

Continuation methods in Banach manifolds

J.M. Soriano

Abstract. Sufficient conditions are given to assert that a perturbed mapping has a zero in a Banach manifold modelled over \mathbb{R}^n . The zero is estimated by means of sequences of Newton's iterations. The proof of the result is constructive and is based upon continuation methods.

Keywords: regular value, continuation methods, continuous dependence theorem, sequence of Newton's iterations.

Mathematical subject classification: Primary 58C30; Secondary 65H20.

1 Preliminaires

Since a process of measurements is used to describe scientific phenomena, the concept of Banach manifold is one of the most important in mathematical physics. At close range a manifold looks like a Banach-space. Phenomena are locally described by parameters. Since different Banach-space or parameter-space or coordinate-space are allowed for a phenomena local description, it is important to have a transformation rule for these different coordinates, which exist in a Banach manifold. It is clear that manifold properties, which are independent of the choice of local coordinates, are the most important from a mathematical or physical point of view.

Let X, Y be two Banach Spaces. Let $u: U \subset X \to Y$ be a continuous mapping. One way of solving the equation

$$u(x) = y \tag{1}$$

for any fixed $y \in Y$, is to embed (1) in a continuum of problems

$$H(x,t) = y, (0 \le t \le 1),$$
(2)

Received 17 March 2006.

This work is partially supported by D.G.E.S. Pb 96-1338-CO 2-01 and the Junta de Andalucia.

which is solved when t = 0. When t = 1, problem (2) becomes (1). If it is possible to continue the solution for all $t \in [0, 1]$, then (1) is solved. This is the continuation method with respect to a parameter [1-21]. We introduce a continuation method for $u: M \to \mathbb{R}^n$, where M is a connected C^1 -Banach manifold modelled on \mathbb{R}^n .

In this paper, sufficient conditions are given to prove that a C^1 -mapping has a zero in a Banach manifold by using continuation methods. Other conditions, sufficient to guarantee the existence of zero points, have been given by the author in several other papers [7-21]. This zero is also estimated. The proof supplies the existence of a curve which leads to the solution. This can be approximated to as precise an error as desired. The key is the use of the Continuous Dependence Theorem [24], together with a consequence of the properties of Banach algebra of the linear continuous mappings from a Banach space into itself [22].

We briefly recall some Theorems and notation to be used.

Definitions and Notation [25]. Let *M* be a topological space. A *chart* (U, φ) in *M* is a pair where the set *U* is open in *M* and $\varphi: U \to U_{\varphi}$ is a homeomorphism onto an open subset U_{φ} of a Banach-space X_{φ} . We call φ a *chart map*, X_{φ} is called *chart space*, and U_{φ} *chart image*. For $x \in U$ we call $x_{\varphi} = \varphi(x)$ the *representative* of *x* in the chart (U, φ) or the *local coordinate* of *x* in the local coordinates $x_{\varphi} = \varphi(x)$ and $x_{\psi} = \psi(x)$ for two different charts (U, φ) and (V, ψ) . The transformation rules between them are $x_{\varphi} = \varphi(\psi^{-1}(x_{\psi}))$ and $x_{\psi} = \psi(\varphi^{-1}(x_{\varphi}))$.

Let *M* be a topological space, two charts (U, φ) and (V, ψ) are called C^{k} compatible if and only if $U \cap V = \emptyset$ or $\varphi \circ \psi^{-1}$ and $\psi \circ \varphi^{-1}$ are C^{k} -mappings, $k \ge 0$, where $\varphi \circ \psi^{-1} : \psi(U \cap V) \to \varphi(U \cap V)$ and $\psi \circ \varphi^{-1} : \varphi(U \cap V) \to \psi(U \cap V)$. A C^{k} -atlas for $M, 0 \le k \le \infty$ is a collection of charts (U_{i}, φ_{i}) (*i* ranging in some index set) which satisfies the following conditions: (i) The U_{i} cover M, (ii) any two charts are C^{k} -compatible, (iii) All chart spaces X_{i} are Banach-spaces over \mathbb{K} . M is said to be a C^{k} -Banach manifold if and only if there exists a C^{k} -atlas for M.

We call a chart in M, which is C^k -compatible with all atlas charts, *an admissible chart*. In particular, all atlas charts are admissible. If all chart spaces are equal to a fixed Banach-space X, then M is called a C^k -Banach manifold modelled on X. In this paper manifolds without boundaries will be considered, such as the surface of a ball in \mathbb{R}^n , an open set in a Banach-space X, etc.

Let *M* and *N* be C^k -Banach manifolds with chart spaces over \mathbb{K} , $k \ge 1$. Then $f: M \to N$ is called C^r -mapping, $r \le k$ if and only if f is C^r at each point $x \in M$ in fixed admissible charts. Let (U, φ) and (V, ψ) be charts in *M* and *N*,

respectively, with $x \in U$ and $f(x) \in V$, the mapping $\overline{f} = \psi \circ f \circ \varphi^{-1}$ which is well defined in a sufficient small neighbourhood of x_{φ} . This map is assumed to be C^r in the usual sense and we will call it a *representative* of f.

Let *M* be a C^k -Banach manifold, $k \ge 1$, and $x \in M$. Two C^1 -curves in *M*, which pass through the point *x*, are called *equivalent* at point *x* if and only if the representatives have the same tangent vector at *x* in some admissible chart. A *tangent vector v* to *M* at *x* consists of all C^1 -curves which are equivalent at *x* for a fixed C^1 -curve. The tangent space TM_x to *M* at point *x* is the set of all tangent vectors at *x*.

Let $f: M \to N$ be a C^k -mapping, $k \ge 1$, where M and N are C^k -Banach manifolds with chart space over \mathbb{K} , f is called a *submersion* at x if and only if f'(x) is surjective and the null space N(f'(x)) splits TM_x (which is automatic when M and N are finite-dimensional). A point $x \in M$ is called a *regular point* of f if and only if f is a submersion at x. A point $y \in N$ is called a regular value of f if and only if the set $f^{-1}(y)$ is empty or consists only of regular points.

If X, Y are Banach spaces, let $\mathcal{L}(X, Y)$ denote the set of all linear continuous mappings $L: X \to Y$. Let Isom(X, Y) denote the set of all the isomorphisms $L: X \to Y$. Let $B(x_0, \rho)$ be the open ball of centre x_0 and radius ρ . If $u: X \to$ Y is a linear continuous bijective operator, then the inverse linear continuous operator will be denoted by u^{-1} . If U is a set in X, let ∂U denote the boundary of the set U, and \overline{U} its closure. d(x, U) denotes the distance between point x and set U. d(U, V) denotes the distance between the sets U and V.

 $H_x(x, t)$ denotes the partial *F*-derivative of *H* with respect to *X* at the point (x, t), where $H: X \times [0, 1] \rightarrow Y$.

Theorem 1. Continuous Dependence Theorem ([24], pp. 188). Let the following conditions be satisfied:

- (i) *P* is a metric space, called the parameter space.
- (ii) For each parameter $p \in P$, mapping T_p satisfies the following hypotheses:
 - (1) $T_p: M \to M$, *i.e.* M is mapped into itself by T_p .
 - (2) *M* is a closed non-empty set in a complete metric space (X, d).
 - (3) T_p is k-contractive, for any fixed $k \in [0, 1)$.

(iii) For each $p_0 \in P$, and any $x \in M$, $\lim_{p \to p_0} T_p(x) = T_{p_0}(x)$.

Thus for each $p \in P$, the equation $x_p = T_p x_p$ has exactly one solution x_p , where $x_p \in M$ and $\lim_{p \to p_0} x_p = x_{p_0}$.

Theorem 2 ([22] pp. 23-24). If X, Y are Banach spaces then

- a) Isom(X, Y) is open in $\mathcal{L}(X, Y)$.
- b) the mapping β : Isom $(X, Y) \rightarrow \mathcal{L}(X, Y), \beta(u) := u^{-1}$ is continuous.

Theorem 3 ([23], p. 45). Let $L, L' \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)$ and assume that L is invertible, with $|| L^{-1} || \le C$. If $|| L - L' || \le \varepsilon$, and $C \times \varepsilon < 1$, therefore L' is also invertible, and $|| L'^{-1} || \le \frac{C}{1-C\times\varepsilon}$.

2 Continuation Methods in a Banach Manifold

Theorem 4. Let $f, g: M \to \mathbb{R}^n$ be two C^1 -mappings, where $M \subset \mathbb{R}^p$, p > n is a compact connected set, which is a C^1 -Banach manifold modelled on \mathbb{R}^n and a C^1 -atlas for M is $(U_i, \varphi_i)_{i \in I}$, I = 1, 2, ..., N. Suppose that the following conditions are fulfilled:

- (i) Mapping f has only one zero x^* in M, with $x^* \in U_i$, and
- (ii) Zero is a regular value of the mappings $f, g, H(\cdot, t)$ for each $t \in [0, 1]$ of the parameter t, where $H: M \times [0, 1] \rightarrow \mathbb{R}^n$, H(x, t) := f(x) tg(x).
- (iii) Any chart $(U_i, \varphi_i), i \in I$ can be extended an admissible chart $(U_i^*, \varphi_i), i \in I$, with $\overline{U}_i \subset U_i^*$ and $R' > d(\partial U_{\varphi_i}, \partial U_{\varphi_i}^*) > R$.

Hence the following statement holds true:

- (a) f g has a zero $x^{**} \in M$, and there is a continuous mapping $\alpha^* \colon [0, 1] \to M$, with $H(\alpha^*(t), t) = 0$, $\forall t \in [0, 1]$, $\alpha^*(0) = x^*$, $\alpha^*(1) = x^{**}$.
- (b) Furthermore if $H(x, t) \neq 0$, $\forall (x, t) \in \partial U_j \times [0, 1]$, $j \in I$ then there is a partition $0 = t_0 < t_1 < t_2 < ... < t_N = 1$ of [0, 1], an integer *m*, and a sequence $\{x_{\omega_i}^{i,k}\}$ of Newton's iterations defined by:

$$x_{\varphi_j}^{i,k+1} = x_{\varphi_j}^{i,k} - H_x(x_{\varphi_j}^{i,k}, t_i)^{-1} H(x_{\varphi_j}^{i,k}, t_i), \ x_{\varphi_j}^{1,0} = x_{\varphi_j}^*, \ x_{\varphi_j}^{i+1,0} = x_{\varphi_j}^{i,m},$$

where

k = 0, 1, ..., m - 1 if $i \in 1, ..., N - 1$, and k = 0, 1, ..., if i = N, which converges towards $x_{\varphi_i}^{**}$.

Proof. $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)$ is provided by the topology given by its operator norm and $\mathbb{R}^n \times \mathbb{R}$ is provided by a product topology.

 x^* belongs to U_j , $j \in I$, and $x^*_{\varphi_j} = \varphi_j(x^*)$ is its representative in the chart (U_j, φ_j) . The representative mapping of

$$H: M \times [0, 1] \to \mathbb{R}^n, H(x, t) = f(x) - tg(x)$$

in this chart is the C^1 -mapping

$$\overline{H}: U_{j_{\varphi_j}} \times [0,1] \subset \mathbb{R}^n \times [0,1] \to \mathbb{R}^n, \overline{H}(x_{\varphi_j},t) := (H \circ (\varphi_j^{-1},I))(x_{\varphi_j},t),$$

with I(t) = t. This verifies that $\overline{H}(x_{\varphi_i}^*, 0) = 0$.

(a) For simplicity we will call \overline{H} the representative of H in any chart. We fix any chart of the atlas $(U_i, \varphi_i)_{i \in I}$, for example (U_j, φ_j) , which we will call (U, φ) . Anologously we call (U^*, φ) the corresponding chart in the atlas $(U_i^*, \varphi_i)_{i \in I}$. It is supposed that (x_a, t_a) is a zero to H and $x_{a_{\varphi}} \in U_{\varphi}$, therefore the representative of H,

$$H: U_{\omega} \times [0,1] \subset \mathbb{R}^n \times [0,1] \to \mathbb{R}^n,$$

has the zero $(x_{a_{\varphi}}, t_a)$. We will prove there is a neighbourhood A' of t_a and a continuous mapping $\alpha(\cdot) \colon A' \subset [0, 1] \to U_{\varphi} \subset \mathbb{R}^n$ with $\overline{H}(\alpha(t), t) = 0, \forall t \in A'$:

(a1) By hypothesis (ii), $\overline{H}_x(x_{\varphi}, t)(\cdot) \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)$ maps onto \mathbb{R}^n for any $(x_{\varphi}, t) \in U_{\varphi}^* \times [0, 1]$, therefore rank $(\overline{H}_x(x_{\varphi}, t)) = n$, and hence $\overline{H}_x(x_{\varphi}, t)$ belongs to Isom $(\mathbb{R}^n, \mathbb{R}^n)$. We will prove here that there is a real number C > 0, such that if $(x_{\varphi_i}, t), i = 1, ..., N$ belongs to $(\overline{H}^{-1}(0)) \cap (U_{\varphi_i}^* \times [0, 1])$ then $\| \overline{H}_x(x_{\varphi_i}, t)^{-1} \| \leq C$.

Since H is a C^1 -mapping, the mapping

$$\overline{H}_{x}: U_{\varphi}^{*} \times [0,1] \subset \mathbb{R}^{n} \times [0,1] \to \mathcal{L}(\mathbb{R}^{n},\mathbb{R}^{n}), (x_{\varphi},t) \mapsto \overline{H}_{x}(x_{\varphi},t)$$

is continuous.

From Theorem 2, the inverse formation

$$\beta$$
: Isom $(\mathbb{R}^n, \mathbb{R}^n) \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n), \beta(u) = u^{-1}$

is a continuous mapping.

Since

$$\|\cdot\|\circ\beta\circ\overline{H}_x\colon(\overline{H}^{-1}(0))\cap(U_{\varphi}^*\times[0,1])\to\mathbb{R},\overline{H}_x(x_{\varphi},t)^{-1}\mapsto\|H_x(x_{\varphi},t)^{-1}\|$$

is continuous due to being a composition of continuous mappings, and given that $(\overline{H}^{-1}(0)) \cap (U_{\varphi}^* \times [0, 1])$ is a compact set, the Weierstrass Theorem implies that

$$\|\overline{H}_{x}(x_{\varphi},t)^{-1}\| \leq C, \forall (x_{\varphi},t) \in (\overline{H}^{-1}(0)) \cap (U_{\varphi}^{*} \times [0,1])$$

The number *C* has hence been defined to a particular chart, and since the atlas $(U_i^*, \varphi_i)_{i \in I}$, has *N* charts, then there are *N* positive numbers $C_i, i \in I$. We select $C = \min\{C_i : i \in I\}$.

(a2) In this Section we will find two numbers r, r_0 , to be used in a later section. Let us define the mapping

$$h: \overline{U}_{\varphi}^* \times [0, 1] \times \overline{U}_{\varphi}^* \times [0, 1] \subset \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n,$$

$$h(x_{a_{\varphi}}, t_a; x_{\varphi}, t) := \overline{H}_x(x_{a_{\varphi}}, t_a)(x_{\varphi}) - \overline{H}(x_{a_{\varphi}} + x_{\varphi}, t).$$

Since \overline{H} is a C^1 -mapping, h is a composition of continuous mappings, and since $\overline{U}_{\varphi}^* \times [0, 1] \times \overline{U}_{\varphi}^* \times [0, 1]$ is a compact set of the topological space $\mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}$, therefore for any r > 0 and for C given in Section (a1), there is a

$$\delta\left(\frac{r}{2C}\right) > 0,\tag{3}$$

such that, if $(x_{a_{\varphi}}, t_a; x_{\varphi}, t), (x_{a'_{\varphi}}, t_{a'_{\varphi}}; x'_{\varphi}, t') \in \overline{U}_{\varphi}^* \times [0, 1] \times \overline{U}_{\varphi}^* \times [0, 1]$ with

$$\| (x_{a_{\varphi}}, t_{a}; x_{\varphi}, t) - (x_{a'_{\varphi}}, t_{a'}; x'_{\varphi}, t') \| < \delta \left(\frac{r}{2C}\right) \text{ then} \\ \| h(x_{a_{\varphi}}, t_{a}; x_{\varphi}, t) - h(x_{a'_{\varphi}}, t_{a'}; x'_{\varphi}, t') \| < \frac{r}{2C}.$$
(4)

On the other hand, the mapping $h_x : \overline{U}_{\varphi}^* \times [0, 1] \times \overline{U}_{\varphi}^* \times [0, 1] \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)$,

$$h_x(x_{a_{\varphi}}, t_a; x_{\varphi}, t) := \overline{H}_x(x_{a_{\varphi}}, t_a) - \overline{H}_x(x_{a_{\varphi}} + x_{\varphi}, t)$$

is also uniformly continuous in the compact set $\overline{U}_{\varphi} \times [0, 1] \times \overline{U}_{\varphi} \times [0, 1]$, and therefore there is an

$$r := \delta\left(\frac{1}{2C}\right) > 0 \tag{5}$$

such that, if $(x_{a_{\varphi}}, t_a; x_{\varphi}, t), (x_{a'_{\varphi}}, t_{a'_{\varphi}}; x', t') \in \overline{U}_{\varphi}^* \times [0, 1] \times \overline{U}_{\varphi}^* \times [0, 1]$ with

$$\| (x_{a_{\varphi}}, t_{a}; x_{\varphi}, t) - (x_{a_{\varphi}'}, t_{a'}; x_{\varphi}', t') \| < \delta \left(\frac{1}{2C}\right), \text{ then} \\ \| h_{x}(x_{a_{\varphi}}, t_{a}; x_{\varphi}, t) - h_{x}(x_{a_{\varphi}'}, t_{a_{\varphi}'}; x_{\varphi}', t') \| < \frac{1}{2C}.$$
(6)

We take *r* given by Equation (5) and fix $r'_0 := \delta\left(\frac{r}{2C}\right)$ given by Equation (3), and we define the number $r_0 := \min\{r, r'_0\}$. The numbers *r*, and r_0 have hence been defined in a particular chart, and since the atlas $(U_i^*, \varphi_i)_{i \in I}$ has *N* charts there are $r_i, r_{0_i}, i \in I$ positive numbers. We select $r = \min\{r_i, R : i \in I\}$ and $r_0 = \min\{r_{0_i} : i \in I\}$.

(a3) Let us suppose that the representative $(x_{a_{\varphi}}, t_a)$ of (x_a, t_a) in the chart $(U_{\varphi} \times [0, 1], (\varphi, I))$ verifies $(x_{a_{\varphi}}, t_a) \in \overline{H}^{-1}(0) \cap (U_{\varphi} \times [0, 1])$. Such a point $(x_{a_{\varphi}}, t_a)$ will be called a "starting point" in $U_{\varphi}^* \times [0, 1]$.

The sets

$$A' := \{t \in [0, 1]: | t - t_a | \le r_0\}, A := \{x_{\varphi} \in \mathbb{R}^n : || x_{\varphi} || \le r, \},\$$

with r_0 , r found in Section (a2), will be associated to the "starting point" $(x_{a_{\varphi}}, t_a)$. Since $|| x_{\varphi} || \le r, \forall x_{\varphi} \in A$, therefore

$$x_{\varphi} + x_{a_{\varphi}} \in U_{\varphi}^*, \forall x_{\varphi} \in A.$$

Given a "starting point" $(x_{a_{\varphi}}, t_a)$, we will prove here the existence of a key continuous mapping

$$\alpha(\cdot) \colon A' \subset \mathbb{R} \to A + x_{a_{\varphi}} \subset U_{\varphi}^* \subset \mathbb{R}^n$$
, such that $\overline{H}(\alpha(t), t) = 0, \forall t \in A'$.

Let us solve the equation

$$H(x_{a_{\varphi}} + x_{\varphi}, t) = 0, \tag{7}$$

for fixed $t \in A'$ when x_{φ} is in A. Obviously $\overline{H}(x_{a_{\varphi}}, t_a) = 0$. Equation (7) can be transformed into the following equivalent equation

$$\overline{H}_{x}(x_{a_{\varphi}}, t_{a})^{-1}[\overline{H}_{x}(x_{a_{\varphi}}, t_{a})(x_{\varphi}) - \overline{H}(x_{a_{\varphi}} + x_{\varphi}, t)] = x_{\varphi},$$
(8)

which leads us to define the mappings

$$h: A \times t \to \mathbb{R}^n$$
, for fixed $t \in A', h(x_{\varphi}, t) := \overline{H}_x(x_{a_{\varphi}}, t_a)(x_{\varphi}) - \overline{H}(x_{a_{\varphi}} + x_{\varphi}, t)$,

and

$$T_t: A \to \mathbb{R}^n, T_t(x_{\varphi}) := \overline{H}_x(x_{a_{\varphi}}, t_a)^{-1}h(x_{\varphi}, t).$$

Let us observe that $h(x_{\varphi}, t)$ is defined in Section (a2) as $h(x_{a_{\varphi}}, t_a; x_{\varphi}, t)$ when $(x_{a_{\varphi}}, t_a)$ is a fixed "starting point", and when *t* is fixed and belongs to *A'*, and the variable x_{φ} belongs to *A*. Let us also observe that *t* in the definition of T_t is an index and not a partial derivative as is usually written.

Evidently

$$h(0, t_a) = 0,$$
 (9)

and

$$h_x(0, t_a) = 0. (10)$$

Equation (7) is equivalent to the following key Fixed Point Equation

$$T_t(x_{\varphi}) = x_{\varphi},\tag{11}$$

which will be studied later in the paper.

Let $x_{\varphi}, x'_{\varphi} \in A, t \in A'$, and hence the Taylor Theorem together with Equations (6) and (10) imply that

$$\| h(x_{\varphi}, t) - h(x'_{\varphi}, t) \|$$

$$\leq \sup\{\| h_{x}(x'_{\varphi} + \theta(x_{\varphi} - x'_{\varphi}), t) \| \colon \theta \in [0, 1]\}, \| x_{\varphi} - x'_{\varphi} \| \leq \frac{1}{C}r.$$
(12)

Equations (4) and (9) imply that

$$|| h(x_{\varphi}, t) || \le || h(x_{\varphi}, t) - h(0, t_a) || + || h(0, t_a) || \le \frac{r}{C}$$

hence

 $\| T_t(x_{\varphi}) \| \le \| \overline{H}_x(x_{a_{\varphi}}, t_a)^{-1} \| \| h(x_{\varphi}, t) \| \le r.$ (13)

We are already able to prove that the hypotheses of Theorem 1 are verified by the spaces and mappings which have just been defined. The Metric space $(A', |\cdot|)$ is the parameter space of hypothesis (i) of Theorem 1. *A* is considered as the closed and non-empty set and \mathbb{R}^n as the complete metric space of hypothesis (ii), which is verified below:

From Equation (13), for any fixed $t \in A'$, and for all $x_{\varphi} \in A$, we obtain $||T_t x_{\varphi}|| \le r$, therefore $T_t x_{\varphi} \in A$, and hence $T_t : A \to A$, i.e. T_t maps the closed and non-empty set of the Banach space \mathbb{R}^n into itself.

From Equations (6), (10), and the Taylor Theorem, for any $x_{\varphi}, x'_{\varphi} \in A$, and for any $t \in A'$

$$\|T_{t}(x_{\varphi}) - T_{t}(x'_{\varphi})\| \leq \|\overline{H}_{x}(x_{a_{\varphi}}, t_{a})^{-1}\| \|h_{x}(x'_{\varphi} + b(x_{\varphi} - x'_{\varphi}), t)\| \|x_{\varphi} - x'_{\varphi}\| \\ \leq C \|h_{x}(x'_{\varphi_{\varphi}} + b(x_{\varphi} - x'_{\varphi}), t) - h_{x}(0, t_{a})\| \|x_{\varphi} - x'_{\varphi}\| \\ \leq \frac{1}{2} \|x_{\varphi} - x'_{\varphi}\|, (b \in [0, 1]).$$

Therefore T_t is half-contractive for any fixed $t \in A'$. Hence hypothesis (ii) of Theorem 1 is verified.

For any fixed $t_0 \in A'$ and for all $x_{\varphi} \in A$,

$$T_t(x_{\varphi}) = \overline{H}_x(x_{a_{\varphi}}, t_a)^{-1}(\overline{H}_x(x_{a_{\varphi}}, t_a)(x_{\varphi}) - \overline{H}(x_{a_{\varphi}} + x_{\varphi}, t))$$

$$\rightarrow \overline{H}_x(x_{a_{\varphi}}, t_a)^{-1}(\overline{H}_x(x_{a_{\varphi}}, t_a)(x_{\varphi}) - \overline{H}(x_{a_{\varphi}} + x_{\varphi}, t_0))$$

$$= T_{t_0}(x_{\varphi}) \quad \text{as} \quad t \rightarrow t_0, t \in A',$$

therefore hypothesis (iii) of Theorem 1 is also verified. Hence Theorem 1 implies, for any $t \in A'$, that T_t has a unique fixed point $x_{\varphi} \in A$, $T_t(x_{\varphi}) = x_{\varphi} := x_{\varphi}(t)$, and $x_{\varphi}(t) \to x_{\varphi}(t_0)$ while $t \to t_0$; $t, t_0 \in A'$, i.e. $x_{\varphi}(\cdot)$ is a continuous mapping. Thus for any $t \in A'$ there is only one $x_{\varphi}(t) \in A$ such that

$$\overline{H}(x_{a_{\varphi}} + x_{\varphi}(t), t) = 0, \qquad (14)$$

and furthermore $\overline{H}(x_{a_{\varphi}} + x_{\varphi}(t), t) \rightarrow \overline{H}(x_{a_{\varphi}} + x_{\varphi}(t_0), t_0) = 0$ while $t \rightarrow t_0, t, t_0 \in A'$. Let us observe that $T_{t_a}(0) = 0, x_{\varphi}(t_a) = 0$.

Equation (14) can be written as $\overline{H}(\alpha(t), t) = 0$, which is verified for all $t \in A'$, where α is the continuous mapping

$$\alpha \colon A' \to U_{\varphi}^* \subset \mathbb{R}^n, \alpha(t) \coloneqq x_{a_{\varphi}} + x_{\varphi}(t), \quad \text{where} \quad \alpha(t_a) = x_{a_{\varphi}}.$$
(15)

(b) Conclusion (a) will be proved here. Since $(x_{\varphi}^*, 0) \in \overline{H}^{-1}(0) \cap (U_{\varphi} \times [0, 1])$, i.e. $(x_{\varphi}^*, 0)$ is a "starting point", therefore from Section (a3) there are A, A', α such that

$$\alpha \colon A' \to A + x_{\varphi}^*, \overline{H}(\alpha(t), t) = 0, \forall t \in A'.$$

Let suppose that $\alpha(t) \in U_{\varphi}, \forall t \in [0, r_0]$, then mapping α is extended to the right of r_0 by taking $(\alpha(r_0), r_0)$ which belongs to $\overline{H}^{-1}(0) \cap (U_{\varphi} \times [0, 1])$ as the

following "starting point". We also call α the continuous prolonged mapping and by supposing that $\alpha(t) \in U_{\varphi}, \forall t \in [0, 2r_0]$, we obtain

 $\alpha \colon [0, 2r_0] \to U_{\varphi} \subset \mathbb{R}^n$, which verifies $\overline{H}(\alpha(t), t) = 0, \forall t \in [0, 1].$

Mapping α is successively extended to the right in the same way if $\alpha(t)$ does not reach ∂U_{φ} . One of these two cases occurs:

1) Due to [0, 1] being a compact set, there is an

$$\alpha \colon [0,1] \to U^*_{\omega} \subset \mathbb{R}^n$$
, which verifies $\overline{H}(\alpha(t),t) = 0, \forall t \in [0,1].$

Therefore a point $(x_{\varphi}^{**}, 1) \in U_{\varphi}^{*} \times [0, 1]$ exists, which verifies

$$\overline{H}(x_{\varphi}^{**},1) = \overline{H}(\alpha(1),1) = 0,$$

and hence

$$\overline{H}(x_{\varphi}^{**}, 1) = (H \circ (\varphi^{-1}, I))(x_{\varphi}^{**}, 1) = H(x^{**}, 1) = 0 \text{ or } f(x^{**}) - g(x^{**}) = 0,$$

and furthermore $\overline{H}(\alpha(t), t) = 0, \forall t \in [0, 1]$. Equivalently

$$(H \circ (\varphi^{-1}, I))(\alpha(t), t) = H(\alpha^*(t), t) = 0, \forall t \in [0, 1], \text{ with}$$
$$\alpha^*(t) := \varphi^{-1} \circ \alpha(t),$$

which is continuous since it is composed of continuous mappings.

2) α^* can only be extended in this way until $t_1 < 1$, where $\alpha(t_1) \in U_{\varphi}^* = U_{\varphi_j}^*$, and $(\alpha(t_1), t_1)$ is not a starting point in $U_{\varphi_j}^* \times [0, 1]$. Since $U_i, U_i^* i \in I$ are open covers for $M, x_1 = \varphi_j^{-1}(\alpha(t_1)) = \varphi_j^{-1}(x_{1_{\varphi_j}})$ verifies $x_1 \in U_j^* \cap U_k, j, k \in I$. The continuous mapping $\alpha^*(\cdot) : [0, t_1] \to M, \alpha^*(t) = (\varphi_j^{-1} \circ \alpha)(t)$ will now be extended to the right of t_1 in the same way as before, but by using the chart (U_k^*, φ_k) with the point $(x_{1_{\varphi_k}}, t_1)$ as the first "starting point" in $U_{\varphi_k}^* \times [0, 1]$, and by using the continuous mapping $\alpha : [t_1, t_2] \to U_{\varphi_k}^*$, which verifies $\overline{H}(\alpha(t), t) =$ $0, \forall t \in [t_1, t_2], \alpha(t_2) = x_{2_{\varphi_k}}$. Equation (15) establishes that $t_2 - t_1 \ge r_0$, when the chart at x_2 is changed again, when necessary.

This situation can be repeated, however, since [0, 1] is a compact set α^* , reaches $\alpha^*(1)$ in a finite number of repetitions. Therefore

$$H(\alpha^*(1), 1) = f(\alpha^*(1), 1) - g(\alpha^*(1), 1) = 0.$$

That is, there is an x^{**} such that $f(x^{**}) = g(x^{**})$.

(c) Section (a1) gives C > 0 such that if $(x_{\varphi}, t) \in ((\overline{H}^{-1}(0)) \cap (U_{\varphi} \times [0, 1])$ then $|| \overline{H}_x(x_{\varphi}, t)^{-1} || \le C$. Section (b) and the hypothesis in (b) give a continuous mapping $\alpha^* : [0, 1] \to \mathbb{R}^n$, with $H(\alpha^*(t), t) = 0, \alpha^*(t) \in M, \forall t \in [0, 1]$.

Since *H* is a C^1 -mapping, therefore $\overline{H}_x(x_{\varphi}, t) \colon U_{\varphi}^* \times [0, t_1] \to \mathbb{R}^n$ is uniformly continuous on the compact set $\overline{U}_{\varphi} \times [0, 1]$ and hence, for any fixed $\varepsilon \in (0, \frac{1}{3C}), \varepsilon < 1$, the value $\delta > 0$ exists for which

$$\overline{B}(\alpha(t),\delta) \subset \overline{U}_{\varphi_i}, \forall t \in [0,1],$$

and furthermore

$$\| \overline{H}_{x}(x_{\varphi}, t) - \overline{H}_{x}(y_{\varphi}, t) \| < \varepsilon, \forall x_{\varphi}, y_{\varphi} \in \overline{U}_{\varphi},$$

with $\| x_{\varphi} - y_{\varphi} \| < \delta, t \in [0, 1].$ (16)

Theorem 3 implies that $\overline{H}_x(x_{\varphi}, t)^{-1}$ exists for any $x_{\varphi} \in \overline{B}(\alpha(t), \delta)$, and furthermore

$$\|\overline{H}_{x}(x_{\varphi},t)^{-1}\| \leq \frac{C}{1-C\varepsilon}.$$
(17)

The Newton process for any fixed $t \in [0, t_1]$ and $x_{\varphi}^0 \in B(\alpha(t), \delta)$ is

$$x_{\varphi}^{k+1} = x_{\varphi}^{k} - \overline{H}_{x}(x_{\varphi}^{k}, t)^{-1}H(x_{\varphi}^{k}, t), k = 0, 1, \dots$$
(18)

It will be proved by induction that

$$\|x_{\varphi}^{k} - \alpha(t)\| \le \gamma^{k} \delta, k = 0, 1, \dots, \text{ with } \gamma = \frac{C}{1 - C\varepsilon} < 1:$$
(19)

1) Equation (19) is true by assumption for k = 0.

2) If Equation (19) is true for any $k \in \mathbb{N}$, and therefore $x_{\varphi}^{k} \in \overline{B}(\alpha(t), \gamma^{k}\delta)$, then, from Equations (16), (17), (19) and Theorem 3 and the Mean-Value Theorem together with $H(\alpha(t), t) = 0, t \in [0, 1]$, Equation (19) is true for k + 1:

$$\| \alpha(t) - x_{\varphi}^{k+1} \| = \| \alpha(t) - x_{\varphi}^{k} + \overline{H}_{x}(x_{\varphi}^{k}, t)^{-1}\overline{H}(x_{\varphi}^{k}, t) \|$$

$$\leq \| \overline{H}_{x}(x_{\varphi}^{k}, t)^{-1} \| \| \overline{H}(\alpha(t), t) - \overline{H}(x_{\varphi}^{k}, t) - \overline{H}_{x}(x_{\varphi}^{k}, t)(\alpha(t) - x_{\varphi}^{k}) \|$$

$$= \| \overline{H}_{x}(x_{\varphi}^{k}, t)^{-1} \| \| \overline{H}_{x}(u, t)(\alpha(t) - x^{k}) - \overline{H}_{x}(x_{\varphi}^{k}, t)(\alpha(t) - x^{k}) \|$$

$$\leq \frac{C}{1 - C\varepsilon} \varepsilon \gamma^{k} \delta \leq \gamma^{k+1} \delta.$$
(20)

Hence the Newton sequence (18) remains in $B(\alpha(t), \delta)$ and converges towards $\alpha(t)$.

Since $\alpha(\cdot)$ is a continuous mapping, therefore there are $t_0, t_1, ..., t_L, 0 = t_0 < t_1 < ... < t_L = 1$ for which $|| \alpha(t_{i+1}) - \alpha(t_i) || \le \delta' < \delta, i = 0, 1, ..., L - 1$ is verified.

Let $m \in \mathbb{N}$ exists such that $\gamma^m \leq 1 - (\frac{\delta'}{\delta})$. We consider the sequence of Newton's iterations:

$$x_{\varphi}^{i,k+1} = x_{\varphi}^{i,k} - \overline{H}_{x}(x_{\varphi}^{i,k}, t_{i})^{-1}\overline{H}(x_{\varphi}^{i,k}, t_{i}),$$
$$x_{\varphi}^{1,0} = x_{\varphi}^{*}, x_{\varphi}^{i+1,0} = x_{\varphi}^{i,m}, k = 0, 1, ..., m - 1, i = 1, 2, ..., L - 1,$$
(21)

$$x_{\varphi}^{L,k+1} = x_{\varphi}^{L,k} - H_x(x_{\varphi}^{L,k}, 1)^{-1} H(x_{\varphi}^{L,k}, 1), k = 0, 1, ...,$$
(22)

which verifies:

1)
$$x_{\omega}^* \in B(\alpha(t_0), \delta - \delta'),$$

2) If $x_{\varphi}^{i,0} \in B(\alpha(t_{i-1}), \delta - \delta')$ and since,

$$\| x_{\varphi}^{i,0} - \alpha(t_i) \| < \| x_{\varphi}^{i,0} - \alpha(t_{i-1}) \| + \| \alpha(t_{i-1}) - \alpha(t_i) \| < \delta,$$

therefore $x_{\varphi}^{i,0} \in B(\alpha(t_i), \delta) \subset U_{\varphi}, i = 1, ..., L$. Furthermore, from Equation (20),

$$\parallel x_{\varphi}^{i+1,0} - \alpha(t_{0,i}) \parallel = \parallel x_{\varphi}^{i,m} - \alpha(t_i) \parallel \leq \gamma^m \delta \leq \delta - \delta',$$

hence the process from (21) to (22) can be continued upwards where all $x_{\omega}^{i,k}$ are in U_{φ} . Thus the final iteration (22) converges towards $\alpha(1)$.

References

- [1] E.L. Allgower, *A survey of homotopy methods for smooth mappings*, Allgower, Glashoff, and Peitgen (eds.) Springer-Verlag, Berlin (1981), 2–29.
- [2] E. Allgower, K. Glashoff and H. Peitgen (eds.), *Proceedings of the Conference on Numerical Solution of Nonlinear Equations*, Bremen, July 1980, Lecture Notes in Math. 878. Springer-Verlag, Berlin, 1981.
- [3] E.L. Allgower and K. Georg, *Numerical Continuation Methods*, Springer Series in Computational Mathematics 13, Springer-Verlag, New York, 1990.
- [4] J.C. Alexander and J.A. York, *Homotopy Continuation Method: numerically implementable topological procedures*, Trans. Amer. Math. Soc. 242 (1978), 271–284.
- [5] C.B. Garcia and T.I. Li, On the number of solutions to polynomial Systems of non-linear equations, SIAM J. Numer. Anal. 17 (1980), 540–546.

- [6] C.B. Garcia and W.I. Zangwill, *Determining all solutions to certain systems of non-linear equations*, Math. Operations Research **4** (1979), 1–14.
- [7] J.M. Soriano, *Existence of zeros for bounded perturbations of proper mappings*, Appl. Math. Comput. **99** (1999), 255–259.
- [8] J.M. Soriano, *Global minimum point of a convex function*, Appl. Math. Comput. 55(2-3) (1993), 213–218.
- [9] J.M. Soriano, *Extremum points of a convex function*, Appl. Math. Comput. **80** (1994), 1–6.
- [10] J.M. Soriano, On the existence of zero points, Appl. Math.Comput. 79 (1996), 99–104.
- [11] J.M. Soriano, On the number of zeros of a mapping, Appl. Math. Comput. 88 (1997), 287-291.
- [12] J.M. Soriano, On the Bezout Theorem Real Case, Appl. Nonlinear Anal. 2(4) (1995), 59–66.
- [13] J.M. Soriano, On the Bezout Theorem, Appl. Nonlinear Anal. 4(2) (1997), 59-66.
- [14] J.M. Soriano, *Mappings sharing a value on finite-dimensional spaces*, Appl. Math. Comput. **121**(2, 3) (2000), 391–395.
- [15] J.M. Soriano, *Compact mappings and proper mappings between Banach spaces that share a value*, Math Balkanica **14**(1-2) (2000), 161–166.
- [16] J.M. Soriano, Zeros of compact perturbations of proper mappings, Comm. Appl. Nonlinear Anal. 7(4) (2000), 31–37.
- [17] J.M. Soriano, *A compactness condition*, Appl. Math. Comput. **124**(3) (2001), 397–402.
- [18] J.M. Soriano, *Open trajectories*, Appl. Math. Comput. **124**(2) (2001), 235–240.
- [19] J.M. Soriano, On the existence of zero points of a continuous function, Acta Math. Sci. 22(2) (2002), 171–177.
- [20] J.M. Soriano, Fredholm and compact mappings sharing a value, Appl. Math. Mech. 22(6) (2001), 682–686.
- [21] J.M. Soriano, Stable and unstable stationary trajectories, Appl. Math. Mech. 26(1) (2005) 52-57.
- [22] H. Cartan, Differential calculus, Omega, Barcelona, 1978.
- [23] J.M. Ortega and W.C. Rheinbolt, *Iterative solutions of nonlinear equations of several variables*, Academic Press. Inc., Boston 1970.
- [24] E. Zeidler, *Nonlinear functional analysis and its applications I*, Springer-Verlag, New York, 1985.
- [25] E. Zeidler, Nonlinear functional analysis and its applications IV, Springer-Verlag, New York, 1985.

José M. Soriano Arbizu

Departamento de Análisis Matemático Universidad de Sevilla, Aptdo. 1160 Sevilla 41080 SPAIN

E-mail: soriano@us.es