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Abstract. Contrary to the case of interval exchange transformation, we show that
generalized affine interval exchange transformation (affine GIET), with or without flips
and admitting dense orbits, may not be conjugated to an isometric GIET. This result is
proved by constructing explicitly one such affine GIET.
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1 Introduction

Let C denote the circl&' and let us consider the usual topology®m {—1, 1}.

A continuous injective maje : C x {—1,1} — C x {—1, 1} whose domain
(Dom(E)) and range (Imie)) are open and dense subset€of {—1, 1} is said to
be ageneralized interval exchange transformationshortly a GIET, ifE takes
homeomorphically each connected component of D®)monto a connected
component of IGE). If in particular E is affine (resp. isometric) in each such
connect component, thdais said to be aaffineGIET (resp.isometricGIET).

If the restriction ofE to some component of Dof&) reverses the orientation,
then we say thaE admits dlip. An interval exchange transformation (IET) is an
injective continuous transformatidn: C — C such thaC \ Dom(T) is a finite
set andT is isometric in each connect component of @M AnIET T is a
particular case of a GIET. This can be seen by considdgifng 1) = (T (x), 1)
andE(x, —1) = (T1(x), —1). We remark also that identify the endpoints of
interval[0, 1], we can define a GIET t6 = [0, 1] (this follows because a GIET
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102 AMERICO LOPEZ

is not defined in a compact and totally disconnected set of points). Here and
subsequentlZ will denote the circleSt but it would change nothing if we take
C =10,1].

LetE: C x {—-1,1} - C x {—1,1} be a GIET and € {—1, 1}. For each
point p € C such that p, §) € Dom(E) we will define theE(., §)-orbit of p as
being

{(p, &)} U{E"(p,8);ne Z*\ (0} and E""*(p,s) € Dom(E)}

where we use the notatidg®(p, 8§) = (p, §) andE"(p, §) = E(E"(p, §)).
The E-orbit of p is defined as the union of its(-, 1)- andE(-, —1)-orbits. A
point p € C is said to beE (-, §)-recurrent if it is an accumulation point of its
E(., 8)-orbit. A pointp € Cisrecurrentifitis E(-, 1)- andE(-, —1)-recurrent.
An E(, §)-orbitisE(., §)-recurrentifitis the E(-, §)-orbit of aE(-, §)-recurrent
point. A non-trivial recurrent pointis a recurrent one whose orbit is not periodic.
It is easy to check that ip is a non-trivial E- (resp. E(-, §)- ) recurrent point
then the topological closure of its- (resp. E(-, §)-) orbit will be a perfect set. If
in particular it is a Cantor set, then tie (resp.E(:, §)- ) orbit of p will be said
to be an exceptional orbit (resp. an exceptidaél §)-orbit). An open interval
I c Cis said to be a wandering interval Bif any E-orbit intersectd at most
once.

Briefly, GIET’s and foliations on two-manifolds are related as follows. Let
E:Cx{-1,1} - Cx{-1,1}beaGIETandlet: Cx{-1,1} - Cx{-1,1}
be the map defined hy(x, §) = (X, —§). If 0 o E o 0 o E is the identity map
then through a process of suspension it is possible to obtain a foliation on a
two-manifold containindC as a section, in such a way thatwill be the return
map onC x {—1, 1} induced by the foliation. We observe thatHf(x, §) =
(y, 0) then the condition ol imply that necessarilfe (y, —0) = (X, —§) (this
allows the existence of an arc of lelafx, y) starting atx with the orientation
8 and ending ay with the orientatiorp, such thatL(x, y) N C = {x, y}). In
[5] Gutierrez introduces a condition (called adndition S) to obtain a partial
structure theorem connecting nonorientable foliations with GIET’s. We remark
that the referred conditions da are necessary for the “connection” Bfwith
nonorientable foliations. For details on the suspension of a GIET defined on
C x {—1, 1}, except possibly at finitely many points, see [13]. For when the
GIET is not defined in an infinite many points see [5]. The suspension of IET’s
is described in [1], [9], [10]. The obtention of the “inverse process”, on the
other hand, is less immediate. In this direction, the most general result for flows
(orientable foliations) on compact 2-manifolds was obtained by C. Gutierrez in
his structure theorem ([6]). Essentially, Gutierrez shows that the first return map
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AFFINE IETS WITHOUT AN ISOMETRIC MODEL 103

induced by a recurrent non-periodic orbit (recurrent non-compact leaf) on an
adequate transversal circle is either “topologically conjugate” or “topologically
semi-conjugate” to an IET which admits recurrent non-periodic orbits. On the
other hand, the higher freedom that a flow can reach on a non-compact two-
manifold implies that such theorem is not immediate in the non-compact case
(in[8] non-compact two-manifolds admitting a dense subset of exceptional leaves
are shown). Nevertheless, in the same way as Gutierrez’s structure theorem, a
structure theorem for flows on non-compact two-manifolds was obtained in [11].
In that case, however, the conjugation obtained is realizable with an affine GIET
and not with an isometric GIET.

The structure theorem of [6] and [11] are respectively a consequence of the
following results

Lemma ([6]). LetE: S' — S' be a continuous injective map defined every-
where except at finitely many points.Hfhas a dense positive semi-orbit, then
E is topologically conjugate to an interval exchange transformation.

Proposition ([11]). Let E: S* — S' be a continuous injective map defined
everywhere except in a compact, totally disconnected set of poirEsadimits

a dense subset of non-trivial recurrent points, tieis topologically conjugate
to an affine GIET.

In the present paper, is constructed explicitly an affine GIET (with or with-
out flips and admitting dense orbits) which is not topologically conjugate to an
isometric GIET. Thus, the structure theorem in [11] cannot be improved; that
is, the conjugation of a continuous injective map (admitting a dense orbit) to an
isometric continuous injective map obtained by Gutierrez is not valid, in gen-
eral, when the set where the map is not defined is infinite. On the other hand,
Arnoux-Ornstein-Weiss ([2]) show that generalized isometric interval exchange
transformations can model any aperiodic measure-preserving transformation.

Briefly, we will start with a Denjoy ma@, we will perturbT in a family
of wandering subintervals (using Rosenberg’s Labyrinths to obtain a transfor-
mation with flips, respectively an irrational rotation to obtain a transformation
without flips) in such a way that we will obtain a transformation that admits
dense orbits but does not admit any invariant probability measure with full sup-
port. Since, by construction, this transformation will permit a suspension, then
we have that the associated relation between recurrent orbits (recurrent leaves)
and the isometric IET’s obtained in [6] (for flows and orientable foliations on
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compact two-manifolds) fails when flows on non-compact two-manifolds and
nonorientable foliations on compact ones are considered.

We remark that the understanding of the structure of flows and foliations on
two-manifolds has shown interesting consequences (see [6], [7], [12]).

Let us start by fixing some notations. Fix an orientationG®(remembering
thatC is the circleS!). To differentiate the notation between an open subinterval
of C and an ordered pair & x {—1, 1}, we will use the symbolXx, y) to
denote the open subinterval 6f of endpointsx andy with x < y. Here<
denote the linear order induced by the fixed orientatiorCorSimilarly to the
construction of Denjoy &diffeomorphisms associated to an irrational rotation
of the circleC, we can obtain (see Lema 2.1 in [8]) a homeomorphisdefined
at C which admit an wandering open interval, séy, by), whoseT -orbit is
dense aC. Thus, let{l,, = (an,, by, )} _,, be a subfamily of open intervals of
{(a, bx) = TK((ag, bo)); k € Z} so that the following properties are satisfied

(i) no = 0, {nk}kez+ is an increasing sequence of positive integers and
{n_y}kez+ IS a decreasing sequence of negative integers;

(i) The endpoints ofl,,, converge monotonely thy ask — +oo and tob_;
ask — —oo; and

@ii) m¢=n1—1—n; k=0,1,2...isanincreasing sequence of positive
integers such that

2 An Affine GIET with flips without an isometric model

Let 1/2 < o < 1 be an irrational number. Consider half-didag, D,, and
D; (of diametere, 1, and 1— « respectively) foliated by half-circles. As in
example 1 of [14], letD = D; U D, U D3 (see Fig. 1) in such a way that
we have a Rosenberg’s labyrinths Bn Denote byR; the holonomy map in
eachD;; i = 1,2, 3 and denote bR, : [0, 1] — [0, 1] the second return map:
R:1 o Ry, R3 o R;. Notice that eachr preserves the Lebesgue measure and that
the leaf starting a& is dense irD. This follows because after identifying 0 and
1 we see thaR, is the irrational rotation by (see [14]).

Let{px}k=o be anincreasing sequence of rational numbers convergingitu
let {rx}k=0 and{gk}x=obe decreasing sequences of rational numbers converging
to 0 anda respectively, so that for eadh> 0 we have that
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Figure 1:

(21) O<ry<a/2, 1/2< pk <o <Ok < (14 a)/2, andA({Px+1, Ok+1) =
APk, Ok)) /2, wherei denotes the Lebesgue measure.

Before initiating the construction of our special map, let us illustrate our basic
idea. Using the wandering interva{3 ¥(ap, bo); k € Z}, we will build by
suspensions an infinite vertical rectangle (strip) with vertical flow which admits
I, = TK(ag, bo); k € Z as a countable family of sections intervals. We will take
the sub-familyl,, (which by condition (ii) will converge to the endpoiritg of

In, @andb_; of T1(ap, by) ask — oo and—oo respectively) and will modify the
vertical flow onl,, by figure 3(a) for positivé, and 3(b) for negativk, in such

a way that the return map to the inter¥g) will be the return one defined by the
labyrinth onD (see Fig. 1). Geometrically speaking (see Fig. 2), if we follow each
leaf starting at a point € I, with the orientationt-1, then will we go up along

the strip till we get caught in the labyrinth at some level. This always happens
(exceptifx = go(a) Which goes upward at every step) since after a long time we
will be close to some discontinuity, that is, after timgwe are out of the interval
[9ko Ri(Pk), Ik (P)] or[gk(Ok), ko Ra(ak)] C In, (G Will be an adequate gluing
map of(0, 1) onto |, ). After finding the labyrinth in the refereed level, we will
go downward back (through the leaf) to the initial interVgl, and then down
again tillwe get caught in the labyrinth forcing the returmg starting thereafter

the whole dynamic again. All this will be done in such a way that the return map
on the sectiorl,,, be uniquely ergodic, being the Lebesgue measure the unique
invariant measure. As this map will be definedgj(p«), do(ak)) C In, and in

its ny iterates, and a&)o(pPx), go(ak)); k=0, 1, 2, ... is a decreasing sequence
of intervals withmy = ny,1 — 1 — ny having a strong growth, then the obtained
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map could not be conjugate to an isometric GIET.

T(In_,)

Figure 2:(go(Po), 9o(do)) D (9o(P1), Go(d1)) are the transversal sections, con-
tained inl,,, of the shaded quadrilaterals. The first return map.@will be the
return one defined by the labyrinth @nh

Now we will formalize all this. To simplify the writing let us use the following
notation. For each open subinter&lc C, ¢x: (0, 1) — X will denote the
linear oriented homeomorphism betwg@nl) andx.

Under this consideration, lgb: (0, 1) — I, be the map defined gy = ¢y,
and leth,: Dom(hy) — T(ln); k = 0,1,2... be a sequence of orientation
preserving piecewise affine homeomorphisms recursively characterized as fol-
lows

Dom(hi) = In, \ {[9 o Ru(px), Gk(P)], [9k(T), Gk © Ra(@i)1};
Im(hi) = T(In) \ {7100 (@/2), 10, (1 +)/2)}, and
hi(gk(@)) = P11, (@)
where for eactk > 1, g«: Dom(gk) — |, denotes the map
gk = T ™11 o e g0 g

with Dom(gx) = (0, 1) \ {[Re(pk). Pk]. [k, Rs(ak) 1}

Similarly, define the mag_;: (0,1) — T(l,_,) by g1 = Tt o go,
and take a sequence of orientation preserving piecewise affine homeomorphisms
h_x: Dom(h_x) — T(l,_,); k=1,2,... recursively characterized as follows

Dom(h_)) = In_, \ {¢1, , (1/2)} and,

Im(th_x) = T(In_) \ [9-("k), 9—k © Ra(ry)]
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where for each integéer > 2, g_x: Dom(g_x) — T(l,_,) denotes the map
g_k — Tn—k*nkarlJrl o h::lk-_;’_l o g—k+1

with Dom(g_x) = (0, 1) \ [rk, Ro(r)].

Now let us consider the following definition. Let: C x {—1,1} — C x
{—1, 1} be the map defined hy(x, §) = (x, —§). LetthatE: C x {—1,1} —
C x {—1, 1} be an injective continuous map whose Dd is an open set. Let
| ¢ Cx{-—1,1}. We shall say thaE|, is an involution ofl if E(Dom(E|,)) =
Dom(E|,) and, where it is defineds|, o E|, is the identity. The connection
between involutions maps, nonorientable foliations and first return map can be
found in works of Danthony and Nogueira (see [3]), and of Gutierrez in [5].
Under these notations and considerations, we are now in position to define our
special continuous injective mdp: C x {—1, 1} - C x {—1, 1} as follows:

o Ef, <X, D) =
(goo Ryogyt(x), —1), if; X € (go o Ri(Po), Go(Po)) \ {Go(et/2)}
(Goo Rso gy t(x), —1), if; X € (Go(Qo), Go © Ra(Qo)) \ {Go((1+ @)/2)}

(ho(x), 1), if. X € Iny \ {[9o © R1(Po), Go(Po)] U [Fo(To), Qo © Rs(do)1}
notice that

o 0 ElgeoRy(po).go(pon x(1}s  @Nd o o E|(gy(gp). gooRs(a0)) x {11

are involutions of

(do o Ri(Po). 9o(po)) x {1} and (go(do). o o Rs(to)) x {1}

respectively (see Fig. 3(a))
eforallk > 1, El.nkx{l}(x, 1) =

(Gk o Rio g (%), —1), if; X € (G o Ra(pu), Gk(P)\

(T 1t o prq, H(@/2))
(gk o R0 g 1(X), —1), if; X € (G(Ok), Gk © Ra(Gi))\

(T M1 b o gr, H((L+a)/2)
(he(x), 1), if. X € In \ {[9k © Ri(Pe), k(Pr)] U [Gk(Ok)» 9k © Ra(ak)1}

notice that

o 0 Eligeory(po.ak(porx(ays  and o o El(ge (g, akoRs(ai0) <111
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are involutions of

(Gk o Ru(P), Gk(pu)) x {1} and  (gk(Qk), Gk © Re(Gi)) x {1}

respectively (see Fig. 3(a))

e for all k > 1, E|T(|n7k)x{_1}(x, —1) =
(ko Roog (), 1), if; X € (g-k(rk), -k © Ra(ri))\
{Tnneentlo ¢|n—(k—l) (1/2)}

(hZp(x), —=1), if. x € T(In ) \ [9-k(rk), 9k o Ra(ry)]

notice that
0 0 El(g «(ro).g_koRe(ri) x(~1}
is an involutions of
(9-k(rk), 9—k o Ro(ry)) x {—1}

(see Fig. 3(b)).

e If X is a connected component®f\ | J,_; In, then (see Fig 3(c))
Elsxy(X, ) = (T(x),1), for allx € =.

Deleting fromC the pointshy, b_3, T(bg) and T (b_,) it follows from the
definition of E that

(2.2) Elcxy is not defined abo, b_1, ¢, o Ri(Po), ¢, (Po)s é1,, © Ra(To),
Pioy (Q0)s D1, (@/2), 1, (@ + 1)/2), and atey, , (1/2), THM171o

DTn ) @/2), T M1 o grg (@ +1)/2), Go Ru(po), Gk(Py),
Ok o Rs(ak)) andgk(a) for allk > 1;

(2.3) The mapE|c (-1 is not defined aT (by), T(b_1), and atpr(,,)(a/2),

PT (1 (@ +1)/2), THKtcvHogy - (1/2), ko Re(ri) andg (1),
forallk > 1;

(2.4) C \ Dom(E) is a totally disconnected compact set whose accumulation
setis{bg, b_1, T (bp), T(b_1)}
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T(I"k) T(I"—k) T T(E)

Figure 3:

The following Lemma is an immediate consequence from the definitidh of

Lemma 2.1. E: C x {—1,1} - C x {—1, 1} is an injective continuous map
with exceptional and dense orbits whose domain is an open and dense subset.
Besides, it satisfies the following properties:

(a) Ry, R, andRs are respectively the first return mapef-, 1) to (ag, go(@)),
of E(-, =1)tol,, = (ag, bp), and ofE(-, 1) to (go(x), bp). HereR denotes
the holonomy map induced by Rosenberg’s labyrinth3,qisee beginning
of section 2);

(b) TheE(-, —1) and E(-, 1)-orbit of go(«x) are infinite. More precisely, its
E(-, —1)-orbitis E(-, —1)-recurrent (it is dense iI€) but its E(-, 1)-orbit
is notE(-, 1)-recurrent;

(c) The E-orbit of ap is an exceptional one contained in the closure of
E(., —1)-orbit of go();

(d) C \ Dom(E) is a totally disconnected compact set whose accumulation
setis{bg, b_1, T (o), T(b_1)}.

Now, we are in condition to show our first result

Proposition 2.2. There exists a continuous injective map from cirBleto St
which admit flips, dense orbits, and it is topologically conjugate to an affine
GIET, but it is not topologically conjugate to an isometric GIET.
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The domain of the refereed map is an open and dense subSkaat (nec-
essarily) it is not defined on an infinite set.

We remark that the foliation obtained by suspensiorEabn the two-torus
necessarily must have infinite singularities.

Proof of Proposition 2.2.  We will prove that the majk defined above satisfies
the required properties. From the previous Lemma, we need only to proue that
is topologically conjugate to an affine GIET and it is not topologically conjugate
to an isometric GIET.

By construction ofE it follows that for eactk € Z* U {0} andx belonging
to the open intervalgo(px), do(k)), we have thaE' (x, 1) is defined for all
i €{0,1,2,...,nk1}. Moreover, foreactk € Z* U {0},i € {nk,, nx +1, ...,
Neer— 1}, andj € (e, Nk + 1, .00, Ny — 1}

E'((Qo(Pk)> Go(@)), 1) and  E!((go(Prs1)s Go(Ckr1))s 1)

are disjoint open subintervals @, i.e., {E' ((go(Px), Go(ak)), 1); k € ZT U
{0}, nk <i < ngy1 — 1} is a family of pairwise disjoint open intervals. Notice
that this is possible becausgg, gk satisfy (2.1), and because tE€-, 1)-orbit of
Oo() is notE(-, 1)-recurrent. Consequently, we can affirm that

+oo Nky1—1

Y ) w(E(G(P), Go(@K)), 1) < 400 (2.5)

k=0 i=ng

whereu = A x§(_1,1; is the usual product measurednc {—1, 1}. Herex denotes

the usual Lebesgue measur€aands;_1 1, is the usual measure {r-1, 1}. On

the other hand, from the previous Lemma and Proposition ([11]), we have that
the mapE is topologically conjugate to aaffineGIET. Now, suppose that there
exists a homeomorphismwhich conjugate€ with an isometric GIET, saf.
Sincel J, (a, bk) is an E-invariant set, then under the assumption that such an
h exists, it follows thatE |y, a, b @nd E|u.n(a.b) are topologically conjugate.

As the first return map induced Wy on the intervakag, bg) (see Lemma 2.1) is
uniquely ergodic (its second return maps is an irrational rotations), then the first
return map induced bE|Ukh(<ak,bk)) to h({ag, bp)) will also be uniquely ergodic.
Therefore, we can conclude thatif denote theE | n(a..b)x (1.1 -iNvariant
measure, then necessarily

~ 1
Aluchacbyx(—1.13 = (Ao h™7) x 8111,
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and consequently (2.1) will be valid under conjugation, more precisely, for all
k>0

1
((ho go(Pr+1), ho Go(Os1)), -) = 5&( (hogo(pk),hogdo(ak),) (2.6)

Onthe other hand, itis clear that, in a natural way, the assertions the Lemma 2.1
remain valid to the isometric GIEE. Therefore(2.5) will also be valid with
E, u, go replaced byE, fi andh o go, respectively. Thus, if there exists such a
maph, this clearly forces

+00 Ngy1—1

0> AE((ho go(po). ho do(qu)). 1)) =

k=0 i=nk

+00

D (N1 — L= nji((h o go(Pe), h o Go(@)), 1))

k=0

but from (2.6)

1
i({hogo(px), hogo(t), 1) = gﬁ((h o 0o(Po), ho go(dp)), 1), Yk >0

Combining this with the conditions ofmy}x—o gives

+oo Nky1—1

0> AE ((ho go(po). ho go(q)). 1)) =

k=0 i=ng
+o0 My

Ai(h o Go(Po). ho Go(@o)), 1) Y _ ¢ = +00
k=0

which leads to a contradiction with its equivalent version(26). Therefore,
such homeomorphisimdoes not exist and the proof is complete. O

3 An oriented Affine GIET without an isometric model

We can user the same argument, with the obvious change, given in the section 2.
To obtainthe desired oriented map, we “will use” the infinite strip (with orientable
foliation) shown in the Figure 4. This will be formalized as follows:

Let F: [0, 1] — [0, 1] be the IET defined by

Bull Braz Math Soc, Vol. 38, N. 1, 2007
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X+, if: 0<x<l—-a«
X+a—-1 if.1l—-a<x<l1

F(X)={

where O< o < 1/2is anirrational number. As in the previous section, consider
in [0, 1]increasing sequencék tk—o, {Sk}k=o and decreasing sequen¢eg}k—o,
{riJk=o Of rational numbers such that for each- 0

(3.1) O< px < gk < 1— «, px converges to 0, ang; converges to + «;
(3.2) 1—a <rg < & < 1,r¢ converges to - «, ands, converges to 1;
(3.3) A({Oks1, rke1)) = A({0k, rk))/2, wherex denotes the Lebesque measure.

LetT: [0, 1] — [0, 1] and(ay, bp) be as in the beginning but with the follow-
ing additional properties (see proof of Lemma 2.1 in [8]). The subsequence of
wandering interval$l,, }kcz Satisfieqi) — (iii ) of Section 1 and for eadh> 0

.)\(Ink) :)L(In,k);
o A(In) = Alng \ {{ P (Px-1), #(Ck-1) ) U (P (rk-1), #(S-1)) }); and,
o A(ln ) = Allng \ {{¥(Pk-1)s ¥ (Ok-1) ) U (¥ (rk—1), ¥ (S=1))}).

where¢: (0,1) — I,, denotes the linear oriented homeomorphism®fl)
ontoln,, andy : (0, 1) — Ip, is defined by = ¢ o F.

Under this consideration, for eakte Z\ {0} let us denote by, : Dom(px) —
In, the isometric oriented map such that for e&ch 0,

Dom(pi) = Ing \ { (@ (Pk-1), ¢ (Ok-1) ) U (P (I'—1), P (Sc-1) )} and
Dom(p—k) = Ing \ { (¥ (Pk-1), ¥ (Qk-1)) U (¥ (Nk-1), ¥ (Sk-1))}-

Fork = 0, considelpg as being the identidy map dg,.
Finally, remembering thaty, = 0, define the mafk: [0, 1] — [0, 1], as
follows. Letk € Z* U {0}

if; X e In \ {lpk 0@ (Px), pk 0 @A) U [pk © @ (), px © ¢(S)]} then
E() = T% M1t o py g0 o H(X)

if;, X e (pkod(P), pxkod (k) U (pkod(k), pko (k) ) thenE(x) =
pxodoFoptop t(x)

if, x e T 1, ) N T " %=1(m(p_u, 1)) thenE(X) = p_k o
P ey © T~k (x)
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and, E(x) = T(x) in all the other cases, exceptate {ox o ¢ (pPx), pk ©
dQk)s pko Pk, pkod(s):k=0,1,2.. JU{lh \Im(p_x); k=1,2,...}.

Thus, Don{E) = [0, 1]\ Uk—o{ok 0@ (Px), ko @ (Ak), ok 0@ (k). pko @ (S)}U
Un N Mok =1,2, ...

7 | i 1 L
v Ha _— .
\ . f i id H
t l/ : , T(I,,)
T(In) I

Figure 4:(¢ (do), ¢ (ro)) D (¢ (q1), ¢ (r1)) are the transversal sections, contained
in 1,,, of the shaded quadrilaterals. The first return mapmvill be the map
F.

It follows from definition of E, that, the accumulation sets[@ 1] \ Dom(E)
is {bg, b_1}. Therefore deleting frorfD, 1] the pointsy andb_; we see that the
following lemma is valid.

Lemma 3.1. E: [0, 1] — [0, 1] is an oriented injective map with the following
properties. It is defined in an open and dense set, the first return maptof
In, = (@0, bo) is topologically conjugate to the mdp| o 1), admits dense orbits,
and theE-orbit through¢ (1 — «) is notw-recurrent but the closure of its-orbit
contains an exceptional one.

On the other hand, notice that condition (2.1), necessary in the proof of Propo-
sition 2.2, is also required to the construction of the regjsee condition (3.3)).
As after identifying 0 and 1 we see tHatis an irrational rotation then, from defi-
nition of E is easy see that a similar argument used in the proof of Proposition 2.2
remains valid for the following proposition.

Proposition 3.2. There exists a continuous injective mep [0, 1] — [0, 1]
preserving orientation, such that it is defined in an open and dense set, admit
dense and exceptional orbits, and it is topologically conjugate to an affine GIET
but it is not topologically conjugate to an isometric GIET.

We remark that the foliations obtained by suspensioi akcessarily will be
obtained on a two-manifolds of infinite genus.
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