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Abstract. Sufficient conditions are given to assert that a perturbed mapping has a zero
in a Banach manifold modelled ov&f'. The zero is estimated by means of sequences of
Newton’siterations. The proofofthe resultis constructive and is based upon continuation
methods.
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1 Preliminaires

Since a process of measurements is used to describe scientific phenomena, the
concept of Banach manifold is one of the mostimportantin mathematical physics.
At close range a manifold looks like a Banach-space. Phenomena are locally
described by parameters. Since different Banach-space or parameter-space or
coordinate-space are allowed for a phenomena local description, it is important
to have a transformation rule for these different coordinates, which exist in a
Banach manifold. It is clear that manifold properties, which are independent of
the choice of local coordinates, are the most important from a mathematical or
physical point of view.

Let X,Y be two Banach Spaces. Let U ¢ X — Y be a continuous
mapping. One way of solving the equation

ux) =y 1)

for any fixedy € Y, is to embed (1) in a continuum of problems

Hx,t)=y,(0<t<1), )
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68 J.M. SORIANO

which is solved whert = 0. Whent = 1, problem (2) becomes (1). If it
is possible to continue the solution for alk [0, 1], then (1) is solved. This
is the continuation method with respect to a parameter [1-21]. We introduce
a continuation method fan: M — R", whereM is a connecte!-Banach
manifold modelled orfR".

In this paper, sufficient conditions are given to prove th@ttemapping has
a zero in a Banach manifold by using continuation methods. Other conditions,
sufficient to guarantee the existence of zero points, have been given by the author
in several other papers [7-21]. This zero is also estimated. The proof supplies
the existence of a curve which leads to the solution. This can be approximated to
as precise an error as desired. The key is the use of the Continuous Dependence
Theorem [24], together with a consequence of the properties of Banach algebra
of the linear continuous mappings from a Banach space into itself [22].

We briefly recall some Theorems and notation to be used.

Definitions and Notation [25]. Let M be a topological space. éhart (U, ¢)

in M is a pair where the sétis openinM andy: U — U, is ahomeomorphism
onto an open subseét, of a Banach-spac¥,. We cally a chart map,X,, is
calledchart spaceandU,, chart image. Forx € U we callx, = ¢(x) the
representativeof x in the chart(U, ¢) or thelocal coordinateof x in the local
coordinate systenp. The pointx € M may have different local coordinates
X, = @(X) andx, = ¥ (x) for two different chartgU, ¢) and (V, ). The
transformation rules between them age= ¢ (v ~1(x,)) andx, = ¥ (p~1(x,)).

Let M be a topological space, two chartd, ¢) and(V, ) are calledCk-
compatiblégfand only ifU NV = @orgoy —*andy optareCX-mappingsk >
0, wherepoyr™1: Yy (UNV) = pUNV)andyop™t: pUNV) — y(UNV).

A CX-atlasfor M, 0 < k < oois a collection of chartdJ;, ¢;) (i ranging in some
index set) which satisfies the following conditions: (i) ThiecoverM, (ii) any
two charts areCk-compatible, (i) All chart space¥; are Banach-spaces over
K. M is said to be &*-Banach manifoldf and only if there exists &k-atlas
for M.

We call achartiM, which isCk-compatible with all atlas chartan admissible
chart. In particular, all atlas charts are admissilifeall chart spaces are equal
to a fixed Banach-spacé, thenM is called aCk-Banach manifold modelledin
X. In this paper manifoldsvithout boundariesvill be considered, such as the
surface of a ball irR", an open set in a Banach-spaXeetc.

Let M andN beCk-Banach manifolds with chart spaces ok¥erk > 1. Then
f: M — N is calledC"-mappingr < kif and only if f is C" at each point
x € M in fixed admissible charts. LU, ¢) and(V, ¢) be charts irM andN,
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CONTINUATION METHODS IN BANACH MANIFOLDS 69

respectively, withx € U and f (x) € V, themappingf = v o f o ¢! which
is well defined in a sufficient small neighbourhoodxgf This map is assumed
to beC' in the usual sense and we will call ir@presentativef f.

Let M be aC*-Banach manifoldk > 1, andx € M. Two C!-curves inM,
which pass through the point are calledequivalentat pointx if and only if
the representatives have the same tangent veciomesome admissible chart.
A tangent vectow to M at x consists of allC!-curves which are equivalent at
x for a fixedC*-curve. The tangent spadeM, to M at pointx is the set of all
tangent vectors at.

Let f: M — N be aCk-mappingk > 1, whereM and N are CX-Banach
manifolds with chart space ové, f is called asubmersiorat x if and only if
f’(x) is surjective and the null spadé( f'(x)) splits T My (which is automatic
whenM andN are finite-dimensional). A point € M is called aregular point
of f ifand onlyif f isasubmersion at. A pointy € N is called a regular value
of f if and only if the setf ~1(y) is empty or consists only of regular points.

If X,Y are Banach spaces, l&t(X, Y) denote the set of all linear continuous
mappingsL: X — Y. Let Isom X, Y) denote the set of all the isomorphisms
L: X — Y. Let B(xg, p) be the open ball of centrg and radius. If u: X —

Y is a linear continuous bijective operator, then the inverse linear continuous
operator will be denoted by1. If U is a set inX, let 3U denote the boundary

of the setU, andU its closure.d(x, U) denotes the distance between point
and set. d(U, V) denotes the distance between the setndV.

Hy (X, t) denotes the partidt-derivative ofH with respect toX at the point
(X,t), whereH: X x [0,1] — .

Theorem 1. Continuous Dependence Theorem ([24], pp. 188)Let the fol-
lowing conditions be satisfied:
() P is a metric space, called the parameter space.

(if) Foreachparametep € P, mappingT, satisfies the following hypotheses:

(1) Tp: M — M, i.e. M is mapped into itself by,.
(2) M is a closed non-empty set in a complete metric sgacel).
(3) T, isk-contractive, for any fixe#t € [0, 1).

(i) Foreachpg € P, and anyx € M, pllrr:) Tp(X) = Tpy(X).
— Po

Thus for eachp € P, the equatiorx, = TyX, has exactly one solutioxi,
wherex, € M and limxp = Xp,.
P—Po
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Theorem 2 ([22] pp. 23-24). If X, Y are Banach spaces then

a) IsomX,Y)isopeninL(X,Y).

b) the mappings: Isom(X,Y) — £(X,Y), B(u) := u~tis continuous.
Theorem 3 ([23], p. 45). LetL, L’ € £L(R",R") and assume thdt is invert-

ible, with|| L~ |[< C. If | L — L' ||[< &, andC x & < 1, thereforeL' is also

. . =1 C
invertible, and|| L' ||< 1—¢;-

2 Continuation Methods in a Banach Manifold

Theorem 4. Let f,g: M — R" be twoC!-mappings,wherd! c RP, p > n
is a compact connected set, which i€C&Banach manifold modelled dR"
and aCl-atlas forM is (Ui, ¢i)ic1, | =1, 2, ..., N. Suppose that the following
conditions are fulfilled:

(i) Mapping f has only one zerg* in M, with x* € U;, and

(i) Zero is a regular value of the mappindsg, H (-, t) for eacht € [0, 1] of
the parametet, whereH: M x [0, 1] — R", H(x, t) := f(X) — tg(x).

(i) Any chart(U;, ¢i),i € | can be extended an admissible chdust*, ¢;),
i el,withU; c UrandR > d(3U,,, auz) > R.

Hence the following statement holds true:

(a) f —ghasazeroc** € M, and there is a continuous mapping

a*: [0,1] = M, with H(a*(t),t) = 0, Vt € [0, 1], «*(0) = x*, a*(1) =
X**,

(b) Furthermore ifH(x,t) # 0, V(x,t) € dU; x [0, 1], j € | thenthereis a
partition O = to <ty <t <..<ty=10f[0, 1], an integem, and a
sequencex(',;jk} of Newton'’s iterations defined by:

ikl _ ik ik -1 ik 1y 1,0 _ o i+10 _ yi,m
ij _ij — Hx(x(pj,t.) H(xj,'[l),x(pj _x(pj,x(pj _ij ,
where

k=0,1,..m—1ifiel .. N—-1,andk=0,1,...,if i =N,

which converges toward%f.
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CONTINUATION METHODS IN BANACH MANIFOLDS 71

Proof. L(R",R") is provided by the topology given by its operator norm and
R" x R is provided by a product topology.

x* belongs taJ;, j € I, and >§;j = ;(x*) is its representative in the chart
(Uj, ¢j). The representative mapping of

H: M x[0,1] - R", H(x,t) = f(X) —tg(X)
in this chart is theC-mapping
H:Uj, x[0,1] CR" x [0,1] = R", H(X;. 1) := (H o (¢ %, 1)) (X, 1),

with | (t) = t. This verifiesthatﬁ(x”‘j ,0)=0.

(a) For simplicity we will call H the representative dfl in any chart. We fix
any chart of the atladJ;, ¢i)ic| , for exampleUj, ¢;), which we will call(U, ¢).
Anologously we call(U*, ) the corresponding chart in the atld$*, i )ic;. It
is supposed thak,, ta) is a zero taH andx,, € U,, therefore the representative
of H,

H:U, x [0,1] c R" x [0,1] — R",

has the zerdx,, ta). We will prove there is a neighbourhood of t, and a
continuous mapping(-): A’ C [0, 1]-U, C R" with H(«(t),t) = 0,Vt €
A

(al) By hypothesis(ii), Hx(X,,t)(:) € L(R",R") maps ontoR" for any
(Xp, 1) € U7 x [0, 1], therefore rankH (X, t)) = n, andhenceHy(X,, t)
belongs to IsorR", R™). We will prove here that there is a real numigee- 0,
such that if(x,,t),i = 1,..., N belongs to(ﬁ_l(O)) N U, x[0,1]) then
I Hx(xy, 7 < C.

SinceH is aC!-mapping, thenapping

Hx: Ug x [0,1] CR" x [0, 1] — LR", R"), (X, t) > Hx (X, 1)

is continuous.
From Theorem 2, the inverse formation

B: Isom@®R", R") — £(R",R"), B(u) =u~?!
is a continuous mapping.
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Since
I+ 1 0B o Fx: (H(0) N (U7 x [0, 11) > R, H(Xy, )" > [[He(Xy, )

is continuous due to being a composition of continuous mappings, and given that
(ﬁfl(O)) N, x [0, 1]) is a compact set, the Weierstrass Theorem implies that

| F(X. 71 1< C V(%o ) € (H1(0) N (U x [0, 11).

The numberC has hence been defined to a particulart chart, and since the

atlas(U*, ¢i)icr, hasN charts, then there af¢ positive number€;,i € I. We

selectC = min{C;:i € |}.
(@2) Inthis Section we will find two numbersrg, to be used in a later section.
Let us define the mapping

h: U, x[0,1]x U, x [0, 1] CR" xR x R" x R — R",

h(Xa, ta: Xp, 1) 1= Hx(Xa,, ta) (X,) — H (Xa, + X, 1).

SinceH is aCt-mapping,h is a composition of continuous mappings, and
sinceU, x [0, 1] x U, x [0, 1] is a compact set of the topological spatex
R x R" x R, therefore for any > 0 and forC given in Section (al), there is a

5 (Zr—c) -0, 3)

such that, if(Xa, , ta; Xo, 1), Xar, ta : X, ) € U x [0,1] x U x [0, 1] with
3y @ 3,0 18,0 o @ 7

/ / r
IOt tai X ©) = Ot X 1) 1< 8 (55 ) then
/ / r

On the other hand, the mappihg: U: x [0, 1] x U: x [0, 1] — L(R", RM),

hx (X, » ta; X, t) 1= ﬁx(Xa«,, ta) — ﬁx(xaw + Xy, 1)

is also uniformly continuous in the compaeitU,, x [0, 1] x U,, x [0, 1], and
therefore there is an 1
=6 — 0 5
ri=5 (50 ) > ©)
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CONTINUATION METHODS IN BANACH MANIFOLDS 73
such that, if(Xa, . ta; X, 1), (X tay s X', 1) € Uy x [0, 1] x U, x [0, 1] with
| Xa, ta; Xo, ) — Xar, tar; X, 1) || < 8 i then
aw’ a s (/8] a!p’ a’ s 0> < 2C )

/ / l
I P (Xa, tai X, 1) — Xy g X, 1) 1< 5= (6)

We taker given by Equation (5) and fik) := & (5z) given by Equation (3),
and we define the numbeg := min{r, ry}. The numbers, andrg have hence
been defined in a particular chart, and since the &tleis ¢; )i, hasN charts

there arei, rq,i € | positive numbers. We select= min{r;, R: i € 1} and

ro=minfro : i € I'}.

(@3) Let us suppose that the representatixg , ta) of (Xa, ta) in the chart

(U, x [0, 1], (g, 1)) verifies (X, , ta) € ﬁ_l(O) N (U, x [0, 1]). Such a point
(Xa,» ta) Will be called a “starting point” irU;j‘ x [0, 1].
The sets

Ai={tel01]: [t—ta|<ro}, Ai={X, € R™: [ X, =1},

withro, r found in Section (a2), will be associated to the “starting pairy’, ta).
Since|| X, [|<T, VX, € A, therefore

Xy + Xa, € U, VX, € A.

Given a “starting point”(x,, ta), we will prove here the existence of a key
continuous mapping

a(-): A CR—>A+x,, C US CR", suchthatH(a(t),t) =0,Vt € A'.
Let us solve thequation
H(Xa, + X, 1) =0, (7)

for fixedt € A’ whenx, is in A. Obviously H (x,,, ta) = 0. Equation (7) can be
transformed into the following equivaleatjuation

Hy(Xa,, ta) " [Hx(Xa, ta) (X)) — H(Xa, + X,, )] = X, (8)
which leads us to define the mappings
h: Axt — R", forfixedt € A", h(X,, t) := Hy(Xa,, ta) (X,) — H(Xa, + Xy, 1),
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and
Ti: A— R, Ti(X,) := Hx(Xa,, ta) "h(X,, 1).

Let us observe that(x,, t) is defined in Section (a2) d8X,, , ta; X,, t) when
(Xa,» ta) is a fixed “starting point”, and whenis fixed and belongs té\', and
the variablex, belongs toA. Let us also observe thain the definition ofT; is
an index and not a partial derivative as is usually written.
Evidently
h(0,ta) = 0, 9)

and
hx (O, ta) = 0. (10)

Equation (7) is equivalent to the following key Fixed Point Equation

Te(Xp) = X, (11)

which will be studied later in the paper.
Let X,, x(’p e A, t € A, and hence the Taylor Theorem together with Equa-
tions (6) and (10) imply that

| (X, t) = h(X,. 1) |

) ) ) 1 (12)
< suplll he(X, +6(x, — X)), 1) |1 0 € [0, 11} || X, — X, | < o

Equations (4) and (9) imply that
r
[ h(Xg, 1) <]l h(Xp, 1) — h(O, ta) || + [I h(O, ta) [I=< c’

hence -
I Te(X) I=II HX(X%,ta)_l I h(x,, t) [I<T. (13)

We are already able to prove that the hypotheses of Theorem 1 are verified by the
spaces and mappings which have just been defined. The Metric &date|)
is the parameter space of hypothesis (i) of TheorenfA\1s considered as the
closed and non-empty set aRfl as the complete metric space of hypothesis (ii),
which is verified below:

From Equation (13), for any fixetl € A’, and for allx, € A, we obtain
|| Tex, |<r, thereforelix, € A, and hencd;: A — A, i.e. T; maps the closed
and non-empty set of the Banach sp&’dnto itself.
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From Equations (6), (10), and the Taylor Theorem, for apyx, € A, and
for anyt € A’
I Te(Xp) — Tex) | < 1T Hx(Xay» ta) M1 (X, + b — X)), DI X, — X, |
< Cl hx(Xj, + DX, = X)), 1) = hx(0, ta) [ X, — X, I

1
< 51% =%, (b € [0, 1).

ThereforeT; is half-contractive for any fixetl € A’. Hence hypothesis (ii) of
Theorem 1 is verified.
For any fixedp € A" and for allx, € A,

Ti(X) = Hx(Xa, ta) " (Hx(Xa,. ta) (X,) — H(Xg, + X, 1))
— Hx(Xa,, ta) " (Hx(Xa,, ta) (X,) = H (Xa, + Xy, t0))
= Tto(sz) as t—tyte A/,
therefore hypothesis (iii) of Theorem 1 is also verified. Hence Theorem 1 im-
plies, for anyt € A, thatT; has a unique fixed poi, € A, Ti(X,) = X, =

X (1), andx,(t) — X, (to) whilet — to;t,tg € A, i.e. X,(-) is a continuous
mapping. Thus for any € A’ there is only one, (t) € A suchthat

H(Xa, + X, (1), 1) =0, (14)

and furthermoreH (xa, + X,(1),t) — H(Xs, + X,(to),to) = O whilet —
to,t, to € A'. Let us observe thak, (0) = 0, X,(ta) = 0.

Equation (14) can be writteasH («(t), t) = 0, whichis verified foralt € A,
whereq is the continuous mapping

a: A= UZ CRY a(t) :=Xa, + X, (1), where a(ta) = X, (15)

(b) Conclusion (a) will be proved here. Sine€, 0) € ﬁ_l(O)ﬂ(Uw x [0, 1]),
i.e. (x*,0) is a “starting point”, therefore from Section (a3) there AreA’, «
such that

a: A= A+ x5 H(a(t), t) =0,vt € A.
Let suppose thak(t) € U,, Vt € [0, o], then mappingy is extended to the
right of rg by taking(«(ro), ro) which belonggo ﬁ_l(O) N (U, x [0, 1]) as the
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following “starting point”. We also call the continuous prolonged mapping
and by supposing that(t) € U, Vt € [0, 2rg], we obtain

a: [0, 2r] - U, C R",  which erifies H(a(t),t) =0, Vt € [0, 1].

Mappinge is successively extended to the right in the same waytif does not
reachoU,. One of these two cases occurs:

1) Due to[0, 1] being a compact set, there is an
@:[0,1] - Uy cR", which erifies H(a(t),t) =0,Vt €0, 1].

Therefore a poin(x;‘j*, 1 e U; x [0, 1] exists, which erifies

H' 1) =H((),1) =0,
andhence
ﬁ(x;*, 1) =(Ho(e L )H(x¥* 1) = HxX*™, 1) = 0or f(x™) — g(x**) =0,
andfurthermoreH («(t), t) = 0, vt € [0, 1]. Equivalently

(Ho ((p_l, ) (x(t),t) =H@@"(),t) =0,vt €[0,1], with
oaf(t) =g loal(t),

which is continuous since it is composed of continuous mappings.

2) a* can only be extended in this way urttil< 1,wherea(t;) € U, = U;j,
and(a(ty), t;) is not a starting pointim;‘j x[0, 1] . SinceU;, U;* i € | are open
covers forM, x; = ¢; *(a(t1) = ¢;*(xy,)) verifiesx; € Ur N Uy, j. k € 1.
The continuous mapping*(-): [0, t1] — M, a*(t) = (goj_l o a)(t) will now
be extended to the right ¢f in the same way as before, but by using the chart
(Uy, k) with the point(xy,,, t1) as the first “starting point” irllJ;;k x [0, 1], and
by using the continuous mapping [ti, t] — U, which verifiesH («(t), t) =
0, Vt € [y, t2], (t2) = Xp,. Equation (15) establishes that—t; > ro, when
the chart ak, is changed again, when necessary.

This situation can be repeated, however, siflel] is a compact sei*,
reaches* (1) in a finite number of repetitions. Therefore

H@"(1),1) = f(@"(1),1) —g(@*(1),1) =0.
That is, there is am™** such thatf (x**) = g(x**).
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(c) Section (al) give€ > 0 such that ifix,, t) € (H_"(0)) N (U, x [0, 1])
then| Hx(x,, t)~! || < C. Section (b) and the hypothesis in (b) give a continuous
mappinge*: [0, 1] — R",with H(a*(t),t) = 0, «*(t) € M, Vt € [0, 1].

SinceH is aCl-mapping,thereforeﬁx(xw,t): U; x [0,t1] — R" is uni-
formly continuous on the compaeEtU(p x [0, 1] and hence, for any fixed

e € (0, ), ¢ < 1, the values > 0 exists forwhich

Ba(t),8) c Uy, vt €0, 1],
and furthermore

“ ﬁX(X(/)’ t) - ﬁX(y(/)’ t) ||< Ev VX(/)! y<p e U(pa

: (16)
with || X, — Y, < 8,t € [0, 1].

Theorem 3 implieshat Hy(x,, t)~* exists for anyx, € B(«a(t), §), and fur-
thermore

I Hx(, 70 1= =5 (17)
The Newton process for any fixede [0, t;] and xg € B(x(t),6) is
X = XK — H, (xS T H( 1, k=0, 1, ... (18)
It will be proved by induction that
I x$ —a(t) |< ¥46,k=0,1,...,withy = <1: (19)

1-Ce¢

1) Equation (19) is true by assumption foe= 0.
2) If Equation (19) is true for ank € N, and thereforel’ € B(a(t), y*9),
then, from Equations (16), (17), (19) and Theorem 3 and the Mean-Value Theo-
rem together wittH («(t),t) = 0,t € [0, 1], Equation (19) is true fok + 1:
o) — XM = ae(t) — XK+ Hy (X<, O HE ) |
<[ Hx O H @), ) — HExS 1) = HyxE H ) — x5 |l
=1l Hx O, 071 I (U, @) — x4 — A, D) —x | (20)

< Syk8 < yk+18.

1-Ce

Hence the Newton sequence (18) remam®B(«x(t), §) and converges to-
wardsa (t).
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Sincex(-) is a continuous mapping, therefore theretaré, ..., 1., 0 =1ty <
tp < ... <t. =1forwhich| a(ti;1) —a) <8 <48,i =0,1,...,L—-1is
verified.

Let m € N exists such thay™ < 1 — (%’). We consider the sequence of
Newton’s iterations:

X T =) = Hyx (0", ) TTH G 1),

1,0 _ * i+1,0 __ i, _ P
X, _xw,x;f _x('pm,k_O, 1,.m—-1i=12..,L—1, (21)
XK = X0 — H (G DTTH (G, 1), k= 0,1, .., (22)

which verifies:
1) x; € B(a(tg), s — &),

2) If x;% € B(a(ti_1), 8 — &') and since,
%% — et <]l Xp° — ati) || + || oe(tizy) — ae(t) [|< 6,

thereforex‘q;0 € B(a(t),8) c U,,i =1, ..., L. Furthermore, from Equa-
tion (20),

1%, — ato ) =l xp™ — et < y™8 <6 — &,

hence the process from (21) to (22) can be continued upwards where all
x;¥ are inU,. Thus the final iteration (22) converges towardg).

References

[1] E.L. Allgower, A survey of homotopy methods for smooth mappiAdgower,
Glashoff, and Peitgen (eds.) Springer-Verlag, Berlin (1981), 2—29.

[2] E. Allgower, K. Glashoff and H. Peitgen (edsroceedings of the Conference on
Numerical Solution of Nonlinear EquatiorBremen, July 1980, Lecture Notes in
Math. 878. Springer-Verlag, Berlin, 1981.

[3] E.L. Allgower and K. GeorgNumerical Continuation Method&pringer Series
in Computational Mathematics 13, Springer-Verlag, New York, 1990.

[4] J.C. Alexander and J.A. YorkHomotopy Continuation Method: numerically
implementable topological procedure$rans. Amer. Math. Soc242 (1978),
271-284.

[5] C.B. Garcia and T.l. Li,On the number of solutions to polynomial Systems of
non-linear equationsSIAM J. Numer. Anal17 (1980), 540-546.

Bull Braz Math Soc, Vol. 38, N. 1, 2007



CONTINUATION METHODS IN BANACH MANIFOLDS 79

[6] C.B. Garcia and W.I. ZangwillDetermining all solutions to certain systems of
non-linear equationsMath. Operations Researdh{(1979), 1-14.

[7] J.M. Soriano,Existence of zeros for bounded perturbations of proper mappings
Appl. Math. Comput99 (1999), 255-259.

[8] J.M. Soriano,Global minimum point of a convex functiofppl. Math. Comput.
55(2-3) (1993), 213-218.

[9] J.M. Soriano,Extremum points of a convex functjoippl. Math. Comput.80
(1994), 1-6.

[10] J.M. Soriano,0On the existence of zero point&ppl. Math.Comput.79 (1996),
99-104.

[11] J.M. Soriano,0On the number of zeros of a mappinppl. Math. Comput.88
(1997), 287-291.

[12] J.M. Soriano,0On the Bezout Theorem Real Caggpl. Nonlinear Anal.2(4)
(1995), 59-66.

[13] J.M. SorianoOn the Bezout TheorerAppl. Nonlinear Anal4(2) (1997), 59—66.

[14] J.M. SorianoMappings sharing a value on finite-dimensional spageml. Math.
Comput.121(2, 3) (2000), 391-395.

[15] J.M. SorianoCompact mappings and proper mappings between Banach spaces
that share a valugMath Balkanical4(1-2) (2000), 161-166.

[16] J.M. SorianoZeros of compact perturbations of proper mappingesmm. Appl.
Nonlinear Anal.7(4) (2000), 31-37.

[17] J.M. Soriano,A compactness conditiorAppl. Math. Comput.124(3) (2001),
397-402.

[18] J.M. SorianoQpen trajectoriesAppl. Math. Comput124(2) (2001), 235-240.

[19] J.M. Soriano©n the existence of zero points of a continuous funcata Math.
Sci.22(2) (2002), 171-177.

[20] J.M. SorianoFredholm and compact mappings sharing a valyepl. Math. Mech.
22(6) (2001), 682—686.

[21] J.M. SorianoStable and unstable stationary trajectoriégpl. Math. Mech26(1)
(2005) 52-57.

[22] H. Cartan, Differential calculus Omega, Barcelona, 1978.

[23] J.M. Ortega and W.C. Rheinbollterative solutions of nonlinear equations of
several variablesAcademic Press. Inc., Boston 1970.

[24] E. Zeidler,Nonlinear functional analysis and its applicationsSpringer-Verlag,
New York, 1985.

[25] E. Zeidler,Nonlinear functional analysis and its applications 8fringer-Verlag,
New York, 1985.

Bull Braz Math Soc, Vol. 38, N. 1, 2007



80 J.M. SORIANO

José M. Soriano Arbizu

Departamento de Analisis Matematico
Universidad de Sevilla, Aptdo. 1160
Sevilla 41080

SPAIN

E-mail: soriano@us.es

Bull Braz Math Soc, Vol. 38, N. 1, 2007



