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On the stability ofθ -derivations onJ B∗-triples
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Abstract. We introduce the concept ofθ -derivations onJ B∗-triples and prove the
Hyers–Ulam-Rassias stability ofθ -derivations onJ B∗-triples. We deal with the Hyers-
Ulam-Rassias stability that was first introduced by Th.M. Rassias in the paper “On the
stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc.72 (1978),
297–300”.
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1 Introduction

The original motivation to introduce the class of nonassociative algebras known
as Jordan algebras came from quantum mechanics (see [28]). LetH be a com-
plex Hilbert space, regarded as the “state space” of a quantum mechanical system.
Let L(H ) be the real vector space of all bounded self-adjoint linear operators
onH , interpreted as the (bounded)observablesof the system. In 1932, Jor-
dan observed thatL(H ) is a (nonassociative) algebra via theanticommutator
product

x ◦ y :=
xy + yx

2
.

This is a typical example of a (special) Jordan algebra. A commutative algebra
B with productx ◦ y (not necessarily given by an anticommutator) is called a
Jordan algebraif x2 ◦ (x ◦ y) = x ◦ (x2 ◦ y) holds for allx, y ∈ B.

A complex Jordan algebraB with a productx ◦ y, and a conjugate-linear
algebra involutionx 7→ x∗ is called aJ B∗-algebra ifB carries a Banach space
norm‖ ∙ ‖ satisfying‖x‖ = ‖x∗‖, ‖x ◦ y‖ ≤ ‖x‖ ∙ ‖y‖ and‖{xx∗x}|| = ‖x‖3
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for all x, y ∈ B. Here{xyz} := (x ◦ y) ◦ z + (y ◦ z) ◦ x − (x ◦ z) ◦ y denotes
theJordan triple productof x, y, z ∈ B (see [21, 22]).

The Jordan triple product of aJ B∗-algebra leads us to a more general algebraic
structure, the so-calledJ B∗-triple, which turns out to be appropriate for most
applications to analysis. By a (complex)J B∗-triple we mean a complex Banach
spaceJ with a continuous triple product

{∙, ∙, ∙} : J × J × J → J

which is linear in the outer variables and conjugate linear in the middle variable,
and has the following properties:

(i) (commutativity){x, y, z} = {z, y, x};

(ii) (Jordan identity)

L(a, b){x, y, z} = {L(a, b)x, y, z} − {x, L(b, a)y, z} + {x, y, L(a, b)z}

for all a, b, x, y, z, ∈ J in which L(a, b)x := {a, b, x};

(iii) For all a ∈ J the operatorL(a, a) is hermitian, i.e.‖eit L (a,a)‖ = 1, and
has positive spectrum in the Banach algebraB(J);

(iv) ‖{x, x, x}‖ = ‖x‖3 for all x ∈ J.

The class ofJ B∗-triples contains allC∗-algebras via{x, y, z} =
xy∗z + zy∗x

2
.

Every J B∗-algebra is aJ B∗-triple under the triple product

{x, y, z} := (x ◦ y∗) ◦ z + (y∗ ◦ z) ◦ x − (x ◦ z) ◦ y∗.

Conversely, everyJ B∗-triple J with an elemente satisfying{e, e, z} = z for all
z ∈ J, is a unitalJ B∗-algebra equipped with the productx ◦ y := {x, e, y} and
the involutionx∗ := {e, x, e}; cf. [9, 20, 26].

The stability problem of functional equations originated from a question of
S.M. Ulam [27] concerning the stability of group homomorphisms: Let(G1, ∗)

be a group and let(G2, �, d) be a metric group with the metricd(∙, ∙). Given
ε > 0, does there exist aδ > 0 such that if a mappingh : G1 → G2 satisfies
the inequalityd(h(x ∗ y), h(x) � h(y)) < δ for all x, y ∈ G1, then there is a
homomorphismH : G1 → G2 with d(h(x), H(x)) < ε for all x ∈ G1?

If the answer is affirmative, we would say that the equation of homomorphism
H(x ∗ y) = H(x) � H(y) is stable. The concept of stability for a functional
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equation arises when we replace the functional equation by an inequality which
acts as a perturbation of the equation. Thus the stability question of functional
equations is that how do the solutions of the inequality differ from those of the
given functional equation?

D.H. Hyers [10] gave a first affirmative answer to the question of Ulam in
the context of Banach spaces: LetE1 and E2 be Banach spaces. Assume that
f : E1 → E2 satisfies‖ f (x + y) − f (x) − f (y)‖ ≤ ε for all x, y ∈ E1 and
someε ≥ 0. Then there exists a unique additive mappingT : E1 → E2 such
that‖ f (x) − T(x)‖ ≤ ε for all x ∈ E1..

Now assume thatE1 and E2 are real normed spaces withE2 complete,
f : E1 → E2 is a mapping such that for each fixedx ∈ E1, the mapping
t 7→ f (t x) is continuous onR, and let there existε ≥ 0 andp 6= 1 such that

‖ f (x + y) − f (x) − f (y)‖ ≤ ε(‖x‖p + ‖y‖p)

for all x, y ∈ E1.
It was shown by Th. M. Rassias [23] forp ∈ [0, 1) (and indeedp < 1) and by

Z. Gajda [7] following the same approach as in [23] forp > 1 that there exists
a unique linear mapT : E1 → E2 such that

‖ f (x) − T(x)‖ ≤
2ε

|2p − 2|
‖x‖p

for all x ∈ E1. It is shown that there is no analogue of Th.M. Rassias result for
p = 1 (see [7, 25])

The inequality‖ f (x+y)− f (x)− f (y)‖ ≤ ε(‖x‖p+‖y‖p) has provided a lot
of influence in the development of what is now known asHyers–Ulam–Rassias
stabilityof functional equations; cf. [5, 6, 11, 13, 24].

In 1992, Ğavruta [8] proved the following.

Theorem 1.1.Let G be an abelian group andX be a Banach space. Denote by
ϕ : G × G → [0, ∞) a function such that

ϕ̃(x, y) =
∞∑

j =0

1

2 j
ϕ(2 j x, 2 j y) < ∞

for all x, y ∈ G. Suppose thatf : G → X is a mapping satisfying

‖ f (x + y) − f (x) − f (y)‖ ≤ ϕ(x, y)

for all x, y ∈ G. Then there exists a unique additive mappingT : G → X such
that

‖ f (x) − T(x)‖ ≤
1

2
ϕ̃(x, x)
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for all x ∈ G.
It is easy to see that Theorem 1.1 is still valid if

ϕ̃(x, y) =
∞∑

j =1

2− j ϕ(2− j x, 2− j y) < ∞

(see also [11]).
Since then the topic of approximate mappings or the stability of functional

equations was studied by several mathematicians; [2, 3, 15] and references
therein. In particular, Jun and Lee proved the following theorem; cf. [12,
Theorems 1 & 6].

Theorem 1.2.Denote byϕ : X × X → [0, ∞) a function such that

ϕ̃(x, y) =
∞∑

j =0

1

3 j
ϕ(3 j x, 3 j y) < ∞

(
resp. ϕ̃(x, y) =

∞∑

j =0

3 j ϕ(3− j x, 3− j y) < ∞
)

for all x, y ∈ X. Suppose thatf : X → Y is a mapping withf (0) = 0satisfying
∥
∥
∥
∥2 f

(
x + y

2

)
− f (x) − f (y)

∥
∥
∥
∥ ≤ ϕ(x, y)

for all x, y ∈ X. Then there exists a unique additive mappingT : X → Y such
that

‖ f (x) − T(x)‖ ≤
1

3

(
ϕ̃(x, −x) + ϕ̃(−x, 3x)

)

(
resp. ‖ f (x) − T(x)‖ ≤ ϕ̃

(
x

3
,
−x

3

)
+ ϕ̃

(
−x

3
, x

)
,

)

for all x ∈ X.

There are several various generalizations of the notion of derivation. It seems
that they are first appeared in the framework of pure algebra (see [1]). Recently
they have been treated in the Banach algebra theory (see [14]). In addition, the
stability of these derivations is extensively studied by the present authors and
others; see [4, 16, 18, 19] and references therein.

In this paper, using some ideas from [21], we introduce the notion ofθ -
derivations onJ B∗-algebras as a generalization of derivations onJ B∗-triples
[9] and prove the Hyers–Ulam–Rassais stability ofθ -derivations onJ B∗-triples.
Our result may be considered as a generalization of those of [20].
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2 Stability of θ -derivations

Throughout this section, letJ be a complexJ B∗-triple with norm‖ ∙ ‖.

Definition 2.1. Let θ : J → J be aC-linear mapping. AC-linear mapping
D : J → J is called aθ -derivation onJ if

D({xyz}) = {D(x)θ(y)θ(z)} + {θ(x)D(y)θ(z)} + {θ(x)θ(y)D(z)}

for all x, y, z ∈ J.

In particular, D := 1
3θ gives rise aJ B∗-homomorphism onJ. Hence our

results can be regarded as an extension of those of [20]. Note that ifD is
a derivation on aJ B∗-algebra then every derivationD can be represented as
D1 + i D2 whereD1 andD2 are∗-preserving derivations.

Theorem 2.2.Let f, h : J → J be mappings withf (0) = h(0) = 0 for which
there exists a functionϕ : J3 → [0, ∞) such that

ϕ̃(x, y, z) :=
∞∑

j =0

1

2 j
ϕ(2 j x, 2 j y, 2 j z) < ∞, (2.1)

‖ f (μx + y) − μ f (x) − f (y)‖ ≤ ϕ(x, y, 0), (2.2)

‖h(μx + y) − μh(x) − h(y)‖ ≤ ϕ(x, y, 0), (2.3)

‖ f ({xyz}) − { f (x)h(y)h(z)} − {h(x) f (y)h(z)}

−{h(x)h(y) f (z)}‖ ≤ ϕ(x, y, z),
(2.4)

for all x, y, z ∈ J and allμ ∈ S1 := {λ ∈ C | |λ| = 1}. Then there exist unique
C-linear mappingsD, θ : J → J such that

‖ f (x) − D(x)‖ ≤
1

2
ϕ̃(x, x, 0), (2.5)

‖h(x) − θ(x)‖ ≤
1

2
ϕ̃(x, x, 0) (2.6)

for all x ∈ J. Moreover,D : J → J is a θ -derivation onJ.

Proof. Let μ = 1 ∈ S1 andz = 0 in (2.2) and (2.3). It follows from Theorem
1.1 that there exist unique additive mappingsD, θ : J → J satisfying (2.5) and
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(2.6). The additive mappingsD, θ : J → J are given by

D(x) = lim
l→∞

1

2l
f (2l x), (2.7)

θ(x) = lim
l→∞

1

2l
h(2l x) (2.8)

for all x ∈ J.
Let μ ∈ S1. Sety = 0 in (2.2). Then

‖ f (μx) − μ f (x)‖ ≤ ϕ(x, 0, 0),

for all x ∈ J. So that

2−l ( f (μ2l x) − μ f (2l x))‖ ≤ 2−l ϕ(2l x, 0, 0),

for all x ∈ J. Since the right hand side tends to zero asn → ∞, we have

D(μx) = lim
l→∞

f (2l μx)

2l
= lim

l→∞

μ f (2l x)

2l
= μD(x)

for all μ ∈ §1 and allx ∈ J. Obviously,D(0x) = 0 = 0D(x).
Next, letλ = α1 + i α2 ∈ C, whereα1, α2 ∈ R. Let γ1 = α1 − bα1c, γ2 =

α2 − bα2c, in which br c denotes the greatest integer less than or equal to the
numberr . Then 0≤ γi < 1, (1 ≤ i ≤ 2) and by using Remark 2.2.2 of [17]
one can representγi as

γi =
μi,1 + μi,2

2

in whichμi, j ∈ S1, (1 ≤ i, j ≤ 2). SinceD is additive we infer that

D(λx) = D(α1x) + i D(α2x)

= bα1cD(x) + D(γ1x) + i
(
bα2cD(x) + D(γ2x)

)

=
(

bα1cD(x) +
1

2
D(μ1,1x + μ1,2x)

)

+ i

(
bα2cD(x) +

1

2
D(μ2,1x + μ2,2x)

)

=
(

bα1cD(x) +
1

2
μ1,1D(x) +

1

2
μ1,2D(x)

)
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+ i

(
bα2cD(x) +

1

2
μ2,1D(x) +

1

2
μ2,2D(x)

)

= α1D(x) + i α2D(x)

= λD(x).

for all x ∈ J. So that the additive mappingsD : J → J isC-linear. A similar
argument shows thatθ isC-linear.

It follows from (2.4) that

1

23l
‖ f (23l {xyz}) − { f (2l x)h(2l y)h(2l z)} − {h(2l x) f (2l y)h(2l z)}

−{h(2l x)h(2l y) f (2l z)}‖ ≤
1

23l
ϕ(2l x, 2l y, 2l z) ≤

1

2l
ϕ(2l x, 2l y, 2l z),

which tends to zero asl → ∞ for all x, y, z ∈ J by (2.1). By (2.7) and (2.8),

D({xyz}) = {D(x)θ(y)θ(z)} + {θ(x)D(y)θ(z)} + {θ(x)θ(y)D(z)}

for all x, y, z ∈ J. So the additive mappingD : J → J is aθ -derivation onJ.�

Remark. It is easy to verify that the theorem is true if

ϕ̃(x, y) :=
∞∑

j =1

2− j ϕ(2− j x, 2− j y) < ∞.

Corollary 2.3. Let f, h : J → J be mappings withf (0) = h(0) = 0 for which
there exist constantsε ≥ 0 and p 6= 1 such that

‖ f (μx + y) − μ f (x) − f (y)‖ ≤ ε(‖x‖p + ‖y‖p),

‖h(μx + y) − μh(x) − h(y)‖ ≤ ε(‖x‖p + ‖y‖p),

‖ f ({xyz}) − { f (x)h(y)h(z)} − {h(x) f (y)h(z)}

−{h(x)h(y) f (z)}‖ ≤ ε(‖x‖p + ‖y‖p + ‖z‖p)

for all x, y, z ∈ J and all μ ∈ S1. Then there exist uniqueC-linear mappings
D, θ : J → J such that

‖ f (x) − D(x)‖ ≤
2ε

|2 − 2p|
‖x‖p,
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‖h(x) − θ(x)‖ ≤
2ε

|2 − 2p|
‖x‖p

for all x ∈ J. Moreover,D : J → J is a θ -derivation onJ.

Proof. Defineϕ(x, y, z) = ε(‖x‖p + ‖y‖p + ‖z‖p), and apply Theorem 2.1
and the remark following the theorem. �

Theorem 2.4.Let f, h : J → J be mappings withf (0) = h(0) = 0 for which
there exists a functionϕ : J3 → [0, ∞) satisfying(2.4)such that

ϕ̃(x, y, z) :=
∞∑

j =0

1

3 j
ϕ(3 j x, 3 j y, 3 j z) < ∞,

∥
∥
∥
∥2 f

(
μx + y

2

)
− μ f (x) − f (y)

∥
∥
∥
∥ ≤ ϕ(x, y, 0), (2.9)

∥
∥
∥
∥2h

(
μx + y

2

)
− μh(x) − h(y)

∥
∥
∥
∥ ≤ ϕ(x, y, 0) (2.10)

for all x, y, z ∈ J and all μ ∈ S1. Then there exist uniqueC-linear mappings
D, θ : J → J such that

‖ f (x) − D(x)‖ ≤
1

3

(
ϕ̃(x, −x, 0) + ϕ̃(−x, 3x, 0)

)
, (2.11)

‖h(x) − θ(x)‖ ≤
1

3

(
ϕ̃(x, −x, 0) + ϕ̃(−x, 3x, 0)

)
(2.12)

for all x ∈ J. Moreover,D : J → J is a θ -derivation onJ.

Proof. Let z = 0 in (2.9) and (2.10). It follows from Theorem 1.2 that there
exist unique additive mappingsD, θ : J → J satisfying (2.11) and (2.12). The
additive mappingsD, θ : J → J are given by

D(x) = lim
l→∞

1

3l
f (3l x),

θ(x) = lim
l→∞

1

3l
h(3l x)

for all x ∈ J.
The rest of the proof is similar to the proof of Theorem 2.1. �
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Corollary 2.5. Let f, h : J → J be mappings withf (0) = h(0) = 0 for which
there exist constantsε ≥ 0 and p ∈ [0, 1) such that

∥
∥
∥
∥2 f

(
μx + y

2

)
− μ f (x) − f (y)

∥
∥
∥
∥ ≤ ε(‖x‖p + ‖y‖p),

∥
∥
∥
∥2h

(
μx + y

2

)
− μh(x) − h(y)

∥
∥
∥
∥ ≤ ε(‖x‖p + ‖y‖p),

‖ f ({xyz}) − { f (x)h(y)h(z)} − {h(x) f (y)h(z)}

−{h(x)h(y) f (z)}‖ ≤ ε(‖x‖p + ‖y‖p + ‖z‖p)

for all x, y, z ∈ J and all μ ∈ S1. Then there exist uniqueC-linear mappings
D, θ : J → J such that

‖ f (x) − D(x)‖ ≤
3 + 3p

3 − 3p
ε‖x‖p,

‖h(x) − θ(x)‖ ≤
3 + 3p

3 − 3p
ε‖x‖p

for all x ∈ J. Moreover,D : J → J is a θ -derivation onJ.

Proof. Defineϕ(x, y, z) = ε(‖x‖p + ‖y‖p + ‖z‖p), and apply Theorem 2.3.�

Theorem 2.6.Let f, h : J → J be mappings withf (0) = h(0) = 0 for which
there exists a functionϕ : J3 → [0, ∞) satisfying(2.9), (2.10)and (2.4) such
that

∞∑

j =0

33 j ϕ

(
x

3 j
,

y

3 j
,

z

3 j

)
< ∞ (2.16)

for all x, y, z ∈ J. Then there exist uniqueC-linear mappingsD, θ : J → J
such that

‖ f (x) − D(x)‖ ≤ ϕ̃

(
x

3
, −

x

3
, 0

)
+ ϕ̃

(
−

x

3
, x, 0

)
, (2.17)

‖h(x) − θ(x)‖ ≤ ϕ̃

(
x

3
, −

x

3
, 0

)
+ ϕ̃

(
−

x

3
, x, 0

)
(2.18)

for all x ∈ J, where

ϕ̃(x, y, z) :=
∞∑

j =0

3 j ϕ

(
x

3 j
,

y

3 j
,

z

3 j

)

Bull Braz Math Soc, Vol. 38, N. 1, 2007



“main” — 2007/3/9 — 12:03 — page 124 — #10

124 CHOONKIL BAAK and MOHAMMAD SAL MOSLEHIAN

for all x, y, z ∈ J. Moreover,D : J → J is a θ -derivation onJ.

Proof. By Theorem 1.2, it follows from (2.16), (2.9) and (2.10) that there
exist unique additive mappingsD, θ : J → J satisfying (2.17) and (2.18). The
additive mappingsD, θ : J → J are given by

D(x) = lim
l→∞

3l f
( x

3l

)
, (2.19)

θ(x) = lim
l→∞

3l h
( x

3l

)
(2.20)

for all x ∈ J.
By a similar method to the proof of Theorem 2.1, one can show thatD, θ :

J → J areC-linear mappings.
It follows from (2.4) that

33l ‖ f

(
{xyz}

33l

)
−

{
f
( x

3l

)
h

( y

3l

)
h

( z

3l

)}
−

{
h

( x

3l

)
f
( y

3l

)
h

( z

3l

)}

−
{
h

( x

3l

)
h

( y

3l

)
f
( z

3l

)}
‖ ≤ 33l ϕ

( x

3l
,

y

3l
,

z

3l

)
,

which tends to zero asl → ∞ for all x, y, z ∈ J by (2.16). By (2.19) and (2.20),

D({xyz}) = {D(x)θ(y)θ(z)} + {θ(x)D(y)θ(z)} + {θ(x)θ(y)D(z)}

for all x, y, z ∈ J. So the additive mappingD : J → J is aθ -derivation onJ.�

Corollary 2.7. Let f, h : J → J be mappings withf (0) = h(0) = 0 for which
there exist constantsε ≥ 0 and p ∈ (3, ∞) such that

∥
∥
∥
∥2 f

(
μx + y

2

)
− μ f (x) − f (y)

∥
∥
∥
∥ ≤ ε(‖x‖p + ‖y‖p),

∥
∥
∥
∥2h

(
μx + y

2

)
− μh(x) − h(y)

∥
∥
∥
∥ ≤ ε(‖x‖p + ‖y‖p),

‖ f ({xyz}) − { f (x)h(y)h(z)} − {h(x) f (y)h(z)}

−{h(x)h(y) f (z)}‖ ≤ ε(‖x‖p + ‖y‖p + ‖z‖p)

for all x, y, z ∈ J and all μ ∈ S1. Then there exist uniqueC-linear mappings
D, θ : J → J such that

‖ f (x) − D(x)‖ ≤
3p + 3

3p − 3
ε‖x‖p,
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‖h(x) − θ(x)‖ ≤
3p + 3

3p − 3
ε‖x‖p

for all x ∈ J. Moreover,D : J → J is a θ -derivation onJ.

Proof. Define ϕ(x, y, z) = ε(‖x‖p + ‖y‖p + ‖z‖p), and apply Theorem
2.5. �

Definition 2.8. Let θ : J → J be aC-linear mapping. AC-linear mapping
D : J → J is called a Jordanθ -derivation onJ if

D({xxx}) = {D(x)θ(x)θ(x)} + {θ(x)D(x)θ(x)} + {θ(x)θ(x)D(x)}

holds for allx ∈ J.

Problem 2.1. Is every Jordanθ -derivation aθ -derivation?
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