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Continuation methods in Banach manifolds
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Abstract. Sufficient conditions are given to assert that a perturbed mapping has a zero
in a Banach manifold modelled overRn. The zero is estimated by means of sequences of
Newton’s iterations. The proof of the result is constructive and is based upon continuation
methods.
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1 Preliminaires

Since a process of measurements is used to describe scientific phenomena, the
concept of Banach manifold is one of the most important in mathematical physics.
At close range a manifold looks like a Banach-space. Phenomena are locally
described by parameters. Since different Banach-space or parameter-space or
coordinate-space are allowed for a phenomena local description, it is important
to have a transformation rule for these different coordinates, which exist in a
Banach manifold. It is clear that manifold properties, which are independent of
the choice of local coordinates, are the most important from a mathematical or
physical point of view.

Let X,Y be two Banach Spaces. Letu : U ⊂ X → Y be a continuous
mapping. One way of solving the equation

u(x) = y (1)

for any fixedy ∈ Y, is to embed (1) in a continuum of problems

H(x, t) = y, (0 ≤ t ≤ 1), (2)
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which is solved whent = 0. When t = 1, problem (2) becomes (1). If it
is possible to continue the solution for allt ∈ [0, 1], then (1) is solved. This
is the continuation method with respect to a parameter [1-21]. We introduce
a continuation method foru : M → Rn, whereM is a connectedC1-Banach
manifold modelled onRn.

In this paper, sufficient conditions are given to prove that aC1-mapping has
a zero in a Banach manifold by using continuation methods. Other conditions,
sufficient to guarantee the existence of zero points, have been given by the author
in several other papers [7-21]. This zero is also estimated. The proof supplies
the existence of a curve which leads to the solution. This can be approximated to
as precise an error as desired. The key is the use of the Continuous Dependence
Theorem [24], together with a consequence of the properties of Banach algebra
of the linear continuous mappings from a Banach space into itself [22].

We briefly recall some Theorems and notation to be used.

Definitions and Notation [25]. Let M be a topological space. Achart (U, ϕ)
in M is a pair where the setU is open inM andϕ : U → Uϕ is a homeomorphism
onto an open subsetUϕ of a Banach-spaceXϕ. We callϕ a chart map,Xϕ is
calledchart space,andUϕ chart image. For x ∈ U we call xϕ = ϕ(x) the
representativeof x in the chart(U, ϕ) or thelocal coordinateof x in the local
coordinate systemϕ. The pointx ∈ M may have different local coordinates
xϕ = ϕ(x) and xψ = ψ(x) for two different charts(U, ϕ) and (V, ψ). The
transformation rules between them arexϕ = ϕ(ψ−1(xψ))andxψ = ψ(ϕ−1(xϕ)).

Let M be a topological space, two charts(U, ϕ) and(V, ψ) are calledCk-
compatibleif and only ifU ∩V = ∅ orϕ◦ψ−1 andψ ◦ϕ−1areCk-mappings, k ≥
0,whereϕ◦ψ−1 : ψ(U ∩V) → ϕ(U ∩V) andψ ◦ϕ−1 : ϕ(U ∩V) → ψ(U ∩V).
A Ck-atlasfor M, 0 ≤ k ≤ ∞ is a collection of charts(Ui , ϕi ) (i ranging in some
index set) which satisfies the following conditions: (i) TheUi coverM, (ii) any
two charts areCk-compatible, (iii) All chart spacesXi are Banach-spaces over
K. M is said to be aCk-Banach manifoldif and only if there exists aCk-atlas
for M.

We call a chart inM , which isCk-compatible with all atlas charts,an admissible
chart. In particular, all atlas charts are admissible. If all chart spaces are equal
to a fixed Banach-spaceX, thenM is called aCk-Banach manifold modelledon
X. In this paper manifoldswithout boundarieswill be considered, such as the
surface of a ball inRn, an open set in a Banach-spaceX, etc.

Let M andN beCk-Banach manifolds with chart spaces overK, k ≥ 1. Then
f : M → N is calledCr -mapping, r ≤ k if and only if f is Cr at each point
x ∈ M in fixed admissible charts. Let(U, ϕ) and(V, ψ) be charts inM andN,

Bull Braz Math Soc, Vol. 38, N. 1, 2007



“main” — 2007/3/6 — 18:35 — page 69 — #3

CONTINUATION METHODS IN BANACH MANIFOLDS 69

respectively, withx ∈ U and f (x) ∈ V, themapping f = ψ ◦ f ◦ ϕ−1 which
is well defined in a sufficient small neighbourhood ofxϕ. This map is assumed
to beCr in the usual sense and we will call it arepresentativeof f .

Let M be aCk-Banach manifold,k ≥ 1, andx ∈ M. Two C1-curves inM,
which pass through the pointx, are calledequivalentat pointx if and only if
the representatives have the same tangent vector atx in some admissible chart.
A tangent vectorv to M at x consists of allC1-curves which are equivalent at
x for a fixedC1-curve. The tangent spaceT Mx to M at pointx is the set of all
tangent vectors atx.

Let f : M → N be aCk-mapping, k ≥ 1, whereM and N areCk-Banach
manifolds with chart space overK, f is called asubmersionat x if and only if
f ′(x) is surjective and the null spaceN( f ′(x)) splitsT Mx (which is automatic
whenM andN are finite-dimensional). A pointx ∈ M is called aregular point
of f if and only if f is a submersion atx.A point y ∈ N is called a regular value
of f if and only if the setf −1(y) is empty or consists only of regular points.

If X,Y are Banach spaces, letL (X,Y) denote the set of all linear continuous
mappingsL : X → Y. Let Isom(X,Y) denote the set of all the isomorphisms
L : X → Y. Let B(x0, ρ) be the open ball of centrex0 and radiusρ. If u : X →
Y is a linear continuous bijective operator, then the inverse linear continuous
operator will be denoted byu−1. If U is a set inX, let ∂U denote the boundary
of the setU , andU its closure.d(x,U ) denotes the distance between pointx
and setU . d(U,V) denotes the distance between the setsU andV .

Hx(x, t) denotes the partialF-derivative ofH with respect toX at the point
(x, t), whereH : X × [0, 1] → Y.

Theorem 1. Continuous Dependence Theorem ([24], pp. 188).Let the fol-
lowing conditions be satisfied:

(i) P is a metric space, called the parameter space.

(ii) For each parameterp ∈ P,mappingTp satisfies the following hypotheses:

(1) Tp : M → M, i.e. M is mapped into itself byTp.

(2) M is a closed non-empty set in a complete metric space(X, d).

(3) Tp is k-contractive, for any fixedk ∈ [0, 1).

(iii) For eachp0 ∈ P, and anyx ∈ M, lim
p→p0

Tp(x) = Tp0(x).

Thus for eachp ∈ P, the equationxp = Tpxp has exactly one solutionxp,

wherexp ∈ M and lim
p→p0

xp = xp0.
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Theorem 2 ([22] pp. 23-24). If X,Y are Banach spaces then

a) Isom(X,Y) is open inL(X,Y) .

b) the mappingβ : Isom(X,Y) → L(X,Y), β(u) := u−1 is continuous.

Theorem 3 ([23], p. 45). Let L , L ′ ∈ L(Rn,Rn) and assume thatL is invert-
ible, with‖ L−1 ‖≤ C. If ‖ L − L ′ ‖≤ ε, andC × ε < 1, thereforeL ′ is also
invertible, and‖ L ′−1 ‖≤ C

1−C×ε .

2 Continuation Methods in a Banach Manifold

Theorem 4. Let f, g : M → Rn be twoC1-mappings,whereM ⊂ Rp, p > n
is a compact connected set, which is aC1-Banach manifold modelled onRn

and aC1-atlas for M is (Ui , ϕi )i ∈I , I = 1, 2, ..., N. Suppose that the following
conditions are fulfilled:

(i) Mapping f has only one zerox? in M , with x∗ ∈ Uj , and

(ii) Zero is a regular value of the mappingsf, g, H(∙, t) for eacht ∈ [0, 1] of
the parametert, whereH : M × [0, 1] → Rn, H(x, t) := f (x)− tg(x).

(iii) Any chart(Ui , ϕi ), i ∈ I can be extended an admissible chart(U ∗
i , ϕi ),

i ∈ I , with Ui ⊂ U ∗
i and R′ > d(∂Uϕi , ∂U ∗

ϕi
) > R.

Hence the following statement holds true:

(a) f − g has a zerox∗∗ ∈ M, and there is a continuous mapping

α∗ : [0, 1] → M, with H(α∗(t), t) = 0, ∀t ∈ [0, 1], α∗(0) = x∗, α∗(1) =
x∗∗.

(b) Furthermore ifH(x, t) 6= 0, ∀(x, t) ∈ ∂Uj × [0, 1], j ∈ I then there is a
partition 0 = t0 < t1 < t2 < ... < tN = 1 of [0, 1], an integerm, and a
sequence{xi,k

ϕ j
} of Newton’s iterations defined by:

xi,k+1
ϕ j

= xi,k
ϕ j

− Hx(x
i,k
ϕ j
, ti )

−1H(xi,k
ϕ j
, ti ), x1,0

ϕ j
= x∗

ϕ j
, xi +1,0

ϕ j
= xi,m

ϕ j
,

where

k = 0, 1, ...,m − 1 if i ∈ 1, ..., N − 1 , and k = 0, 1, ... , if i = N,

which converges towardsx∗∗
ϕ j
.
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Proof. L(Rn,Rn) is provided by the topology given by its operator norm and
Rn × R is provided by a product topology.

x∗ belongs toUj , j ∈ I , and x∗ϕ j
= ϕ j (x∗) is its representative in the chart

(U j , ϕ j ). The representative mapping of

H : M × [0, 1] → Rn, H(x, t) = f (x)− tg(x)

in this chart is theC1-mapping

H : Ujϕ j × [0, 1] ⊂ Rn × [0, 1] → Rn, H(xϕ j , t) := (H ◦ (ϕ−1
j , I ))(xϕ j , t),

with I (t) = t. This verifiesthat H(x∗
ϕ j
, 0) = 0.

(a) For simplicity we will call H the representative ofH in any chart. We fix
any chart of the atlas(Ui , ϕi )i ∈I , for example(Uj , ϕ j ), which we will call(U, ϕ).
Anologously we call(U ∗, ϕ) the corresponding chart in the atlas(U ∗

i , ϕi )i ∈I . It
is supposed that(xa, ta) is a zero toH andxaϕ ∈ Uϕ, therefore the representative
of H,

H : Uϕ × [0, 1] ⊂ Rn × [0, 1] → Rn,

has the zero(xaϕ,ta). We will prove there is a neighbourhoodA′ of ta and a
continuous mappingα(∙) : A′ ⊂ [0, 1]→Uϕ ⊂ Rn with H(α(t), t) = 0, ∀t ∈
A′ :

(a1) By hypothesis(ii), H x(xϕ, t)(∙) ∈ L(Rn,Rn) maps ontoRn for any
(xϕ, t) ∈ U ∗

ϕ × [0, 1], therefore rank(H x(xϕ, t)) = n, and henceH x(xϕ, t)
belongs to Isom(Rn,Rn). We will prove here that there is a real numberC > 0,

such that if(xϕi , t), i = 1, ..., N belongs to(H
−1
(0)) ∩ (U ∗

ϕi
× [0, 1]) then

‖ H x(xϕi , t)
−1 ‖≤ C.

SinceH is aC1-mapping, themapping

H x : U ∗
ϕ × [0, 1] ⊂ Rn × [0, 1] → L(Rn,Rn), (xϕ, t) 7→ H x(xϕ, t)

is continuous.
From Theorem 2, the inverse formation

β : Isom(Rn,Rn) → L(Rn,Rn), β(u) = u−1

is a continuous mapping.
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Since

‖ ∙ ‖ ◦β ◦ H x : (H
−1
(0)) ∩ (U ∗

ϕ × [0, 1]) → R, H x(xϕ, t)
−1 7→ ‖Hx(xϕ, t)

−1‖

is continuous due to being a composition of continuous mappings, and given that

(H
−1
(0))∩ (U ∗

ϕ ×[0, 1]) is a compact set, the Weierstrass Theorem implies that

‖ H x(xϕ, t)
−1 ‖≤ C, ∀(xϕ, t) ∈ (H

−1
(0)) ∩ (U ∗

ϕ × [0, 1]).

The numberC has hence been defined to a particulart chart, and since the
atlas(U ∗

i , ϕi )i ∈I , hasN charts, then there areN positive numbersCi , i ∈ I . We
selectC = min{Ci : i ∈ I }.

(a2) In this Section we will find two numbersr, r0, to be used in a later section.
Let us define the mapping

h : U
∗
ϕ × [0, 1] × U

∗
ϕ × [0, 1] ⊂ Rn × R× Rn × R → Rn,

h(xaϕ , ta; xϕ, t) := H x(xaϕ , ta)(xϕ)− H(xaϕ + xϕ, t).

SinceH is a C1-mapping,h is a composition of continuous mappings, and
sinceU

∗
ϕ × [0, 1] × U

∗
ϕ × [0, 1] is a compact set of the topological spaceRn ×

R× Rn × R, therefore for anyr > 0 and forC given in Section (a1), there is a

δ
( r

2C

)
> 0, (3)

such that, if(xaϕ , ta; xϕ, t), (xa′
ϕ
, ta′

ϕ
; x′

ϕ, t
′) ∈ U

∗
ϕ × [0, 1] × U

∗
ϕ × [0, 1] with

‖ (xaϕ , ta; xϕ, t)− (xa′
ϕ
, ta′ ; x′

ϕ, t
′) ‖< δ

( r

2C

)
then

‖ h(xaϕ , ta; xϕ, t)− h(xa′
ϕ
, ta′ ; x′

ϕ, t
′) ‖<

r

2C
. (4)

On the other hand, the mappinghx : U
∗
ϕ × [0, 1] × U

∗
ϕ × [0, 1] → L(Rn,Rn),

hx(xaϕ , ta; xϕ, t) := H x(xaϕ , ta)− H x(xaϕ + xϕ, t)

is also uniformly continuous in the compactsetUϕ × [0, 1] × Uϕ × [0, 1], and
therefore there is an

r := δ

(
1

2C

)
> 0 (5)
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such that, if(xaϕ , ta; xϕ, t), (xa′
ϕ
, ta′

ϕ
; x′, t ′) ∈ U

∗
ϕ × [0, 1] × U

∗
ϕ × [0, 1] with

‖ (xaϕ , ta; xϕ, t)− (xa′
ϕ
, ta′ ; x′

ϕ, t
′) ‖< δ

(
1

2C

)
, then

‖ hx(xaϕ , ta; xϕ, t)− hx(xa′
ϕ
, ta′

ϕ
; x′

ϕ, t
′) ‖<

1

2C
. (6)

We taker given by Equation (5) and fixr ′
0 := δ

(
r

2C

)
given by Equation (3),

and we define the numberr0 := min{r, r ′
0}. The numbersr, andr0 have hence

been defined in a particular chart, and since the atlas(U ∗
i , ϕi )i ∈I hasN charts

there areri , r0i , i ∈ I positive numbers. We selectr = min{ri , R: i ∈ I } and
r0 = min{r0i : i ∈ I }.

(a3) Let us suppose that the representative(xaϕ , ta) of (xa, ta) in the chart

(Uϕ × [0, 1], (ϕ, I )) verifies(xaϕ , ta) ∈ H
−1
(0) ∩ (Uϕ × [0, 1]). Such a point

(xaϕ , ta) will be called a “starting point” inU ∗
ϕ × [0, 1].

The sets

A′ := {t ∈ [0, 1] : | t − ta |≤ r0}, A := {xϕ ∈ Rn : ‖ xϕ ‖≤ r, },

with r0, r found in Section (a2), will be associated to the “starting point”(xaϕ , ta).
Since‖ xϕ ‖≤ r, ∀xϕ ∈ A, therefore

xϕ + xaϕ ∈ U ∗
ϕ , ∀xϕ ∈ A.

Given a “starting point”(xaϕ , ta), we will prove here the existence of a key
continuous mapping

α(∙) : A′ ⊂ R→A+xaϕ ⊂ U ∗
ϕ ⊂ Rn, suchthat H(α(t), t) = 0, ∀t ∈ A′.

Let us solve theequation

H(xaϕ + xϕ, t) = 0, (7)

for fixed t ∈ A′ whenxϕ is in A.Obviously H(xaϕ , ta) = 0. Equation (7) can be
transformed into the following equivalentequation

H x(xaϕ , ta)
−1[H x(xaϕ , ta)(xϕ)− H(xaϕ + xϕ, t)] = xϕ, (8)

which leads us to define the mappings

h : A× t → Rn, for fixed t ∈ A′, h(xϕ, t) := H x(xaϕ , ta)(xϕ)− H(xaϕ +xϕ, t),
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and
Tt : A → Rn, Tt(xϕ) := H x(xaϕ , ta)

−1h(xϕ, t).

Let us observe thath(xϕ, t) is defined in Section (a2) ash(xaϕ , ta; xϕ, t) when
(xaϕ , ta) is a fixed “starting point”, and whent is fixed and belongs toA′, and
the variablexϕ belongs toA. Let us also observe thatt in the definition ofTt is
an index and not a partial derivative as is usually written.

Evidently
h(0, ta) = 0, (9)

and
hx(0, ta) = 0. (10)

Equation (7) is equivalent to the following key Fixed Point Equation

Tt(xϕ) = xϕ, (11)

which will be studied later in the paper.
Let xϕ, x′

ϕ ∈ A, t ∈ A′, and hence the Taylor Theorem together with Equa-
tions (6) and (10) imply that

‖ h(xϕ, t)− h(x′
ϕ, t) ‖

≤ sup{‖ hx(x
′
ϕ + θ(xϕ − x′

ϕ), t) ‖: θ ∈ [0, 1]}. ‖ xϕ − x′
ϕ ‖≤

1

C
r.

(12)

Equations (4) and (9) imply that

‖ h(xϕ, t) ‖≤‖ h(xϕ, t)− h(0, ta) ‖ + ‖ h(0, ta) ‖≤
r

C
,

hence
‖ Tt(xϕ) ‖≤‖ H x(xaϕ , ta)

−1 ‖‖ h(xϕ, t) ‖≤ r. (13)

We are already able to prove that the hypotheses of Theorem 1 are verified by the
spaces and mappings which have just been defined. The Metric space(A′, | ∙ |)
is the parameter space of hypothesis (i) of Theorem 1.A is considered as the
closed and non-empty set andRn as the complete metric space of hypothesis (ii),
which is verified below:

From Equation (13), for any fixedt ∈ A′, and for all xϕ ∈ A, we obtain
‖ Tt xϕ ‖≤ r, thereforeTt xϕ ∈ A, and henceTt : A → A, i.e. Tt maps the closed
and non-empty set of the Banach spaceRn into itself.
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From Equations (6), (10), and the Taylor Theorem, for anyxϕ, x′
ϕ ∈ A, and

for anyt ∈ A′

‖Tt(xϕ)− Tt(x
′
ϕ)‖ ≤ ‖ H x(xaϕ , ta)

−1‖‖ hx(x
′
ϕ + b(xϕ − x′

ϕ), t)‖‖ xϕ − x′
ϕ ‖

≤ C‖ hx(x
′
ϕϕ

+ b(xϕ − x′
ϕ), t)− hx(0, ta)‖‖ xϕ − x′

ϕ ‖

≤
1

2
‖ xϕ − x′

ϕ ‖, (b ∈ [0, 1]).

ThereforeTt is half-contractive for any fixedt ∈ A′. Hence hypothesis (ii) of
Theorem 1 is verified.

For any fixedt0 ∈ A′ and for allxϕ ∈ A,

Tt(xϕ) = H x(xaϕ , ta)
−1(H x(xaϕ , ta)(xϕ)− H(xaϕ + xϕ, t))

→ H x(xaϕ , ta)
−1(H x(xaϕ , ta)(xϕ)− H(xaϕ + xϕ, t0))

= Tt0(xϕ) as t → t0, t ∈ A′,

therefore hypothesis (iii) of Theorem 1 is also verified. Hence Theorem 1 im-
plies, for anyt ∈ A′, that Tt has a unique fixed pointxϕ ∈ A, Tt(xϕ) = xϕ :=
xϕ(t), andxϕ(t) → xϕ(t0) while t → t0; t, t0 ∈ A′, i.e. xϕ(∙) is a continuous
mapping. Thus for anyt ∈ A′ there is only onexϕ(t) ∈ A suchthat

H(xaϕ + xϕ(t), t) = 0, (14)

and furthermoreH(xaϕ + xϕ(t), t) → H(xaϕ + xϕ(t0), t0) = 0 while t →
t0, t, t0 ∈ A′. Let us observe thatTta(0) = 0, xϕ(ta) = 0.

Equation (14) can be writtenasH(α(t), t) = 0,which is verified for allt ∈ A′,

whereα is the continuous mapping

α : A′ → U ∗
ϕ ⊂ Rn, α(t) := xaϕ + xϕ(t), where α(ta) = xaϕ . (15)

(b) Conclusion (a) will be proved here. Since(x∗
ϕ, 0) ∈ H

−1
(0)∩(Uϕ×[0, 1]),

i.e. (x∗
ϕ, 0) is a “starting point”, therefore from Section (a3) there areA, A′, α

such that
α : A′ → A + x∗

ϕ, H(α(t), t) = 0, ∀t ∈ A′.

Let suppose thatα(t) ∈ Uϕ, ∀t ∈ [0, r0], then mappingα is extended to the

right of r0 by taking(α(r0), r0) which belongsto H
−1
(0) ∩ (Uϕ × [0, 1]) as the

Bull Braz Math Soc, Vol. 38, N. 1, 2007
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following “starting point”. We also callα the continuous prolonged mapping
and by supposing thatα(t) ∈ Uϕ, ∀t ∈ [0, 2r0], we obtain

α : [0, 2r0] → Uϕ ⊂ Rn, which verifies H(α(t), t) = 0, ∀t ∈ [0, 1].

Mappingα is successively extended to the right in the same way ifα(t) does not
reach∂Uϕ. One of these two cases occurs:

1) Due to[0, 1] being a compact set, there is an

α : [0, 1] → U ∗
ϕ ⊂ Rn, which verifies H(α(t), t) = 0, ∀t ∈ [0, 1].

Therefore a point(x∗∗
ϕ , 1) ∈ U ∗

ϕ × [0, 1] exists, which verifies

H(x∗∗
ϕ , 1) = H(α(1), 1) = 0,

andhence

H(x∗∗
ϕ , 1) = (H ◦ (ϕ−1, I ))(x∗∗

ϕ , 1) = H(x∗∗, 1) = 0 or f (x∗∗)− g(x∗∗) = 0,

andfurthermoreH(α(t), t) = 0, ∀t ∈ [0, 1]. Equivalently

(H ◦ (ϕ−1, I ))(α(t), t) = H(α∗(t), t) = 0, ∀t ∈ [0, 1], with

α∗(t) := ϕ−1 ◦ α(t),

which is continuous since it is composed of continuous mappings.

2) α∗ can only be extended in this way untilt1 < 1,whereα(t1) ∈ U ∗
ϕ = U ∗

ϕ j
,

and(α(t1), t1) is not a starting point inU ∗
ϕ j

×[0, 1] . SinceUi ,U ∗
i i ∈ I are open

covers forM, x1 = ϕ−1
j (α(t1)) = ϕ−1

j (x1ϕ j ) verifiesx1 ∈ U ∗
j ∩ Uk, j, k ∈ I .

The continuous mappingα∗(∙) : [0, t1] → M, α∗(t) = (ϕ−1
j ◦ α)(t) will now

be extended to the right oft1 in the same way as before, but by using the chart
(U ∗

k , ϕk) with the point(x1ϕk, t1) as the first “starting point” inU ∗
ϕk

× [0, 1], and
by using the continuous mappingα : [t1, t2] → U ∗

ϕk
,which verifiesH(α(t), t) =

0, ∀t ∈ [t1, t2], α(t2) = x2ϕk . Equation (15) establishes thatt2 − t1 ≥ r0, when
the chart atx2 is changed again, when necessary.

This situation can be repeated, however, since[0, 1] is a compact setα∗,

reachesα∗(1) in a finite number of repetitions. Therefore

H(α∗(1), 1) = f (α∗(1), 1)− g(α∗(1), 1) = 0.

That is, there is anx∗∗ such thatf (x∗∗) = g(x∗∗).
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(c) Section (a1) givesC > 0 such that if(xϕ, t) ∈ ((H
−1
(0)) ∩ (Uϕ × [0, 1])

then‖ H x(xϕ, t)−1 ‖≤ C. Section (b) and the hypothesis in (b) give a continuous
mappingα∗ : [0, 1] → Rn,with H(α∗(t), t) = 0, α∗(t) ∈ M, ∀t ∈ [0, 1].

SinceH is a C1-mapping,thereforeH x(xϕ, t) : U ∗
ϕ × [0, t1] → Rn is uni-

formly continuous on the compactset Uϕ × [0, 1] and hence, for any fixed
ε ∈ (0, 1

3C ), ε < 1, the valueδ > 0 exists forwhich

B(α(t), δ) ⊂ Uϕ j , ∀t ∈ [0, 1],

and furthermore

‖ H x(xϕ, t)− H x(yϕ, t) ‖< ε, ∀xϕ, yϕ ∈ Uϕ,

with ‖ xϕ − yϕ ‖< δ, t ∈ [0, 1].
(16)

Theorem 3 impliesthat H x(xϕ, t)−1 exists for anyxϕ ∈ B(α(t), δ), and fur-
thermore

‖ H x(xϕ, t)
−1 ‖≤

C

1 − Cε
. (17)

The Newton process for any fixedt ∈ [0, t1] and x0
ϕ ∈ B(α(t), δ) is

xk+1
ϕ = xk

ϕ − H x(x
k
ϕ, t)

−1H(xk
ϕ, t), k = 0, 1, ... (18)

It will be proved by induction that

‖ xk
ϕ − α(t) ‖≤ γ kδ, k = 0, 1, ...,with γ =

C

1 − Cε
< 1 : (19)

1) Equation (19) is true by assumption fork = 0.
2) If Equation (19) is true for anyk ∈ N, and thereforexk

ϕ ∈ B(α(t), γ kδ),

then, from Equations (16), (17), (19) and Theorem 3 and the Mean-Value Theo-
rem together withH(α(t), t) = 0, t ∈ [0, 1], Equation (19) is true fork + 1:

‖ α(t)− xk+1
ϕ ‖=‖ α(t)− xk

ϕ + H x(x
k
ϕ, t)

−1H(xk
ϕ, t) ‖

≤‖ H x(x
k
ϕ, t)

−1 ‖ ‖ H(α(t), t)− H(xk
ϕ, t)− H x(x

k
ϕ, t)(α(t)− xk

ϕ) ‖

=‖ H x(x
k
ϕ, t)

−1 ‖ ‖ H x(u, t)(α(t)− xk)− H x(x
k
ϕ, t)(α(t)− xk) ‖

≤
C

1 − Cε
εγ kδ ≤ γ k+1δ.

(20)

Hence the Newton sequence (18) remainsin B(α(t), δ) and converges to-
wardsα(t).
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Sinceα(∙) is a continuous mapping, therefore there aret0, t1, ..., tL , 0 = t0 <
t1 < ... < tL = 1 for which‖ α(ti +1) − α(ti ) ‖≤ δ′ < δ, i = 0, 1, ..., L − 1 is
verified.

Let m ∈ N exists such thatγm ≤ 1 − ( δ
′

δ
). We consider the sequence of

Newton’s iterations:

xi,k+1
ϕ = xi,k

ϕ − H x(x
i,k
ϕ , ti )

−1H(xi,k
ϕ , ti ),

x1,0
ϕ = x∗

ϕ, xi +1,0
ϕ = xi,m

ϕ , k = 0, 1, ...,m − 1, i = 1, 2, ..., L − 1, (21)

xL ,k+1
ϕ = xL ,k

ϕ − Hx(x
L ,k
ϕ , 1)−1H(xL ,k

ϕ , 1), k = 0, 1, ..., (22)

which verifies:

1) x∗
ϕ ∈ B(α(t0), δ − δ′),

2) If xi,0
ϕ ∈ B(α(ti −1), δ − δ′) and since,

‖ xi,0
ϕ − α(ti ) ‖<‖ xi,0

ϕ − α(ti −1) ‖ + ‖ α(ti −1)− α(ti ) ‖< δ,

thereforexi,0
ϕ ∈ B(α(ti ), δ) ⊂ Uϕ, i = 1, ..., L . Furthermore, from Equa-

tion (20),

‖ xi +1,0
ϕ − α(t0,i ) ‖=‖ xi,m

ϕ − α(ti ) ‖≤ γmδ ≤ δ − δ′,

hence the process from (21) to (22) can be continued upwards where all
xi,k
ϕ are inUϕ. Thus the final iteration (22) converges towardsα(1).

References

[1] E.L. Allgower, A survey of homotopy methods for smooth mappings, Allgower,
Glashoff, and Peitgen (eds.) Springer-Verlag, Berlin (1981), 2–29.

[2] E. Allgower, K. Glashoff and H. Peitgen (eds.),Proceedings of the Conference on
Numerical Solution of Nonlinear Equations, Bremen, July 1980, Lecture Notes in
Math. 878. Springer-Verlag, Berlin, 1981.

[3] E.L. Allgower and K. Georg,Numerical Continuation Methods, Springer Series
in Computational Mathematics 13, Springer-Verlag, New York, 1990.

[4] J.C. Alexander and J.A. York,Homotopy Continuation Method: numerically
implementable topological procedures, Trans. Amer. Math. Soc.242 (1978),
271–284.

[5] C.B. Garcia and T.I. Li,On the number of solutions to polynomial Systems of
non-linear equations, SIAM J. Numer. Anal.17 (1980), 540–546.

Bull Braz Math Soc, Vol. 38, N. 1, 2007



“main” — 2007/3/6 — 18:35 — page 79 — #13

CONTINUATION METHODS IN BANACH MANIFOLDS 79

[6] C.B. Garcia and W.I. Zangwill,Determining all solutions to certain systems of
non-linear equations, Math. Operations Research4 (1979), 1–14.

[7] J.M. Soriano,Existence of zeros for bounded perturbations of proper mappings,
Appl. Math. Comput.99 (1999), 255–259.

[8] J.M. Soriano,Global minimum point of a convex function, Appl. Math. Comput.
55(2-3) (1993), 213–218.

[9] J.M. Soriano,Extremum points of a convex function, Appl. Math. Comput.80
(1994), 1–6.

[10] J.M. Soriano,On the existence of zero points, Appl. Math.Comput.79 (1996),
99–104.

[11] J.M. Soriano,On the number of zeros of a mapping, Appl. Math. Comput.88
(1997), 287-291.

[12] J.M. Soriano,On the Bezout Theorem Real Case, Appl. Nonlinear Anal.2(4)
(1995), 59–66.

[13] J.M. Soriano,On the Bezout Theorem, Appl. Nonlinear Anal.4(2) (1997), 59–66.

[14] J.M. Soriano,Mappings sharing a value on finite-dimensional spaces, Appl. Math.
Comput.121(2, 3) (2000), 391–395.

[15] J.M. Soriano,Compact mappings and proper mappings between Banach spaces
that share a value, Math Balkanica14(1-2) (2000), 161–166.

[16] J.M. Soriano,Zeros of compact perturbations of proper mappings,Comm. Appl.
Nonlinear Anal.7(4) (2000), 31–37.

[17] J.M. Soriano,A compactness condition, Appl. Math. Comput.124(3) (2001),
397–402.

[18] J.M. Soriano,Open trajectories, Appl. Math. Comput.124(2) (2001), 235–240.

[19] J.M. Soriano,On the existence of zero points of a continuous function, Acta Math.
Sci.22(2) (2002), 171–177.

[20] J.M. Soriano,Fredholm and compact mappings sharing a value, Appl. Math. Mech.
22(6) (2001), 682–686.

[21] J.M. Soriano,Stable and unstable stationary trajectories, Appl. Math. Mech.26(1)
(2005) 52-57.

[22] H. Cartan,Differential calculus, Omega, Barcelona, 1978.

[23] J.M. Ortega and W.C. Rheinbolt,Iterative solutions of nonlinear equations of
several variables,Academic Press. Inc., Boston 1970.

[24] E. Zeidler,Nonlinear functional analysis and its applications I,Springer-Verlag,
New York, 1985.

[25] E. Zeidler,Nonlinear functional analysis and its applications IV,Springer-Verlag,
New York, 1985.

Bull Braz Math Soc, Vol. 38, N. 1, 2007



“main” — 2007/3/6 — 18:35 — page 80 — #14

80 J.M. SORIANO

José M. Soriano Arbizu
Departamento de Análisis Matemático
Universidad de Sevilla, Aptdo. 1160
Sevilla 41080
SPAIN

E-mail: soriano@us.es

Bull Braz Math Soc, Vol. 38, N. 1, 2007


