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Compact embedded rotation hypersurfaceS"of
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Abstract. In this paper, we prove th&'—1 (\/@) x St (ﬁ) and round geodesic
spheres are the onlg-dimensional compact embedded rotation hypersurfaces with
Hm = 0(1 < m < n—1) in a unit sphereS™1(1). Whenm = 1, our result re-
duces to the result of T. Otsuki [O1], [O2], Brito and Leite [BL].
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1 Introduction

Do Carmo and Dajczer [DD] defined the rotation hypersurfaces in space forms
and studied the rotation hypersurfaces with constant mean curvature in space
forms. Some years later, Leite [LE] classified the complete rotation hypersur-
faces with constant scalar curvature in space forms. In [P], Palmas studied the
rotation hypersurfaces with constaht, in space forms, whergl,, is the nor-
malizedm-th symmetric function of the principal curvatures.

In this paper, we consider the n-dimensional rotation hypersurfaces in a unit
sphereS™*1(1) of dimension n+1. The question whether compact rotation hy-
persurfaces which satisfy some special conditions are embedded is quite interest-
ing. The embeddability of rotation minimal hypersurfacesStf(1) has been
treated by Otsuki in a long series of papers that started with [O1]. From a dif-
ferent point of view, Brito and Leite [BL] also considered the embeddability of
compact minimal rotation hypersurfaces®f*(1). They proved the following
important result:

Theorem 1.1 ([O1], [O2], [BL]). There are no compact minimal embed-
ded rotation hypersurfaces &** other than Clifford tori and round geodesic
spheres.
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From [P], we know that there also exist many compact immersed rotation hyper-
surfaces 08" with H,, = 0. From Theorem 1.1, we know that the following
problem is interesting:

Problem. Does there exist any-dimensional compact embedded rotation hy-
persurface withHy, = 0 (1 < m < n — 1) in S"*! other than Riemannian

products™? (, /%) x S'(,/™) and round geodesic spheres?

In this paper, we solve this problem completely. In fact, we prove:

Theorem 1.2. There are no compact embedded rotation hypersurfaces with
Hn = 0 (1 < m < n — 1) of S™! other than the Riemannian product

S”‘l( /2=m) x St(,/T) and round geodesic spheres,whéig is the nor-

malizedm-th symmetric function of the principal curvature®~*(a) denotes
the (n — 1)-dimensional sphere of radius

Remark 1.1. Whenm = 1, our Theorem 1.2 reduces to Theorem 1.1.

Remark 1.2. Some interesting results for hypersurfaces with= constant
(1 <=m < n-1)in space forms can be found in [ADE], [ADS], [BC], [BD],
[CY], [DE], [HL], [L1], [L2].

2 Preliminaries

Let M be a rotation hypersurface &1, that is, invariant by the orthogo-
nal groupO(n) considered as a subgroup of isometriesSBf(1). Let us
parametrize the profile curve in S*(1) by y1 = yi(S) > 0, Ynr1 = Yn+1(S)
andyn,2 = Yai2(S). We takep(ty, --- ,th_1) = (¢1, -+, ¢n) as an orthogonal
parametrization of the unit sphe®1(1). It follows that the rotation hypersur-
face (see [DD])

X: M"— S%(1) c R™?,

(Sity,+ ,tho1) > (YD) @1, -+, Y1) ¢n, Yni1(S), Yni2(9)). (2.1)
o =gt th1), i+ +ei=1 (2.2)

is a parametrization of a rotation hypersurface generated by agusyeyn1(S)
andyn2(s). Since the curvéy(s), Yni1(S), Yni2(S)} belongs toS?(1) and the
parametes can be chosen as its arc length, we have

YAS) + Y2 1)+ Y =1 VAS) + VR + V(=1 (2.3)
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where the dot denotes the derivative with respect smd from (2.3) we can
obtainyn1(S) andy,,2(S) as functions ofy;(s). In fact, we can write

Y1(S) = cosr (s),
Yni1(S) = sinr (s) coso(s), (2.4)
Yni2(S) = sinr (s) sind(s).

We can deduce from (2.3) that

F2 4 62sinfr = 1. (2.5)
It follows from equation (2.5) that?> < 1. Combining these with? = 1X—%yz
1
we have
Vi+yi <1l (2.6)

We can get the plane curyefrom « by projection ofSi = {(Y1, Yn+1, Yns2) |
y1 > 0,y2 + Y2, + Y2, = 1} onto the unit diskE = {(Yns1, Ynr2) | Y21 +
y§+2 < 1}. Then the plane curvg can be written as

Ynt1(S) = Sinr(s) cosh(S), VYni2(S) = sinr(s) sind(s). (2.7)

The parametes can be chosen ags arc length. Leh(s) be the supporting
function ofy, 6 is the oriented angle between two vectays; —axis and tangent
direction ofy (see Figure 2), then we can obtain by (2.3)

(d3)? = (dyn+1)? + (dyni2)* = (ds)® — (dyr)?, (2.8)
tand = ¥”+2(S) . (2.9)
Yn+1(S)

Writing f (s) = yi1(s), do Carmo and Dajczer proved the following

Lemma2.1 ([DD]). LetM" be a rotation hypersurface @& *1(1). Then the
principal curvatures,; of M" are

J1—f2— f2

fori=1,---,n—1,and
ftf

Bull Braz Math Soc, Vol. 38, N. 1, 2007
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Let Hy, be the normalizecth-th symmetric function of the principal curvatures
of an hypersurfacé:

ChlHn= " > iy ki (2.12)
1<iy<ip<--<im=<n
whereC™ = % i are the principal curvatures o.

If M is a rotation hypersurface witH,, = 0 (m < n) in S"*1(1), then we can
deduce that
0=CMHp=CM ™ +Cc am

That is,

A — m)a +mu} = 0. (2.13)
By putting (2.10) and (2.11) into (2.13), we get the following result of Oscar
Palmas [P]:

Lemma 2.2 ([P]). The rotation hypersurfacé" in S"*1(1) has H,, = 0
(m < n) ifand only if f satisfies the following differential equation:

M—ml—f2— )% _ma— f2— f3"(f+ f)f =0.  (2.14)
Equation (2.14) is equivalent to its first order integral
M1 — f2— 32 = K, (2.15)

whereK is a constant.
For a constant solutiof = fg in (2.14), one has that

m(n—m)

n—m myZ /n—m) =
f2 = - ’K°=<F>2< - ) . (2.16)

Moreover, the constant solutions of equation (2.14) correspond to the Riemannian

productS“*l( /%) x St (/7).
Now we follow the techniques in the paper of Leite [LE] and Palmas [P] to
study (2.15). Equation (2.15) tells us that a local soluticsf (2.14) paired with
its first derivative is a subset, denoted(dy f'), of a level curve for the function
Gn, defined by
Gm(U, v) = U™ — u? — 1?2, (2.17)

with u > 0 andu? + v2 < 1.
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Let us map the open half plagéu, v) | u > 0} by level curveG,, = K (see
Figure 1). Each curve is a smooth union of two graphs

K 2/m
¢( )" 218
un—m

except for the leveKy given by (2.16). The level curv@,, = K consists of
the unique critical point ofs,,,, which is on the horizontal axis, as it can be seen
from

VGm(u, v) = u"™™H1-u*— vz)mT_2 (n—m)(1—v? —nu?, —muw). (2.19)

For K = 0, the level curvau? + v = 1 is a semi-circle. FoK # 0, we
can get easily that the level curve is closed in the open half plane (in fact, in the
semicircular region, see Figure 1).

A
\Y

1

A\

Figure 1: Level curves foK > 0.

We consider the foliation of the open half plane by level cuggs= K. Since
Gm has a maximum aKg, K € [0, Kg]. Clearly any curve at an intermediate
level K is compact and the associated solutio(® attains a unique minimum
r{ > 0.

Now we have to consider three cases.

Case 1l: K =K.
The valueK = Ko impliesi; = -+ = Ap_1 = — /50, Ay = /50

by (2.10), (2.11) and (2.16), corresponding to the Riemannian product
1 (/252) x SH (/D).
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86 HAIZHONG LI and GUOXIN WEI

Case 2: K =0.

K = 0 gives us a totally geodesic n-sphere. In fact, fidm= 0 and equation
(2.15), we getf2 + f2 = 1. Integration off2 4+ f2 = 1 with f(0) = 0, we
obtain f = sins andf =constant, so the profile curve is a great circle which
generates a totally geodesic n-sphere.

Case 3: K € (0, Kp).
If K € (0, Kp), then we have

f24+f2<1, 0<f <1, f +#constant (2.20)
It follows from f (s) = y1(S) = cosr (s) that
O<cosr <1, O<sinr < 1. (2.21)
Using f (s) = cosr (s), (2.5) can be written as

1-r2 1-— f2— f2

6% = = : 2.22
sin’r (1- 122 (2.22)

we can deduce from (2.20) and (2.22) that
6+#£0, I <1 (2.23)

We see from (2.10) and (2.20) that= ——Vl_]fz_fz # 0, then it follows from
(2.13) that
(n—mx+mu =0. (2.24)

From (2.10), (2.11), (2.24) anti(s) = y1(s) = cosr (s), we can deduce that

= (1—r'2)(cotr - n;1mtanr). (2.25)
Without loss of generality, from (2.8), (2.21) and (2.23), we have

g—z =./1—sirfr(©)y2 > 0. (2.26)

From (2.9), we get

ié _ yn+2yn+1 - yn+2yn+1
ds a1+ Yoo
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Hence - N
de _ do ds B B

dS dsdS /1 _v2sir(y2,, + V2,
whereB := Vi 2¥ni1 — Yni2Vni1

Next we will proveg—g # 0inorderto show that can be chosen as a parameter
of the plane curve. From (2.27), we know that we only need to prde# 0.
By a direct calculation, we obtain from (2.4)

(2.27)

Ynip1 = F COSF cOSH — 6 Sinr siné, Ynio = I cosr sinf +6 sinr cost, (2.28)

B =Vnio¥nt1 — Yni2Vni1 = F20 +r2%0 cosr
+ 6 sinr cosr — 6 sinr cosr + 62 sirfr.
Combining (2.29) with (2.5), we have

(2.29)

B =6 +r20cogr +rd sinr cosr — i'd sinr cosr. (2.30)
Taking derivative of (2.5), we get
i+ 62 sinr cosr + 66 sinfr = 0. (2.31)

Next, we have to consider two subcases.

Subcase 3.1:f = 0.
Combiningr = 0 with (2.25), we see that

B =0 +r2%)cor +rédsinr cosr — i'd sinr cosr
= 6§ — ' sinr cosr

. . n—m
= @[1 — sinr cosr (cotr —

tanr)]
n.
= —0sirfr.
m
From (2.21) and (2.23), we obtain

B # 0. (2.32)

Bull Braz Math Soc, Vol. 38, N. 1, 2007
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Subcase 3.2:1 # 0.
If f £ 0, we can deduce from (2.31) that

Sirer .
P = —790 — 62sinr cosr. (2.33)

Then we see from (2.5), (2.30) and (2.33) that

% colr 4 ids . Silfr ... .,
B=6+r“0cosr + 16 sinr cosr + 0 sinr cosr : 60 + 6<sinr cosr

. L sin’r cosr .,
=6 +6cofr +6(rsinrcosr + ————6

sinr cosr
=6(1+cosr) + G(r sinr cosr + f(l _ rZ))

.sinr cosr
=6(1+coSr)+6——.

Combining (2.25) and (2.33), we have

. (o n—
§=————(2cosr —

sinr cosr

M sirer). (2.34)

Substituting (2.34) into above equation, we can deduce that

.sinr cosr
B=6(l+coSr)+§—F—
) ) n—m .
=61+ coSr) —6(2codr — Sir‘r)
n.
= —0sirfr
m
£0.

Therefore we can obtaiﬁg # 0in Case 3.

We only need to consider the question in Case 3 whether compact rotation
hypersurfaces withl,, = 0 are nontrivial embedded (that is, except Riemannian
product and round geodesic spheres).

3 The Rotation Hypersurfaces withH,, = 0in Case 3

In this section, we will consider our problem in Case 3.

Bull Braz Math Soc, Vol. 38, N. 1, 2007
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n+2

n+l
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0
/ \,
e

n+2

Figure 2: Plane curve.

Sinceg—ig # 0, the plane curver can be written in the fornih = h() (see
Figure 2). Leth’ andh” denote? and%elzl respectively.
From the definition oh, we have (see Figure 2)

1 o~ o~ ~
h = (Ynt1 — ——=Ynt2) SINO = Yn;1SIN6 — Yny2COSH,
tané

it follows from the above equation and (2.9) that= Ynt1 cOSH + Yns2SinG,
thenyn,1 =h sind +h'cosd, Yn,2 = —hcosh +h' sind and the generic point
q(®) of y is given by

q@) =0, , 0, Yn11®), Yn12(®) 65.1)
=(0,---,0,hsind + h' cosd, h sind — hcosd). '

It follows from (3.1) that
Yar1®) + ¥h .3 = h? + (h)2. (3.2)

From (2.3) and (3.2), we have = y; = /1 — h? — (h)2.
By (2.20) and (3.2), we can obtain

O0<h®+((h)’ <1 (3.3)

Let (€, €, --- ,€,2) be the moving orthonormal frame &"*2 with the
following conditions (c.f.[O1]):

énz((pl»"'a(pn’O,o)’ (p]2_++(pr2]=17 (34)

Bull Braz Math Soc, Vol. 38, N. 1, 2007
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&1=(0,---,0,cosd,sind), Eno=(0,---,0,—sind,cosd), (3.5

where(gy, - - - , @p) is an orthogonal parametrization of the unit sphere.
We put

n
dg = Zaijéj, wij +oj =0. (3.6)
j=1
Then from (2.1), (3.1), (3.4) and (3.5), we know that the position vegtor
the rotation hypersurfadel” in S™1(1) can be written as

p=fe, +he1—he,,=q+ fe&,. (3.7)
The arc lengtf¥ of y is given by
d3 = (h+h")d6. (3.8)
Using€, 1 andg,,», we have
q =he1—héye, dg=8,.10S (3.9)
By means of (3.5), (3.6) and (3.9), we have

=}
[any

d p - f anaéa + dfén + (h + h//)dgén+l.

a

[l
i

Putting
_ fem+(h+h)en

ea:é 9 eﬂ_ n 77 9
- V()24 (h+h)? (3.10)
wa = f@na, wn=+/(f)2+ (h+h")2dg,

wheref’ = %;f; andl<a<n-—1.
The above equation can be written as

n
dp:Zwia. (3.11)
i=1
From (3.2), by a direct calculation, we get
hWth+h")+ ff =0, (3.12)
it follows from (3.12) that
!’ " - h2 4
() + (h+h')? = == (h+ 1)

Bull Braz Math Soc, Vol. 38, N. 1, 2007
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Thereforew,, ande, can be written as

/1—h? v~ ~1—h?
on = (h+h")dj = ds, (3.13)
f f
1 — _

By a simple computation, we can choose the normal unit vectdt of S™1
by

h _ _ _
Eril = —m(fen +h'81) — v1—h?%e,,. (3.15)
If we take e,.» = —p as normal unit vector ofS™*! in R™?, then
(e, - - -, eny2) Mmake a basis iR"? with the same orientation ¢&;, - - - , €10}

Now, from (3.10) and (3.14) we obtain

Wany1 = —(€a, Déyy1) = —(€a, d€yy1)

hf hf h
= €, d&) = Wna = wa,
Vio = =R T T
that is
h

Want1 = Awa, A

where 1< a < n — 1, D denotes the covariant differentiation 8f1(1). Then
we get

Wnnt1 = — (€, Dénj1) = —(€n, d&ng1)

1 . _
m(—h €n + fenyr, d(—enp1))

(fh" — f'n) — f}d@.

- {1 —h?
Using (3.12), we obtain

h(h+h" f ~
C()nn+1 - { ( ) - } dg - I/La)n. (3.17)

f 1-h?
By (3.13) and (3.17), we have
h 1—h?— (h)?

PEISR T hrnJa_me

Bull Braz Math Soc, Vol. 38, N. 1, 2007
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Using (3.16) and (3.18), the condition (2.24) can be given by

0 —m) h m h 1—h?— (h)? _0
1_h2 VIR (h+h)Ja-ho3|

That is

%h(l )R 4+ (W2 4h2— 1+ %hz(l —h)=0.  (3.19)

Conversely, if a functioh(8) satisfying (3.19) gives a plane curveR1+2 by
(3.1), then by (3.7) we get a rotation hypersurfat®— S'1(1) with H,, = 0.
The properties of this hypersurfadé” completely depend on the properties of
h(@).

In the following, we will investigate the properties of the ordinary differential
equation (3.19) of second order.

Writing F = h? 4 (h")2. From (3.3), we obtain & F < 1.

By a direct calculation, we have

1dF

- Nzhh/ h/h//
>dp *
__ ™
" nh(1-=h? ’
hence dF 2m (1 1 1
m
aF _amfs _ dh. 3.20
1-F {h+2(l—h) 2(1+h)} (3.20)

Integrating (3.20), we get

2\ 7
1-F=C h , C = constant> 0O,
1-—h2
thatis ) N
dh 1 n
— ) =1-h*-Cc(5-1) . 3.21
(@) (7-2) @22
In this case, we can deduce from= 1“ = # 0 thath > 0. From (3.3), we
haveh < 1.

Hence we will only consider the solutions of (3.19) such that

O<h@®) <1, 0<h’+(M)2<1 (3.22)

Bull Braz Math Soc, Vol. 38, N. 1, 2007
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From (2.20), we havdn # constant, oiherwisef = constant. This is a
contradiction. For non-constant solutibr®) of (3.21) with (3.22), its range is
given by

1 m
1—W—C%5—Dﬁza

which is a closed intervadyg < h < a;, 0 < ag < a; < 1, whereag, a; are the
two solutions of the equation

1 "
2
1o(h ) <o

m
o < F<a]_.

Lemma 3.1. h(®) is periodic with respect t@.

It follows that

Proof. Any solutionh(9) of (3.19) such that 6< h < 1 will be obtained by
integrating the following equation

dh\? 1 n
—_—= =1—h2—C 5
(de) (h2 ) ’

whereC is a positive constant. Since the rangexauch that
1 n
1—x—C(;—1) >0, 0<x<1 (3.23)

is given by the set of points of the curye= (: — 1)% (0 < x < 1) beneath the
liney = é(l — X). As easily seen, this curve intersects at two points with this
line through (1,0) when

0<C<(@—alt (3.24)
wherea = % And let the x-coordinates of the above two poirgsx;, then

O<Xg<a<X <1 (3.25)
Therefore, we get

ap = /%o < h(0) < a1 = /1.

Bull Braz Math Soc, Vol. 38, N. 1, 2007
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The minimum and maximum df(@) must beay anda, because at such points
h'@®) = 0. Furthermorey = h() is symmetric with respect t6 = 00, 01,
wherea; = h(@), a1 = h®,). From (3.21), we can easily see the®) is
periodic and its minimal positive period is given by

T(C)=2

(3.26)

/al dh
2 \/1—h2—C(h—12—1)%'

we complete the proof of Lemma 3.1.
Denote the solution of (3.21) by(@, C) and the hypersurface immersed in
S*+1 corresponding thi(@, C) by M™(C).
M"(C) is the compact embedded rotation hypergurfacﬁé‘h’}(l) if and only
if the minimum positive period (C) of the solutiorh (6, C) is 27” k=12..).
4 Proof of Theorem

The proof of Theorem 1.2. Itis sufficient to prover < T(C) < 2.
Lemma4.1. T(C) > .

Proof. Puttingh? =X, (@80)? =Xo, (a)? =1, T =« < 1, we get

X1 dx
TC) = , 4.1
© xo /X(1—X) — CxI—¢(1— x)« (4-1)
Putting
g(x) = x(1—x) — Cx¥*(1 — x)*,
we have ca )
, —a—X
g(X)=1—2X—Xa(1_—X)1_a, (4-2)
g (x) = Col —a) > -2 (4.3)

Xl+C{(1 _ X)z—l)t
and{x | gx) > 0,0 < X < 1} = [Xg, X1]. Clearly, by (4.2),9(x) takes its
maximum on[Xg, X1] at one pointx = Xz, Xg < X2 < Xi1. Letg(xx) = b > 0.
Now putting /

L(x) = (g (x))* + 49(x),
we obtain / /

L (X) =2(g (X) +2)g (X).

Bull Braz Math Soc, Vol. 38, N. 1, 2007
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Hence by (4.2) and (4.3),(x) is increasing olfixg, X2] and decreasing dix,, X1]
and its maximum i (x2) = 4g(x2) = 4b, thereforgg)? < 4(b—g) on(Xo, X2)
and(Xy, X1). Thus we get

o dx
T(C
©= / vg<x x ~9(X)
g (x)dx X gl (x)dx

v VIO NZ I VI (X))

b dg _,29—-b,
> ————— = [sin T ——]5 = .
/o gb—09) b °
Lemma4.2. T(C) < 27.

Proof. Puttingh? = X, (@) = Xo, (a1)> = x1, T =« < 1, we obtain

X1 dx
1= Ko -ax *4)
where
v(x) =x*(1—x)1% on0<x<1 (4.5)
and
C=vX)=v(X), O<Xp<a<X <1, (4.6)
Itis clear that
Y)Y (L —x) =x(1 - x), (4.7)
dy(x)  o-—
ax - x(1_ w<x) (4.8)
dy(1—x) B 1—a—X
= xA=% Y(l—X). (4.9)

Sincey (X) is monotone increasing on 8 X < « and monotone decreasing
ona < X < 1. Let Xp(u) and X1(u) be the inverse functions of = ¥ (x) on
0 < X < @ anda < x < 1 respectively. Thus

T(C)—/a dx N X1 dx
e XA —CYT—x) Jo SXT—x)—CyT-Xx)

* xlme@— x)e

= x* 11— x)"*dx
xo V/Xx%(1—x)l-e —C

Bull Braz Math Soc, Vol. 38, N. 1, 2007
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x*~ 11 — x)"*dx

[P
« x*(1—x)l-e—C

[ VX=X
%o (

— a—1 1_ _ad
o — X)\/Xa(l — X)l—a[xa(l — X)l—a — C] (O{ X)X ( X) X

/Xl VX1 —Xx)
a (o —X)y/x*(1—x)1-[x¢(1 - x)I-« —C]

_ /A v/ Xo(w)(1 — Xo(u)) du /C VX1 (W) (1 — Xg(u)) U
c (a— Xou)v/uu—C_C) A (o — Xg(W)/uu—C)

+ (@ —x)x* 11— x)~%dx

_ /A VXoW) (T = Xo(u) (A= u) du
c (a — Xo(U))4/U JA-WUu-0)
/A VX1 (T = X1 (W) (A—u) du
c (X1(u) — @) /u JA=wUu-C)

Now, we assume that

VX = Xi(u)(A—u)

X | Ja < Aj (4.10)
forC <u < A,i =0, 1. Then, we obtain
T(C) < +x)/A du = (o + AT (4.11)
0T | JA-mu—c) o '

In the following, we will prove that we can take the valuesigfand i, as
Ao = A1 = 1. The inequalities (4.10) are equivalent to

VXA =)A=y (X)) <A |a—x| /X (4.12)

forxg < X < e anda < X < X; respectively. Settingg = A;, (4.12) can be read

X(1 = X)(A— (X)) < A3(a — X)%P(X),

that is
X(1—X)A < Y ()[R (@ — x)2 + x(1 — x)]. (4.13)

Putting f, (x) = % By (4.7), the inequality (4.13) can be written
as

A < f,(x). (4.14)
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For this positive valued functio;, (x) on 0 < X < 1 for anyA > 0, we have

f,(0) = A, (4.15)
and
f, —22@-x+1-2x 1l-a-—X
f, A2 —x)2+x(L1—x) x(1—x)
_ g, (X)
XL = X)[A2(@ = X)2+ x(1=x)]
where
’ _ d(f}h) _ 2 2
f = TR g(X) = (@ — X)[-22a(l—a) + (1 —2Hx(1—X)]. (4.16)

If » =1, then we get
0.X) =X —a)a(l—a). (4.17)

Whenx e (Xg, @), we obtaing, (x) < 0, then f,(x) is a strictly monotone
decreasing function of in (X, ). Whenx € («, X1), we getg, (x) > 0, then
f,(X) is a strictly monotone increasing functionxfn («, X;). Hence

f,(x) > f, (@) = A, for x € (Xo, a)U(a, X1).

Hence we have
7 < T(C) < 2n.

From Case 1, Case 2 and Case 3, we can get our result. This completes the proof
of Theorem 1.2.

Finally, we also mention the following fact. In [LE], Leite proved that there

exists many complete immersed rotation hypersurfaceS"of with constant
scalar curvatura(n — 1). i.e. H, = 0. She also asked the following

Problem 4.1. Are there embedded hypersurfacesstf! with H, = 0 other
than product of spheres?

Our theorem 1.2 gives a partial answer to her problem. In fact, we prove the
following

Corollary4.1. There are no compact embedded rotation hypersurfitesth
constant scalar curvatura(n — 1) of S™*1 other than the Riemannian product

s (\/%) x St (ﬁ) and round geodesic spheres.
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The proof of Corollary 4.1. From Theorem 1.2, we can easily get our result.
In fact, H, = 0 is equivalent to thaM has constant scalar curvaturé — 1).

Remark 4.1. The referee tells us that Dr. Fernando Espinosa in his Ph.D. The-
sis at Universidade Federal do Ceara (paper not yet published) has proved some
rigidity results for k-umbilical hypersurfaces irS8"*1, where a hypersurface is
called k-umbilical if ABR._1(A) = Al, where A is the second fundamental
form andPy_; is the(k — 1)-th Newton polynomial.

Acknowledgements. This work was started since H. Li visited University of
Sao Paulo in July of 2004, he would like to express his thanks to FADESP for
financial support and Professor Fabiano Brito for his hospitality. The authors
express their thanks for Prof. M. Leite for her kindness to send us her reprints
about this topics. We also would like to thank the referee for some helpful
comments and suggestions.

References

[ADE] H. Alencar, M. do Carmo and M.F. Elbert, Stability of hypersurfaces with
vanishingr-mean curvatures in Euclidean spacésiReine Angew. Matth54
(2003), 201-216.

[ADS] H. Alencar, M. do Carmo and W. Santos, A gap theorem for hypersurfaces of
the sphere with constant scalar curvature @wmnment. Math. Hel.7 (2002),
549-562.

[BC] J.L.M. Barbosa and A.G. Colares, Stability of hypersurfaces with constant
mean curvaturednn. Global Anal. Geonl5(1997), 277-297.

[BD] J.L.M.Barbosaand M. do Carmo, On stability of cone&ih* with zero scalar
curvature Ann. Global Anal. Geon28 (2005), 107-127.

[BL] F. Brito and M.L. Leite, A remark on rotational hypersurfaces33f Bull. Soc.
Math. Belg.—Tijdschr. Belg. Wisk. Get2 (1990), 3, ser. B 303-318.

[CY] S.Y.Chengand S.T. Yau, Hypersurfaces with constant scalar curviath,
Ann.225(1977), 195-204.

[DD] M. do Carmo and M. Dajczer, Rotational hypersurfaces in spaces of constant
curvature,Trans. Amer. Math. So@77(1983), 685-709.

[DE] M. do Carmo and M.F. Elbert, On stable complete hypersurfaces with vanishing
r-mean curvaturefohoku Math. J.(2%6 (2004), no.2, 155-162.

[HL] J. Hounie and M.L. Leite, Uniqueness and nonexistence theorems for hyper-
surfaces withHx = 0, Ann. Global Anal. Geonil7(1999), no.5, 397-407.

[LE] M.L. Leite, Rotational hypersurfaces of space forms with constant scalar cur-
vature,Manuscripta Math67 (1990), 285-304.

Bull Braz Math Soc, Vol. 38, N. 1, 2007



COMPACT EMBEDDED ROTATION HYPERSURFACES O+l 99

[L1] H.Li, Hypersurfaces with constant scalar curvature in space fokagh. Ann.
305(1996), 665—672.

[L2] H.Li, Globalrigidity theorems of hypersurfacArk.Math.35(1997), 327-351.

[O1] T. Otsuki, Minimal hypersurfaces in a Riemannian manifold of constant curva-
ture,Amer. J. Math92 (1970), 145-173.

[02] T. Otsuki, On integral inequalities related with a certain non-linear differential
equationProc. Japan Acad48(1972), 9-12.

[P] O. Palmas, Complete rotation hypersurfaces wighconstant in space forms,
Bol. Soc. Bras. Mat30(1999), 139-161.

Haizhong Li and Guoxin Wei
Department of Mathematical Sciences
Tsinghua University

100084, Beijing

People’s Republic of China

E-mails: hli@math.tsinghua.edu.cn / weigx03@mails.tsinghua.edu.cn

Bull Braz Math Soc, Vol. 38, N. 1, 2007



