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1 Introduction

Given the real quadratic polynomial
QW) =r*—ar—B, @, € R,

all its roots have absolute values less than 1 if, and on{yjfg) lies in the plane
triangular region definedby| <1, 1—o— 8 > 0and 1+« — 8 > 0. Such a
result is well known and has many applications in macroeconomic models and
population models (see e.g. [1]) as well as stability of dynamical systems. It is
also shown in [6] that for the real cubic polynomial

PR =23—(@+Dr2—Br—y, a,B,7 €R,

all its roots have absolute values less than 1 if, and onfy,i3, y) lies in the
three dimensional region definedfoy+ 1| < 3, +p+y <0, —a+p—y < 2
andg > y2 — (@ + 1y — 1.

Although necessary and sufficient conditions (in terms of determinants) are
known for all roots of a real polynomial to have absolute values less than 1 (see
e.g. [7]), thereisjustashortlist[2, 3, 4, 5] of results that describe explicit ‘stabil-
ity’ regions for other polynomials. One reason may be explained as follows. By
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22 SUI SUN CHENG and SHIH SHAN CHIOU

the Schur-Cohn condition, areal polynomfdl) = z"+a;z"1+...+a,_1z+a,
is a Schur polynomial (i.e. all its roots have absolute values less than 1) if, and
only if, the polynomial

g(w) = 22(w — 1" f (%D (1)

is a Hurwitz polynomial, and a polynomigdw) = w"+byw"14...4b,_w+b,
is a Hurwitz polynomial (i.e. all its roots have negative real parts) if, and only
if, foreachk =1, ..., n,

by by bs - by

1 by by - bxo

0 bl b3 cee b2k_3 >0
0 0 0 N o7

whereb; = Ofor j > n. If we were to apply the above condition to yield stability
criteria for a polynomial, we will be considering inequalities involving a large
number of terms. For instance, for a quartic polynongi@h) = z* + b;z° +
b,7? + bsz + ba, the casé = 4 will lead us to consider nonlinear inequality of
the form

10+ 5b; — 60, — 93+ b — b by -+ 9b; by + bybz -+ 6,0, — b3 — Shzb, — 1003 > 0.

It certainly is not easy, if not impossible, to extract good information about the
stability regions of our original quartic polynomial, not to mention that we have
not even incoporated the transformation (1) to our problem yet.

In this paper, we will find the stability region for an arbitrary real quartic
polynomial of the form

d(rla,b,c,d) =2 +ar®+br’+cr+d, a,bc,de R

For the sake of convenience, a raadf a polynomial is said to be subnormal,
normal or supernormal if| < 1, |A| = 1 or|A| > 1 respectively. We will also
let

p (@, b, c,d) =max{|r] : @(x]a,b,c,d) =0}
and
Q={@b,c,d eR:p@b,cd <1.
The sef2 is called the stability region for the polynomi@l A pointin  is also
called a point of stability.
We will prove the following result.

Bull Braz Math Soc, Vol. 38, N. 1, 2007
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Theorem 1. All roots of ® are subnormal if, and only if,
d| < 1, |a]| <d+ 3,

a+b+c+d>-1, —a+b—-—c+d> -1,

and
1-—d)?b < —c?+ald+dc+ (1+d)1-d)?—ad.

We remark that whea andd are fixed numbers, the equation

b —c?+a(l+d)c+ (1+d)(1 - d)* — a’d}

“doapt

defines a parabola in the b-plane. Therefore, the conditions in Theorem 1
yield a geometrical region iR*. Such a set of geometrical conditions is quite
different from the recursive algebraic conditions in [7].

2 Proof

First of all, letAq, A2, A3, A4 be the four roots ofb(A |a, b, c,d). Thena =
—(A1 4+ Ao+ Az + Ag) andd = AidoiszAg. If |@] > 4 or|d| > 1, then clearly at
least one oh1, A2, A3 Or A4 must be normal or supernormal.

Lemma 1. The region of stability2 is contained in the set

v ={@b,c,d eR:|al <4 |d| <1}.

Since the functiorp is continuous, the boundary 6f is contained in the set
of points(a, b, ¢, d) such thatb (A |a, b, ¢, d) has a normal root. This prompts
us to consider

®(1lla,b,c,dy=1+a+b+c+d=0, (2)
®d(-1la,b,c,dy=1—-a+b—-c+d=0, 3

and ‘
o a,b,c,d) =0, 8 € (0,n). (4)

The condition (4) can be rewritten as

cosd +acosIP +bcosd +ccoshd +d =0,

sind +asind® +bsin® + csind = 0, (5)

Bull Braz Math Soc, Vol. 38, N. 1, 2007
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for 6 € (0, ). By well known trigonometric identities, we may further write

8cog 6 +4acosh + (2b—8)cog + (c—3a)cosd +d —b+1=0,
{8co$0 + 4acosh + (2b — 4)cosd + ¢ —a}sind =0,

and

8cod 6 +4acosh + (2b—8)cogH + (c—3a)cosd +d —b+1=0,
8cos$0 +4acosh + (2b—4)cosh +c—a=0.

As a consequence,

4cogb +2acosh+b—d—-—1=0 (6)
and
(2d —2)cosh + (c—a) = 0. (7)
Under the conditiond| < 1, (7) can be written as
cost = ﬁ. (8)
Under the conditio® € (0, ), |cosfd| < 1 so that
lc—al <2]|1-d]. 9)
By (6). (8) and (9),
(1—d)*p = —c’+a(l+d)c+ (1+d)(1—d)* - a’d. (10)

The equation defined by (2) separaRésinto two parts:
{@,bccdeR:a+b+c+d> -1}

and
{a,b,ccd)e R*:a+b+c+d< —1}.

We assert tha® < {(a,b,c,d) € R*|la+b+c+d > —1}. To see this, note
that
lim &(la,b,c d) =400

LeR,A—>00

and
lim &(la, b,c d) =+o0.

LeRA—>—0
Ifa+b+c+d+1<0,thend(1]a,b,c,d) < 0. Thus there exists a real root
A* > 1 such thatb (A* |a, b, ¢, d) = 0. This is contrary to the definition &2.
Similarly, we can show tha® < {(a,b,c,d) e R*|—a+b—-c+d > —1}.
We summarize these as follows.

Bull Braz Math Soc, Vol. 38, N. 1, 2007
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Lemma 2. Under the conditiond| < 1, if ®()1|a, b, ¢, d) has a normal root,
then(a, b, ¢, d) satisfies

l+a+b+c+d=0, (11)

or,
l-a+b-c+d=0, (12)

or,
1-d)?b=—-c?+ald+dc+ (1+d)(1-d)?—a%d (13)

and
a—21-d)<c<a+21-d. (14)

Furthermore, the region of stabilit@ is contained in the set

r={@hbcdeR:ja<4|d <la+b+c+d>-1,

15
—a+b—c+d>—1}. .

In order to visualize the four dimensional regi@n we will consider its level
sets at each given paia, d) € R?. In view of Lemma 1, we may also restrict
our attention to the set

®=1{@ad:|al <4 <1},
and the corresponding level set
Qua = {(c,b) € R?|(a,b,c,d) € Q)

in thec, b-plane.
In view of Lemma 2, we will let

Fga={(c,b)e RP:a+b+c+d>—-1,-a+b—c+d> -1}

be the level set of corresponding tga, d) € ®. Note that under the condition
(a,d) € O, the relation (13) defines a parabola in thd-plane which can be
described by the function = f (c|a, d) defined by

—c?+aldl+dec+@+d)@1-d)?—axd

f(cla,d) = 1_d)y

and the relation (14) further restricts its domain of definition.

Bull Braz Math Soc, Vol. 38, N. 1, 2007
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Similarly, the relations (11) and (12) define two straight lines which can re-
spectively be described by the functidms- L, (c|a, d) andb = L*(c|a, d) :
L.(cla,d) = —-a—-c—d-1,
L*(cla,d) = c+a—-d-1
We will need the points of intersection of the parabola (13) and the straight
linesL, andL*. First, we consider the function
g'(cla,d) = f(cla,d)—L"(cla,d)
—c2+all+dec+ 1+d)(1-d?-a4d
= —a—c+d+1,
1—d)? +d+
which describes a parabola in tbgb-plane with roots

cg=ad+1-d? andc,=a— 2+ 2d.
Hence the points of intersection of the parabbland the straight lin&* are

(ci,b)) = (@d+1—d? ad—d?+a—d),
(co,b))=(@—-2+2d,2a+d - 3).

Similarly, we consider the function

g«(cla,d) = f(cla,d)— L.(cla,d)

—c2+al+dc+ @A+d)(@L-d)?-—a%d
= +ad+ )(_il_(_;;z J ) +a+c+d+1,

which describes a parabola in tbgb-plane with roots

cs=ad—1+d?andc; =a+2— 2d.
Hence the points of intersection of the parabbland the straight ling.,, are

(Ca,b3) = (ad— 1+ d?, —ad —d? —a—d),
(Cs, b)) =(@+2-2d,-2a+d - 3).

Further, the point of intersection of the lines andL* is
(C57 b5) - (_a’ _1 - d)

To proceed further, it is necessary to diviéento five mutually disjoint parts
01, O, O3, ®4 andBOs (see Figure 1). They are formed by intersection®of
with the half planes definedly—d —-3>0,a+d+3<0,a—-d+1>0
anda+d—-1<0,a+d—-1>0anda—-d-3<0,a—-d+1<0and
a+d+3>0:

Bull Braz Math Soc, Vol. 38, N. 1, 2007
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Figure 1

() ®1:]a] <4,|d| <landa—d—-3=>0;

(i) ®2:1al <4, |d|<landa+d+3<0;

(i) ®3:]al <4,|d| <landla] <1—d;

(iv) ®4:|al <4,|d|<l,a+d—-1>0anda—d—-3<0; and

(V) ®s:lal<4,|d|<l,a—d+1<0anda+d+3>0.

Lemma3. Letc=0andb = 7.Thenforanya, d) € ®, we havdc, b) € 'y,
andp(a,b,c,d) > 1.

Proof. Indeed, whena| < 4 and|d| < 1,
at+b+c+d=a+d+7>-5+7>1

and
—-a+b—-c+d=d—-a+7>-5+7>1.

Bull Braz Math Soc, Vol. 38, N. 1, 2007
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Furthermore, lekq, Ao, A3, A4 be the four roots ofb (A|a, b, ¢, d). Then

7 = b=2xXy+ rrs+ ra+ Aoz + dora + Ashg
< |Aad2| + [AaAz| + [A1Aa] + [A2As] + [A2Aa| + |A3Aal,

so that there exists somig | > 1. O

2.1 Casel

Supposda, d) € @, defined byla| < 4, |d| < 1anda — d — 3 > 0. We assert
that the graph ob = f(c|a, d) withc € (a — 2(1 — d),a+ 2(1 — d)) and the
level setly, are disjoint.

To see the proof, note that the points of intersection of the parabola (13) and
the straight lined_, and L* have been found a&;j, b)), 1 < i < 5. They
can be ordered by their first coordinates. Indeed, sjate< 4, |d| < 1 and
a—-d-3>0,

Cs—C=4—4d > 0,

c—C3=2-2d2>0,
—cg=a—-2+2d—ad—1+d’=1-d)(a—d—-23) >0,
g—c=ad+d’>’—1+a=@1+d@+d-1 >0,

(16)

so that we have the relation
C5<C3<C <C <(Cy.

We now only need to show that the graph of the functiafvith domain defined
by (14)) lies below the regiofy, (see Figure 2). To see this, it suffices to show
that the domain off is betweert, andc, and f (c|a, d) < L*(c|a, d). Indeed,
this follows from

cc=a—-21-d)<c<a+2(1l-d)=c4
and
L*(cla,d) — f(cla,d) = —g*(cla, d)
because-g*(c|a, d) is a parabola and-g*(ci|la,d) = —g*(c;la,d) = O,
—g*(cla,d) > 0, forc; < ¢ < ¢4.

We now show that for eacta, b, ¢, d) such that(a, d) € ®; and(c,b) ¢
s, p(@ b, c,d) > 1. To see this, note that in view of Lemma 3, the point
@,b,c,d) = (@,6,0,d) with (a’,d") € ©; satisfies(c’,b’) € I'ya and

Bull Braz Math Soc, Vol. 38, N. 1, 2007
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Cl\ = L*: b=c+2.9

-10 |-

-12 - P

-14

Figure 2:a =3.9,d = 0.

p@,0,c,d) > 1. By the continuity ofp and the obvious fact th&@ly 5 is path-
wise connected, the contrary conclusion would imply there ega@sid”, ¢”, d’)
such that(c”, b”) € I'ya and ® (A ]a’, b”, c”, d/) has a normal root. But then
by Lemma 2b’ = L,(c’|a,d), orb” = L*(c"|a,d"), orb” = f(c"|a,d)
and|c” —a'| < 2|1—d’|, which cannot be true since we have assumed that
(@,d) e ® and(c’,b") € T'ya.

We may now assert th&@ty, is empty, for otherwiseQ2q, is contained iy,
by Lemma 2, which is contrary to what we have just shown.

2.2 Case?

Supposda, d) € O, defined byla| < 4, |d| < 1anda+d + 3 < 0. Since®,
and®, in thea, d-plane are symmetric with respect to thaxis, we may follow
the arguments in Case 1 closely and show that the péintk;), i = 1, ..., 5,
can be ordered by

Ch<C <C3<C(C <Cs.

Bull Braz Math Soc, Vol. 38, N. 1, 2007
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Then we may show that the functibn= f (cla, d) withce (a—2(1—d),a+

2(1—d)) lies entirely below the lind., (see Figure 3). Then for ea¢h, b, c, d)

such thata, d) € ®; and(c, b) € I'qa, we may show by continuity gf and the
pathwise connectednessIaf, thatp(a, b, ¢, d) > 1. In view of Lemma 2244

is empty.

15

L, b=-c+2.9

10f / ]

-10 + P -

15 I I I I I I
-8 N - -

Figure 3:a=-3.9,d = 0.

2.3 Case3

Supposga, d) € O3 defined byla] < 4, |d] < 1 and|a] < 1 — d. We first
assert that the grapBs of b = f(cja,d) withce (a—2(1—d),a+2(1—d))
separates the level sBt, into three parts

Ddga = {(C,b) € T4a: b < f(cla, d)}, (17)

Edga = {(c,b) € T'qa: b > f(cla,d)} (18)
and

Faa = {(C,b) € Tya: b= f(cla, d)}. (19)

Bull Braz Math Soc, Vol. 38, N. 1, 2007
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To verify our assertion, consider the points of intersectiénish;), i =
1,...,5. Since

G—Cc=a+2-2d—ad—1+d*’=@1-d)a—-d+1) >0,
ag—-c=a—-d’+1+ad=1+d@—-d+1) >0,
cGs—Ccg=-a—ad+1-d°=(1+d)(-a—d+1) >0,
G—g=ad+d’-1-a+2-2d=(d-1@+d—-1) >0,

we have the relation
Cr<C3<C<(C <Cy.

Then since

f(cla,d) — L.(cla,d) = g.(cla,d),
f(cla,d) — L*(cla,d) = g*(cla,d)

andg.(c|a, d) is a parabola in the, b-plane, andy, (cs|a, d) = g.(c4la, d) = 0,
g«(cla, d) > 0, for c € (c3, c1), we see that the graph+ lies above the lind ...
Similarly, we may show that the grayh; lies above the lind_*, the graph of
b = f(c|a, d) for c € (c3, ¢y) lies inside the regioiy, (see Figure 4).

Now that we have shown the gra@; separated 'y, into three partdys,,
Ega and Fq5. We assert further thdDg, = Qqa, that is, the regiorDyj, is the
desired stability region. It suffices to show that for each p@inb) in Dgya,
p(@, b, c,d) < 1and for each poinfc, b) in Eqa U Fga, p(a,b,c,d) > 1.

To see that the former statement holds, we take an arbitrary @idj in 3,
and take

b =—-d?-d, ¢ = ad.

Then(c/, b') € Dy, for

a—d’~d+ad+d = a(l+d) —d’°>d*>—-1-d?> —1,
—a—d’~d—-ad+d = —-all+d) —d’°>d’°—1—-d?*> -1,

which imply (¢, b') € T'ya, and

—a?d?+a%d(1+d)+ 1+ d)1 —d)2 — (a)?(d)
(1—d)?

=1+d>—d’—d,

which impliesb’ < f (c’|a, d). Furthermore, the corresponding quartic polyno-
mial is

d(rla, b, c,d) =1t +ard+ (—d? — d)A? + adx +d.
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Figure4:a=0,d = 0.

If we take [7, p.203]
® (rla, b, c,d) = —[1—d?|[A* + ar® — dA?] = —[1 — d?]A?[A% + ar — d],
then we have

|®(€%a, b, c,d)+ @ (€°a, b, c,d)
= |d%€¥ +ad’e¥ + (—d* — d*e?¥ +adé’ +d
= [d[|€¥]]|d+ade’? + (—d* —d)e ?’ + ae ¥ + e 7|
= |d||d+adé’ + (—d? — d)e?’ + ae®? + "’
= |d||®E’la, b, c d)|
|®(€’a, b, c,d)

A

for all 6 € [0, 27). By Rouche’s theorend (A|a, b, ¢, d) and® (A|a, b, ¢, d)
have an equal number of zeros inside the unit cifzle |1| = 1} in the plane.
Inviewof|d] <1,14+a—d > 0and1-a—d > 0, the very first statement
in the introduction impIiesDA(Ma, b, ¢, d) have four zeros inside the unit circle
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{A:|A]=1}. Thus®()r|a, b/, ¢/, d) have four zeros insidér : |A| =1}. So
p(@,b,c,d) < 1, inotherwords(c/, b') € Qqa.

For any point(c, b) € Dqa, We assert thap(a, b, c,d) < 1. Suppose not,
there would exist{c”’, b”) € Dqga such thato(a, b”, ¢”, d) > 1. But in view of
the continuity ofp and the obvious fact thddy, is pathwise connected, there
exists(cy, bg) € Dy such thatb (A|a’, by, o, d’) has a normal root, but this is
contrary to Lemma 2.

Next, we show that for each poitt, b) in Eqa, p(a, b, c, d) > 1. Indeed we
take an arbitrary poinfa, d) € ®3 and(c’, b)) = (0, 7). Then by Lemma 3,
o(a, b, c,d) > 1 If there existyc, b) € E4a such thato(a, b, ¢, d) < 1, then
by the continuity ofo and the obvious fact th#y 5 is pathwise connected, there
would exist(cy, bg) € Ega such thatb (A|a, by, ¢, d) has a normal root, but this
is contrary to Lemma 2.

Finally, we show that for each poift, b) in Fqa, p(a, b, ¢, d) > 1. Indeed, if
not, by continuity ofo and the pathwise connectednes&gfU Fy,, there would
exist a point(cy, bg) in Fy5 such thato(a, by, ¢g, d) = 1, which is contrary to
Lemma 2.

2.4 Case4

Supposga, d) € Oqdefined byla] < 4,|d] <1, a+d—-1> 0 anda —
d — 3 < 0. We assert that the grapgh; of the functionb = f(c|a, d) with
ce(@a—2(1-d),a+ 2(1— d)) separatef 4, into three parts

Gga={(c,b) e '4ya: b < f(cla,d)} (20)
and

Hga = {(c,b) € Tya: b > f(cla, d)}. (22)
and

lga={(C,b) € Tya: b= f(cla, d)}. (22)

To verify our assertion, consider the points of intersectiognsh;), i =
1, ...,5. Since

G—Cc=a+2-2d—ad—1+d*’=@1-d)(a—-d+1) >0,
g—-cg=ad—-d’+1-a+2-2d=(d-1@—-d—-3) >0,
co—c=-ad—d*’+1+a—-2+2d=@1—-d)y(a+d—-1) >0,
cs—c=ad—1+d’4+a=(1+d@+d-1) >0,

we have the relation
Cs <C3<C <C <y,

Bull Braz Math Soc, Vol. 38, N. 1, 2007
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or
Cs=C3=0C < (C < (4.

Then since

andg*(c|a, d) is a parabolain the, b-plane, andy*(c,|a, d) = g*(c;|a, d) = 0,
g*(cla,d) > 0, for c € (cy, 1), we see that the grapB; lies above linel*.
This shows that the grapB ¢ separate§y, into three part$Gya,, Hgaandlya
(see Figure 5).

2

C.e— | b=-c-22

L*: b=c+0.2

Figure5:a=12,d =0.

Now that we have show ; separate§y, into three part&ya, Hya, andlya.
We assert further th&by, = Qqa, that is, the regiorsy, is the desired stability
region. It suffices to show that for each poistb) in Gga, p(a,b,c,d) < 1
and for each pointc, b) in Hga U l4a, p(@, b, c, d) > 1.

To see that the former statement holds, we take an arbitrary @idf € ©4,
and take
ci+c al+d —@A-d)?
© = "2 = 2 :

L*(cja, d) + f(c|la,d) a?2—3(1—d)?2+2a(l+d)+4a
2 8 ’

b =

Bull Braz Math Soc, Vol. 38, N. 1, 2007
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Then(b, ¢) € Gy, for

a?—31-d?+2ald+d)y+4a al+d)—@A—-d)?
adt ( )J;(+)++(+)2( )Jrol
a’—7(1—d)?>+6a(l+d)+12a+ 8d
8
1-d)2-70—-d)?2+6(1—d)(1+d)+121—d)+ 8d

8

—12d% +8d + 12
8
—3d?+2d+3

= —) > -1
2

and

a?—3(1—-d)?+2a(l+d)+4a al+d —@A-d)?
8 2
a®+(1-d?-2a(l+d)—4a+8d
8
a’+ (1—-d)?—-2aB+d) +8d
8
B+d2+1-d)2-2B3+d)?+8d
5 =

—a+ +d

—1,

imply (¢, ') € T'ya, and
L*(cla,d) + f(c'la,d) f(c|a,d)+ f(c'|a,d)
= <
2 2
impliesb’ < f(c'|a, d). Let [7, p.203]

b/

= f(c'|la, d)

@ (Ma,b,c,d)=—-1—-d)r*— @—dc)r® =@ - d)a? — (¢ — ad)x.
Since
|®(Efa, b, ¢, d)+ @ (€a,b,c,d)

=|d*"’ + dce®’ + b'de’? + adé’ +d|

:‘dHe4i0Hd+C/e—i9+b/e—2i0+ae—3i9+e—4i9|

=|d||d 4+ c€’ + b'e?” +ae¥? + e’

=|d||®(E%a, b, ¢, d)|

<|®(E?a, b, ¢, d)
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for 6 € [0, 27), by Rouche’s theoremp (A|a, b’, ¢/, d) and ® (Ma, b, c,d)
have an equal number of zeros inside the unit cifzle 1| = 1} in the plane.
So we only need to consider

O (Ma,b.,c,d)=—-1-dHr*—@—-dc)3 - b1 —d)a2 — (¢ —ad)r

(a—dc) , b@a-d (¢ —ad)
I LR B R

= _(1— dz)k{k3 +

Note that

(@—dc) a@+d)+dl-d)

S 1-d?2 2(1+d)

b'(1—d) a’+2a(d+3) —3(1—d)?
TT1—d2 T 8(1+ d)

(¢’ —ad) a+d-1

TT1-d2 T 21+9

*_

b* =

c* =

satisfy

—1+d>a*> -3,
0>c" > —1,
_a?+6ad+3) —7(1—d)? __31-9d B
8(1+4d) - 2
. e a? —2a(d +3) + (1 — d)?
—a*+b*—-c"=-— 811 d) <1,
[a(2+d)+d(1—d)][a+d—1]—[a+d—1]2+
4(1 +d)?
[a+d—-1][a+1—d]
= 41+d) +b
a?—2a(d+3) + (1 —d)?
- 8(1+d)

a*+b*+c = 1

b*

_(C*)Z + a*c* + b* =

> -1

by the result mentioned above for cubic polynomials, we see that
® (rla, b/, ¢, d) have four zeros inside the unit cirdle : || = 1} in the plane.
Thus®(A|a, b/, ¢/, d) have four zeros inside the unit circfe : |A| = 1} in the
plane. Sp(a, b, ¢/, d) < 1, in other words{(c, b') € Qqa.

As in the proof of the previous Case 3, we may now show that for any point
(c,b) € Gqga, p(a,b,c,d) < 1. We may also show that for any poift, b) €
Hga U lga, p(a, b, ¢, d) > 1. The proof of our assertion is complete.
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2.5 Caseb

Supposé€a, d) € ©sdefinedbyal < 4,|d| < 1,a—d+1 < 0anda+d+3 > 0.
Since®,4 and®s in thea, d-plane are symmetric with respect to tthexis, we
may follow the arguments in Case 4 closely and show that the p@ints;),
i =1,...,5, can be ordered by

CO<C3<Cyp<C<C O Ch<C3<Cp=0C=¢Cy

Then we may show that the functibn= f (c|a, d) with ¢ € (cg, ¢4) lies entirely
above the lind_,, and separatelSy, into three parts

Jia={(c,b) € Tya: b < f(cla, d)} (23)
and

Kga={(c,b) e T'ya: b > f(cla, d)} (24)
and

Lda = {(C, b) S Fda b= f(C|a, d)} (25)

(see Figure 6). Then we may show tllgt = Q45 as in the Case 4.

4

f: b=-c%-1.2c+1

Figure 6:a=—1.2,d = 0.
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3 Second and Third Order Polynomials
As a check for Theorem 1, consider second order polynomials of the form
Qx) =A%+ar+b, a,beR
Theorem 1 asserts that all roots@fare subnormal if, and only if,
laj <3,a+b>-1-a+b>-1b<1,

or equivalently,
at+b>-1-a+b>-1b<1

This is exactly the same result stated at the very beginning.
As another check, consider third order polynomials of the form

Qrla,b,c) =23+ ar’>+br+c, a,b,ce R
Then Theorem 1 asserts that all root<pfire subnormal if, and only if,

lal <3,a+b+c>-1-a+b—c>-1b<-c?+ac+1 (26)
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