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Exact stability regions for quartic polynomials
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Abstract. Given an arbitrary real quartic polynomial, we find the exact region con-
taining the coefficients of the polynomial such that all roots have absolute values less
than 1.
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1 Introduction

Given the real quadratic polynomial

Q(λ) = λ2 − αλ − β, α, β ∈ R,

all its roots have absolute values less than 1 if, and only if,(α, β) lies in the plane
triangular region defined by|β| < 1, 1− α − β > 0 and 1+ α − β > 0. Such a
result is well known and has many applications in macroeconomic models and
population models (see e.g. [1]) as well as stability of dynamical systems. It is
also shown in [6] that for the real cubic polynomial

P(λ) = λ3 − (α + 1)λ2 − βλ − γ, α, β, γ ∈ R,

all its roots have absolute values less than 1 if, and only if(α, β, γ ) lies in the
three dimensional region defined by|α + 1| < 3, α+β+γ < 0, −α+β−γ < 2
andβ > γ 2 − (α + 1)γ − 1.

Although necessary and sufficient conditions (in terms of determinants) are
known for all roots of a real polynomial to have absolute values less than 1 (see
e.g. [7]), there is just a short list [2, 3, 4, 5] of results that describe explicit ‘stabil-
ity’ regions for other polynomials. One reason may be explained as follows. By
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the Schur-Cohn condition, a real polynomialf (z) = zn+a1zn−1+...+an−1z+an

is a Schur polynomial (i.e. all its roots have absolute values less than 1) if, and
only if, the polynomial

g(w) = 2−n/2(w − 1)n f

(
w + 1

w − 1

)
(1)

is a Hurwitz polynomial, and a polynomialg(w) = wn+b1w
n−1+...+bn−1w+bn

is a Hurwitz polynomial (i.e. all its roots have negative real parts) if, and only
if, for eachk = 1, ..., n,
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wherebj = 0 for j > n. If we were to apply the above condition to yield stability
criteria for a polynomial, we will be considering inequalities involving a large
number of terms. For instance, for a quartic polynomialg(w) = z4 + b1z3 +
b2z2 + b3z + b4, the casek = 4 will lead us to consider nonlinear inequality of
the form

10+5b1−6b2−9b3+b2
1−b1b2+9b1b4+b2b3+6b2b4−b2

3−5b3b4−10b2
4 > 0.

It certainly is not easy, if not impossible, to extract good information about the
stability regions of our original quartic polynomial, not to mention that we have
not even incoporated the transformation (1) to our problem yet.

In this paper, we will find the stability region for an arbitrary real quartic
polynomial of the form

8(λ |a, b, c, d) = λ4 + aλ3 + bλ2 + cλ + d, a, b, c, d ∈ R.

For the sake of convenience, a rootλ of a polynomial is said to be subnormal,
normal or supernormal if|λ| < 1, |λ| = 1 or |λ| > 1 respectively. We will also
let

ρ (a, b, c, d) = max{|λ| : 8(λ |a, b, c, d) = 0}

and
� = {(a, b, c, d) ∈ R4 : ρ (a, b, c, d) < 1}.

The set� is called the stability region for the polynomial8. A point in � is also
called a point of stability.

We will prove the following result.

Bull Braz Math Soc, Vol. 38, N. 1, 2007
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Theorem 1. All roots of8 are subnormal if, and only if,

|d| < 1, |a| < d + 3,

a + b + c + d > −1, −a + b − c + d > −1,

and
(1 − d)2b < −c2 + a(1 + d)c + (1 + d)(1 − d)2 − a2d.

We remark that whena andd are fixed numbers, the equation

b =
1

(1 − d)2

{
−c2 + a(1 + d)c + (1 + d)(1 − d)2 − a2d

}

defines a parabola in thec, b-plane. Therefore, the conditions in Theorem 1
yield a geometrical region inR4. Such a set of geometrical conditions is quite
different from the recursive algebraic conditions in [7].

2 Proof

First of all, let λ1, λ2, λ3, λ4 be the four roots of8(λ |a, b, c, d) . Thena =
−(λ1 + λ2 + λ3 + λ4) andd = λ1λ2λ3λ4. If |a| ≥ 4 or |d| ≥ 1, then clearly at
least one ofλ1, λ2, λ3 or λ4 must be normal or supernormal.

Lemma 1. The region of stability� is contained in the set

9 = {(a, b, c, d) ∈ R4 : |a| < 4, |d| < 1}.

Since the functionρ is continuous, the boundary of� is contained in the set
of points(a, b, c, d) such that8(λ |a, b, c, d) has a normal root. This prompts
us to consider

8(1 |a, b, c, d) = 1 + a + b + c + d = 0, (2)

8(−1 |a, b, c, d) = 1 − a + b − c + d = 0, (3)

and
8(e±i θ |a, b, c, d) = 0, θ ∈ (0, π). (4)

The condition (4) can be rewritten as

cos 4θ + a cos 3θ + bcos 2θ + ccosθ + d = 0,

sin 4θ + a sin 3θ + bsin 2θ + csinθ = 0,
(5)

Bull Braz Math Soc, Vol. 38, N. 1, 2007
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for θ ∈ (0, π). By well known trigonometric identities, we may further write

8 cos4 θ + 4a cos3 θ + (2b − 8) cos2 θ + (c − 3a) cosθ + d − b + 1 = 0,

{8 cos3 θ + 4a cos2 θ + (2b − 4) cosθ + c − a} sinθ = 0,

and

8 cos4 θ + 4a cos3 θ + (2b − 8) cos2 θ + (c − 3a) cosθ + d − b + 1 = 0,

8 cos3 θ + 4a cos2 θ + (2b − 4) cosθ + c − a = 0.

As a consequence,

4 cos2 θ + 2a cosθ + b − d − 1 = 0 (6)

and
(2d − 2) cosθ + (c − a) = 0. (7)

Under the condition|d| < 1, (7) can be written as

cosθ =
c − a

2(1 − d)
. (8)

Under the conditionθ ∈ (0, π), |cosθ | < 1 so that

|c − a| < 2 |1 − d| . (9)

By (6), (8) and (9),

(1 − d)2b = −c2 + a(1 + d)c + (1 + d)(1 − d)2 − a2d. (10)

The equation defined by (2) separatesR4 into two parts:

{(a, b, c, d) ∈ R4 : a + b + c + d > −1}

and
{(a, b, c, d) ∈ R4 : a + b + c + d < −1}.

We assert that� ⊆ {(a, b, c, d) ∈ R4 |a + b + c + d > −1} . To see this, note
that

lim
λ∈R,λ→∞

8(λ |a, b, c, d) = +∞

and
lim

λ∈R,λ→−∞
8(λ |a, b, c, d) = +∞.

If a + b+ c+ d + 1 ≤ 0, then8(1 |a, b, c, d) ≤ 0. Thus there exists a real root
λ∗ ≥ 1 such that8(λ∗ |a, b, c, d) = 0. This is contrary to the definition of�.

Similarly, we can show that� ⊆ {(a, b, c, d) ∈ R4 |−a + b − c + d > −1} .

We summarize these as follows.

Bull Braz Math Soc, Vol. 38, N. 1, 2007
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Lemma 2. Under the condition|d| < 1, if 8(λ|a, b, c, d) has a normal root,
then(a, b, c, d) satisfies

1 + a + b + c + d = 0, (11)

or,
1 − a + b − c + d = 0, (12)

or,
(1 − d)2b = −c2 + a(1 + d)c + (1 + d)(1 − d)2 − a2d (13)

and
a − 2(1 − d) < c < a + 2(1 − d). (14)

Furthermore, the region of stability� is contained in the set

0 =
{
(a, b, c, d) ∈ R4 : |a| < 4, |d| < 1, a + b + c + d > −1,

−a + b − c + d > −1
}
.

(15)

In order to visualize the four dimensional region�, we will consider its level
sets at each given pair(a, d) ∈ R2. In view of Lemma 1, we may also restrict
our attention to the set

2 = {(a, d) : |a| < 4, |d| < 1} ,

and the corresponding level set

�da = {(c, b) ∈ R2 |(a, b, c, d) ∈ �}

in thec, b-plane.
In view of Lemma 2, we will let

0da = {(c, b) ∈ R2 : a + b + c + d > −1, −a + b − c + d > −1}

be the level set of0 corresponding to(a, d) ∈ 2. Note that under the condition
(a, d) ∈ 2, the relation (13) defines a parabola in thec, b-plane which can be
described by the functionb = f (c|a, d) defined by

f (c|a, d) =
−c2 + a(1 + d)c + (1 + d)(1 − d)2 − a2d

(1 − d)2
,

and the relation (14) further restricts its domain of definition.

Bull Braz Math Soc, Vol. 38, N. 1, 2007
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Similarly, the relations (11) and (12) define two straight lines which can re-
spectively be described by the functionsb = L∗(c|a, d) andb = L∗(c|a, d) :

L∗(c|a, d) = −a − c − d − 1,

L∗(c|a, d) = c + a − d − 1.

We will need the points of intersection of the parabola (13) and the straight
linesL∗ andL∗. First, we consider the function

g∗(c|a, d) = f (c|a, d) − L∗(c|a, d)

=
−c2 + a(1 + d)c + (1 + d)(1 − d)2 − a2d

(1 − d)2
− a − c + d + 1,

which describes a parabola in thec, b-plane with roots

c1 = ad + 1 − d2 and c2 = a − 2 + 2d.

Hence the points of intersection of the parabolaf and the straight lineL∗ are

(c1, b1) = (ad + 1 − d2, ad − d2 + a − d),

(c2, b2) = (a − 2 + 2d, 2a + d − 3).

Similarly, we consider the function

g∗(c|a, d) = f (c|a, d) − L∗(c|a, d)

=
−c2 + a(1 + d)c + (1 + d)(1 − d)2 − a2d

(1 − d)2
+ a + c + d + 1,

which describes a parabola in thec, b-plane with roots

c3 = ad − 1 + d2 andc4 = a + 2 − 2d.

Hence the points of intersection of the parabolaf and the straight lineL∗ are

(c3, b3) = (ad − 1 + d2, −ad − d2 − a − d),

(c4, b4) = (a + 2 − 2d, −2a + d − 3).

Further, the point of intersection of the linesL∗ andL∗ is

(c5, b5) = (−a, −1 − d).

To proceed further, it is necessary to divide2 into five mutually disjoint parts
21,22,23,24 and25 (see Figure 1). They are formed by intersections of2

with the half planes defined bya − d − 3 ≥ 0, a + d + 3 ≤ 0, a − d + 1 > 0
anda + d − 1 < 0, a + d − 1 ≥ 0 anda − d − 3 < 0, a − d + 1 ≤ 0 and
a + d + 3 > 0 :

Bull Braz Math Soc, Vol. 38, N. 1, 2007
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(i) 21 : |a| < 4, |d| < 1 anda − d − 3 ≥ 0;

(ii) 22 : |a| < 4, |d| < 1 anda + d + 3 ≤ 0;

(iii) 23 : |a| < 4, |d| < 1 and|a| < 1 − d;

(iv) 24 : |a| < 4, |d| < 1, a + d − 1 ≥ 0 anda − d − 3 < 0; and

(v) 25 : |a| < 4, |d| < 1, a − d + 1 ≤ 0 anda + d + 3 > 0.

Lemma 3. Letc = 0andb = 7. Then for any(a, d) ∈ 2, we have(c, b) ∈ 0da

andρ(a, b, c, d) > 1.

Proof. Indeed, when|a| < 4 and|d| < 1,

a + b + c + d = a + d + 7 > −5 + 7 > 1

and
−a + b − c + d = d − a + 7 > −5 + 7 > 1.

Bull Braz Math Soc, Vol. 38, N. 1, 2007
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Furthermore, letλ1, λ2, λ3, λ4 be the four roots of8(λ|a, b, c, d). Then

7 = b = λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4

≤ |λ1λ2| + |λ1λ3| + |λ1λ4| + |λ2λ3| + |λ2λ4| + |λ3λ4| ,

so that there exists some|λi | > 1. �

2.1 Case 1

Suppose(a, d) ∈ 21 defined by|a| < 4, |d| < 1 anda − d − 3 ≥ 0. We assert
that the graph ofb = f (c|a, d) with c ∈ (a − 2(1 − d), a + 2(1 − d)) and the
level set0da are disjoint.

To see the proof, note that the points of intersection of the parabola (13) and
the straight linesL∗ and L∗ have been found as(ci , bi ), 1 ≤ i ≤ 5. They
can be ordered by their first coordinates. Indeed, since|a| < 4, |d| < 1 and
a − d − 3 ≥ 0,

c4 − c2 = 4 − 4d > 0,

c1 − c3 = 2 − 2d2 > 0,

c2 − c1 = a − 2 + 2d − ad − 1 + d2 = (1 − d)(a − d − 3) ≥ 0,

c3 − c5 = ad + d2 − 1 + a = (1 + d)(a + d − 1) > 0,

(16)

so that we have the relation

c5 < c3 < c1 ≤ c2 < c4.

We now only need to show that the graph of the functionf (with domain defined
by (14)) lies below the region0da (see Figure 2). To see this, it suffices to show
that the domain off is betweenc2 andc4 and f (c|a, d) < L∗(c|a, d). Indeed,
this follows from

c2 = a − 2(1 − d) < c < a + 2(1 − d) = c4

and
L∗(c|a, d) − f (c|a, d) = −g∗(c|a, d)

because−g∗(c|a, d) is a parabola and−g∗(c1|a, d) = −g∗(c2|a, d) = 0,
−g∗(c|a, d) > 0, for c2 < c < c4.

We now show that for each(a, b, c, d) such that(a, d) ∈ 21 and (c, b) ∈
0da, ρ(a, b, c, d) > 1. To see this, note that in view of Lemma 3, the point
(a′, b′, c′, d′) = (a′, 6, 0, d′) with (a′, d′) ∈ 21 satisfies(c′, b′) ∈ 0da and

Bull Braz Math Soc, Vol. 38, N. 1, 2007
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Figure 2:a = 3.9, d = 0.

ρ(a′, b′, c′, d′) > 1. By the continuity ofρ and the obvious fact that0d′a′ is path-
wise connected, the contrary conclusion would imply there exists(a′, b′′, c′′, d′)

such that(c′′, b′′) ∈ 0da and8(λ
∣
∣a′, b′′, c′′, d′

)
has a normal root. But then

by Lemma 2,b′′ = L∗(c′′|a′, d′), or b′′ = L∗(c′′|a′, d′), or b′′ = f (c′′|a′, d′)

and
∣
∣c′′ − a′

∣
∣ < 2

∣
∣1 − d′

∣
∣ , which cannot be true since we have assumed that

(a′, d′) ∈ 21 and(c′′, b′′) ∈ 0d′a′ .

We may now assert that�da is empty, for otherwise,�da is contained in0da

by Lemma 2, which is contrary to what we have just shown.

2.2 Case 2

Suppose(a, d) ∈ 22 defined by|a| < 4, |d| < 1 anda + d + 3 ≤ 0. Since21

and22 in thea, d-plane are symmetric with respect to thed axis, we may follow
the arguments in Case 1 closely and show that the points(ci , bi ), i = 1, ..., 5,

can be ordered by
c2 < c4 ≤ c3 < c1 < c5.

Bull Braz Math Soc, Vol. 38, N. 1, 2007
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Then we may show that the functionb = f (c|a, d) with c ∈ (a − 2(1− d), a +
2(1−d)) lies entirely below the lineL∗ (see Figure 3). Then for each(a, b, c, d)

such that(a, d) ∈ 22 and(c, b) ∈ 0da, we may show by continuity ofρ and the
pathwise connectedness of0da thatρ(a, b, c, d) > 1. In view of Lemma 2,�da

is empty.
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Figure 3:a = −3.9, d = 0.

2.3 Case 3

Suppose(a, d) ∈ 23 defined by|a| < 4, |d| < 1 and|a| < 1 − d. We first
assert that the graphG f of b = f (c|a, d) with c ∈ (a − 2(1− d), a + 2(1− d))

separates the level set0da into three parts

Dda = {(c, b) ∈ 0da : b < f (c|a, d)}, (17)

Eda = {(c, b) ∈ 0da : b > f (c|a, d)} (18)

and
Fda = {(c, b) ∈ 0da : b = f (c|a, d)}. (19)

Bull Braz Math Soc, Vol. 38, N. 1, 2007
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To verify our assertion, consider the points of intersections(ci , bi ), i =
1, ..., 5. Since

c4 − c1 = a + 2 − 2d − ad − 1 + d2 = (1 − d)(a − d + 1) > 0,

c1 − c5 = a − d2 + 1 + ad = (1 + d)(a − d + 1) > 0,

c5 − c3 = −a − ad + 1 − d2 = (1 + d)(−a − d + 1) > 0,

c3 − c2 = ad + d2 − 1 − a + 2 − 2d = (d − 1)(a + d − 1) > 0,

we have the relation
c2 < c3 < c5 < c1 < c4.

Then since

f (c|a, d) − L∗(c|a, d) = g∗(c|a, d),

f (c|a, d) − L∗(c|a, d) = g∗(c|a, d)

andg∗(c|a, d) is a parabola in thec, b-plane, andg∗(c3|a, d) = g∗(c4|a, d) = 0,
g∗(c|a, d) > 0, for c ∈ (c3, c1), we see that the graphG f lies above the lineL∗.
Similarly, we may show that the graphG f lies above the lineL∗, the graph of
b = f (c|a, d) for c ∈ (c3, c1) lies inside the region0da (see Figure 4).

Now that we have shown the graphG f separates0da into three partsDda,
Eda and Fda. We assert further thatDda = �da, that is, the regionDda is the
desired stability region. It suffices to show that for each point(c, b) in Dda,

ρ(a, b, c, d) < 1 and for each point(c, b) in Eda ∪ Fda, ρ(a, b, c, d) ≥ 1.

To see that the former statement holds, we take an arbitrary point(a, d) in 23,

and take
b′ = −d2 − d, c′ = ad.

Then(c′, b′) ∈ Dda for

a − d2 − d + ad + d = a(1 + d) − d2 > d2 − 1 − d2 > −1,

−a − d2 − d − ad + d = −a(1 + d) − d2 > d2 − 1 − d2 > −1,

which imply (c′, b′) ∈ 0da, and

−a2d2 + a2d(1 + d) + (1 + d)(1 − d)2 − (a)2(d)

(1 − d)2
= 1 + d > −d2 − d,

which impliesb′ < f (c′|a, d). Furthermore, the corresponding quartic polyno-
mial is

8(λ|a, b′, c′, d) = λ4 + aλ3 + (−d2 − d)λ2 + adλ + d.

Bull Braz Math Soc, Vol. 38, N. 1, 2007
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Figure 4:a = 0, d = 0.

If we take [7, p.203]

8ˆ(λ|a, b, c, d) = −[1 − d2][λ4 + aλ3 − dλ2] = −[1 − d2]λ2[λ2 + aλ − d],

then we have

∣
∣8(ei θ |a, b, c, d) + 8ˆ(ei θ |a, b, c, d)

∣
∣

=
∣
∣d2ei 4θ + ad2ei 3θ + (−d2 − d3)ei 2θ + adei θ + d

∣
∣

= |d|
∣
∣ei 4θ

∣
∣
∣
∣d + ade−i θ + (−d2 − d)e−2i θ + ae−3i θ + e−4i θ

∣
∣

= |d|
∣
∣d + adei θ + (−d2 − d)e2i θ + ae3i θ + e4i θ

∣
∣

= |d|
∣
∣8(ei θ |a, b, c, d)

∣
∣

<
∣
∣8(ei θ |a, b, c, d)

∣
∣

for all θ ∈ [0, 2π). By Rouche’s theorem8(λ|a, b′, c′, d) and8ˆ(λ|a, b, c, d)

have an equal number of zeros inside the unit circle{λ : |λ| = 1} in the plane.
In view of |d| < 1, 1 + a − d > 0 and 1− a − d > 0, the very first statement
in the introduction implies8ˆ(λ|a, b, c, d) have four zeros inside the unit circle
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{λ : |λ| = 1} . Thus 8(λ|a, b′, c′, d) have four zeros inside{λ : |λ| = 1} . So
ρ(a, b′, c′, d) < 1, in other words,(c′, b′) ∈ �da.

For any point(c, b) ∈ Dda, we assert thatρ(a, b, c, d) < 1. Suppose not,
there would exist(c′′, b′′) ∈ Dda such thatρ(a, b′′, c′′, d) ≥ 1. But in view of
the continuity ofρ and the obvious fact thatDda is pathwise connected, there
exists(c0, b0) ∈ Dda such that8(λ|a′, b0, c0, d′) has a normal root, but this is
contrary to Lemma 2.

Next, we show that for each point(c, b) in Eda, ρ(a, b, c, d) > 1. Indeed we
take an arbitrary point(a, d) ∈ 23 and (c′, b′) = (0, 7). Then by Lemma 3,
ρ(a, b′, c′, d) > 1. If there exists(c, b) ∈ Eda such thatρ(a, b, c, d) < 1, then
by the continuity ofρ and the obvious fact thatEd′a′ is pathwise connected, there
would exist(c0, b0) ∈ Eda such that8(λ|a, b0, c0, d) has a normal root, but this
is contrary to Lemma 2.

Finally, we show that for each point(c, b) in Fda, ρ(a, b, c, d) ≥ 1. Indeed, if
not, by continuity ofρ and the pathwise connectedness ofEda∪ Fda, there would
exist a point(c0, b0) in Fda such thatρ(a, b0, c0, d) = 1, which is contrary to
Lemma 2.

2.4 Case 4

Suppose(a, d) ∈ 24defined by|a| < 4, |d| < 1, a + d − 1 ≥ 0 anda −
d − 3 < 0. We assert that the graphG f of the functionb = f (c|a, d) with
c ∈ (a − 2(1 − d), a + 2(1 − d)) separates0da into three parts

Gda = {(c, b) ∈ 0da : b < f (c|a, d)} (20)

and
Hda = {(c, b) ∈ 0da : b > f (c|a, d)}. (21)

and
Ida = {(c, b) ∈ 0da : b = f (c|a, d)}. (22)

To verify our assertion, consider the points of intersections(ci , bi ), i =
1, ..., 5. Since

c4 − c1 = a + 2 − 2d − ad − 1 + d2 = (1 − d)(a − d + 1) > 0,

c1 − c2 = ad − d2 + 1 − a + 2 − 2d = (d − 1)(a − d − 3) > 0,

c2 − c3 = −ad − d2 + 1 + a − 2 + 2d = (1 − d)(a + d − 1) ≥ 0,

c3 − c5 = ad − 1 + d2 + a = (1 + d)(a + d − 1) ≥ 0,

we have the relation
c5 < c3 < c2 < c1 < c4,
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or
c5 = c3 = c2 < c1 < c4.

Then since
f (c|a, d) − L∗(c|a, d) = g∗(c|a, d)

andg∗(c|a, d) is a parabola in thec, b-plane, andg∗(c1|a, d) = g∗(c2|a, d) = 0,
g∗(c|a, d) > 0, for c ∈ (c2, c1), we see that the graphG f lies above lineL∗.

This shows that the graphG f separates0da into three partsGda, Hda and Ida

(see Figure 5).
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Figure 5:a = 1.2, d = 0.

Now that we have shownG f separates0da into three partsGda, Hda, andIda.

We assert further thatGda = �da, that is, the regionGda is the desired stability
region. It suffices to show that for each point(c, b) in Gda, ρ(a, b, c, d) < 1
and for each point(c, b) in Hda ∪ Ida, ρ(a, b, c, d) ≥ 1.

To see that the former statement holds, we take an arbitrary point(a, d) ∈ 24,

and take

c′ =
c1 + c2

2
=

a(1 + d) − (1 − d)2

2
,

b′ =
L∗(c′|a, d) + f (c′|a, d)

2
=

a2 − 3(1 − d)2 + 2a(1 + d) + 4a

8
,
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Then(b, c) ∈ Gda for

a +
a2 − 3(1 − d)2 + 2a(1 + d) + 4a

8
+

a(1 + d) − (1 − d)2

2
+ d

=
a2 − 7(1 − d)2 + 6a(1 + d) + 12a + 8d

8

≥
(1 − d)2 − 7(1 − d)2 + 6(1 − d)(1 + d) + 12(1 − d) + 8d

8

=
−12d2 + 8d + 12

8

=
−3d2 + 2d + 3

2
> −1,

and

−a +
a2 − 3(1 − d)2 + 2a(1 + d) + 4a

8
−

a(1 + d) − (1 − d)2

2
+ d

=
a2 + (1 − d)2 − 2a(1 + d) − 4a + 8d

8

=
a2 + (1 − d)2 − 2a(3 + d) + 8d

8

>
(3 + d)2 + (1 − d)2 − 2(3 + d)2 + 8d

8
= −1,

imply (c′, b′) ∈ 0da, and

b′ =
L∗(c′|a, d) + f (c′|a, d)

2
<

f (c′|a, d) + f (c′|a, d)

2
= f (c′|a, d)

impliesb′ < f (c′|a, d). Let [7, p.203]

8ˆ(λ|a, b′, c′, d) = −(1 − d2)λ4 − (a − dc′)λ3 − b′(1 − d)λ2 − (c′ − ad)λ.

Since
∣
∣8(ei θ |a, b′, c′, d) + 8ˆ(ei θ |a, b′, c′, d)

∣
∣

=
∣
∣d2e4i θ + dc′e3i θ + b′de2i θ + adei θ + d

∣
∣

=
∣
∣d

∣
∣
∣
∣e4i θ

∣
∣
∣
∣d + c′e−i θ + b′e−2i θ + ae−3i θ + e−4i θ

∣
∣

=
∣
∣d

∣
∣
∣
∣d + c′ei θ + b′e2i θ + ae3i θ + e4i θ

∣
∣

=
∣
∣d

∣
∣
∣
∣8(ei θ |a, b′, c′, d)

∣
∣

<
∣
∣8(ei θ |a, b′, c′, d)

∣
∣

Bull Braz Math Soc, Vol. 38, N. 1, 2007



“main” — 2007/3/6 — 18:19 — page 36 — #16

36 SUI SUN CHENG and SHIH SHAN CHIOU

for θ ∈ [0, 2π), by Rouche’s theorem,8(λ|a, b′, c′, d) and8ˆ(λ|a, b′, c′, d)
have an equal number of zeros inside the unit circle{λ : |λ| = 1} in the plane.
So we only need to consider

8ˆ(λ|a, b′, c′, d) = −(1 − d2)λ4 − (a − dc′)λ3 − b′(1 − d)λ2 − (c′ − ad)λ

= −(1 − d2)λ

{
λ3 +

(a − dc′)

1 − d2
λ2 +

b′(1 − d)

1 − d2
λ +

(c′ − ad)

1 − d2

}
.

Note that

a∗ = −
(a − dc′)

1 − d2
= −

a(2 + d) + d(1 − d)

2(1 + d)

b∗ = −
b′(1 − d)

1 − d2
= −

a2 + 2a(d + 3) − 3(1 − d)2

8(1 + d)

c∗ = −
(c′ − ad)

1 − d2
= −

a + d − 1

2(1 + d)

satisfy

−1 + d ≥ a∗ > −3,

0 ≥ c∗ > −1,

a∗ + b∗ + c∗ = −
a2 + 6a(d + 3) − 7(1 − d)2

8(1 + d)
≤ −

3(1 − d)

2
< 1,

−a∗ + b∗ − c∗ = −
a2 − 2a(d + 3) + (1 − d)2

8(1 + d)
< 1,

−(c∗)2 + a∗c∗ + b∗ =
[a(2 + d) + d(1 − d)][a + d − 1] − [a + d − 1]2

4(1 + d)2
+ b∗

=
[a + d − 1][a + 1 − d]

4(1 + d)
+ b∗

=
a2 − 2a(d + 3) + (1 − d)2

8(1 + d)
> −1,

by the result mentioned above for cubic polynomials, we see that
8ˆ(λ|a, b′, c′, d) have four zeros inside the unit circle{λ : |λ| = 1} in the plane.
Thus8(λ|a, b′, c′, d) have four zeros inside the unit circle{λ : |λ| = 1} in the
plane. Soρ(a, b′, c′, d) < 1, in other words,(c′, b′) ∈ �da.

As in the proof of the previous Case 3, we may now show that for any point
(c, b) ∈ Gda, ρ(a, b, c, d) < 1. We may also show that for any point(c, b) ∈
Hda ∪ Ida, ρ(a, b, c, d) ≥ 1. The proof of our assertion is complete.
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2.5 Case 5

Suppose(a, d) ∈ 25 defined by|a| < 4, |d| < 1,a−d+1 ≤ 0 anda+d+3 > 0.

Since24 and25 in thea, d-plane are symmetric with respect to thed axis, we
may follow the arguments in Case 4 closely and show that the points(ci , bi ),

i = 1, ..., 5, can be ordered by

c2 < c3 < c4 < c1 < c5 or c2 < c3 < c4 = c1 = c5

Then we may show that the functionb = f (c|a, d) with c ∈ (c3, c4) lies entirely
above the lineL∗ and separates0da into three parts

Jda = {(c, b) ∈ 0da : b < f (c|a, d)} (23)

and
Kda = {(c, b) ∈ 0da : b > f (c|a, d)} (24)

and
Lda = {(c, b) ∈ 0da : b = f (c|a, d)} (25)

(see Figure 6). Then we may show thatJda = �da as in the Case 4.
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Figure 6:a = −1.2, d = 0.
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3 Second and Third Order Polynomials

As a check for Theorem 1, consider second order polynomials of the form

Q(λ) = λ2 + aλ + b, a, b ∈ R.

Theorem 1 asserts that all roots ofQ are subnormal if, and only if,

|a| < 3, a + b > −1, −a + b > −1, b < 1,

or equivalently,
a + b > −1, −a + b > −1, b < 1.

This is exactly the same result stated at the very beginning.
As another check, consider third order polynomials of the form

Q(λ|a, b, c) = λ3 + aλ2 + bλ + c, a, b, c ∈ R.

Then Theorem 1 asserts that all roots ofQ are subnormal if, and only if,

|a| < 3, a + b + c > −1, −a + b − c > −1, b < −c2 + ac+ 1. (26)
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