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Compact embedded rotation hypersurfaces ofSn+1

Haizhong Li and Guoxin Wei

Abstract. In this paper, we prove thatSn−1
(√

n−m
n

)
× S1

(√
m
n

)
and round geodesic

spheres are the onlyn-dimensional compact embedded rotation hypersurfaces with
Hm = 0 (1 ≤ m ≤ n − 1) in a unit sphereSn+1(1). Whenm = 1, our result re-
duces to the result of T. Otsuki [O1], [O2], Brito and Leite [BL].
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1 Introduction

Do Carmo and Dajczer [DD] defined the rotation hypersurfaces in space forms
and studied the rotation hypersurfaces with constant mean curvature in space
forms. Some years later, Leite [LE] classified the complete rotation hypersur-
faces with constant scalar curvature in space forms. In [P], Palmas studied the
rotation hypersurfaces with constantHm in space forms, whereHm is the nor-
malizedm-th symmetric function of the principal curvatures.

In this paper, we consider the n-dimensional rotation hypersurfaces in a unit
sphereSn+1(1) of dimension n+1. The question whether compact rotation hy-
persurfaces which satisfy some special conditions are embedded is quite interest-
ing. The embeddability of rotation minimal hypersurfaces ofSn+1(1) has been
treated by Otsuki in a long series of papers that started with [O1]. From a dif-
ferent point of view, Brito and Leite [BL] also considered the embeddability of
compact minimal rotation hypersurfaces ofSn+1(1). They proved the following
important result:

Theorem 1.1 ([O1], [O2], [BL]). There are no compact minimal embed-
ded rotation hypersurfaces ofSn+1 other than Clifford tori and round geodesic
spheres.
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From [P], we know that there also exist many compact immersed rotation hyper-
surfaces ofSn+1 with Hm = 0. From Theorem 1.1, we know that the following
problem is interesting:

Problem. Does there exist anyn-dimensional compact embedded rotation hy-
persurface withHm = 0 (1 ≤ m ≤ n − 1) in Sn+1 other than Riemannian

productSn−1
(√

n−m
n

)
× S1

(√m
n

)
and round geodesic spheres?

In this paper, we solve this problem completely. In fact, we prove:

Theorem 1.2. There are no compact embedded rotation hypersurfaces with
Hm = 0 (1 ≤ m ≤ n − 1) of Sn+1 other than the Riemannian product

Sn−1
(√

n−m
n

)
× S1

(√m
n

)
and round geodesic spheres,whereHm is the nor-

malizedm-th symmetric function of the principal curvatures,Sn−1(a) denotes
the(n − 1)-dimensional sphere of radiusa.

Remark 1.1. Whenm = 1, our Theorem 1.2 reduces to Theorem 1.1.

Remark 1.2. Some interesting results for hypersurfaces withHm = constant
(1 ≤ m ≤ n − 1) in space forms can be found in [ADE], [ADS], [BC], [BD],
[CY], [DE], [HL], [L1], [L2].

2 Preliminaries

Let M be a rotation hypersurface ofSn+1, that is, invariant by the orthogo-
nal groupO(n) considered as a subgroup of isometries ofSn+1(1). Let us
parametrize the profile curveα in S2(1) by y1 = y1(s) ≥ 0, yn+1 = yn+1(s)
andyn+2 = yn+2(s). We takeϕ(t1, ∙ ∙ ∙ , tn−1) = (ϕ1, ∙ ∙ ∙ , ϕn) as an orthogonal
parametrization of the unit sphereSn−1(1). It follows that the rotation hypersur-
face (see [DD])

x : Mn ↪→ Sn+1(1) ⊂ Rn+2,

(s, t1, ∙ ∙ ∙ , tn−1) 7→ (y1(s)ϕ1, ∙ ∙ ∙ , y1(s)ϕn, yn+1(s), yn+2(s)). (2.1)

ϕi = ϕi (t1, ∙ ∙ ∙ , tn−1), ϕ2
1 + ∙ ∙ ∙ + ϕ2

n = 1 (2.2)

is a parametrization of a rotation hypersurface generated by a curvey1(s), yn+1(s)
andyn+2(s). Since the curve{y1(s), yn+1(s), yn+2(s)} belongs toS2(1) and the
parameters can be chosen as its arc length, we have

y2
1(s)+ y2

n+1(s)+ y2
n+2(s) = 1, ẏ2

1(s)+ ẏ2
n+1(s)+ ẏ2

n+2(s) = 1 (2.3)
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where the dot denotes the derivative with respect tos and from (2.3) we can
obtainyn+1(s) andyn+2(s) as functions ofy1(s). In fact, we can write

y1(s) = cosr (s),

yn+1(s) = sinr (s) cosθ(s),

yn+2(s) = sinr (s) sinθ(s).

(2.4)

We can deduce from (2.3) that

ṙ 2 + θ̇2 sin2 r = 1. (2.5)

It follows from equation (2.5) thaṫr 2 ≤ 1. Combining these witḣr 2 =
ẏ2
1

1−y2
1
,

we have
ẏ2

1 + y2
1 ≤ 1. (2.6)

We can get the plane curveγ fromα by projection ofS2
+ = {(y1, yn+1, yn+2) |

y1 ≥ 0, y2
1 + y2

n+1 + y2
n+2 = 1} onto the unit diskE = {(yn+1, yn+2) | y2

n+1 +
y2

n+2 ≤ 1}. Then the plane curveγ can be written as

yn+1(s) = sinr (s) cosθ(s), yn+2(s) = sinr (s) sinθ(s). (2.7)

The parameter̃s can be chosen asγ ’s arc length. Leth(̃s) be the supporting
function ofγ , θ̃ is the oriented angle between two vectorsyn+1−axis and tangent
direction ofγ (see Figure 2), then we can obtain by (2.3)

(d̃s)2 = (dyn+1)
2 + (dyn+2)

2 = (ds)2 − (dy1)
2, (2.8)

tanθ̃ =
ẏn+2(s)

ẏn+1(s)
. (2.9)

Writing f (s) = y1(s), do Carmo and Dajczer proved the following

Lemma 2.1 ([DD]). Let Mn be a rotation hypersurface ofSn+1(1). Then the
principal curvaturesλi of Mn are

λi = λ = −

√
1 − f 2 − ḟ 2

f
(2.10)

for i = 1, ∙ ∙ ∙ , n − 1, and

λn = μ =
f̈ + f

√
1 − f 2 − ḟ 2

. (2.11)
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Let Hm be the normalizedm-th symmetric function of the principal curvatures
of an hypersurfaceM :

Cm
n Hm =

∑

1≤i1<i2<∙∙∙<im≤n

λi1λi2 ∙ ∙ ∙ λim (2.12)

whereCm
n = n(n−1)∙∙∙(n−m+1)

m(m−1)∙∙∙1 , λi are the principal curvatures ofM .

If M is a rotation hypersurface withHm = 0 (m< n) in Sn+1(1), then we can
deduce that

0 = Cm
n Hm = Cm−1

n−1 λ
m−1μ+ Cm

n−1λ
m

That is,
λm−1{(n − m)λ+ mμ} = 0. (2.13)

By putting (2.10) and (2.11) into (2.13), we get the following result of Oscar
Palmas [P]:

Lemma 2.2 ([P]). The rotation hypersurfaceMn in Sn+1(1) has Hm = 0
(m< n) if and only if f satisfies the following differential equation:

(n − m)(1 − f 2 − ḟ 2)
m
2 − m(1 − f 2 − ḟ 2)

m−2
2 ( f̈ + f ) f = 0. (2.14)

Equation (2.14) is equivalent to its first order integral

f n−m(1 − f 2 − ḟ 2)
m
2 = K , (2.15)

whereK is a constant.
For a constant solutionf = f0 in (2.14), one has that

f 2
0 =

n − m

n
, K0 =

(m

n

)m
2

(
n − m

n

)m(n−m)
2n

. (2.16)

Moreover, the constant solutions of equation (2.14) correspond to the Riemannian

productSn−1
(√

n−m
n

)
× S1

(√m
n

)
.

Now we follow the techniques in the paper of Leite [LE] and Palmas [P] to
study (2.15). Equation (2.15) tells us that a local solutionf of (2.14) paired with
its first derivative is a subset, denoted by( f, ḟ ), of a level curve for the function
Gm defined by

Gm(u, v) = un−m(1 − u2 − v2)
m
2 , (2.17)

with u > 0 andu2 + v2 ≤ 1.
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Let us map the open half plane{(u, v) | u > 0} by level curveGm = K (see
Figure 1). Each curve is a smooth union of two graphs

v = ±

√

1 − u2 −
(

K

un−m

)2/m

, (2.18)

except for the levelK0 given by (2.16). The level curveGm = K0 consists of
the unique critical point ofGm, which is on the horizontal axis, as it can be seen
from

∇Gm(u, v) = un−m−1
(
1−u2−v2

)m−2
2

(
(n−m)(1−v2)−nu2,−muv

)
. (2.19)

For K = 0, the level curveu2 + v2 = 1 is a semi-circle. ForK 6= 0, we
can get easily that the level curve is closed in the open half plane (in fact, in the
semicircular region, see Figure 1).

v

u1

1

−1

0

K=0

K>0

K=K
0

.

Figure 1: Level curves forK ≥ 0.

We consider the foliation of the open half plane by level curvesGm = K . Since
Gm has a maximum atK0, K ∈ [0, K0]. Clearly any curve at an intermediate
level K is compact and the associated solutionsr (s) attains a unique minimum
r1 > 0.

Now we have to consider three cases.

Case 1: K = K0.

The valueK = K0 implies λ1 = ∙ ∙ ∙ = λn−1 = −
√

m
n−m, λn =

√
n−m

m

by (2.10), (2.11) and (2.16), corresponding to the Riemannian product

Sn−1
(√

n−m
n

)
× S1

(√m
n

)
.
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Case 2: K = 0.
K = 0 gives us a totally geodesic n-sphere. In fact, fromK = 0 and equation

(2.15), we getf 2 + ḟ 2 = 1. Integration of f 2 + ḟ 2 = 1 with f (0) = 0, we
obtain f = sins andθ =constant, so the profile curve is a great circle which
generates a totally geodesic n-sphere.

Case 3: K ∈ (0, K0).
If K ∈ (0, K0), then we have

f 2 + ḟ 2 < 1, 0< f < 1, f 6= constant. (2.20)

It follows from f (s) = y1(s) = cosr (s) that

0< cosr < 1, 0< sinr < 1. (2.21)

Using f (s) = cosr (s), (2.5) can be written as

θ̇2 =
1 − ṙ 2

sin2 r
=

1 − f 2 − ḟ 2

(1 − f 2)2
, (2.22)

we can deduce from (2.20) and (2.22) that

θ̇ 6= 0, ṙ < 1. (2.23)

We see from (2.10) and (2.20) thatλ = −
√

1− f 2− ḟ 2

f 6= 0, then it follows from
(2.13) that

(n − m)λ+ mμ = 0. (2.24)

From (2.10), (2.11), (2.24) andf (s) = y1(s) = cosr (s), we can deduce that

r̈ = (1 − ṙ 2)

(
cotr −

n − m

m
tanr

)
. (2.25)

Without loss of generality, from (2.8), (2.21) and (2.23), we have

d̃s

ds
=

√
1 − sin2 r (θ)ṙ 2 > 0. (2.26)

From (2.9), we get

dθ̃

ds
=

ÿn+2ẏn+1 − ẏn+2ÿn+1

ẏ2
n+1 + ẏ2

n+2

.
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Hence
dθ̃

d̃s
=

dθ̃

ds

ds

d̃s
=

B
√

1 − ṙ 2 sin2 r (ẏ2
n+1 + ẏ2

n+2)
, (2.27)

whereB := ÿn+2ẏn+1 − ẏn+2ÿn+1.

Next we will provedθ̃
d̃s 6= 0 in order to show that̃θ can be chosen as a parameter

of the plane curveγ . From (2.27), we know that we only need to proveB 6= 0.
By a direct calculation, we obtain from (2.4)

ẏn+1 = ṙ cosr cosθ− θ̇ sinr sinθ, ẏn+2 = ṙ cosr sinθ+ θ̇ sinr cosθ, (2.28)

B =ÿn+2ẏn+1 − ẏn+2ÿn+1 = ṙ 2θ̇ + ṙ 2θ̇ cos2 r

+ ṙ θ̈ sinr cosr − r̈ θ̇ sinr cosr + θ̇3 sin2 r.
(2.29)

Combining (2.29) with (2.5), we have

B = θ̇ + ṙ 2θ̇ cos2 r + ṙ θ̈ sinr cosr − r̈ θ̇ sinr cosr. (2.30)

Taking derivative of (2.5), we get

ṙ r̈ + ṙ θ̇2 sinr cosr + θ̇ θ̈ sin2 r = 0. (2.31)

Next, we have to consider two subcases.

Subcase 3.1: ṙ = 0.

Combiningṙ = 0 with (2.25), we see that

B = θ̇ + ṙ 2θ̇ cos2 r + ṙ θ̈ sinr cosr − r̈ θ̇ sinr cosr

= θ̇ − r̈ θ̇ sinr cosr

= θ̇ [1 − sinr cosr (cotr −
n − m

m
tanr )]

=
n

m
θ̇ sin2 r.

From (2.21) and (2.23), we obtain

B 6= 0. (2.32)

Bull Braz Math Soc, Vol. 38, N. 1, 2007
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Subcase 3.2: ṙ 6= 0.

If ṙ 6= 0, we can deduce from (2.31) that

r̈ = −
sin2 r

ṙ
θ̇ θ̈ − θ̇2 sinr cosr. (2.33)

Then we see from (2.5), (2.30) and (2.33) that

B = θ̇ + ṙ 2θ̇ cos2 r + ṙ θ̈ sinr cosr + θ̇ sinr cosr

(
sin2 r

ṙ
θ̇ θ̈ + θ̇2 sinr cosr

)

= θ̇ + θ̇ cos2 r + θ̈

(
ṙ sinr cosr +

sin3 r cosr

ṙ
θ̇2

)

= θ̇ (1 + cos2 r )+ θ̈

(
ṙ sinr cosr +

sinr cosr

ṙ
(1 − ṙ 2)

)

= θ̇ (1 + cos2 r )+ θ̈
sinr cosr

ṙ
.

Combining (2.25) and (2.33), we have

θ̈ = −
ṙ θ̇

sinr cosr

(
2 cos2 r −

n − m

m
sin2 r

)
. (2.34)

Substituting (2.34) into above equation, we can deduce that

B = θ̇ (1 + cos2 r )+ θ̈
sinr cosr

ṙ

= θ̇ (1 + cos2 r )− θ̇ (2 cos2 r −
n − m

m
sin2 r )

=
n

m
θ̇ sin2 r

6= 0.

Therefore we can obtaindθ̃d̃s 6= 0 in Case 3.
We only need to consider the question in Case 3 whether compact rotation

hypersurfaces withHm = 0 are nontrivial embedded (that is, except Riemannian
product and round geodesic spheres).

3 The Rotation Hypersurfaces withHm = 0 in Case 3

In this section, we will consider our problem in Case 3.

Bull Braz Math Soc, Vol. 38, N. 1, 2007
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θ
∼

y
n+1

y
n+2

h

h'

γ

q

e
n+2

0

e
n+1

_

_

Figure 2: Plane curveγ .

Since dθ̃
d̃s 6= 0, the plane curveγ can be written in the formh = h(θ̃) (see

Figure 2). Leth
′
andh

′′
denotedh

dθ̃
and d2h

dθ̃2 respectively.

From the definition ofh, we have (see Figure 2)

h = (yn+1 −
1

tanθ̃
yn+2) sin θ̃ = yn+1 sin θ̃ − yn+2 cos̃θ,

it follows from the above equation and (2.9) thath
′
= yn+1 cos̃θ + yn+2 sin θ̃ ,

thenyn+1 = h sin θ̃+h
′
cos̃θ, yn+2 = −h cos̃θ+h

′
sin θ̃ and the generic point

q(θ̃) of γ is given by

q(θ̃) = (0, ∙ ∙ ∙ , 0, yn+1(̃s), yn+2(̃s))

= (0, ∙ ∙ ∙ , 0, h sin θ̃ + h
′
cos̃θ, h

′
sin θ̃ − h cos̃θ).

(3.1)

It follows from (3.1) that

y2
n+1(̃s)+ y2

n+2(̃s) = h2 + (h
′
)2. (3.2)

From (2.3) and (3.2), we havef = y1 =
√

1 − h2 − (h′
)2.

By (2.20) and (3.2), we can obtain

0< h2 + (h
′
)2 < 1. (3.3)

Let (e1, e2, ∙ ∙ ∙ , en+2) be the moving orthonormal frame ofRn+2 with the
following conditions (c.f.[O1]):

en = (ϕ1, ∙ ∙ ∙ , ϕn, 0, 0), ϕ2
1 + ∙ ∙ ∙ + ϕ2

n = 1, (3.4)
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en+1 = (0, ∙ ∙ ∙ , 0, cos̃θ, sin θ̃ ), en+2 = (0, ∙ ∙ ∙ , 0,− sin θ̃ , cos̃θ), (3.5)

where(ϕ1, ∙ ∙ ∙ , ϕn) is an orthogonal parametrization of the unit sphere.
We put

dei =
n∑

j =1

ωi j ej , ωi j + ω j i = 0. (3.6)

Then from (2.1), (3.1), (3.4) and (3.5), we know that the position vectorp of
the rotation hypersurfaceMn in Sn+1(1) can be written as

p = f en + h′en+1 − hen+2 = q + f en. (3.7)

The arc length̃s of γ is given by

d̃s = (h + h
′′
)dθ̃ . (3.8)

Usingen+1 anden+2, we have

q = h′en+1 − hen+2, dq = en+1d̃s. (3.9)

By means of (3.5), (3.6) and (3.9), we have

dp = f
n−1∑

a=1

ωnaea + df en + (h + h
′′
)dθ̃en+1.

Putting

ea = ea, en =
f

′
en + (h + h

′′
)en+1√

( f ′
)2 + (h + h′′

)2
,

ωa = f ωna, ωn =
√
( f ′
)2 + (h + h′′

)2dθ̃ ,

(3.10)

where f
′
= df

dθ̃
and 1≤ a ≤ n − 1.

The above equation can be written as

dp =
n∑

i =1

ωi ei . (3.11)

From (3.2), by a direct calculation, we get

h′(h + h
′′
)+ f f

′
= 0, (3.12)

it follows from (3.12) that

( f
′
)2 + (h + h

′′
)2 =

1 − h2

f 2
(h + h

′′
)2.

Bull Braz Math Soc, Vol. 38, N. 1, 2007
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Thereforeωn anden can be written as

ωn =

√
1 − h2

f
(h + h

′′
)dθ̃ =

√
1 − h2

f
d̃s, (3.13)

en =
1

√
1 − h2

(−h′en + f en+1). (3.14)

By a simple computation, we can choose the normal unit vector ofM in Sn+1

by

en+1 = −
h

√
1 − h2

( f en + h′en+1)−
√

1 − h2en+2. (3.15)

If we take en+2 = −p as normal unit vector ofSn+1 in Rn+2, then
{e1, ∙ ∙ ∙ , en+2} make a basis inRn+2 with the same orientation of{e1, ∙ ∙ ∙ , en+2}.

Now, from (3.10) and (3.14) we obtain

ωan+1 = −〈ea, Den+1〉 = −〈ea, den+1〉

=
hf

√
1 − h2

〈ea, den〉 =
hf

√
1 − h2

ωna =
h

√
1 − h2

ωa,

that is

ωan+1 = λωa, λ =
h

√
1 − h2

, (3.16)

where 1≤ a ≤ n − 1, D denotes the covariant differentiation onSn+1(1). Then
we get

ωnn+1 = −〈en, Den+1〉 = −〈en, den+1〉

=
1

√
1 − h2

〈−h′en + f en+1, d(−en+1)〉

=
{

h

1 − h2
( f h

′′
− f

′
h′)− f

}
dθ̃ .

Using (3.12), we obtain

ωnn+1 =

{
h(h + h

′′
)

f
−

f

1 − h2

}

dθ̃ = μωn. (3.17)

By (3.13) and (3.17), we have

μ =
h

√
1 − h2

−
1 − h2 − (h′)2

(h + h′′
)
√
(1 − h2)3

. (3.18)

Bull Braz Math Soc, Vol. 38, N. 1, 2007



“main” — 2007/3/6 — 18:43 — page 92 — #12

92 HAIZHONG LI and GUOXIN WEI

Using (3.16) and (3.18), the condition (2.24) can be given by

(n − m)
h

√
1 − h2

+ m

{
h

√
1 − h2

−
1 − h2 − (h′)2

(h + h′′
)
√
(1 − h2)3

}

= 0.

That is

n

m
h(1 − h2)h

′′
+ (h′)2 + h2 − 1 +

n

m
h2(1 − h2) = 0. (3.19)

Conversely, if a functionh(θ̃) satisfying (3.19) gives a plane curve inRn+2 by
(3.1), then by (3.7) we get a rotation hypersurfaceMn ↪→ Sn+1(1)with Hm = 0.
The properties of this hypersurfaceMn completely depend on the properties of
h(θ̃).

In the following, we will investigate the properties of the ordinary differential
equation (3.19) of second order.

Writing F = h2 + (h
′
)2. From (3.3), we obtain 0< F < 1.

By a direct calculation, we have

1

2

dF

dθ̃
= hh

′
+ h

′
h

′′

=
mh

′

nh(1 − h2)
(1 − F),

hence
dF

1 − F
=

2m

n

{
1

h
+

1

2(1 − h)
−

1

2(1 + h)

}
dh. (3.20)

Integrating (3.20), we get

1 − F = C

(
h2

1 − h2

)− m
n

, C = constant> 0,

that is (
dh

dθ̃

)2

= 1 − h2 − C

(
1

h2
− 1

)m
n

. (3.21)

In this case, we can deduce fromλ = h√
1−h2

6= 0 thath > 0. From (3.3), we

haveh < 1.
Hence we will only consider the solutions of (3.19) such that

0< h(θ̃) < 1, 0< h2 + (h
′
)2 < 1 (3.22)
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From (2.20), we haveh 6= constant, otherwise,f = constant. This is a
contradiction. For non-constant solutionh(θ̃) of (3.21) with (3.22), its range is
given by

1 − h2 − C(
1

h2
− 1)

m
n ≥ 0,

which is a closed intervala0 ≤ h ≤ a1, 0 < a0 < a1 < 1, wherea0, a1 are the
two solutions of the equation

1 − h2 − C

(
1

h2
− 1

)m
n

= 0.

It follows that

a0 <

√
m

n
< a1.

Lemma 3.1. h(θ̃) is periodic with respect tõθ .

Proof. Any solutionh(θ) of (3.19) such that 0< h < 1 will be obtained by
integrating the following equation

(
dh

dθ̃

)2

= 1 − h2 − C

(
1

h2
− 1

)m
n

,

whereC is a positive constant. Since the range ofx such that

1 − x − C

(
1

x
− 1

)m
n

≥ 0, 0< x < 1 (3.23)

is given by the set of points of the curvey =
(

1
x − 1

)m
n (0< x < 1) beneath the

line y = 1
C (1 − x). As easily seen, this curve intersects at two points with this

line through (1,0) when

0< C < (1 − α)1−ααα, (3.24)

whereα = m
n . And let the x-coordinates of the above two pointsx0, x1, then

0< x0 < α < x1 < 1. (3.25)

Therefore, we get
a0 =

√
x0 ≤ h(θ̃) ≤ a1 =

√
x1.

Bull Braz Math Soc, Vol. 38, N. 1, 2007



“main” — 2007/3/6 — 18:43 — page 94 — #14

94 HAIZHONG LI and GUOXIN WEI

The minimum and maximum ofh(θ̃) must bea0 anda1 because at such points
h

′
(θ̃) = 0. Furthermore,y = h(θ̃) is symmetric with respect tõθ = θ̃0, θ̃1,

wherea0 = h(θ̃0), a1 = h(θ̃1). From (3.21), we can easily see thath(θ̃) is
periodic and its minimal positive period is given by

T(C) = 2
∫ a1

a0

dh
√

1 − h2 − C( 1
h2 − 1)

m
n

. (3.26)

we complete the proof of Lemma 3.1.
Denote the solution of (3.21) byh(θ̃ ,C) and the hypersurface immersed in

Sn+1 corresponding toh(θ̃ ,C) by Mn(C).
Mn(C) is the compact embedded rotation hypersurface inSn+1(1) if and only

if the minimum positive periodT(C)of the solutionh(θ̃ ,C) is 2π
k (k = 1, 2, . . .).

4 Proof of Theorem

The proof of Theorem 1.2. It is sufficient to proveπ < T(C) < 2π.

Lemma 4.1. T(C) > π .

Proof. Puttingh2 = x, (a0)
2 = x0, (a1)

2 = x1,
m
n = α < 1, we get

T(C) =
∫ x1

x0

dx
√

x(1 − x)− Cx1−α(1 − x)α
, (4.1)

Putting
g(x) = x(1 − x)− Cx1−α(1 − x)α,

we have

g
′
(x) = 1 − 2x −

C(1 − α − x)

xα(1 − x)1−α
, (4.2)

g
′′
(x) = −2 +

Cα(1 − α)

x1+α(1 − x)2−α
> −2 (4.3)

and{x | g(x) ≥ 0, 0 < x < 1} = [x0, x1]. Clearly, by (4.2),g(x) takes its
maximum on[x0, x1] at one pointx = x2, x0 < x2 < x1. Let g(x2) = b > 0.
Now putting

L(x) = (g
′
(x))2 + 4g(x),

we obtain
L

′
(x) = 2(g

′′
(x)+ 2)g

′
(x).

Bull Braz Math Soc, Vol. 38, N. 1, 2007



“main” — 2007/3/6 — 18:43 — page 95 — #15

COMPACT EMBEDDED ROTATION HYPERSURFACES OFSn+1 95

Hence by (4.2) and (4.3),L(x) is increasing on[x0, x2] and decreasing on[x2, x1]
and its maximum isL(x2) = 4g(x2) = 4b, therefore(g

′
)2 < 4(b−g) on(x0, x2)

and(x2, x1). Thus we get

T(C) =
∫ x2

x0

dx
√

g(x)
+

∫ x1

x2

dx
√

g(x)

=
∫ x2

x0

g
′
(x)dx

√
g(x)(g′

(x))2
−

∫ x1

x2

g
′
(x)dx

√
g(x)(g′

(x))2

>

∫ b

0

dg
√

g(b − g)
= [sin−1 2g − b

b
]b
0 = π.

Lemma 4.2. T(C) < 2π .

Proof. Puttingh2 = x, (a0)
2 = x0, (a1)

2 = x1,
m
n = α < 1, we obtain

T(C) =
∫ x1

x0

dx
√

x(1 − x)− Cψ(1 − x)
, (4.4)

where
ψ(x) = xα(1 − x)1−α, on 0< x < 1 (4.5)

and
C = ψ(x0) = ψ(x1), 0< x0 < α < x1 < 1, (4.6)

It is clear that
ψ(x)ψ(1 − x) = x(1 − x), (4.7)

dψ(x)

dx
=

α − x

x(1 − x)
ψ(x), (4.8)

dψ(1 − x)

dx
=

1 − α − x

x(1 − x)
ψ(1 − x). (4.9)

Sinceψ(x) is monotone increasing on 0< x < α and monotone decreasing
onα < x < 1. Let X0(u) andX1(u) be the inverse functions ofu = ψ(x) on
0< x < α andα < x < 1 respectively. Thus

T(C) =
∫ α

x0

dx
√

x(1 − x)− Cψ(1 − x)
+

∫ x1

α

dx
√

x(1 − x)− Cψ(1 − x)

=
∫ α

x0

√
x1−α(1 − x)α

√
xα(1 − x)1−α − C

xα−1(1 − x)−αdx
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+
∫ x1

α

√
x1−α(1 − x)α

√
xα(1 − x)1−α − C

xα−1(1 − x)−αdx

=
∫ α

x0

√
x(1 − x)

(α − x)
√

xα(1 − x)1−α[xα(1 − x)1−α − C]
(α − x)xα−1(1 − x)−αdx

+
∫ x1

α

√
x(1 − x)

(α − x)
√

xα(1 − x)1−α[xα(1 − x)1−α − C]
(α − x)xα−1(1 − x)−αdx

=
∫ A

C

√
X0(u)(1 − X0(u))

(α − X0(u))
√

u(u − C)
du +

∫ C

A

√
X1(u)(1 − X1(u))

(α − X1(u))
√

u(u − C)
du

=
∫ A

C

√
X0(u)(1 − X0(u))(A − u)

(α − X0(u))
√

u

du
√
(A − u)(u − C)

+
∫ A

C

√
X1(u)(1 − X1(u))(A − u)

(X1(u)− α)
√

u

du
√
(A − u)(u − C)

.

Now, we assume that
√

Xi (u)(1 − Xi (u))(A − u)

| α − Xi (u) |
√

u
< λi (4.10)

for C < u < A, i = 0, 1. Then, we obtain

T(C) < (λ0 + λ1)

∫ A

C

du
√
(A − u)(u − C)

= (λ0 + λ1)π. (4.11)

In the following, we will prove that we can take the values ofλ0 andλ1 as
λ0 = λ1 = 1. The inequalities (4.10) are equivalent to

√
x(1 − x)(A − ψ(x)) < λi | α − x |

√
ψ(x) (4.12)

for x0 < x < α andα < x < x1 respectively. Settingλ = λi , (4.12) can be read

x(1 − x)(A − ψ(x)) < λ2(α − x)2ψ(x),

that is
x(1 − x)A < ψ(x)[λ2(α − x)2 + x(1 − x)]. (4.13)

Putting fλ(x) = λ2(α−x)2+x(1−x)
ψ(1−x) . By (4.7), the inequality (4.13) can be written

as
A < fλ(x). (4.14)
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For this positive valued functionfλ(x) on 0< x < 1 for anyλ > 0, we have

fλ(α) = A, (4.15)

and

f
′

λ

fλ
=

−2λ2(α − x)+ 1 − 2x

λ2(α − x)2 + x(1 − x)
−

1 − α − x

x(1 − x)

=
gλ(x)

x(1 − x)[λ2(α − x)2 + x(1 − x)]
,

where

f
′

λ =
d( fλ)

dx
, gλ(x) = (α − x)[−λ2α(1 − α)+ (1 − λ2)x(1 − x)]. (4.16)

If λ = 1, then we get
gλ(x) = (x − α)α(1 − α). (4.17)

When x ∈ (x0, α), we obtaingλ(x) < 0, then fλ(x) is a strictly monotone
decreasing function ofx in (x0, α). Whenx ∈ (α, x1), we getgλ(x) > 0, then
fλ(x) is a strictly monotone increasing function ofx in (α, x1). Hence

fλ(x) > fλ(α) = A, for x ∈ (x0, α)
⋃
(α, x1).

Hence we have
π < T(C) < 2π.

From Case 1, Case 2 and Case 3, we can get our result. This completes the proof
of Theorem 1.2.

Finally, we also mention the following fact. In [LE], Leite proved that there
exists many complete immersed rotation hypersurfaces ofSn+1 with constant
scalar curvaturen(n − 1). i.e. H2 = 0. She also asked the following

Problem 4.1. Are there embedded hypersurfaces ofSn+1 with H2 = 0 other
than product of spheres?

Our theorem 1.2 gives a partial answer to her problem. In fact, we prove the
following

Corollary 4.1. There are no compact embedded rotation hypersurfacesM with
constant scalar curvaturen(n − 1) of Sn+1 other than the Riemannian product

Sn−1
(√

n−2
n

)
× S1

(√
2
n

)
and round geodesic spheres.
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The proof of Corollary 4.1. From Theorem 1.2, we can easily get our result.
In fact, H2 = 0 is equivalent to thatM has constant scalar curvaturen(n − 1).

Remark 4.1. The referee tells us that Dr. Fernando Espinosa in his Ph.D. The-
sis at Universidade Federal do Ceará (paper not yet published) has proved some
rigidity results for k-umbilical hypersurfaces inSn+1, where a hypersurface is
called k-umbilical if APk−1(A) = λI , where A is the second fundamental
form andPk−1 is the(k − 1)-th Newton polynomial.
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