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Abstract. In this article the dynamics of genei@ (r > 3) perturbations of complex
polynomials are considered. The attention is focused on the determination of the exis-
tence of large or invariant components of the complement of the basin afhere the
interesting dynamics occur.

Keywords: critical points, real perturbations, complex polynomials.

Mathematical subject classification: 37C05, 37D05.

1 Introduction

Given a manifoldM, let End (M) denote the set of differentiable endomor-
phisms ofM, of classC", endowed with the Whitney or strong topology. For

f € End (M), say that a poink is critical for f if the differential of f atx,

Dfy, is not invertible. Denote b; the set of critical points of . The study of

the dynamics of endomorphisms has caught the attention of many authors. The
question of stability, still not solved, was considered§P], [I], [AMS] and
[DRRV]. Alotof work has been done also because these maps have abundant ap-
pearance in applications; the existence of critical points and multiple preimages
is a source of creation of chaotic dynamics, as many authors shown by means
of numerical experiments. The one dimensional theory was mostly considered,
in the real context (see [MS]) as well as in the complex one, beginning with the
works of Fatou and Julia ([Mi], [S]). This theory is now very rich and elegant and
most conjectures have been proved. This is not the case in higher dimensions. In
the attempt to understand the dynamics of maps with critical points in dimension
two, we have considered he@ perturbations of complex polynomials. The
first problem consists in the description of the critical sets and critical values,
and the regions where the number of preimages is constant.
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130 JORGE IGLESIAS and ALDO PORTELA

Itis well known that great part of the dynamical structure of a complex poly-
nomial depends on the future orbits of the critical points. Properties such as
connectivity of the Julia set or of the basin®f, existence of invariant domains
and stability depend on simple assumptions alspuifwo main difficulties arise
when a perturbation of a polynomial is considered: first, as the conformality is
lost, the usual techniques of complex analysis are no more available; on the other
hand, as will be shown later, the set of critical points becomes generically a finite
union of circles. For example, for the case of a polynorfiand a connected
setK, the number of components 8 *(K) depends on a very simple way on
the relative positions oK and P(Sp). This problem becomes interesting and
difficult when the set of critical points is a one dimensional manifold and then
the possibilities for the intersections Kfand f (S¢) explode. One of the main
guestions developed in this article consists in determine under which conditions
the preimage of a connected set is connected.

If P isacomplex polynomial then the Julia sethfs connected if and only if
all the critical points ofP have bounded orbit; moreover, if all the critical points
have unbounded orbit, then the Julia setPofs totally disconnected. Using
some new techniques, sometimes inspireRRV] and obviously unusual in
the complex domain, partial generalizations of these results will be given here.

Theorem 1. Let P be a polynomial. There existsGt neighborhoodU of P
such that for everyf € ‘U, either some critical point has unbounded orbit or the
set of points with bounded orbit is connected and simply connected.

Denote byB,, the set of points with unbounded orbit, that is, the basin of
attraction ofoo. Strong perturbations of polynomial mappings always have
as an attractor, so the dynamics occur in the complerBgnbf B,,. There
exists an open and dense gein End (M) (r > 3) such that, for maps ig,
the critical points are nondegenerate (see next section). The next objective is to
determine the invariant componentsif .

Theorem 2. Leth be a quadratic polynomial. There exisC2 neighborhood
U of h such that iff € UN G andBS, has more than one invariant component,
then B¢, has uncountably many components.

The proof of this theorem is given at the end of section 4. Note that for
a complex quadratic polynomial the fact that the critical point belongB.to
implies thatBS, (the Julia set) is a Cantor expanding set. This is not the case for
real perturbations; indeed, in the last section will be given an example of a map
close to a quadratic polynomial such tiggt has uncountably many components
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REAL PERTURBATIONS OF COMPLEX POLYNOMIALS 131

and saddle or attracting type periodic points. In that section it is also given a
sufficient condition for a mag to satisfy thaBZ, has uncountable many bounded
components. The set of critical poir8s of a generic perturbatioh of a complex
guadratic polynomialh is a small circle (this will be proved in section 2). The
set f~1(f(Sy)), denotedS;, is also contained in a small disc ff is a small
perturbation oh. If the critical point ofh is not fixed (otherwisé conjugated to

q(2) = %) thenS; and f (S¢) will be disjoint for any perturbation. A component

of B, is called large if it intersectS; and f (S;). A setis small ifitis contained

in the complement of e1(<§f), where extA) denotes the unbounded component
of the complement oA.

Theorem 3. Leth be quadratic polynomial with connected Julia set and re-
pelling fixed points.

(@) If f is a smallC? perturbation ofh and B, contains a large component,
then it is the unique large component and is invariant. In this case, for
every other componend of BS, there exists1 > 0 such thatf"(K) is
small.

(b) If f is a genericC? perturbation ofh, then BS, contains at most two
invariant components; if it has exactly two, then one of them is a fixed
point.

Part (a) says that the existence of a large componeBf inmplies that it is
invariant and that every other component has a small image. This shows that the
dynamics off is determined heavily by its behavior in this component. On the
other hand, if there is no large componenBY, then by theorem 2 there exist
uncountably many componentsBf, . It remains open the question3t C By
implies thatBS, is a Cantor expanding set.

2 Preliminaries

In this work the strong or Whitney topology is considered. A neighborhood
of f € End (R") is determined by: a continuos functien R" — R* such
that each derivative partial orderevaluate ak is ¢(x)-closed to the respective
derivative off. For example, iff isaC" proper map oR" (that is, the preimage

of a compact set undef is compact or equivalently, for every sequenge
converging tao it holds thatf (x,) also converges teo), then there exists @°
strong neighborhood! of f such that everg € ‘U is proper. In other words, if
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132 JORGE IGLESIAS and ALDO PORTELA

f has continuos extension to the one point compactificatidR"ptheng also
has this property. It is also clear thatdb is, in addition an attractor for the
extension off , then the same will be true for every sm@fl strong perturbation
of it.

Givenf € End (M), denote byS; the set of critical points of . It is known,
see for example [W], that iM is two dimensional manifold, then there exists
an open and dense subggt= G(M) of End (M) (r > 3) such that for every
f € @G, the setS; of critical points of f is empty or it is a one dimensional
embedded submanifold &fi. Moreover, for each critical point of a mapping
f € G, there exist local canonical forms:

Definition 2.1. Let f € End (M), M two dimensional.

A pointx € S is a fold if there exist neighborhoods of x andV of f(x),
and diffeomorphisnp: R> — U andvy: V — R? such thaty f ¢ is equal to
the map(x, y) — (X2, y).

A pointx € S is a cusp if there exist neighborhoods and diffeomorphism as
above, but now the compositigif ¢ equals the mapx, y) — (X, —xy+ y3).

Theorem 2.1. (Whitney, [W]) There exists an open and dense sulggél) of
End (M) (r > 3) such that for evenyf € G(M)

+ St is a one dimensional submanifold if or is empty.
« Every critical point off is a fold or a cusp.
» The set of cusp type points is isolated.

« If S; is a component o8, then f (S;) is a curve with transversal inter-
sections, no one of which contains the image of a cusp.

In figure 1 a sketch of the local behaviour of a map near a cusp type critical
point is shown. Observe that¥f is a neighborhood of (x), thenV \ f(S;) is
the union of two components; in one of them, the points have three preimages
nearx while in the other each point has only one preimage rReét a cusp point
x the kernel ofD f, coincides with the tangent space®fS;. Whenx is a fold
the kernel ofDf, is transverse td@, S;. Note thatf —X(f (Sy)) strictly contains
St whenevelS; contains a cusp type point. Denote§y= f=1(f(S)).

Proposition 1. Let M be a manifold of any dimension, compact or not, and
f € End (M). Suppose that is aC? proper map. The following facts can be
easily verified:
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Figure 1.

. The image off, Im(f) is a closed set.
. M\ & is an open set.

Cfx e Im(f)\ f(St) then f~1(x) is finite.

A W N P

. If U is aconnected componentMf\ f (S;)andA, = {x e U: #f~1(x)
= Kk} then A is equal toU for some nonnegativie

Proposition 2. Suppose as above thdtis a proper map of clas€* on a
manifoldM. If V is a connected componentMdf\ S; then f (V) is a connected
component oM \ f(Sf) and f |V: V — f(V)isacovering map.

Proof. Clearly f (V) is contained in a componeft of M \ f(Sf). So it
suffices to prove that (V) is open and close 0. It is open becausé is local
diffeomorphism inV. If x, € V for everyn > 0 and f(x,) — y € U, the
sequencégx,} must be bounded becaus$ds a proper map. Ik is the limit of
a subsequence ¢k,}. Thenf(x) = y. Note thex € V, anddV c Si; so
f(x) € f(Sf) which is absurd. If follows that € V. O

Corollary 1. If V is a connected component Bf \ f~1(f(S;)) and f(V) is
simply connected, theh|V: V — (V) is a diffeomorphism an¥ is simply
connected.

The next step is to describe the set of critical points of a ger@tipertur-
bation of a holomorphic map. Assume tlzgtis a non degenerate critical point
of a holomorphic magp (non degenerate meaps(z) # 0).

Bull Braz Math Soc, Vol. 38, N. 1, 2007



134 JORGE IGLESIAS and ALDO PORTELA

Proposition 3. There exists &£3 neighborhoodU of p and a neighborhoot
of zg such that iff € ‘U N G, thenS; N U is diffeomorphic to the circl&'.

Proof. It is well known that there exists a conformal maglefined in a neigh-
borhood ofzy such thaty o ¢ = pin U, whereq(z) = z2. So it suffices to
suppose thap = g and the critical point is O.

As q(x, y) = (x2 — y?, 2xy) in real coordinates, observe that

2x =2
DOy = ( oy 2xy ) and detDqg = 4x? + 4y? = H(x, y).

Let f be aC? perturbation ofg. Then deDf = 4x2 + 4y + a(X,y) =
H(X,y) + a(X,y) = Hi(X,y), whereua is ¢ — C? close to 0. Now, as the

gradient ofH; is
(8 0 X Oy
(o) (5)(5)

thenV Hj is a diffeomorphism if the perturbation is small. It follows thét has
a unique critical point. Therefore there are just three possibilitierdr(O):

) H0) = 0.
i) H;(0) = {c}, andc is a critical point.

iii) 0is aregular value oH; and H{l(O) is the union of a finite number of
copies ofSt.

The first possibility is discarded by corollary 1. The second one is discarded
becausef € G by hypothesis. Then iii) holds; moreovblg‘l(O) has to be only
one copy ofSt becauseH; has only one critical point. d

2.1 Description of the setS;

The final part of this section gives a description of the imag8&;ofthus deter-
mining the regions where the number of preimages is constant, and the coverings
described in proposition 2.

Proposition 4. Let f be a small generi€3-perturbation ofq(z) = z?, and
assume thatf | S is injective. ThenS; contains three cusp type points and

R2\ S; has four bounded simply connected components. These components
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REAL PERTURBATIONS OF COMPLEX POLYNOMIALS 135

are simply connected, and each one of them is one to one mappédbto
the bounded component @t \ f(St). The restriction off to the unbounded
component ofR? \ S; is a double covering ofR? \ f(Sy).

Proof. As f is smallC3—perturbation ofj and it is a proper map, each point
in the unbounded component Bf \ f(S¢) has two preimages. AsE]Sf is

injective, f (Sf) is homeomorphic t&!. As the images of the set of fold type
points is dense irf (S¢), it is clear that each point in the bounded component
of R2\ f(S;) has 0 or 4 preimages. Bl? \ S; has at least one bounded
components and these are mapped to bounded component, so it follows that the
points in bounded component &?2 \ f(S;) have four preimages.

Let A be the unbounded component &? \ St and letC be the boundary
of A. The following properties are satisfied:

i) St is contained in the closure of the bounded componeriRdf, C.

ii) C is compact and connected. Assume is not connected.igfnot con-
nected then fundamental group &f contains the free product of two
elements. Butf is a covering form component onto complementSpf
whose fundamental group &. Absurd.

i) CUSt = S;. ltisclearthatC U S; ¢ &. Letx € §;if x ¢ S then
f is locally a diffeomorphism ax. It follows that f (U) intersects the
unbounded component & \ f(S;) that for each neighborhodd of x
sox € C.

iv) St \ S is locally an arc, becauskis locally invertible inS; \ Sf.

v) The generecity off implies that every point irs; is fold type or cusp
type. This implies that for every € C N S is holds thatx is a cusp
type point andS; andC are tangent ak. On the other handf maps
each component dR? \ A onto the bounded component &2 \ f(S¢);
as this one is simply connected, it follows that\ S has exactly four
components. Then there must be three cusp type point and this proves the
proposition. O

Corollary 2. Let f be a genericC® perturbation of a complex polynomial with
non degenerate critical points. rf\sf is injective then each componefitof

St contains exactly three cusp type points and there exists a neighbothobd
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136 JORGE IGLESIAS and ALDO PORTELA

L suchthatf ~1( f (£))NU is mapped ontd (U) like in the previous proposition.
(See figure 2).

In the hypothesis of both the proposition and the corollary it was included
the assumption that the restriction bto S; is injective. We do not know exam-
ples of perturbation of? such thatf |Sf not injective. In [DRRV] for example,
it was proved that for generic real quadratic polynomials (each coordinates is a
quadratic polynomial ok andy) of the plane the restriction df to S is injec-
tive. See also [MST1] and [MST2] where some examples are shown of fnaps
drawingS; homeomorphic to a circle bu‘t[sf not injective.

c

f(z3) ; '/ A

23

’
Z3

Figure 2:z;,2,,z3 are the cusp points.

3 When all critical points have bounded orbit

Inthis section the proof of Theorem 1 of the introduction is given. The techniques
are also used in subsequent sections and prove in fact a more general result that
will be explained at the end of this section.

Observe first iff € End'(R?) is a strongC!-perturbation of a complex
polynomial, therx is an attractor foff . There exists a compact digk centered
at 0 such that the compleme§ of Ko is contained irB, and f ~1(Kq) C Ko.
The proof of the first theorem is based on two simple ideas: (1) The nested
sequence of successive preimage&egfconverges to the complement B,
BS.. (2) If K is a connected and simply connected set that contains all the critical
values off, then f ~(K) is connected and simply connected. The statement in
(2) is not necessarily true when there are critical values outsi#te (ske figure
3) . In subsequent sections this result will be refined.
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REAL PERTURBATIONS OF COMPLEX POLYNOMIALS 137

Begin definingK,, = f " (Kp). As f is a proper mapK, is compact for every
n > 0. Given a compact sé&, denote by extK) the unbounded component of
R?\ K and by in{K) the interior of the complement of & ).

Lemma 1. If K is a compact set, theaxt(f ~%(K)) c f~%(ext(K)) and
f1(int(K)) cint(f 1(K)).

Proof. Letx e ext(f ~1(K)) andx a curve in extf ~1(K)) joining x with oo; in
particulara N f~1(K) = @. As f is properf («) joins f (x) with co, and since
f (@) N K = @it follows that f (x) € ext(K). The other statement is dual.[]

Remark. Figure 3 shows that it is not true in general that!(ext(K)) c
ext(f ~1(K)).

Lemma 2. The sequence of compact sg{s } satisfies the following properties:
i) Kni1 C Ky, foreveryn e N.
i) ext(K,) C ext(Kny1), foreveryn € N.
i) ext(K,) C By, foreveryn e N.
iv) B = Mh=oKn.

v) If B is the immediate basin ob (the unbounded component®{,) then

o
| Jext(Kn) = BY,
n=0

Proof. Parts i) and ii) are obvious. Part iii) is consequence of lemma 1.
Part iv) follows immediately by invariance @< : f"(BS) = B¢ for ev-
eryn € N. To provev), observe that, as e¥,)) is connected, iii) implies that
Uns g ext(Kp) C BY,. Suppose that the other inclusion does not hold. Then there
exists a poink in the boundary 0022 , ext(Kn) such thak € BY,. Lets be such
thatB(x, §) C B2 (whereB(x, §) denotes the closed disc of centeand radius

8). Observe that there exigtg € N such thatB(x, §) N ext(K,) # @ for every

n > ngandB(x, §) is not contained in exK,). ThereforeB(x, §) N K, # @ for
everyn > ngwhich implies thatf "(B(x, §)) N Ky # @. Onthe other hand, there
existsn; € N such thatf "(B(x, §)) C ext(Ko) everyn > n; becausd(x, §) C

Bgo and B(x, 8) is compact. But this implies that"(B(x, §)) N Ko = @ for
everyn > nj; which is a contradiction. 0
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Lemma 3. Suppose thaK is a compact connected and simply connected set
such that every critical value df is contained irK . Thenf ~1(K) is connected
and simply connected.

Proof. As f(Sf) C K thenS; ¢ f~1(K); it follows that f : R2\ f1(K) —

R?\ K is a covering map. AK is simply connected®?\ f ~1(K) as no bounded
component { maps bounded components to bounded components because the
critical point of f are inK). Moreover, as the homomorphisfpthat f induces

on fundamental groupsf(: IM1(R? \ f~1(K)) — II1(R?\ K) ) is injective,
thenIT,(R?\ f~1(K)) is isomorphic toZ. It follows that f ~2(K) is connected

and simply connected. O

Remark. See figure 3 where it is shown that the hypothesis that the critical
values are contained id is necessary.

The argument used proves in fact a more general result:
Let f be a proper self mapping &?. Assume thato is attracting forf and
that By, does not contain critical point. TheBf, is simply connected.

’

21
Z9 23

f(z1) % f(22) !

Figure 3:

Proof of Theorem 1. If every critical point has bounded orbit, it suffices to
show thai,, is connected and simply connected fomaé N, becaus&S () =
NK, (lemma 2, iv)). To prove this, proceed by induction: indekgs a disc,
and asS; C BZ (f), thenS; and alsof (S¢) are contained irK,, for every n.
Then apply the previous lemma.
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Corollary 3. Let P be a complex polynomial such that every finite critical point
is contained in the basin of a finite attractor. Then there exists a neighborhood
U c End'(R?) of P such thatBS (f) is connected and simply connected for
everyf e U.

Proof. This follows by the theorem because in the above case, every critical
point of f is contained in the basin of a finite attractor, andssaC BS (f). O

Corollary 4. Let f be a smallC3-perturbation of a holomorphic polynomial
with non degenerate critical points. B,, NS¢ # @ thenBY N f(S) # 0.

Proof. Letng € N be the first number such th&t,, does not contairf (Sr).
Applying the lemma X, is simply connected. ThereforfeSt)\ Ky, € BY.O

4 Preimages of connected sets

In this section it is assumed thBt, contains critical points. In this case there
exists somen > 0 such thatk,, = f"(Kg) (defined in the previous section)
does not contain the set of critical values. It becomes important to determine
when the preimage of a connected set is connected. Note in figure 3 that if a
connected seK has disconnected intersection with the interiorf@; ), then
f~1(K) is not connected, but only one of the componentd of(K), sayKj,
is surjective, in the sense thatK,) = K.

Observe that for a polynomi# it is easy to determine the number of compo-
nents ofP~1(K) for any connected sé : it dependes on the relative location
of the critical values. For example, P is a quadratic polynomial anH is
bounded and connected, th&T%(K) is connected if and only if the critical
value of P does not belong to the unbounded componet 9fandP~1(K) has
two components otherwise. The remaining of this section is devoted to determine
a similar result for perturbation of quadratic polynomials.

It will be assumed throughout this section tHais a genericC3 perturbation
of some quadratic polynomial and that the restrictiorf ab S; is injective.

Definition 4.1. A quadruple(A, zi, 25, z3) will be called a triangle if
— A is homeomorphic to the disc and its boundary homeomorph®& .to
— 73, 2o, Z3 are different points in the boundary of.

Whenever no confusion is possible, says a triangle without specifying the
tree points. The pointg, z,, z3 are called the vertices & and the three closed
curves(z, z;] in the boundary ofA are called the sides af.
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Definition 4.2. A subseK of the plane connects a triangle if K N A contains
a component which intersects the three sidea of

The following result, of intuitive meaning, is central in the development of the
techniques.

Lemma 4. Let K be a compact connected subseR3fand A a triangle. Then
exactly one of following conditions hold:

e K connectsA.

» K¢ connectsA.
Proof. The proof is divided in several claims.

Claim 1. The lemma is true iK is a finite union of discs. Suppose first that

K connectsA. Then (asK is finite union of discs) there exists a simple curve
«: [0, 1] - KNA suchthatr intersects each side afin exactly one point. Itis
clear thatA \ « has three components, no one of which intersects the three sides
of A. HenceK ¢ does not connech. Suppose now thd does not connech.

Then there exists a finite disjoint collection of regions, diffeomorphic to closed
discs,V = {V,;} satisfying the following properties:

1. There exist at most three elements)othat intersect more than one side
of A and no one of them intersect the three sides.

2. If V, € V intersects two sides, the¥jy contains the common vertex of
these two sides.

3. The intersectioV; N dA is connected for every; € V.
4, KNA CUV.

Observe that the quotient spagg ~ wherex ~ v iff there existsV, € V
containing botkx andy is again atriangle (the vertices are the thvethat contain
a vertex ofA ). As no point of this triangle belongs to the quotient projection of
K, itfollows thatK € connects\ / ~, butthis implies that it connects. To prove
de existence of such suppose first that ! is a component ok N A containing
points of[z1, z,] and[zy, z3]; then there exists a simple closed cupve- K?
joining [z1, zo] with [z, z3] (here it is used th& is finite union of discs). Note
that A \ y has two connected components, one of them continBefineV;
as the set of points such that there exists a curyg as above leaving andz;
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29 Vi

Kl

/ 21U

23
Vi

D

Figure 4.

at the same side. Analogously defieandV;. These sets are open, connected,
simply connected and disjoint (because the contrary assumption impligs that
connects). Next define disjoints regio¥s, V,, Vs containingVi, V, and Vs
respectively.

Again using the fact thaK is a finite union of discs one can easily see that
for each side there exists a regivh such thatV; contains all the components
of K N A that intersect only this side; this can be done in such a wayYhat
contains (at most) six disjoint elements.

Claim 2. There exists a nested sequence of compactsksessich thatk =
() Kn and eachK, is a finite union of discs. For the proof, just takg from a
cover of K with discs of radio 1n.

Claim 3. If every K,, connectsA thenK connectsA. As K; connects, there
exists a componeri} of K; that connectsA and this is unique because the
theorem is known for finite union of discs. For the same reason there exits a
componentK] of K, C K such thatk2 connectsA. ObviouslyK2 c Ki.

By induction, there exits a nested sequeKgeof compact connected sets each
one of which connecta. Then the intersectiofi) Kr} = K1 is connected, is
contained inK, and connecta.

Now the proof the theorem finishes a follows:

Bull Braz Math Soc, Vol. 38, N. 1, 2007
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— If K does not connech, be claim 3 there exists such thatk,, does not
connectA; by claim 1,K¢ connectsA; soK® O K§ also connecta.

— If K connectsA then K, connectsA for everyn. This implies, again
by claim 1, that for everyn U, = K£ does not connech. But each
U, is open and the sequence is increasing; so a compact set contained in
U = (J,-oUn must be contained in sontg,. If U connectsA, then there
is a compact subset &f that connects\, but this is absurd. It follows
thatU = K¢ does not connech. O

Startassumingthdt e G, with f a smallC3-perturbation o#°4-c. Recall that
in this casef (Sy) is closed curve with a finite number of transverse intersections,
each one of which contains no cusp.

Definition 4.3. The setA is a surjective component 6f1(B) if Ais aconnected
component off ~1(B) and f (A) = B.

Proposition 5. Let f be a generic map such th&t is diffeomorphic to the circle
S'. If K is a compact connected set and interseot& f (S;)), then f ~1(K)
has at most two surjective components. The other componerfits' oK ) are

containedn int (S¢).

Recall§; = f-1(f(Sf)). This setis small iff is a small perturbation of

complex polynomial. A set is called small if it is containeid int(S;). Some
previous results will be needed to prove this proposition

Lemma 5. Let {K,} be a nested sequence of compact connected setk aad
NKp. If for everyn there exists a surjective componé(ﬁH of f~1(Kp) such

thatK! , c K}, then there exists a surjective componkritof f ~1(K).

Proof. K = NK, is compact and connected.Kf' = NK?thenK!is a compact
and connected subset 6f1(K). Letx € K; for everyn there existy/, € K}
such thatf (y,) = x. If yis the limit of a convergent subsequenceg wf}, then
y € K1 for everyn whencey € K. By continuity f (y) = x. This implies the
lemma. O

Lemma 6. Let« be a simple open curve, transverseft(S; ), not containing
images of cusps and intersectiegt( f (S)). Thenf ~1(«) has a finite number
of connected components. The surjective componeritsief) are those that
intersectext(8~f ). Thereforef ~(«) has at most two surjective components.
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Proof. First observe that the hypothesis imply thiatl(«) is a finite union
of simple curves. LeB be a component of ~(«) that intersects eK§f). Let
X € ﬁﬂext(8~f). As g is a simple curve, fix a parametrizationpf [0, 1] — R?
and letty be such thag(tp) = x. If 8 is contained in e>(15~f) then is clear that
f(B) = a and the result follows becaudeis a covering map form exB;) in
ext(f(Sy)).

Suppose that there exists > tp such thatg(t;) < a§f. Without loss of
generality it can be also assumed th@B (1)) = a(s),i = 0, 1 withs; > .
Lets(t) be a continuous function efsuch thatf (8(t)) = a(s(t)). Itis claimed
now that for everyt > t; s(t) > s(t;) = s;. Observe thas(t) is increasing
wheneveB(t) does not belong to 06y ). If the claim is not true, theri (8(t))
must cross(s;) at a pointt; > t; and withs decreasing in a neighborhoodtef
which implies thaiB (t;) € S¢; this is absurd becausg(int(Sy)) C int(f(Sf)).
This proves the claim.

The claim implies thag is not closed and so the image of the extreme points
of 8 underf must be the extreme points @f The last assertion is now obvious
since every point in extf (S¢)) has two preimages. This implies the lemma.

Proof of Proposition 5. Using lemma 5, if suffices to prove the proposition
for K equal a finite union of discs. In this cakeis arcwise connected and the
assertion follows from the lemma 6.

Next assume that|Sf is injective. Thenf (Sy) is homeomorphic t&!, and

it contains three cusp type points as proved in proposition 4 and its corollary.
Form now onA will be the closure of the bounded componentR3f\ f(S;)
with the images of the cusps as vertices.

Obs: IfC C A is connected and conneatsthen f ~1(C) is connected. The
main result of this section is

Proposition 6. Let K be a compact connected set such tah ext(A) £ .

a) If ext(K) does not conneck, then f ~1(K) has only one surjective com-
ponent.

b) If ext(K) connectsA, then f ~1(K) has two surjective components.
c) Every non surjective component bf1(K) is containedn int(S;).

The proof of this proposition needs the following result:
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Lemma 7. If the connected sé is a finite union of discs that connedts then
there exists a unique compongt of f ~1(K) such thatf (K1) = K

Proof. Let C be the component d N A that connects\.

If Kis asurjective component df1(K) thenK ! must contain the connected
set f~1(C). This proves the uniqueness. Now et K anda be a curve in
K that containsx and intersect€, having also a finite intersection withA.
By the previous lemma 6, there is a curve contained ih(«) that contains
and intersectd ~%(C). So the component of ~(K) that containsf ~(C) is
surjective. O

Proof of Proposition 6.

(a) Suppose firsttha€ connectsh. Construct a nested sequence of compacts
setsK, as in the proof of lemma 4 (claim 2). As eaédy is a finite
union of discs, the lemma 7 implies that there exkfs component of
f ~1(K,), such thatf (K}) = K, and the sequend¢! is decreasing. Now
apply lemma 5 to obtaiik 1. The setk ! is determined by the condition
K > f~1(C) whereC is the component ok N A that connecta. This
shows thaK ! is unique.

Suppose now thaK does not connech (and neither extK) connects
A). Without loss of generality it can be also assumed #ias a finite
union of discs. Then there exists a simple closed curgentained inkK,,
containing a poink € ext(A) and whose interior contains a connected set
C that connect&\. It is claimed now thatf 1(0{) has only one surjective
component. To prove this, defilie = int(«); asK connects, the first part
implies thatf -1(K) has only one surjective component, dendted Let

§ be the boundary of the bounded componerR®f K. Observe that this
is a connected set. Moreover(§) C « and the two preimages afare
contained irs. Then, using lemma 6, it follows thdt*(«) has only one
surjective component and the claim is proved. Nowlet K. Then there
exists a curvgs C K joining y with a pointz € «. Now using lemma 6
and the claim above the proof of (a) is concluded.

(b) As exi(K) connectsA, there exists an injective curee [0, +00) — R?
suchthatr C ext(K), «([0, 1)) connectsA and|a(t)| — ocoast — +oo.
It is easily seen thaf ~1(«) disconnects the plane in the sense tRAf
f ~1(a) has two connected componeris and H,. From proposition 5,
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it follows that f~1(K) contains exactly one surjective componéitin
eachH' such thatf (K') = K.

(c) Isimmediate consequence of lemma 6.

This sequence of results gave a topological insight into the structure of the
preimages of a set. The next results is the first conclusion of the results
previously obtained.

Proof of Theorem 2. If the critical point ofh is fixed andf is small generic
C3-perturbation oh then, by proposition 3B¢ ( ) is simply connected. Then
the critical point ofh is not fixed and theis; N f (S¢) = @ and the fixed points
of f belong to extA) (becausef is small perturbation offl).

As f has fixed pointsBS, has at least one invariant connected component.
Note that asf is a genericC? perturbation of a quadratic polynomial, its set of
critical point is homeomorphic t&".

Recall from the previous section that there exists a sequepee f " (Kg) of
compact sets such thi is a disc. The properties of this sequence are collected
in lemma 2. Next define a sequer‘{déjl} as follows (this family can be either
finite or infinite). LetKg = Kp; asKy is a big disc, sof (S;) € Kg and this
implies that f ~1(K3) has exactly one componeHKt! such thatf (K}) = K;

(see lemma 3).

If f~1(K}) has two surjective components the construction is stopped; other-
wise, use proposition 5 to defir€} as the unique component 6f (K1) such
that f (K3) = K{. Again, using proposition 5 and thit, ¢ Kj it comes that
K2 c K} c K. If £71(K}) has two surjective components the construction
is stopped. Otherwise, and analogous to the first step, there &dsts K
with K3 the unique surjective component 6f1(K3z). An obvious induction
argument gives a nested sequence of connectgdKsét

Case a. The family{K}} is infinite.

If pandr are the fixed points of , using the proposition 5, it follows that
the setsf ~*(p) = {p, p} and f~1(r) = {r,r'} are contained irk}, for all
n € N (becausep andr are notin int(f (S¢))). ThenM = NK} is an invariant
component ofB, and the fixed points belong to it. Suppose that there exists
another invariant componeltof BS,. AsM # N there exist#,; € N such that
N is contained in a componem;‘10 of Ky, different of K1 . By the construction

of {K,} and the proposition 5, there existE N such thatf"(K,‘m) C int((§).
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Then

N cint((Sf) and f(N)= N cint(f(S)),

which is absurecause ir(1S~f) Nint(f(Sf)) = P if f is a sufficiently small
perturbation.

Case b. The family{K}} is finite.

In this case, there existy € N such thatf ~}(K} ) has two surjective com-
ponentsH; and H, contained inK,,. These two preimages are contained in
K, by the same argument used in the case (a)HAS K; fori = 1,2, it
follows eachf ~1(H;) has two connected components containedit H, and
whose images give the correspondidg It follows that f ~"(H;) has at least2
components. The construction follows standard arguments giving uncountable
many components dB,.

Corollary 5. Let f € G be a smallC3-perturbation of a quadratic polynomial
such that the restriction of to S; is injective. If the immediate basin ob
connectsA = int f(S¢) then the complement @,, has uncountably many
components.

Proof. It is sufficient to prove that the famil{K 1} is finite.

If the family is infinite then, by proposition 6 (b), e ') does not connect
for everyn € N. As B2 connects so there existg € N such that extkn)
connects. Therefore e }) connects and this is a contradiction. O

Figure 5:
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Corollary 6. Let f € G be a smallC3-perturbation of a quadratic polynomial.
If M is an invariant component @S, thenM contains a fixed point.

Proof. If the family {K1} is infinite then there exists only one invariant com-
ponent and this component contain both fixed points. If the family is finite
then there exists two invariant components, each one of which contains a fixed
point. O

In the last section it will be shown that the condition in the hypothesis of
corollary 5 do not imply thaB¢, is totally disconnected.

5 Invariant components of BS,

The attentionis focused on the determination of the existence of large components
in B, (that is a component that intersects b8thand f (S¢)), and in the study
of the invariant components of the complemenBgf.

The construction of the previous section will be used; start with a quadratic
polynomialh.(z) = z>4csuchthatthe critical point 0 does not belon@to(he).
(Otherwise, the Julia sek. of h. is totally disconnected and the same holds for
every smallC! perturbation). Therefore the Julia sethofis connected. For
eachc € C, letK. denote the filled-in Julia set bf, i.e., the set of points having
bounded forward orbit. In this case there exists a conformal dnapf{|z| >
1} - S\ K¢, a conjugacy between(z) = z2 andh, such that ®. = &.q. It
is also assumed that the fixed pointhghre repellors. It follows thdi;(0) # 0
and thenS; N f(S;) = @ for every small perturbatiorfi of he.

The main ingredient in the proof of theorem 3 will be the following result of
Douady and Hubbard (see [S]). Let

R@) = dc{re”™?:r > 1} for 0<6 <1
EachR(#) is called the external ray of angefor he.

Theorem 5.1. (Douady-Hubbard)f 6 is rational thenR(0) lands at a point

of the Julia set oh, this means thalim,_, 1+ ®c(re?1?) exists and belongs to
Je. This point is periodic or eventually periodic. Conversely, every repelling
or parabolic periodic point of the Julia set & is the landing point of a finite
number of external rays, all with rational angles.

Denote byp andr the fixed points oh;. The fixed external rayr(0) lands
at a fixed point ohg; let it ber. There is also an external ray that is not fixed,
landing atp. It is a periodic orbit{6,, ..., 6,} of q such that the external rays
ai = R(4) land atp. ThenR? \ U, is the union ofn regions{R;}; on the
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other side, there exist regions§ which are determined in the complement of
the unit disc by the ray§. It is clear that each of the regiof$ correspond to

a uniqueS. It is not true that the image d® under®;!is S, becauseb_ ! is
defined inR; \ K. However it makes sense to say that a pairg K \ {p}
correspond to a componeft, because such a point is contained in a unique
regionR;. Denoting byJi = 7N R;, itcomes thay \ {p} = U, ;.

Observe that- p is the other preimage gf and that the external rays have
preimagesy; landing at—p. Denote byR the components of the complement
of the union of thexi’ . Denote also bﬂi’ the preimages underof the angle®;
and byS the components of the complement of the ra’yS

Lemma 8. The following statements hold fog:

(a) The critical point 0 ofh. and its imageh.(0) cannot belong to the same
T

(b) The points and0 belong to the samB;, but to differenIRi’, and the points
p andr belong to differeni.

(c) LetR the component adR? \ Ue; which contains . If
CL={h2(0): ne N}

is contained in( R{r)c, then there exists a finite sat ¢ BS (he) such that
every pointx € BS (he) \ A, in R{r leaves this component under iteration
of h¢ (i.e. there exists such thah(x) ¢ R ).

Figure 6:
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Proof.

(a) Observe thaj~1(S) has two surjective components, each one of which
is contained in som&;. Note also thay~%(S) c S is false, because
this would imply thatq has two fixed rays ir§. Note also that simple
arguments of connectivity imply that the same applies to the red®ons
(even though the conjugacy does not extend flento S).

Suppose by contradiction that 0 ang0) belong to the same component
Ri. As 0 is the unique preimage bf(0) it follows that hgl(Ri) c R;
but this is not possible because it implies that(S) c S, where§ =
O MR\ Ko).

(b) There exists at most org containing both preimages of another com-
ponent (such ar§ must correspond to an angle greater thgn This
actually occurs in the case under consideration, because the component
that correspond tb:(0) must have both preimages in the compongnt
that correspond to 0. Now observe that as the length,aé greater than
7, it contains at least one component of eqcﬁ(Sj) forj=1,...,n.In
particular, the fixed ray of belongs to this component becausé(S,)
has a surjective component contained&ijn It follows thatr and 0 belong
to the same componeR, of R? \ Uq;.

Observe also that one of the components of the preimadg @he one
containing the fixed ray) is contained ), but O does not correspond to
this component by part (a). It follows that 0 andelong to different
componentsRi/. Now using thatp and —p are symmetric (sg and O
belong to the samE{), it follows that p andr belong to differenRi’.

(©) LetA = {x e R N B&(ho): hi(x) € R, Vn e N}. Observe that is a
compact set and is containedﬁﬁ. ThenCLN A = @. Thisimplies that
A is a hyperbolic set (see [MS]) afd: A — A is bijective, thereforex
is a finite set. 0

It will be proved next that there exists a sequence of openGessaich that

n
Uai = ﬂ Grx and Gy1 C Gy forevery k > 0.
i=1 k>1

Let B(p, 8) be the disc centered at, with radiusé small enough sucthat
hz1(B(p,r)) N B(p,r) C B(p,r) foreveryr <§. Forl<i <nletV, bea

Bull Braz Math Soc, Vol. 38, N. 1, 2007



150 JORGE IGLESIAS and ALDO PORTELA

sector containing the rag. Denote byo; and¢; the sides ol (see figure 7)
andV = U_, V.. It canV, be taken such that:

) gV)ynVv cV.
i) The end point ofd (i) andd.(¢j) belongs inB(p, 3).

If Go = ®(V)U B(p, d), then itis clear thahgl(Go) N Go = G; satisfies
G; C Gg. The claim follows easily by induction, definir@y, = hgl(Gk_l) N
Gi_1.

Figure 7:

Now the initial maph. will be perturbed. Suppose thétis a mapC? close
to he such that the closure o‘f‘l(go) N Gg = G4 is contained irGg. Itis then
clear that there exists a sequeri®esuch that

f(Gp) =Gk and Gigs C Gi

Let C = NGy; thenC is invariant underf and connected and contaips the

analytic continuation op. The main property o€ is thatC \ p; is contained
in B (f): Indeed, this is trivial ifx ¢ B(p, §); whenx € B(p, §) there exists
m such thatf™(x) ¢ B(p, ). By invariance ofC and B,,(f) the assertion
follows. Thus the following result was completely proved:

Lemma 9. For every smallC! perturbation f of h. there exists a connected
setC such that:

(a) C separates the plane.
(b) pr €C.
(C) C \ {pf} C Boo(f)‘

(d) Cisinvariant.
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Now denote byRy, ..., R, the components of the complement®fand by
Rl, ..., R, the components of the complement®f whereC' is f~1(C) \ C.
The same conclusions of the lemma 8 hold for

Corollary 7. If f is small perturbation ohc:

(a) St and f (S¢) belong to different componeR®

(b) ps andr belong to differen.

As h¢(z) = z° + ¢ has no attracting fixed point, it is clear that= he(0) # 0.
If f is C! close tohe, thenS; N f(S;) = ¥. Thus a way of saying that a
connected se¥ is large is to prove that it intersect bafl and f ().

Definition 5.1. A connected seVl is large for f if

MNS £#0 and MnN f(S) £#40.

Proof of Theorem 3.

(a) By lemma 8, the points 0 arti.(0) belong to different components of
J\{p}, where7 is the Julia set oifi; and p its fixed point. The same holds
for the mapf if ‘Ut is sufficiently small. Therefore, i is a component
of BS (f) that intersects bot; and f (S¢), thenp; € M,( because by
lema 9M cannot intersedt outsidep¢). This implies the uniqueness of
M. Also f(M) is connected, containg; and is contained i85 (f) so
f(M) C M. The last assertion follows form proposition 6

(b) From corollary 6 it follows that there exists at most two invariant compo-
nents ofB..(f), each one of which contains a fixed point. Asume now
that there existdlp,, # M, two invariant components d85 (f) such
that M, containsp; and M, containsrs. We are going to prove that
Mrf = {rf}-

Thatp; ¢ M, is obvious sincef (p;) = ps andMp, N M;, = @. It follows
that the wholeVi,, is contained in the componeR§ of R\ C' that contains ;.
Let V be a neighborhood afsuch that for every perturbation bf, the analytic
continuation of this fixed point; is contained inv and f |V is conjugate to its
linear part. This is used only to assert thavif, C V thenM,, = {r«}.
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If CL = {h?(0): n € N} is contained in(l%’)c, then using the lemma 8 (c),
we have thatA is a hyperbolic finite set. This implies thit; , is contained in
V,soM;, = {r¢}. If CL is not contained irg R{)C, so there existag € N such
thath.(0) andhZ°(0) belong to different componenB. Thusif f is close tch,
then f (S¢) and f™(S;) are contained in different componentsR#\ (C'). As
f (M) c M and intersects botli (S¢) and f"(Sy), it follows thatM contains
p’f , and therK ! has only one surjective preimage for everyThis implies that
infactMp, = My,.

Corollary 8. Let f be aC? perturbation ofh.(z) = z° + c withc € (-2, o)
(Wherec3 + ¢o + (1 — «/T—4c)/2) = 0andcy ~ —3/2). If BS () has one
large componeni thenM is the unique invariant component.

Proof. The condition onc implies thath.(0) and hg(O) belong to different
componentsR. Thus if f is close toh then f (S;) and f2(S;) are contained
in different components dR?\ (C). As f (M) c M and intersects botffi(Sr)
and f2(Sy), follows thatM containsp;, and thenk} has only one surjective
preimagen for every. This implies, that in facM,, = M,,. O

Example. Itwill be shown now that there exists a mépperturbation o#> — 2
such that:

» The set of critical points of is connected and \Sf is one to one.

* The immediate basin af connectsf (S¢).

» The complement oB,, has uncountably many components but is not
totally disconnected, in fact, it contains a hyperbolic periodic point which
is not a repellor.

This map will be found near the family:
fowe (X, Y) = C =y =2+ Ay + 1, (2 — &)Xy).

The set of critical point isL = {(x, y): X%+ y? — (1/2)y = 0}. The cusp are
(0, 0) and(£+/31/8, 31/8). One of the fixed point of is (p, 0), close to(2, 0):
note that asf (x, 0) = (x> — 2 + u, 0) then{(x, 0): |x| > p} is contained in
B (f). Moreover, ag: will be negative, then the intersection B, (f) with
the real axis will be a Cantor set. Itis easy to see that for evei@, 1/2) € S
and thatu can be chosen negative in such way that0, A/2) = (p, 0).
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Figure 8:v1,v, are the eigenvectors.

It is claimed now that exists > 0 such thaB (f) connectsf (S¢); in fact
it will be proved that it connect$ ?(Sy), which is equivalent to the above. A
simple calculation shows that

A

—(@2—-¢)p

is tangent tof 2(Sy) at the point(p, 0). If follows that a eigenvectors of

2p A
Df“’"):( 0 <2—e>p)

are(1, 0) associated to the eigenvalup @nd(—A, ep)) associated to the eigen-
value(2 — ) p < 2p. Choose: so thatw is not an eigenvector dd f .

Thus the situation is as in the figure 8. Now the claim can easily be proved. As
was noted aboveB? contains{(x, 0): |x| > p}. This implies that the image
f2(0, 0) of the cusp0, 0) belongs tdB? . Soitremains to prove that the opposite
side of the trianglef 2(Sy) can be connected t6?(0, 0) within B2 N f(A). To
prove this take a small segmehtcontained inB,, and transverse to the real
axis at a point(xg, 0) with X > p. There is a sequende, of preimages of
L converging top, and as the eigenvectorA, ep) is associated to the weak
eigenvalue oD f, o), it follows that the tangent th, is close to this direction
whenn is large. Thereford , intersects the side df?(S;) that containg p, 0).

This proves the claim. SBC?o connects the trianglé (St ) and it follows thatBS,
has uncountably many components (by corollary 5). On the other hand, recall
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that a critical point(0, »/2) is preperiodic, namely its second image([s 0).
But the unstable set dfp, 0) contains the point0, 1/2); thus there exists a
critical homoclinic orbit associated @, 0). Let fo be aC! map of a manifold
M andz, a repelling fixed point offs. A pointxy € M is homoclinic toz, if
there existsn > 0 such thaky, = " (Xo) = zp and a sequenda,}no (preorbit
of Xp) such thatf (xn—1) = X, andx, — Zp, ton — —oo. The orbit{X,}-coc<n<m
is called homoclinic tay; if the at least one of point is a critical point ¢f then
the orbit{x,} is critical homoclinic toz,.

Then the following, a generalization of a well knout one dimensional result,
will be used here:

Theorem 5.2.[A] Letxg be homoclinic to a fixed repellay for amap fo. Then
in any generic one parameter famifyf,} through fy there exists close t0 a
parameternu such thatf,, has a critical periodic point.

Then by a result previous, it follows that there exists a perturbatioof f
such that a critical point of " is periodic. Of course, the property thaf ( f)
connectsf (S;) is open, so the perturbation can be made small orden to obtain
thatB2 (f') still connects the trianglé’(S;/). A final perturbation can be made
to make the critical periodic point hyperbolic. This finishes the construction.
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