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Abstract. In this paper we propose a technique of approximation for the generalized
Riemann-Stieltjes integral and we found an analogue for Newton-Cotes formulas in the
casen = 2 andn = 3.
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1 Introduction

The study of nonlinear and integral equations leads to consider the fixed point
problem
u=Tu D
with T a completely continuous operator acting on a Hilbert sgécé. Moret
& P. Omari in [3] were concerned with the numerical solution of (1) by iterative

techniques based on linearization. These procedures consist of approximating
(1) by linear equations of the form

(I = An)(U—Um) = —Un + Tupy (2)

whereuy, is the current iterative anél,, is a suitable linear model of at uy,.
The next iteratai,,; is defined as the unique solution of (2). In the financial
mathematics, for examples, there are studied the equations of the form

t t
X(t, ) = Xo(@) + f o (5, X (s, ))d B, w) + / b(s, X(s, o)ds  (3)
0 0
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wherefot o (s, X(s, w))dB(s, w) is the stochastic integral which can be defined
in various manner depending on the exponent of the Brownian motion and
fé b(s, X(s, w))ds is the classical integral. If the exponent of the Brownian
motion is bigger thar% (situation requested by practical necessities) the stochas-
tic integral can be defined by trajectory, i.e. foralfixed, we have

t
| = /J(S, X (s))d B(S). (4)
0

In this situation, the Brownian motion is a proces$iolder continuous, with
% < B < 1. Inorder to apply the algorithm described by Moret & Omari, given
the iteration at the step m, we should be able to compute the right hand side
of (3), more precisely to approximate the stochastic integral.

The hypothesis concerning the functienare: o is «— Holder continuous
with respect to the first argument aads Lipschitz with respect to the second
argument, by consequence, the integdalis a Riemann-Stieltjes integraR S
fab fdg where f is «—H®0lder continuous and is — Holder continuous. D.
Nualart & A. Rascanu proved a global existence and uniqueness of the solutions
for integral equations containing integrals of type (RS) (see for details [4]). In
the following we use the definition of the Riemann-Stieltjes integral given by M.
Zahle [5] and we propose a technique of the approximation. More precisely, we
give the following results:

TheoremA. Let f andgbe two Holder continuous functions fm b], namely

| ) —f(y)l < M¢|x—y|*and|g(x)—g(y)| < Mg|x—y|?forall x, y € [a, b]
whereM¢, My are positive constants and+ g > 1. Let us consider the nodes
a = X1 < Xo = band denotdh = b — a. Then

b
1
/ f(x)dg(x) = > (9(%2) —g(x0) (F(x) + F(x) + fF(x) + R (5)

where|R,| < cM¢ Mgh**# with ¢ a positive constant.
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Theorem B. Consider as abovd, g and the nodest = x; < X, < X3 = Db
and denotéh = 232, We have

b
1
/ F0dg00 = 2 {[F0) +4106) + (X)) [g0%) — GOx0)]
— [90x) +4gx0) + g [ (xa) — Fxp] ) ©)

1
+ > [9(Xa) + g(xp)][ f(x3) — f(Xx1)] + Rs

where|Rs| < cM¢ Mgh**# with ¢ a positive constant.

2 Preliminaries

In this section we present the definition of Riemann Stieltjes integral by using
Weyl derivatives and the method of approximation. L&t (0, 1) be an arbitrary
number and denote

far ) = (F(X) = f@+H)1anX), G- (X) = (b(X) — g(b—))1@n (X)
(-7 =€
(throughout of this paper we denotéa+) = I(!?S f(@a+$6), glb—) = Igzrg gb—
) supposing that the limits exist).

We define the integral by

b b
/ F0dg) = (—1)" / DY, far ()DL go_ (X)X

a

(7)
+ f@+)(gb—) —g(@+))

where
s 1 f (%) [0 — f(y)
Par F00 = ra-—y \x—ay 7 S (x—yyrt W) Lo (0
and
b
(=1~ f(x) f(x) — f(y)
Do 00 =13 ((b —xr T Ty =t dy) Lan 0
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are Weyl representations for the fractional derivatives in the sense of Riemann
and Liouville (e.g. [5]). Her&'(t) = fooo x'~te~*dxis Euler’s function. Remark

that the definition is good, namely it does not depend on the choice of the param-
etery € (0, 1). See [5] for a detailed analysis of integrals defined By Let f

andg be such thajtf (x) — f (y)| < M¢|x—y|* and|g(x) —g(y)| < Mg|x—yI|?,

with @, 8 € (1/2,1). Consider the nodes < X; < X2 < --- < X, < b. We
approximate the function$ andg with the Lagrange interpolating polynomi-

als (namely we havé (x) = L, f(x) + Rf(x) andg(x) = Lag(X) + Ry(X),
respectively). By using additivity properties of the Riemann Stieltjes integral
we get

/ foodgx) = /(Lnf(X)+ Rt (x))d(Lng(X) + Ry(x))

b

b
= /Lnf(x)dLng(X)-l-/ Rt (x)dLnag(x)

a

b b
+ /Lnf(x)ng(x)-l—/Rf(x)dF?g(x)
a a
= li+la+ I3+ I4
We denote byw,(X) = (X — X3) - --- - (X — Xp). Recall that the Lagrange

interpolating polynomial for the functioff is

Laf(x) = Zf() w0

(X — X)) wy, )’

and similarly forg. Consequently,
b b

I, = /Lnf(x)dLng(x):/Lnf(x)L;g(x)dx
a a

n

b
_ X”:Z P00 [ wn(¥)  wh()(X = Xi) = wn(X)

dx.
TS wa W) S X =% (X = X)?
Denoting by
b
ik _ / wn(X) Wy (X)(X — Xk) — wn(X) dx (8)
LT w 0wk X=X (X — X¢)2 ’
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we can approximate the integral by the sum

n

=) " 1 F )90 9)

i=1 k=1

and the rest of the quadrature formuldRs= 1, + I3 + I4.

3 Quadrature formulas — proofs of theorems

In this section we give an analogue for Newton-Cotes formulas in the nases
andn = 3.

3.1 Case n=2 (trapezoidal method)

We havex; = a, Xo = b, wa(X) = (X —a)(Xx — b) andw,(X) = 2x —a —b.

The coefficients of the quadrature formuld, i, k € {1, 2} are:

1 — 2’ 1_5, 1 2, 1 2

Consequently,

Ill_ 1 IlZ_l IZl 1 |22 1

1 1 1 1
1 = — > f(x1)g(x1) + > f(x1)g(x2) — > f(X2)g(x1) + > f(X2)g(X2)

1
= 5(00x2) — g(x)) (f(x0) + F(x2)).

In order to estimate the re®, we will evaluateR; and Ry (the rests of the
Lagrange interpolation of the two functions). By taking into account ghiat
Hoélder continuous, we have

|RG()| = [[X1, X2, X]g(X — X)) (X — Xp)|
_ K gx) —g(x2)  g(X2) — g(x1) ) (X — XD(X — %)
(X =X)(X = X1) (X2 — X1)(X — X1)
- ( Mg|X — Xo|? Mg|xz — X1/”
(X2 = X)(X = X1) (X2 — X1)(X — X1)

= Mg (0 = %)’ + (X2 = x1)) < 2Mgh”

) (X = X)) (X = X2)

In the same manner we obtdiR; (X)| < 2Mh®*.
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The integrall, andl; can be evaluated in the same way. We will write down
only the estimation fof,. We have

b b
|2=fRf(X)dL29(X):/Rf(X)L/zg(X)dX
a a
where
L2000 = g0a) 2 + g(xp)——r.
29 X1 — X — X1
One gets

b b
1
1y < / IRy () L4g(x)|dx 5/ 2M b - =1g0) — g0x)ldx
a a
= 2M(h*Ig(x) — 90w < 2M{h* Mgl — Xal® = 2M{ Mgh®*# |
Similarly [13] < 2M¢Mgh**?.

The main point of this subsection is to estimbfeBy using the definition of
the Riemann Stieltjes integral one has:

b b
/Rdeg: (_1)Vf DZ, Ry,, (X)Dp_” Ry, (x)dx

where
, 1 (Ru® / Ria. (0 = Riy, (y)
Da+ Rfa+ (X) - F(l _ )/) (X _ a)y + 14 (X _ y)y+l dy
. 1
- Tl-y)
and
1-y _ (_1)1_)/ Rgb—(x) /Rgb— Rgb_(y)
Db— Rgbf(x) - F()/) ((bx)ly ) X)2 Y y
G Vi
C(y)
With th tat _— G|dx.
i ese notationH,| < T y)F( )/| - |Gldx
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SinceRy,, = (R{(X) — Rf(@+))L@an(X) = Ri (X)1an(X) andRs(@) =0

we deduce
IRe, OO [Re )] Rt (X) — Ri(a)]

x—ay  x-ar  (x-a
In our purpose we establish the following inequality
IRt (¥) — Re(W| = [f(x) — f(y)+% (X =yl
‘ f(x2) — f(x1)
X2 — X1

IA

o0 — (Wl + X =Y

< M¢X —y* + Meh*Hx —y) .

By straightforward computations we hay(x) — Ry(y)| < Mg|x — y|f +
Mgh?~1|x — y| and consequently

IR, X1
xX—ay

< (M¢lx —al* + M¢h* tx — al)

xX—ay
= M¢|x —al*” + M¢h* Lx —al*.

Due to the arbitrariness of we sety < «. It follows

| Rt (X)]

x—ap =M

So, we can write

IRt (X IR, (X) = Ry, (V)

|F| <
(X —a)” (x —y)yr+t

Ri.. (X) — Ry, (V)]

The next step is to evaluate the express'i H . We may write
(x — y)r+t

R, ) = Re,, (W [Ri(X) — Re (Y)]
x—yyrtt o (x—yyri

< (M¢Ix = y[* + M¢h* Hx — y)) -

1
- M ha—l
My T TR

IRt (X)] X 1 w1 1
ThUS|F| < —|x—a|V +VA Mf—|x_ y|1+7/*0t + th X — y|7’ dy
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Let us remark that the condition imposgd< « assures the convergence of
the (improper) integrals which appear in the above formula. At this point we can
conclude

IF|

IA

_aa*)’ —a 1-y
2Mh*7 4y (Mf—(x ) =" )
a—y 1-y

M (2+y (LJFL)) h*=7.
a—y 1-y

In the following we will do an analogue calculus f&. Choosingy > 1— 8
(recall thaty is arbitrary) we obtain

A

b
1
B+y—1
X

b
1
Bp—1
+h /(y—x)l—y dy)
X

< Mo (24ap (gt )00

(the conditiony > 1 — g assures the convergence of the integrals).

At this moment we fixy € (1 — 8, «) and consequently

[14] <

< ——— M {MgKh+F,
FrAQ—-yIy)

whereK is a constant depending anandp.
Since
FHLA—y) = /Oo (xy2_1e§>2dx-foo (xte ) dx
0 0
00 2 2
_1 1
=r(=
(/O X ze dx) (2)

1 1 KM My

rord—p ~rae =T

%

we have

a+p
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At the end we can conclude the estimation of the rest

) heth (10)

IRl < [la] + 13| + [la] = MtMg | 4+ —

( I'(3)?
In order to obtain a better approximation, the quadrature formula must be iterate.
With this end in view we will consider a division of the interyal b] of the form
a=r1<1m<- <1y =b. The fact thatg is (H6lder) continuous function,
allows as to write

b m—1 Tj+1
[ toodaeo = Y- [ foodgeo.
a j=1 Tj

Considerm = 2N + 1, i.e. the intervala, b] was divided into 2 subintervals.
Supposethat .1 — 1 = ziN and denote byr, ; the rest of the quadrature formula
for the interval[;, 7, 1]. The total restis

2N 2N
K e
IRel < D IReil < D M¢Mg (4+F(1)2>hi+ﬂ
2

i=1 i=1

A

K
= MMy (4+—1 20-a—p-N

K 1
= MMy 4+F(%)2 2@+p—DN

K
= MM (4+ — | hetP
The conditionx + g > 1 yields toNIim R, = 0.

3.2 Case n=3 (Simpson formula)

The coefficients of the quadrature formula are:

|1l:_1- |12:g |l3:_1'

! 27 1 T3t 6’
2 2

|123=—§, |122=0,|123=§,

|3l=1‘ |32=_g |33=1'

1 6’ 1 3’ 1 2
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In this case, the quadrature formula is:

1
I, = 5 {[fx) +4f () + f(xa)][9(Xs) — g(x0)]
— [9(x1) +49(x2) + g(xa)] [ f (x3) — f(x0)] } (11)
1
+ > [9(Xs) + g(x)] [ f(Xs) — f(X0)].

We will work as in previous case. After a straightforward computation we
obtain

IRt (0] < 6M¢h®, [Rg(0)| < 6Mgh” ,
ILaf'00] < 2M¢h* ™, |Lag (0] < 2M§ ™

Hence
uﬂg/ﬁmyugmmmxgzanwwﬂ and |l3| < 24M¢Mgh**?.

To finalize we have to evaluatg. The following estimations hold:

IRt (X) — Re (V)| < M¢|x —y|* +2M¢h* Hx — |,

IRt (X) — Rs(Y)|
Ix —y|r+t

Mt (X — y[* 7t 20 Hx — y|77)

ID}, Riat (X)| < 1 . {Mf(|x—ala + 2h*=1|x — al)

rd-y) Ix —al”
X
+y/ MfIX—yl“‘y‘1+2h“‘ll><—yl‘ydy}

a

M+ _ _ Y 2y _

< @22 L T e,
ra-y) a—y 1l-y

The integrals are convergent if we take< «. Similarly,

ID,~" Rgb-(X)| < {<2ﬂ Ly 2Hrypftty

I'(y)

2hf-1
+ (- ”/( >2M <y—x>1—y)dy}
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0
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| L N P (a,B)=(5/6,8/9)
P R (@.p)=(7/8,11/12) | ]
, - = = (a,p)=(10/11,17/18)| |
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10 - \73 ‘7 ‘71
10 10 10 10 v

49

Figure 1: Logarithmic representation of the errors vetstsr different values

of @ andg; the trapezoidal method on the left side and Simpson method on the

right side.
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< ﬂ{zﬂ—lﬂ/ 421y 4 l——y . oB+y-1
— 'y p+y—-1

4 ortl, 1-v }hﬁ+y—1
14

withl— g <y.
Thus we have obtained an estimation fgr

2M¢ MyC(a, B, ¥) ha+B
FHrad-y)
In the end, we may conclude that

[14] <

IRs| = 12+ I3+ lal < [12] + [13] + |12l < cM¢Mgh**7. (12)

As in the case = 2, for the iterate formula we have linRz = 0.

n—o0

In order to illustrate the behavior of the quadratures formulas we considered
f (x) = x¥, g(x) = x# and we present some numerical results. (see Figure 1).
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