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Real perturbations of complex polynomials
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Abstract. In this article the dynamics of genericCr (r ≥ 3) perturbations of complex
polynomials are considered. The attention is focused on the determination of the exis-
tence of large or invariant components of the complement of the basin of∞, where the
interesting dynamics occur.
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1 Introduction

Given a manifoldM , let Endr (M) denote the set of differentiable endomor-
phisms ofM , of classCr , endowed with the Whitney or strong topology. For
f ∈ Endr (M), say that a pointx is critical for f if the differential of f at x,
D fx, is not invertible. Denote bySf the set of critical points off . The study of
the dynamics of endomorphisms has caught the attention of many authors. The
question of stability, still not solved, was considered in[MP], [I], [AMS] and
[DRRV]. A lot of work has been done also because these maps have abundant ap-
pearance in applications; the existence of critical points and multiple preimages
is a source of creation of chaotic dynamics, as many authors shown by means
of numerical experiments. The one dimensional theory was mostly considered,
in the real context (see [MS]) as well as in the complex one, beginning with the
works of Fatou and Julia ([Mi], [S]). This theory is now very rich and elegant and
most conjectures have been proved. This is not the case in higher dimensions. In
the attempt to understand the dynamics of maps with critical points in dimension
two, we have considered hereCr perturbations of complex polynomials. The
first problem consists in the description of the critical sets and critical values,
and the regions where the number of preimages is constant.
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It is well known that great part of the dynamical structure of a complex poly-
nomial depends on the future orbits of the critical points. Properties such as
connectivity of the Julia set or of the basin of∞, existence of invariant domains
and stability depend on simple assumptions aboutSf . Two main difficulties arise
when a perturbation of a polynomial is considered: first, as the conformality is
lost, the usual techniques of complex analysis are no more available; on the other
hand, as will be shown later, the set of critical points becomes generically a finite
union of circles. For example, for the case of a polynomialP and a connected
setK , the number of components ofP−1(K ) depends on a very simple way on
the relative positions ofK and P(SP). This problem becomes interesting and
difficult when the set of critical points is a one dimensional manifold and then
the possibilities for the intersections ofK and f (Sf ) explode. One of the main
questions developed in this article consists in determine under which conditions
the preimage of a connected set is connected.

If P is a complex polynomial then the Julia set ofP is connected if and only if
all the critical points ofP have bounded orbit; moreover, if all the critical points
have unbounded orbit, then the Julia set ofP is totally disconnected. Using
some new techniques, sometimes inspired in[RRV] and obviously unusual in
the complex domain, partial generalizations of these results will be given here.

Theorem 1. Let P be a polynomial. There exists aC1 neighborhoodU of P
such that for everyf ∈ U, either some critical point has unbounded orbit or the
set of points with bounded orbit is connected and simply connected.

Denote byB∞ the set of points with unbounded orbit, that is, the basin of
attraction of∞. Strong perturbations of polynomial mappings always have∞
as an attractor, so the dynamics occur in the complementBc

∞ of B∞. There
exists an open and dense setG in Endr (M) (r ≥ 3) such that, for maps inG,
the critical points are nondegenerate (see next section). The next objective is to
determine the invariant components ofBc

∞.

Theorem 2. Leth be a quadratic polynomial. There exist aC3 neighborhood
U of h such that if f ∈ U∩G andBc

∞ has more than one invariant component,
thenBc

∞ has uncountably many components.

The proof of this theorem is given at the end of section 4. Note that for
a complex quadratic polynomial the fact that the critical point belongs toB∞

implies thatBc
∞ (the Julia set) is a Cantor expanding set. This is not the case for

real perturbations; indeed, in the last section will be given an example of a map
close to a quadratic polynomial such thatBc

∞ has uncountably many components
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and saddle or attracting type periodic points. In that section it is also given a
sufficient condition for a mapf to satisfy thatBc

∞ has uncountable many bounded
components. The set of critical pointsSf of a generic perturbationf of a complex
quadratic polynomialh is a small circle (this will be proved in section 2). The
set f −1( f (Sf )), denotedS̃f , is also contained in a small disc iff is a small
perturbation ofh. If the critical point ofh is not fixed (otherwiseh conjugated to
q(z) = z2) thenSf and f (Sf )will be disjoint for any perturbation. A component
of Bc

∞ is called large if it intersectsSf and f (Sf ). A set is small if it is contained
in the complement of ext(S̃f ), where ext(A) denotes the unbounded component
of the complement ofA.

Theorem 3. Let h be quadratic polynomial with connected Julia set and re-
pelling fixed points.

(a) If f is a smallC1 perturbation ofh and Bc
∞ contains a large component,

then it is the unique large component and is invariant. In this case, for
every other componentK of Bc

∞ there existsn > 0 such that f n(K ) is
small.

(b) If f is a genericC3 perturbation ofh, then Bc
∞ contains at most two

invariant components; if it has exactly two, then one of them is a fixed
point.

Part (a) says that the existence of a large component inBc
∞ implies that it is

invariant and that every other component has a small image. This shows that the
dynamics of f is determined heavily by its behavior in this component. On the
other hand, if there is no large component ofBc

∞, then by theorem 2 there exist
uncountably many components ofBc

∞. It remains open the question ifSf ⊂ B∞

implies thatBc
∞ is a Cantor expanding set.

2 Preliminaries

In this work the strong or Whitney topology is considered. A neighborhood
of f ∈ Endr (Rn) is determined by: a continuos functionε : Rn → R+ such
that each derivative partial orderr evaluate atx is ε(x)-closed to the respective
derivative of f . For example, iff is aCr proper map ofRn (that is, the preimage
of a compact set underf is compact or equivalently, for every sequencexn

converging to∞ it holds that f (xn) also converges to∞), then there exists aC0

strong neighborhoodU of f such that everyg ∈ U is proper. In other words, if

Bull Braz Math Soc, Vol. 38, N. 1, 2007
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f has continuos extension to the one point compactification ofRn, theng also
has this property. It is also clear that if∞ is, in addition an attractor for the
extension off , then the same will be true for every smallC0 strong perturbation
of it.

Given f ∈ Endr (M), denote bySf the set of critical points off . It is known,
see for example [W], that ifM is two dimensional manifold, then there exists
an open and dense subsetG = G(M) of Endr (M) (r ≥ 3) such that for every
f ∈ G, the setSf of critical points of f is empty or it is a one dimensional
embedded submanifold ofM . Moreover, for each critical pointx of a mapping
f ∈ G, there exist local canonical forms:

Definition 2.1. Let f ∈ Endr (M), M two dimensional.

A point x ∈ Sf is a fold if there exist neighborhoodsU of x and V of f (x),
and diffeomorphismϕ : R2 → U andψ : V → R2 such thatψ f ϕ is equal to
the map(x, y) → (x2, y).

A pointx ∈ Sf is a cusp if there exist neighborhoods and diffeomorphism as
above, but now the compositionψ f ϕ equals the map(x, y) → (x,−xy+ y3).

Theorem 2.1. (Whitney, [W]) There exists an open and dense subsetG(M) of
Endr (M) (r ≥ 3) such that for everyf ∈ G(M)

• Sf is a one dimensional submanifold ofM or is empty.

• Every critical point of f is a fold or a cusp.

• The set of cusp type points is isolated.

• If S
′

f is a component ofSf , then f (S
′

f ) is a curve with transversal inter-
sections, no one of which contains the image of a cusp.

In figure 1 a sketch of the local behaviour of a map near a cusp type critical
point is shown. Observe that ifV is a neighborhood off (x), thenV \ f (Sf ) is
the union of two components; in one of them, the points have three preimages
nearx while in the other each point has only one preimage nearx. At a cusp point
x the kernel ofD fx coincides with the tangent space ofTx Sf . Whenx is a fold
the kernel ofD fx is transverse toTx Sf . Note that f −1( f (Sf )) strictly contains
Sf wheneverSf contains a cusp type point. Denote bỹSf = f −1( f (Sf )).

Proposition 1. Let M be a manifold of any dimension, compact or not, and
f ∈ Endr (M). Suppose thatf is aC1 proper map. The following facts can be
easily verified:

Bull Braz Math Soc, Vol. 38, N. 1, 2007
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Figure 1:

1. The image off , Im( f ) is a closed set.

2. M \ S̃f is an open set.

3. If x ∈ Im( f ) \ f (Sf ) then f −1(x) is finite.

4. If U is a connected component ofM \ f (Sf ) andAk = {x ∈ U : ] f −1(x)
= k} thenAk is equal toU for some nonnegativek.

Proposition 2. Suppose as above thatf is a proper map of classC1 on a
manifoldM . If V is a connected component ofM \ S̃f then f (V) is a connected
component ofM \ f (Sf ) and f

∣
∣
V

: V → f (V) is a covering map.

Proof. Clearly f (V) is contained in a componentU of M \ f (Sf ). So it
suffices to prove thatf (V) is open and close inU . It is open becausef is local
diffeomorphism inV . If xn ∈ V for everyn > 0 and f (xn) → y ∈ U , the
sequence{xn} must be bounded becausef is a proper map. Ifx is the limit of
a subsequence of{xn}. Then f (x) = y. Note thex ∈ V , and∂V ⊂ S̃f ; so
f (x) ∈ f (Sf ) which is absurd. If follows thatx ∈ V . �

Corollary 1. If V is a connected component ofM \ f −1( f (Sf )) and f (V) is
simply connected, thenf

∣
∣
V

: V → f (V) is a diffeomorphism andV is simply
connected.

The next step is to describe the set of critical points of a genericC3-pertur-
bation of a holomorphic map. Assume thatz0 is a non degenerate critical point
of a holomorphic mapp (non degenerate meansp

′′
(z0) 6= 0).

Bull Braz Math Soc, Vol. 38, N. 1, 2007
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Proposition 3. There exists aC3 neighborhoodU of p and a neighborhoodU
of z0 such that if f ∈ U ∩ G, thenSf ∩ U is diffeomorphic to the circleS1.

Proof. It is well known that there exists a conformal mapϕ defined in a neigh-
borhood ofz0 such thatq ◦ ϕ = p in U , whereq(z) = z2. So it suffices to
suppose thatp = q and the critical point is 0.

As q(x, y) = (x2 − y2, 2xy) in real coordinates, observe that

Dq(x,y) =
(

2x −2y
2y 2x

)
and detDq = 4x2 + 4y2 = H(x, y).

Let f be aC3 perturbation ofq. Then detD f = 4x2 + 4y2 + α(x, y) =
H(x, y) + α(x, y) = H1(x, y), whereα is ε − C2 close to 0. Now, as the
gradient ofH1 is

∇H1 =
(

8 0
0 8

)(
x
y

)
+

(
αx

αy

)

then∇H1 is a diffeomorphism if the perturbation is small. It follows thatH1 has
a unique critical point. Therefore there are just three possibilities forH−1

1 (0):

i) H−1
1 (0) = ∅.

ii) H−1
1 (0) = {c}, andc is a critical point.

iii) 0 is a regular value ofH1 and H−1
1 (0) is the union of a finite number of

copies ofS1.

The first possibility is discarded by corollary 1. The second one is discarded
becausef ∈ G by hypothesis. Then iii) holds; moreoverH−1

1 (0) has to be only
one copy ofS1 becauseH1 has only one critical point. �

2.1 Description of the setS̃f

The final part of this section gives a description of the image ofSf , thus deter-
mining the regions where the number of preimages is constant, and the coverings
described in proposition 2.

Proposition 4. Let f be a small genericC3-perturbation ofq(z) = z2, and
assume thatf

∣
∣
Sf

is injective. ThenSf contains three cusp type points and

R2 \ S̃f has four bounded simply connected components. These components

Bull Braz Math Soc, Vol. 38, N. 1, 2007
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are simply connected, and each one of them is one to one mapped byf onto
the bounded component ofR2 \ f (Sf ). The restriction off to the unbounded
component ofR2 \ S̃f is a double covering ofR2 \ f (Sf ).

Proof. As f is smallC3−perturbation ofq and it is a proper map, each point
in the unbounded component ofR2 \ f (Sf ) has two preimages. Asf

∣
∣
Sf

is

injective, f (Sf ) is homeomorphic toS1. As the images of the set of fold type
points is dense inf (Sf ), it is clear that each point in the bounded component
of R2 \ f (Sf ) has 0 or 4 preimages. ButR2 \ S̃f has at least one bounded
components and these are mapped to bounded component, so it follows that the
points in bounded component ofR2 \ f (Sf ) have four preimages.

Let A be the unbounded component ofR2 \ S̃f and letC be the boundary
of A. The following properties are satisfied:

i) Sf is contained in the closure of the bounded component ofR2 \ C.

ii) C is compact and connected. Assume is not connected. IfC is not con-
nected then fundamental group ofA contains the free product of two
elements. Butf is a covering form component onto complement ofSf ,
whose fundamental group isZ: Absurd.

iii) C ∪ Sf = S̃f . It is clear thatC ∪ Sf ⊂ S̃f . Let x ∈ S̃f ; if x /∈ Sf then
f is locally a diffeomorphism atx. It follows that f (U ) intersects the
unbounded component ofR2 \ f (Sf ) that for each neighborhoodU of x
sox ∈ C.

iv) S̃f \ Sf is locally an arc, becausef is locally invertible inS̃f \ Sf .

v) The generecity off implies that every point inSf is fold type or cusp
type. This implies that for everyx ∈ C ∩ Sf is holds thatx is a cusp
type point andSf andC are tangent atx. On the other hand,f maps
each component ofR2 \ A onto the bounded component ofR2 \ f (Sf );
as this one is simply connected, it follows thatC \ Sf has exactly four
components. Then there must be three cusp type point and this proves the
proposition. �

Corollary 2. Let f be a genericC3 perturbation of a complex polynomial with
non degenerate critical points. Iff

∣
∣
Sf

is injective then each componentL of

Sf contains exactly three cusp type points and there exists a neighborhoodU of

Bull Braz Math Soc, Vol. 38, N. 1, 2007
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L such thatf −1( f (L))∩U is mapped ontof (U ) like in the previous proposition.
(See figure 2).

In the hypothesis of both the proposition and the corollary it was included
the assumption that the restriction off to Sf is injective. We do not know exam-
ples of perturbation ofz2 such thatf

∣
∣
Sf

not injective. In [DRRV] for example,
it was proved that for generic real quadratic polynomials (each coordinates is a
quadratic polynomial ofx andy) of the plane the restriction off to Sf is injec-
tive. See also [MST1] and [MST2] where some examples are shown of mapsf
drawingSf homeomorphic to a circle butf

∣
∣
Sf

not injective.

1 2

3

11 2

3
′

3

′

3

′

2

Figure 2:z1,z2,z3 are the cusp points.

3 When all critical points have bounded orbit

In this section the proof of Theorem 1 of the introduction is given. The techniques
are also used in subsequent sections and prove in fact a more general result that
will be explained at the end of this section.

Observe first if f ∈ End1(R2) is a strongC1-perturbation of a complex
polynomial, then∞ is an attractor forf . There exists a compact diskK0 centered
at 0 such that the complementK c

0 of K0 is contained inB∞ and f −1(K0) ⊂ K0.
The proof of the first theorem is based on two simple ideas: (1) The nested
sequence of successive preimages ofK0 converges to the complement ofB∞,
Bc

∞. (2) If K is a connected and simply connected set that contains all the critical
values of f , then f −1(K ) is connected and simply connected. The statement in
(2) is not necessarily true when there are critical values outside ofK (see figure
3) . In subsequent sections this result will be refined.

Bull Braz Math Soc, Vol. 38, N. 1, 2007
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Begin definingKn = f −n(K0). As f is a proper map,Kn is compact for every
n ≥ 0. Given a compact setK , denote by ext(K ) the unbounded component of
R2 \ K and by int(K ) the interior of the complement of ext(K ).

Lemma 1. If K is a compact set, thenext( f −1(K )) ⊂ f −1(ext(K )) and
f −1(int(K )) ⊂ int( f −1(K )).

Proof. Let x ∈ ext( f −1(K )) andα a curve in ext( f −1(K )) joining x with ∞; in
particular,α ∩ f −1(K ) = ∅. As f is proper f (α) joins f (x) with ∞, and since
f (α) ∩ K = ∅ it follows that f (x) ∈ ext(K ). The other statement is dual.�

Remark. Figure 3 shows that it is not true in general thatf −1(ext(K )) ⊂
ext( f −1(K )).

Lemma 2. The sequence of compact sets{Kn} satisfies the following properties:

i) Kn+1 ⊂ Kn, for everyn ∈ N.

ii) ext(Kn) ⊂ ext(Kn+1), for everyn ∈ N.

iii) ext(Kn) ⊂ B∞, for everyn ∈ N.

iv) Bc
∞ = ∩n≥0Kn.

v) If Bo
∞ is the immediate basin of∞ (the unbounded component ofB∞) then

∞⋃

n=0

ext(Kn) = Bo
∞

Proof. Parts i) and ii) are obvious. Part iii) is consequence of lemma 1.
Part iv) follows immediately by invariance ofBc

∞ : f −n(Bc
∞) = Bc

∞ for ev-
ery n ∈ N. To provev), observe that, as ext(Kn) is connected, iii) implies that
∪∞

n≥0 ext(Kn) ⊂ Bo
∞. Suppose that the other inclusion does not hold. Then there

exists a pointx in the boundary of∪∞
n≥0 ext(Kn) such thatx ∈ B0

∞. Letδ be such
thatB(x, δ) ⊂ B0

∞ (whereB(x, δ) denotes the closed disc of centerx and radius
δ). Observe that there existsn0 ∈ N such thatB(x, δ) ∩ ext(Kn) 6= ∅ for every
n > n0 andB(x, δ) is not contained in ext(Kn). ThereforeB(x, δ)∩ Kn 6= ∅ for
everyn > n0 which implies thatf n(B(x, δ))∩ K0 6= ∅. On the other hand, there
existsn1 ∈ N such thatf n(B(x, δ)) ⊂ ext(K0) everyn > n1 becauseB(x, δ) ⊂
B0

∞ and B(x, δ) is compact. But this implies thatf n(B(x, δ)) ∩ K0 = ∅ for
everyn > n1 which is a contradiction. �

Bull Braz Math Soc, Vol. 38, N. 1, 2007
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Lemma 3. Suppose thatK is a compact connected and simply connected set
such that every critical value off is contained inK . Then f −1(K ) is connected
and simply connected.

Proof. As f (Sf ) ⊂ K thenS̃f ⊂ f −1(K ); it follows that f : R2 \ f −1(K ) →
R2\K is a covering map. AsK is simply connected,R2\ f −1(K ) as no bounded
component (f maps bounded components to bounded components because the
critical point of f are inK ). Moreover, as the homomorphismf] that f induces
on fundamental groups (f] : 51(R2 \ f −1(K )) → 51(R2 \ K ) ) is injective,
then51(R2 \ f −1(K )) is isomorphic toZ. It follows that f −1(K ) is connected
and simply connected. �

Remark. See figure 3 where it is shown that the hypothesis that the critical
values are contained inK is necessary.

The argument used proves in fact a more general result:
Let f be a proper self mapping ofR2. Assume that∞ is attracting forf and

that B∞ does not contain critical point. ThenBc
∞ is simply connected.

1 2

3

(a)

−1

1

3

′

1
′

2

′

2

′

3

(b)

Figure 3:

Proof of Theorem 1. If every critical point has bounded orbit, it suffices to
show thatKn is connected and simply connected for alln ∈ N, becauseBc

∞( f ) =
∩Kn (lemma 2, iv)). To prove this, proceed by induction: indeed,K0 is a disc,
and asSf ⊂ Bc

∞( f ), thenSf and alsof (Sf ) are contained inKn for every n.
Then apply the previous lemma.
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Corollary 3. Let P be a complex polynomial such that every finite critical point
is contained in the basin of a finite attractor. Then there exists a neighborhood
U ⊂ End1(R2) of P such thatBc

∞( f ) is connected and simply connected for
every f ∈ U.

Proof. This follows by the theorem because in the above case, every critical
point of f is contained in the basin of a finite attractor, and soSf ⊂ Bc

∞( f ). �

Corollary 4. Let f be a smallC3-perturbation of a holomorphic polynomial
with non degenerate critical points. IfB∞ ∩ Sf 6= ∅ thenB0

∞ ∩ f (Sf ) 6= ∅.

Proof. Let n0 ∈ N be the first number such thatKn0 does not containf (Sf ).
Applying the lemma 3Kn0 is simply connected. Thereforef (Sf )\Kn0 ⊂ B0

∞.�

4 Preimages of connected sets

In this section it is assumed thatB∞ contains critical points. In this case there
exists somen > 0 such thatKn = f −n(K0) (defined in the previous section)
does not contain the set of critical values. It becomes important to determine
when the preimage of a connected set is connected. Note in figure 3 that if a
connected setK has disconnected intersection with the interior off (Sf ), then
f −1(K ) is not connected, but only one of the components off −1(K ), sayK1,
is surjective, in the sense thatf (K1) = K .

Observe that for a polynomialP it is easy to determine the number of compo-
nents ofP−1(K ) for any connected setK : it dependes on the relative location
of the critical values. For example, ifP is a quadratic polynomial andK is
bounded and connected, thenP−1(K ) is connected if and only if the critical
value ofP does not belong to the unbounded component ofK c, andP−1(K ) has
two components otherwise. The remaining of this section is devoted to determine
a similar result for perturbation of quadratic polynomials.

It will be assumed throughout this section thatf is a genericC3 perturbation
of some quadratic polynomial and that the restriction off to Sf is injective.

Definition 4.1. A quadruple(1, z1, z2, z3) will be called a triangle if

– 1 is homeomorphic to the disc and its boundary homeomorphic toS1.

– z1, z2, z3 are different points in the boundary of1.

Whenever no confusion is possible, say1 is a triangle without specifying the
tree points. The pointsz1, z2, z3 are called the vertices of1 and the three closed
curves[zi , zj ] in the boundary of1 are called the sides of1.

Bull Braz Math Soc, Vol. 38, N. 1, 2007



“main” — 2007/3/9 — 12:08 — page 140 — #12

140 JORGE IGLESIAS and ALDO PORTELA

Definition 4.2. A subsetK of the plane connects a triangle1 if K ∩1 contains
a component which intersects the three sides of1.

The following result, of intuitive meaning, is central in the development of the
techniques.

Lemma 4. Let K be a compact connected subset ofR2 and1 a triangle. Then
exactly one of following conditions hold:

• K connects1.

• K c connects1.

Proof. The proof is divided in several claims.

Claim 1. The lemma is true ifK is a finite union of discs. Suppose first that
K connects1. Then (asK is finite union of discs) there exists a simple curve
α : [0, 1] → K ∩1 such thatα intersects each side of1 in exactly one point. It is
clear that1 \α has three components, no one of which intersects the three sides
of 1. HenceK c does not connect1. Suppose now thatK does not connect1.
Then there exists a finite disjoint collection of regions, diffeomorphic to closed
discs,V = {Vi } satisfying the following properties:

1. There exist at most three elements ofV that intersect more than one side
of 1 and no one of them intersect the three sides.

2. If Vi ∈ V intersects two sides, thenVi contains the common vertex of
these two sides.

3. The intersectionVi ∩ ∂1 is connected for everyVi ∈ V .

4. K ∩1 ⊂ ∪Vi .

Observe that the quotient space1/ ∼ wherex ∼ y iff there existsVi ∈ V
containing bothx andy is again a triangle (the vertices are the threeVi that contain
a vertex of1 ). As no point of this triangle belongs to the quotient projection of
K , it follows thatK c connects1/ ∼, but this implies that it connects1. To prove
de existence of suchV suppose first thatK 1 is a component ofK ∩1 containing
points of[z1, z2] and[z1, z3]; then there exists a simple closed curveγ ⊂ K 1

joining [z1, z2] with [z1, z3] (here it is used thatK is finite union of discs). Note
that1 \ γ has two connected components, one of them containsz1. DefineṼ1

as the set of pointsx such that there exists a curveγx as above leavingx andz1

Bull Braz Math Soc, Vol. 38, N. 1, 2007
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Figure 4:

at the same side. Analogously definẽV2 andṼ3. These sets are open, connected,
simply connected and disjoint (because the contrary assumption implies thatK
connects). Next define disjoints regionsV1, V2, V3 containingṼ1, Ṽ2 and Ṽ3

respectively.
Again using the fact thatK is a finite union of discs one can easily see that

for each side there exists a regionVj such thatVj contains all the components
of K ∩ 1 that intersect only this side; this can be done in such a way thatV
contains (at most) six disjoint elements.

Claim 2. There exists a nested sequence of compacts setsKn such thatK =⋂
Kn and eachKn is a finite union of discs. For the proof, just takeKn from a

cover ofK with discs of radio 1/n.

Claim 3. If every Kn connects1 thenK connects1. As K1 connects, there
exists a componentK 1

1 of K1 that connects1 and this is unique because the
theorem is known for finite union of discs. For the same reason there exits a
componentK 1

2 of K2 ⊂ K1 such thatK 1
2 connects1. ObviouslyK 1

2 ⊂ K 1
1.

By induction, there exits a nested sequenceK 1
n of compact connected sets each

one of which connects1. Then the intersection
⋂

K 1
n = K 1 is connected, is

contained inK , and connects1.

Now the proof the theorem finishes a follows:
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– If K does not connect1, be claim 3 there existsn such thatKn does not
connect1; by claim 1,K c

n connects1; so K c ⊃ K c
n also connects1.

– If K connects1 then Kn connects1 for everyn. This implies, again
by claim 1, that for everyn Un = K c

n does not connect1. But each
Un is open and the sequence is increasing; so a compact set contained in
U =

⋃
n≥0 Un must be contained in someUn. If U connects1, then there

is a compact subset ofU that connects1, but this is absurd. It follows
thatU = K c does not connect1. �

Start assuming thatf ∈ G, with f a smallC3-perturbation ofz2+c. Recall that
in this casef (Sf ) is closed curve with a finite number of transverse intersections,
each one of which contains no cusp.

Definition 4.3. The setA is a surjective component off −1(B) if A is a connected
component off −1(B) and f (A) = B.

Proposition 5. Let f be a generic map such thatSf is diffeomorphic to the circle
S1. If K is a compact connected set and intersectsext( f (Sf )), then f −1(K )
has at most two surjective components. The other components off −1(K ) are

containedin int (S̃f ).

Recall S̃f = f −1( f (Sf )). This set is small if f is a small perturbation of

complex polynomial.A set is called small if it is containedin int(S̃f ). Some
previous results will be needed to prove this proposition

Lemma 5. Let {Kn} be a nested sequence of compact connected sets andK =
∩Kn. If for everyn there exists a surjective componentK 1

n+1 of f −1(Kn) such
that K 1

n+1 ⊂ K 1
n , then there exists a surjective componentK 1 of f −1(K ).

Proof. K = ∩Kn is compact and connected. IfK 1 = ∩K 1
n thenK 1 is a compact

and connected subset off −1(K ). Let x ∈ K ; for everyn there existsyn ∈ K 1
n

such thatf (yn) = x. If y is the limit of a convergent subsequence of{yn}, then
y ∈ K 1

n for everyn whencey ∈ K 1. By continuity f (y) = x. This implies the
lemma. �

Lemma 6. Let α be a simple open curve, transverse tof (Sf ), not containing
images of cusps and intersectingext( f (Sf )). Then f −1(α) has a finite number
of connected components. The surjective components off −1(α) are those that
intersectext(S̃f ). Thereforef −1(α) has at most two surjective components.
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Proof. First observe that the hypothesis imply thatf −1(α) is a finite union
of simple curves. Letβ be a component off −1(α) that intersects ext(S̃f ). Let
x ∈ β∩ext(S̃f ). Asβ is a simple curve, fix a parametrization ofβ : [0, 1] → R2

and lett0 be such thatβ(t0) = x. If β is contained in ext(S̃f ) then is clear that
f (β) = α and the result follows becausef is a covering map form ext(S̃f ) in
ext( f (Sf )).

Suppose that there existst1 > t0 such thatβ(t1) ∈ ∂ S̃f . Without loss of
generality it can be also assumed thatf (β(ti )) = α(si ), i = 0, 1 with s1 > s0.
Let s(t) be a continuous function oft such thatf (β(t)) = α(s(t)). It is claimed
now that for everyt > t1 s(t) ≥ s(t1) = s1. Observe thats(t) is increasing
wheneverβ(t) does not belong to int(Sf ). If the claim is not true, thenf (β(t))
must crossα(s1) at a pointt2 > t1 and withs decreasing in a neighborhood oft2,
which implies thatβ(t2) ∈ Sf ; this is absurd becausef (int(Sf )) ⊂ int( f (Sf )).
This proves the claim.

The claim implies thatβ is not closed and so the image of the extreme points
of β under f must be the extreme points ofα. The last assertion is now obvious
since every point in ext( f (Sf )) has two preimages. This implies the lemma.�

Proof of Proposition 5. Using lemma 5, if suffices to prove the proposition
for K equal a finite union of discs. In this caseK is arcwise connected and the
assertion follows from the lemma 6.

Next assume thatf
∣
∣
Sf

is injective. Thenf (Sf ) is homeomorphic toS1, and
it contains three cusp type points as proved in proposition 4 and its corollary.
Form now on1 will be the closure of the bounded component ofR2 \ f (Sf )

with the images of the cusps as vertices.
Obs: If C ⊂ 1 is connected and connects1 then f −1(C) is connected. The

main result of this section is

Proposition 6. Let K be a compact connected set such thatK ∩ ext(1) 6= ∅.

a) If ext(K ) does not connect1, then f −1(K ) has only one surjective com-
ponent.

b) If ext(K ) connects1, then f −1(K ) has two surjective components.

c) Every non surjective component off −1(K ) is containedin int(S̃f ).

The proof of this proposition needs the following result:
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Lemma 7. If the connected setK is a finite union of discs that connects1, then
there exists a unique componentK 1 of f −1(K ) such thatf (K 1) = K .

Proof. Let C be the component ofK ∩1 that connects1.

If K 1 is a surjective component off −1(K ) thenK 1 must contain the connected
set f −1(C). This proves the uniqueness. Now letx ∈ K andα be a curve in
K that containsx and intersectsC, having also a finite intersection with∂1.
By the previous lemma 6, there is a curve contained inf −1(α) that containsx
and intersectsf −1(C). So the component off −1(K ) that containsf −1(C) is
surjective. �

Proof of Proposition 6.

(a) Suppose first thatK connects1. Construct a nested sequence of compacts
setsKn as in the proof of lemma 4 (claim 2). As eachKn is a finite
union of discs, the lemma 7 implies that there existsK 1

n , component of
f −1(Kn), such thatf (K 1

n) = Kn and the sequenceK 1
n is decreasing. Now

apply lemma 5 to obtainK 1. The setK 1 is determined by the condition
K 1 ⊃ f −1(C) whereC is the component ofK ∩1 that connects1. This
shows thatK 1 is unique.

Suppose now thatK does not connect1 (and neither ext(K ) connects
1). Without loss of generality it can be also assumed thatK is a finite
union of discs. Then there exists a simple closed curveα contained inK ,
containing a pointx ∈ ext(1) and whose interior contains a connected set
C that connects1. It is claimed now thatf −1(α) has only one surjective
component. To prove this, definẽK = int(α); asK̃ connects, the first part
implies that f −1(K̃ ) has only one surjective component, denotedK̃1. Let
δ be the boundary of the bounded component ofR2 \ K̃ . Observe that this
is a connected set. Moreover,f (δ) ⊂ α and the two preimages ofx are
contained inδ. Then, using lemma 6, it follows thatf −1(α) has only one
surjective component and the claim is proved. Now lety ∈ K . Then there
exists a curveβ ⊂ K joining y with a pointz ∈ α. Now using lemma 6
and the claim above the proof of (a) is concluded.

(b) As ext(K ) connects1, there exists an injective curveα : [0,+∞) → R2

such thatα ⊂ ext(K ),α([0, 1)) connects1 and|α(t)| → ∞ ast → +∞.
It is easily seen thatf −1(α) disconnects the plane in the sense thatR2 \
f −1(α) has two connected componentsH1 andH2. From proposition 5,
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it follows that f −1(K ) contains exactly one surjective componentK i in
eachHi such thatf (K i ) = K .

(c) Is immediate consequence of lemma 6.

This sequence of results gave a topological insight into the structure of the
preimages of a set. The next results is the first conclusion of the results
previously obtained.

Proof of Theorem 2. If the critical point ofh is fixed and f is small generic
C3-perturbation ofh then, by proposition 3,Bc

∞( f ) is simply connected. Then
the critical point ofh is not fixed and thenSf ∩ f (Sf ) = ∅ and the fixed points
of f belong to ext(1) (becausef is small perturbation ofh).

As f has fixed pointsBc
∞ has at least one invariant connected component.

Note that asf is a genericC3 perturbation of a quadratic polynomial, its set of
critical point is homeomorphic toS1.

Recall from the previous section that there exists a sequenceKn = f −n(K0) of
compact sets such thatK0 is a disc. The properties of this sequence are collected
in lemma 2. Next define a sequence{K 1

j } as follows (this family can be either
finite or infinite). LetK 1

0 = K0; as K0 is a big disc, sof (Sf ) ⊂ K0 and this
implies that f −1(K 1

0) has exactly one componentK 1
1 such that f (K 1

1) = K 1
0

(see lemma 3).
If f −1(K 1

1) has two surjective components the construction is stopped; other-
wise, use proposition 5 to defineK 1

2 as the unique component off −1(K 1
1) such

that f (K 1
2) = K 1

1. Again, using proposition 5 and thatK2 ⊂ K1 it comes that
K 1

2 ⊂ K 1
1 ⊂ K 1

0. If f −1(K 1
2) has two surjective components the construction

is stopped. Otherwise, and analogous to the first step, there existsK 1
3 ⊂ K 1

2
with K 1

3 the unique surjective component off −1(K3). An obvious induction
argument gives a nested sequence of connected set{K 1

n}.

Case a. The family{K 1
n} is infinite.

If p andr are the fixed points off , using the proposition 5, it follows that
the setsf −1(p) = {p, p

′
} and f −1(r ) = {r, r

′
} are contained inK 1

n , for all
n ∈ N (becausep andr are notin int( f (Sf ))). ThenM = ∩K 1

n is an invariant
component ofBc

∞ and the fixed points belong to it. Suppose that there exists
another invariant componentN of Bc

∞. As M 6= N there existsn0 ∈ N such that
N is contained in a componentK i

n0
of Kn0 different ofK 1

n0
. By the construction

of {Kn} and the proposition 5, there existsk ∈ N such thatf k(K i
n0
) ⊂ int((̃Sf ).
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Then
N ⊂ int((̃Sf ) and f (N) = N ⊂ int( f (Sf )),

which is absurdbecause int(S̃f ) ∩ int( f (Sf )) = ∅ if f is a sufficiently small
perturbation.

Case b. The family{K 1
n} is finite.

In this case, there existsn0 ∈ N such thatf −1(K 1
n0
) has two surjective com-

ponentsH1 and H2 contained inKn0. These two preimages are contained in
K 1

n0
by the same argument used in the case (a). AsHi ⊂ K 1

n0
for i = 1, 2, it

follows eachf −1(Hi ) has two connected components contained inH1 ∪ H2 and
whose images give the correspondingHi . It follows that f −n(Hi ) has at least 2n

components. The construction follows standard arguments giving uncountable
many components ofBc

∞.

Corollary 5. Let f ∈ G be a smallC3-perturbation of a quadratic polynomial
such that the restriction off to Sf is injective. If the immediate basin of∞
connects1 = int f (Sf ) then the complement ofB∞ has uncountably many
components.

Proof. It is sufficient to prove that the family{K 1
n} is finite.

If the family is infinite then, by proposition 6 (b), ext(K 1
n) does not connect

for everyn ∈ N. As B0
∞ connects so there existsn0 ∈ N such that ext(Kn)

connects. Therefore ext(K 1
n) connects and this is a contradiction. �

1
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−1 1
i

1
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′
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Figure 5:
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Corollary 6. Let f ∈ G be a smallC3-perturbation of a quadratic polynomial.
If M is an invariant component ofBc

∞ thenM contains a fixed point.

Proof. If the family {K 1
n} is infinite then there exists only one invariant com-

ponent and this component contain both fixed points. If the family is finite
then there exists two invariant components, each one of which contains a fixed
point. �

In the last section it will be shown that the condition in the hypothesis of
corollary 5 do not imply thatBc

∞ is totally disconnected.

5 Invariant components of Bc
∞

The attention is focused on the determination of the existence of large components
in Bc

∞, (that is a component that intersects bothSf and f (Sf )), and in the study
of the invariant components of the complement ofB∞.

The construction of the previous section will be used; start with a quadratic
polynomialhc(z) = z2+csuch that the critical point 0 does not belong toB∞(hc).
(Otherwise, the Julia setJc of hc is totally disconnected and the same holds for
every smallC1 perturbation). Therefore the Julia set ofhc is connected. For
eachc ∈ C, let Kc denote the filled-in Julia set ofhc, i.e., the set of points having
bounded forward orbit. In this case there exists a conformal map8c : {|z| >
1} → S2 \ Kc, a conjugacy betweenq(z) = z2 andhc such thathc8c = 8cq. It
is also assumed that the fixed points ofhc are repellors. It follows thathc(0) 6= 0
and thenSf ∩ f (Sf ) = ∅ for every small perturbationf of hc.

The main ingredient in the proof of theorem 3 will be the following result of
Douady and Hubbard (see [S]). Let

R(θ) = 8c
{
re2π i θ : r > 1

}
for 0 ≤ θ < 1.

EachR(θ) is called the external ray of angleθ for hc.

Theorem 5.1. (Douady-Hubbard)If θ is rational thenR(θ) lands at a point
of the Julia set ofh, this means thatlimr →1+ 8c(re2π i θ ) exists and belongs to
Jc. This point is periodic or eventually periodic. Conversely, every repelling
or parabolic periodic point of the Julia set ofhc is the landing point of a finite
number of external rays, all with rational angles.

Denote byp andr the fixed points ofhc. The fixed external rayR(0) lands
at a fixed point ofhc; let it ber . There is also an external ray that is not fixed,
landing atp. It is a periodic orbit{θ1, . . . , θn} of q such that the external rays
αi = R(θi ) land atp. ThenR2 \ ∪n

i =1αi is the union ofn regions{Ri }; on the
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other side, there existn regionsSi which are determined in the complement of
the unit disc by the raysθi . It is clear that each of the regionsRi correspond to
a uniqueSi . It is not true that the image ofRi under8−1

c is Si , because8−1
c is

defined inRi \ Kc. However it makes sense to say that a pointx ∈ Kc \ {p}
correspond to a componentSi , because such a point is contained in a unique
regionRi . Denoting byJi = J ∩ Ri , it comes thatJ \ {p} = ∪n

i =1Ji .
Observe that−p is the other preimage ofp and that the external raysαi have

preimagesα
′

i landing at−p. Denote byR
′

i the components of the complement
of the union of theα

′

i . Denote also byθ
′

i the preimages underq of the anglesθi

and byS
′

i the components of the complement of the raysθ
′

i .

Lemma 8. The following statements hold forhc:

(a) The critical point 0 ofhc and its imagehc(0) cannot belong to the same
Ji .

(b) The pointsr and0belong to the sameRi , but to differentR
′

i , and the points
p andr belong to differentR

′

i .

(c) Let R
′

i r
the component ofR2 \ ∪α

′

i which containsr . If

C L =
{
hn

c(0) : n ∈ N
}

is contained in(R
′

i r
)c, then there exists a finite set3 ⊂ Bc

∞(hc) such that

every pointx ∈ Bc
∞(hc) \3, in R

′

i r
leaves this component under iteration

of hc (i.e. there existsn such thathn
c(x) /∈ R

′

i r
).

c

i ′

i

i ′

i
i

i

j

′

i

′

j

′

c

Figure 6:
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Proof.

(a) Observe thatq−1(Si ) has two surjective components, each one of which
is contained in someSj . Note also thatq−1(Si ) ⊂ Si is false, because
this would imply thatq has two fixed rays inSi . Note also that simple
arguments of connectivity imply that the same applies to the regionsRi

(even though the conjugacy does not extend fromRi to Si ).

Suppose by contradiction that 0 andhc(0) belong to the same component
Ri . As 0 is the unique preimage ofhc(0) it follows that h−1

c (Ri ) ⊂ Ri ;
but this is not possible because it implies thatq−1(Si ) ⊂ Si , whereSi =
8−1

c (Ri \ Kc).

(b) There exists at most oneSi containing both preimages of another com-
ponent (such anSi must correspond to an angle greater thanπ ). This
actually occurs in the case under consideration, because the component
that correspond tohc(0) must have both preimages in the componentSi0

that correspond to 0. Now observe that as the length ofSi0 is greater than
π , it contains at least one component of eachq−1(Sj ) for j = 1, ..., n. In
particular, the fixed ray ofq belongs to this component becauseq−1(Si0)

has a surjective component contained inSi0. It follows thatr and 0 belong
to the same componentRi0 of R2 \ ∪αi .

Observe also that one of the components of the preimage ofSi0 (the one
containing the fixed ray) is contained inSi0 but 0 does not correspond to
this component by part (a). It follows that 0 andr belong to different
componentsR

′

i . Now using thatp and−p are symmetric (sop and 0
belong to the sameR

′

i ), it follows that p andr belong to differentR
′

i .

(c) Let3 = {x ∈ R
′

i r
∩ Bc

∞(hc) : hn
c(x) ∈ R

′

i r
, ∀n ∈ N}. Observe that3 is a

compact set and is contained inR
′

i r
. ThenC L ∩3 = ∅. This implies that

3 is a hyperbolic set (see [MS]) andhc : 3 → 3 is bijective, therefore3
is a finite set. �

It will be proved next that there exists a sequence of open setsGk such that

n⋃

i =1

αi =
⋂

k≥1

Gk and Gk+1 ⊂ Gk for every k ≥ 0.

Let B(p, δ) be the disc centered atp, with radiusδ small enough suchthat
h−1

c (B(p, r )) ∩ B(p, r ) ⊂ B(p, r ) for everyr ≤ δ. For 1≤ i ≤ n let Vi be a
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sector containing the rayθi . Denote byσi andςi the sides ofVi (see figure 7)
andV = ∪n

i =1Vi . It canVi be taken such that:

i) q−1(V) ∩ V ⊂ V .

ii) The end point of8c(σi ) and8c(ςi ) belongs inB(p, δ).

If G0 = 8c(V) ∪ B(p, δ), then it is clear thath−1
c (G0) ∩ G0 = G1 satisfies

G1 ⊂ G0. The claim follows easily by induction, definingGk = h−1
c (Gk−1) ∩

Gk−1.

i
i

i

i

Figure 7:

Now the initial maphc will be perturbed. Suppose thatf is a mapC1 close
to hc such that the closure off −1(G0) ∩ G0 = G̃1 is contained inG0. It is then
clear that there exists a sequencẽGk such that

f (G̃k+1) = G̃k and G̃k+1 ⊂ G̃k.

Let C = ∩G̃k; thenC is invariant underf and connected and containspf the
analytic continuation ofp. The main property ofC is thatC \ pf is contained
in B∞( f ): Indeed, this is trivial ifx /∈ B(p, δ); whenx ∈ B(p, δ) there exists
m such that f m(x) /∈ B(p, δ). By invariance ofC and B∞( f ) the assertion
follows. Thus the following result was completely proved:

Lemma 9. For every smallC1 perturbation f of hc there exists a connected
setC such that:

(a) C separates the plane.

(b) pf ∈ C.

(c) C \ {pf } ⊂ B∞( f ).

(d) C is invariant.
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Now denote byR1, ..., Rn the components of the complement ofC and by
R

′

1, ..., R
′

n the components of the complement ofC
′
, whereC

′
is f −1(C) \ C.

The same conclusions of the lemma 8 hold forf .

Corollary 7. If f is small perturbation ofhc:

(a) Sf and f (Sf ) belong to different componentR.

(b) pf andr f belong to differentR
′
.

As hc(z) = z2 + c has no attracting fixed point, it is clear thatc = hc(0) 6= 0.
If f is C1 close tohc, then Sf ∩ f (Sf ) = ∅. Thus a way of saying that a
connected setM is large is to prove that it intersect bothSf and f (Sf ).

Definition 5.1. A connected setM is large for f if

M ∩ Sf 6= ∅ and M ∩ f (Sf ) 6= ∅.

Proof of Theorem 3.

(a) By lemma 8, the points 0 andhc(0) belong to different components of
J \ {p}, whereJ is the Julia set ofhc andp its fixed point. The same holds
for the mapf if U1 is sufficiently small. Therefore, ifM is a component
of Bc

∞( f ) that intersects bothSf and f (Sf ), then pf ∈ M ,( because by
lema 9M cannot intersectC outsidepf ). This implies the uniqueness of
M . Also f (M) is connected, containspf and is contained inBc

∞( f ) so
f (M) ⊂ M . The last assertion follows form proposition 6

(b) From corollary 6 it follows that there exists at most two invariant compo-
nents ofB∞( f ), each one of which contains a fixed point. Asume now
that there existsMpf 6= Mr f two invariant components ofBc

∞( f ) such
that Mpf containspf and Mr f containsr f . We are going to prove that
Mr f = {r f }.

That p
′

f /∈ Mr f is obvious sincef (p
′

f ) = pf andMpf ∩ Mr f = ∅. It follows

that the wholeMr f is contained in the componentR
′

j of R2 \C
′
that containsr f .

Let V be a neighborhood ofr such that for every perturbation ofhc, the analytic
continuation of this fixed pointr f is contained inV and f

∣
∣
V

is conjugate to its
linear part. This is used only to assert that ifMr f ⊂ V thenMr f = {r f }.
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If C L = {hn
c(0) : n ∈ N} is contained in(R

′

i )
c, then using the lemma 8 (c),

we have that3 is a hyperbolic finite set. This implies thatMr f is contained in
V , soMr f = {r f }. If C L is not contained in(R

′

i )
c, so there existsn0 ∈ N such

thathc(0) andhn0
c (0) belong to different componentsR

′
. Thus if f is close tohc

then f (Sf ) and f n0(Sf ) are contained in different components ofR2 \ (C
′
). As

f (M) ⊂ M and intersects bothf (Sf ) and f n0(Sf ), it follows that M contains
p

′

f , and thenK 1
n has only one surjective preimage for everyn. This implies that

in fact Mpf = Mr f .

Corollary 8. Let f be aC3 perturbation ofhc(z) = z2 + c with c ∈ (−2, c0)

(wherec2
0 + c0 + (1 −

√
1 − 4c0)/2) = 0 andc0 ' −3/2). If Bc

∞( f ) has one
large componentM thenM is the unique invariant component.

Proof. The condition onc implies thathc(0) and h2
c(0) belong to different

componentsR
′
. Thus if f is close tohc then f (Sf ) and f 2(Sf ) are contained

in different components ofR2 \ (C
′
). As f (M) ⊂ M and intersects bothf (Sf )

and f 2(Sf ), follows thatM containsp
′

f , and thenK 1
n has only one surjective

preimagen for everyn. This implies, that in factMpf = Mr f . �

Example. It will be shown now that there exists a mapf , perturbation ofz2−2
such that:

• The set of critical points off is connected andf
∣
∣
Sf

is one to one.

• The immediate basin of∞ connectsf (Sf ).

• The complement ofB∞ has uncountably many components but is not
totally disconnected, in fact, it contains a hyperbolic periodic point which
is not a repellor.

This map will be found near the family:

f(λ,μ,ε)(x, y) = (x2 − y2 − 2 + λy + μ, (2 − ε)xy).

The set of critical point isL = {(x, y) : x2 + y2 − (λ/2)y = 0}. The cusp are
(0, 0) and(±

√
3λ/8, 3λ/8). One of the fixed point off is (p, 0), close to(2, 0);

note that asf (x, 0) = (x2 − 2 + μ, 0) then{(x, 0) : |x| > p} is contained in
B∞( f ). Moreover, asμ will be negative, then the intersection ofBc

∞( f ) with
the real axis will be a Cantor set. It is easy to see that for everyλ, (0, λ/2) ∈ Sf

and thatμ can be chosen negative in such way thatf 2(0, λ/2) = (p, 0).
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Figure 8:v1,v2 are the eigenvectors.

It is claimed now that existsε > 0 such thatB0
∞( f ) connectsf (Sf ); in fact

it will be proved that it connectsf 2(Sf ), which is equivalent to the above. A
simple calculation shows that

w =




λ

−(2 − ε)p





is tangent tof 2(Sf ) at the point(p, 0). If follows that a eigenvectors of

D f(p,0) =
(

2p λ

0 (2 − ε)p

)

are(1, 0) associated to the eigenvalue 2p and(−λ, εp)) associated to the eigen-
value(2 − ε)p < 2p. Chooseε so thatw is not an eigenvector ofD f(r,0).

Thus the situation is as in the figure 8. Now the claim can easily be proved. As
was noted above,B0

∞ contains{(x, 0) : |x| > p}. This implies that the image
f 2(0, 0) of the cusp(0, 0) belongs toB0

∞. So it remains to prove that the opposite
side of the trianglef 2(Sf ) can be connected tof 2(0, 0) within B0

∞ ∩ f (1). To
prove this take a small segmentL contained inB∞ and transverse to the real
axis at a point(x0, 0) with x0 > p. There is a sequenceLn of preimages of
L converging top, and as the eigenvector(−λ, εp) is associated to the weak
eigenvalue ofD f(p,0), it follows that the tangent toLn is close to this direction
whenn is large. ThereforeLn intersects the side off 2(Sf ) that contains(p, 0).
This proves the claim. SoB0

∞ connects the trianglef (Sf ) and it follows thatBc
∞

has uncountably many components (by corollary 5). On the other hand, recall
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that a critical point(0, λ/2) is preperiodic, namely its second image is(p, 0).
But the unstable set of(p, 0) contains the point(0, λ/2); thus there exists a
critical homoclinic orbit associated to(p, 0). Let f0 be aC1 map of a manifold
M andz0 a repelling fixed point off0. A point x0 ∈ M is homoclinic toz0 if
there existsm> 0 such thatxm = f m

0 (x0) = z0 and a sequence{xn}n<0 (preorbit
of x0) such thatf (xn−1) = xn andxn → z0, ton → −∞. The orbit{xn}−∞<n≤m

is called homoclinic toz0; if the at least one of point is a critical point off , then
the orbit{xn} is critical homoclinic toz0.

Then the following, a generalization of a well knout one dimensional result,
will be used here:

Theorem 5.2.[A] Letx0 be homoclinic to a fixed repellorz0 for a map f0. Then
in any generic one parameter family{ fμ} through f0 there exists close to0 a
parameterμ0 such thatfμ0 has a critical periodic point.

Then by a result previous, it follows that there exists a perturbationf
′
of f

such that a critical point off
′
is periodic. Of course, the property thatB0

∞( f )
connectsf (Sf ) is open, so the perturbation can be made small orden to obtain
thatB0

∞( f
′
) still connects the trianglef

′
(Sf ′ ). A final perturbation can be made

to make the critical periodic point hyperbolic. This finishes the construction.
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