thsubbundle.

Related to &-E-arc| we can obtain the following result. Before to state it,
ChoOSELo, Ag; A < A3 < Ay < Az < 1.

Lemma 3.1. There existg > 0such that given &-E-arc | it follows that there
exists a sequence of integers— oo such that

IDf el <25 forall j>0, xe fm(). (1)

Proof. First, we taken; such that
eCEM () = eCti), Vi>n.
For the arcs above, we use the notation
I, = £M().

Observe that this implies that for amy > O there is some; < I, such that
[l Df/"F(Xi) | < 1and since the iterates bf remain small (less thad), it follows
that there i3 small such that for ang € f" (1) then

IDf eIl < A+ B,

Using the domination property amgismall, the thesis of the lemma holds (see
page 987-988 of [PS1] for details). d

Lemma 3.2. For any pointx < I, there is an stable manifoléV>(x) of uni-
form size.

The proof follows from corollary 2.0.1. This implies that we can consider
the box
W:(Ini) = Uxelni WES(X)

Definition 3.2. We say that @-E-arc | is wandering if for anyn;, n; satisfying
(1) follows that

The next theorem characterizes the dynamic &Earc. More precisely, it
characterizes the—limit of | (denoted byv(1)). The theorem is a more general
version of proposition 3.1 in [PS1] and theorem 4.1.3 in [PS2], where the results
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6 ENRIQUE R. PUJALS and MARTIN SAMBARINO

are stated for surfaces diffeomorphisms. The proof has some similarities and
here it is adapted to the case of codimension one dominated splitting.

Theorem 3.1.Let f be aC' diffeomorphismg;, > 1, and letA be a compact
invariant set exhibiting a codimension one dominated splitting. There exists
8o such that ifl is aC" §-E-interval with§ < &g, then one of the following
properties holds:

1. w(l) C C whereC is a periodic simple closed curve normally attracting
and f;}} : C — C (wherem is the period ofC) has irrational rotation
number.

2. There exists a normally attracting periodic adcsuch thatl c W3(J)
and f¥ restricted toJ (k being the period o) is the identity map od.

3. w(l) C Per(f,y) wherePer(f,y) is the set of the periodic points of
f in V. Moreover, one of the periodic points is either a semi-attracting
periodic point or a attracting one.

4. Neither of the above anldis wandering.

Proof. To conclude the proof it is enough to show that if there emisk n;
verifying (1) such that

WE(In) N WECEM M (1)) # . 2)

then either (1), (2) or (3) of theorem 3.1 hold.

Letm=n; —n;. If E(f"m(lni)) — 0 ask — oo, thenw(ly,) consist of a
periodic orbit. Indeed, i£(f*™(l,,)) — 0, thene(fk(l,)) — 0 ask — oo.
Let p be an accumulation point of(l,), that is, f¥i(l,) — p for some
kj — oo, and so,fki*M(I,) — fM(p). But by the property we are assuming,
e, W3(ln) NWE(FNT"(1,)) # 0, we havef"i+m(|ni) — p, implying that
p is a periodic point. Thus, for any € |, we have that»(x) consists only of
periodic orbits, and s@(x) is single periodic orbip. Sincet(f¥(I,,)) — 0we
conclude that» (1) is the orbit of the periodic poinp. By the way we choose
In;, we havef™ (1) C I, and sow(l) consists of a periodic orbit, as the thesis
of the theorem requires.

On the other hand, if( f*™(l,)) does not goes to zero, we take a sequence
K; such thatf I‘im(lni) — L for some ard. (which is at leasC?, and haveF
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INTEGRABILITY ON CODIMENSION ONE DOMINATED SPLITTING 7

as its tangent direction). Now®i+V™(l,.) — L’ and f™(L) = L’. Moreover,
L U L’ is aninterval (withF as its tangent direction). Let

J - Unzo f nm(L).

We claim that there are only two possibilities: eithkiis an arc or a simple
closed curve. To prove this, notice thEt™(L) is as-E-interval for anyn > 0.
In particular, for any € J there exist& (x) such thatVS;, (x) is stable manifold
for x, and so

W) = U WSS, (%)

xeld

is a neighborhood o08. Q2(f) = M We only have to show that, givene J,
there exists a neighborhoadl(x) such thatJ (x) N J is an arc. This implies
that J is a simple closed curve or an interval. Thus, take J, in particular
x € fMM(L). TakeU an open intervalx € U c f™™(L) and letU (x) be a
neighborhood ok such thatJ (x) ¢ W(J) and suchJ (x) N L; c U whereL,
is any interval containindg ™™(L), transverse to th&-direction andL,| < 2§,
(this is always possible i, is small). Now lety € J n'U (x). We have to prove
thaty € U. There isn, such thaty € f"™(L). Since

fHm(L) = IiEn flimEnme )

fnzm(L) — I||jn fkjm+n2m(|ni)

and both have nonempty intersection wilhix), we conclude that for somg
follows that fkimmm(|, ) and fXm™2m(] .y are linked by a local stable mani-
fold. Hencef™™(L) U f"™M(L) is an arcL 1 transverse to th&-direction with
£(L1) < 28q. Thereforey € U(x) N Ly Cc U as we wish, completing the proof
thatJ is an arc or a simple closed curve.

In casel is an arc, sincd ™(J) c J, it follows that for anyx € |, w(X) isa
w-limit point of a point inJ, hence either (2) or (3) holds, completing the proof
in this case. On the other hand Jifis a simple closed curve, which is of class
C! because is normally hyperbolic (attractive), then we have two possibilities.
If f/"j : J — J has rational rotation number, then we can seedfi&t, ) consist
of a union of periodic points, and the same happenis tb f/”] :J - Jhas
an irrational rotation number, then it is semiconjugated to an irrational rotation.
Since we are assuming that there is not wandering interval, it follows that it is
conjugated. Denoting = J, we have thai (1) is as in the first property of the
thesis of the theorem. O
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Corollary 3.1. Let f be aC' diffeomorphisms;, > 1, and let us assume that
Q(f) = M and there is a codimension one dominated splitting in the whole
manifold. Then, there is nét E-interval provideds small.

Proof. From the fact that2(f) = M follows that there is not wandering}
E-intervals. From theorem 3.1 it follows that the-limit of a §-E-interval it
is either a periodic simple closed curve normally attracting, a semi-attracting
periodic point or there exists a normally attracting periodic arc. In any case, it
is contradicted tha® (f) = M. O

Theorem 3.2. Let f be aC' diffeomorphismg;, > 2, and letA be a compact
invariant set exhibiting a codimension one dominated splitting. There éyists
such that ifl is aC" §-E-interval with§ < §p, then either (1), (2) or (3) of
theorem 3.1 hold.

Proof. To prove the previous theorem, first we need a proposition that allows to
compare the two dimensional volumeWg(J) with the one dimensional length
of aé-E-interval J that verifies that

IDf ey ll <25 forall j=0, xed. (3)

Proposition 3.1. Let f be aC'*# diffeomorphismsg > 0, and letA be a
compact invariant set exhibiting a codimension one dominated splitting. There
existsdp and K > O such thatifd is aC" §-E-interval withé < §y such that its
w—limit is not a periodic sink and verifies (3) then

Kvol(W2(J)) > £(J).

The proof of the proposition is postponed and we now finish the proof of
theorem 3.2. In what follows we take the maximal sequences of positive integers
{n;} such thatfor each is verified (1). Withoutloss of generality, we can assume
that for eacn; the arcl,, is the maximat-E-interval that containg ™ (). Let
us assume that/S(In,) N W3(ln,) = @ for everyr, j, otherwise, arguing as in
theorem 3.1 the proof is concluded.

Let A, be such thak < A, < A1 < 1. ConsiderN = N(X,, A1) from Pliss
lemma 2.3. It follows (assuming for simplicity that,; — n; > N = 1) that the
following holds:

||Df"£x+1_"||>)\£ for any xefj(lni) and 0<j <njyi—ni. (4

Bull Braz Math Soc, Vol. 38, N. 1, 2007



INTEGRABILITY ON CODIMENSION ONE DOMINATED SPLITTING 9

This implies that the derivative along thedirection behaves as an expanding
direction for iterates betweem andn;_;. In fact, (4) implies that given &<

J < njz1 —n; then _
(i A\?
IDfig™ V) < (—)

A2

foranyx e I ,. In particular

2

A\
i) < <x_> E(lni)- ()

Using proposition 3.1, we have that

iﬁ(lni) < 00

i>0

and this together with (5) imply

iﬁ(ln) < 00.

n>0

Arguing as Schwartz’s proof of the Denjoy Theorem for samkarge we may
find an arcJ,, containing properly each, such thatJ, is as—interval, which
is a contradiction with the maximality df, for everyn;. O

Now we proceed to give the proof of proposition 3.1

Proof of Proposition 3.1. Letus consider the bow/®(J). To prove the propo-
sition , it is enough to show that there is a constarstuch that given two center
unstable arcsh, J, in W3(J) transversal to thé&-direction and whose end-
points are i (W3(J)) (whered®“(W3(J)) = W2(x1) U WE(X2) and{xy, X2}
are the boundary points df) the following holds:

1 - () <C

C ™ Uk~

To prove that, let us consider the holonomiyinduces by the stable foliation
restricted to the boV>(J); i.e.: letlT : J; — J, defined agl(x) = WS(X)N Js.
Related to it, we state the next lemma.

Lemma 3.3.Let f be aC*# diffeomorphisms3 > 0, and letA be a compact
invariant set exhibiting a codimension one dominated splitting. There exists

Bull Braz Math Soc, Vol. 38, N. 1, 2007
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8o > 0andC > 0 such that ifJ is aC'" §-E-interval with§ < §g that verifies
(3), it follows that the stable holonomy restrictedw(¥(J) is C* and

1
— < ||IT|| <C. O
C_|| | <

Proof of Lemma 3.3. To avoid notation, let us denot® = W>(J). Let us
take J;, J> be the center unstable arcs that bohdin other words); U J, =

UxeddWS(X) wheredW?(x) are the boundaries oN>(x). For any positive
integerk, let us take the set

B« = FXW2(J))

and let us consider @' (not necessarily invariant) foliation that contains the
center stable leaves of the extremal points]bf: fk(J,) and Jz" = fX(J,).
Let us call this foliation’,®.

Lemma 3.4. There exists a positive constady such that fokk sufficiently large
it follows that there exists @* foliation 5 containing the center stable leaves
of the extremal points of¥ = f¥(J) such that

1 A
_—<< 4 <C
c, = [Tl = C1

wherelly is the holonomy induced k¢S from JX to JX.

Before we prove the previous lemma, let us continue with the proof lemma
3.3. Let ¢ be the foliation inB which is the pull-back foliatior s in B, and
let us define
Iy = fXo f[k o f/le.
in other wordsIIy is the projection alongf¢® betweenJ; and J,. We want
to prove thatlT, converge toll in the C1—topology. It is immediate that the
convergence holds in th@°—topology, so to conclude, we have to show that

there exist$, such that L

— < | <C

C, = [Tl < Ca
whereIly is the projection alongF® betweenJ; and J,. Notice thatJ; =
k(35 andJ, = f¥(J¥) are also two arcs iB(y) transversal to th&-direction

with endpoints ind®(B(y)). For a pointx e fj(Ji"), i = 1,2setF(x) =
T f1(J9, 0<j <k

Bull Braz Math Soc, Vol. 38, N. 1, 2007



INTEGRABILITY ON CODIMENSION ONE DOMINATED SPLITTING 11

By the equality

K= fﬁkoﬁk

Ik o f/Jl

we conclude, for € J;, that

/ —k —k _ —k A/
IT (K@) ILIDT X I = 1D X I @)
Hence
70§k /_ﬁk(n(z))” o
I (f @)l = Df—*"'”H @ll
IDf X |

Thus, to finish the proof of the lemma it suffices to fikdsuch that

—k

1 DT el

M = Df X |~
I /F(@

which is the same, setting= f %(z), as

k
i - IIDf/ﬁ(X)II
—_— k J—
M I Df/ﬁmk(x)) I

Observe that for any pair of point, z, belonging to the same central leaf of
S8, form (3), it follows that

dist(f(zy), 1(z)) < M) dist(zy, 25)
for j <k and so, given some constantthere is a constar such that
Tl (FFS00N* < A

With the same arguments as in [Sh] pages 45-46, it is possible to prove that there
existt > 0 andw > 0 such that

IDF e b1 | = 1D ety | < 01D+ dist(fl (wy), 1 (wp))*

for some constant & n < 1 andD wheneverF lies in the central unstable
cone andlist(fl(wq), fl(wy) <7, 0< j <k. (Thisis, roughly speaking, a
consequence of the fact that the distributiors «-holder and any other direction
converges exponentially fast &)
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Therefore, if the diameter ds su)(p) is less tharr, it follows that

1D p = _—
S < exp| o+ ) dist(fl 0. (k)
1T x| =0 1=

Sincex andIIy(x) belongs tof°(x), we conclude that

k n
> dist(f1(x), FIIm))® < ) e(fI(FEx))* < A.

j=0 j=0
Thus k
1D
10T e ! -
Finally, takingM = exp(an + A), we have thaC, = C.M finishing the proof
of lemma. i

Proof of Lemma 3.4. To prove it, we have to show that the quotient

€35
€39

(6)

is close to one. In this direction, first we establish the next assertion.

Asserts 3.0.1Letx € A such that does not belong to the basin of attraction of
a periodic sink. Then, for any > 0 there exist$y such that ifn > ng then

|Df/n|:(x)| > (- V)n-

In fact, if this is not the case, given > 0 it follows from lemma 2.3 that there
are two increasing sequendes,} and{ly} such that

|Df/nF(fmk(x))| <@A-y", YO<n<l 7)

Without loss of generality, we can assume t&t — z for somez € A and it
is concluded that
IDfEpl <(@—=»" Y0<n (8)

From the domination follows that
1D < (@1 —p)", YO<n 9)

Bull Braz Math Soc, Vol. 38, N. 1, 2007



INTEGRABILITY ON CODIMENSION ONE DOMINATED SPLITTING 13

and therefore there is= ¢(y) such that
B.(2) € W3(2).

Sincef™(x) € B.(2) for m large, it follows thatB, (z) is contained in the basin
of attraction of a periodic sink and therefar€x) is a periodic sink, which is a
contradiction and so the claim follows.

Coming back to the proof that (6) is close to one, observe that from the fact
that f e C*#, it follows that the center stable foliation is Holder (see [HPS])
and therefore it follows that there exists> 0 such that

(I — Al (I < £(IF) < €I + det (I

where
d = maxdist(x, WZ(x) N J5).

xeJ;

Since
de < A%

it follows that

235
€39

1—25e(IH*t < <1+ A5(IH%

On the other hand, from claim 3.0.1 it follows that
€39 > (1—y)*e(d)

and so )
ASE(I* Y < (L — ) eIt

which is small provided thdk is large andy is close enough to 0 to guarantee
thati,(1 — y)*~1is smaller than one. Therefore the lemma holds. O

3.1 Denjoy’s property and Lyapunov stability

As we have mentioned, the problem of unique integrability under the hypothesis
of codimension one dominated splitting, is related to the problem of charac-
terization of the limit set of a dynamics. We want to mention here, that this
characterization is useful to understand the Lyapunov stable systems (system
for which the states will remain bounded for all time, see [Ly]). We say that x

is Lyapunov stabldin the future) if givene > 0 there exist$ > 0 such that

Bull Braz Math Soc, Vol. 38, N. 1, 2007



14 ENRIQUE R. PUJALS and MARTIN SAMBARINO

f'(Bs(x)) C B.(f"(x)) for any positive integen. Under the assumption of
codimension one dominated splitting it is possible to characterize the Lyapunov
stable points:

Theorem 3.3.Let f : M — M be aC!-diffeomorphisms of a finite dimensional
compact Riemannian manifold and letA be a set having codimension one
dominated splitting. Then there exists a neighborh&baf A such that if
f"(x) e V for any positive integen and x is Lyapunov stable, one of the
following statements holds:

1. w(X) is a periodic orbit,

2. w(X) is a periodic curve normally attractive supporting and irrational
rotation.

3. Neither of the above andis a wandering point.
Furthermore, iff is C?, the third option can not happen.

Proof. The proof is almost straightforward from theorem 3.1. Notice that
if x is Lyapunov stable, then there isSaE-arc insideB;(x). The conclusion
now follows. 0

4  Proof of main Theorem

We say thatF is locally uniquely integrable at provided there exist a unique
(open) arcJ(x) containingx such thafTyJ(x) = F(y) foranyy e J(x) and
if for any (open) integral curv& containsx we have thatC N J(X) is open
in J(X).

To prove the main theorem, it is enough to prove thRas locally uniquely
integrable at anyk in M. In each of the next subsections, the main theorem is
proved under each assumed hypothesis.

4.1 Assumption: Q(f) =M

We shall prove thatk- is uniquely integrable at any poirte M provided that
Q(f) = M. The proof is based upon next lemma.

Lemma4.l. Let f : M — M be aC' diffeomorphisms;, > 1 such thatM
has a codimension one dominated splittihl = E & F. Let us assume that
there exists; > 0 and that givenx € M there exists, = ¢,(X) such that

Bull Braz Math Soc, Vol. 38, N. 1, 2007



INTEGRABILITY ON CODIMENSION ONE DOMINATED SPLITTING 15

fFPWS' () € WEI(F"(x)), and £(f~"(WS'(x))) — 0. ThenF is locally
uniquely integrable ax.

Proof. It follows immediately from the fact that in this case the center unstable
manifold is dynamically defined. d

To conclude the proof of the maim theorem in the present case we use
lemma 4.1. Arguing by contradiction, assume that there exjsssich that for
any e, we have that there exists> 0 such thatf ~"(WS'(x)) is not contained
in Wflu(f‘”(x_)). Recall that there exists 6f (8 < ¢1) su_ch that ify ngu(x)
and dist(f 1 (x), f7I(y)) <8 for0 < j < n, thenf~I(y) € WM(f~!(x))
forO<j<n.

Therefore, there exists a sequerge— 0 andm, — oo such that, for
0<j=<my,

LTI W) <8 and €(F™(W(x))) = 8.

Lettingl, = f~™(W;!(x)), we can assume (taking a subsequence if necessary)
thatl, — | and f "™ (x,) — z,z € | (the closure ofl ). Now, we have that
£(f"(1)) < ¢ for all positiven, and sincd c W*!(z), we conclude that is a
8-E-interval. This is a contradiction regarding corollary 3.1.

4.2 Assumption: The dominated splitting is contractive

We shall say that is an F-arc if for anyx € | thenTyl = F. A simple
ES-F-loop is a loop that is the union of&® arc and & -arc.

Lemma4.2. There isp > 0such that there is no simpE>-F loop insideBg (x)
foranyx € M.

Proof. It is an immediate consequence of the transversality between
andF. O

Lemma 4.3. There existgg such that for any < ¢y there existdM = M(¢)
such that ifl is anF-arc with£(1) < e thene(f~"(1)) < M for anyn > 0.

Proof. Leteg < B/2andlek < ¢gand assume thatthe lemmais false. Then, for
everyn there exists affr-arcl, with £(1,,) < € suchthat for some integer, > 0

we have/(f =™ (ly)) > n. Itfollows that we can find two points say, andx,; in

f =™ (1,,) and different from the endpoints ¢f-™ (l,) whose distance between
them is less tham/2. It follows thatWﬂS(xni) N =™, # {X,} and hence
we may form a simplé&s-F loop, sayy, with andES arc inside\Ng(xm) and an
F-arc insidef "™ (l,). It follows that f ™ (y) is a simpleE®-F loop contained

in Bg(f™(xn,)), & contradiction. O
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Now assume thdg is not locally uniquely integrable at some pointConsider
J; and J, two different F-arcs whose intersection is not opendn We may
assume that is at the boundary (ird;) of this intersectionf(J;), £(J) < €o.
Lety € J;\J and such thaW/’;'(y) N J, = {z}. Letr = dist(y, 2).

Asserts 4.2.1. For any K there existng = ng(K) such that for anyx € M
follows that
Radiug f "(WS(x))) > K, V n > n,

where
RadiugB(x)) = gn;ré{distg(x) (X, 2)}

and distg) (., .) is the distance induces by the Riemannian metric restricted
to B(X).

With this claim in mind, we defin&Vg (z) as the connected component of
W5(x) that contains< and has radius equal .

Notice that for anyK > 0, there exist$), such that for anyn > ng and any
w,v € f7"(J) we have thatWg (w) N W (v) = @. Otherwise, we can find
an simpleE®-F loop such that undef" is a simpleE®-F loop insideBg(X).
Consider the cylindeWy, (f ™"(J1)) = Uyet-nay) Wi (w).

Observe that for any there existdK = K (L) such that ifl is an arc join-
ing f ~"(Jy) with thes-boundary of the cylinder then its length must be greater
thanL.

Let M = M(eg) and choosd. >> M and setKk = K(L). Now, choose
n large enough so that if € Wg (w) thendist(f"(v), f"(w)) < r/2. Since
£(f~"(J)) < M it follows that f —"(J,) does not intersects teeboundary of
W (f~"(J1)). It follows that

f7"(3) € W (F7"(3)

and sof ~"(z) e Wg (f ~"(y)). This implies thatlist(y, z) < r/2, a contradic-
tion.

4.3 Assumption: f is C2 and there is not attracting or semi-attracting
periodic points

In this section we shall prove th&tis uniquely integrable providetl is C2 and
there are no semi-attracting periodic points. First we shall prove a general result
regarding the dynamics of the central unstable manifolds.

Lemmad4.4.Letf : M — M be aC' diffeomorphisms > 1 and letA be a
compact invariant set having a codimension one dominated splitting. Let either
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| be a periodic arc such that restricted tol (k being the period of) is the
identity or | be a simple closed periodic curve such tHdtrestricted tol (k
being the period of) is conjugated to an irrational rotation. Thef,is uniquely
integrable at any poink of I.

Proof. It is immediate from the fact that is an attracting normally hyper-
bolic arc. O

Using that the center unstable manifold of a codimension one dominated split-
ting are one dimensional and that they are locally invariant, it is easily concluded
the next remark:

Remark 4.3.1.Letus assume that there is a codimension one dominated splitting
over M for a C" —diffeomorphismsr(> 1). There existg; such that for any
periodic pointp of f follows that given a connected componeri\f'(p) \ { p}
either itis contained in the unstable manifoldmwbr the dynamics is the identity

in this component or contains a semi-attracting periodic point.

Lemma 4.5.Let f : M — M be aC? diffeomorphisms and let us assume that
M exhibits a codimension one dominated splitting. Let us also assume that there
are not attracting or semi-attracting periodic points. Then, there exists 0
such that for anyk € A it follows that either
1. there existy = y (€1, X) such thatf‘”(Wycu(x)) C WEH(F (X)),

2. x belongs to a normally attracting periodic simple closed curve with dy-
namics conjugated to an irrational rotation,

3. x belongs to a normally attracting periodic simple arc with dynamics (up
to the period) equal to the identity ah

Proof. Recall from corollary 2.1 the existence 8f (§ < ¢) such that if
y € W) anddist(f~I(x), fi(y)) < 8for0 < j <n, thenf-i(y) ¢
WeU(f-i(x)) for0 < j <n.

Assume that the first item conclusion of the theorem is false. Then there exist
a sequencg, — 0, my — oo such that, forO< j < mj,

LFT W (X)) < e

for somee; (smaller than the one obtained in the previous remark and smaller
thans given by theorem 3.1) and

£(fTMWEI(X))) = €1

Bull Braz Math Soc, Vol. 38, N. 1, 2007



18 ENRIQUE R. PUJALS and MARTIN SAMBARINO

Lettingln = f~™(W}'(xn)) we can assume (taking a subsequence if necessary)
thatl, — | andf ~™(x) - z,z€ A, z € | (the closure ot).

Now, we have that(f"(l)) < e; for all positiven, and since C W(2),
we conclude that is aC? §-E-interval. Now we apply Theorem 3.1. Since
they are neither attracting or semi-attracting periodic points, then either (1) or
(2) of the referred theorem happens for this brave conclude that belong to
a periodic invariant closed curve and so the second or third item of the present
lemma holds. 0

Remark 4.3.2. Let f: M — M be aC'" (r > 1) diffeomorphism and let us
assume that it has a codimension one dominated splitting bhetet | be a
normally attracting periodic simple arc. If they are neither semi-attracting or
attracting periodic points therf restricted tol is the identity map, wherk is

the period ofl .

End of the proof of the main theorem. To finish the proof we have to prove
thatF is uniquely integrable, provideld has codimension one dominated split-
ting, f is C? and there are neither attracting nor semi-attracting periodic points.
This is an immediate consequence of lemma 4.5, lemma 4.4 and lemma 4.1.
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