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Abstract. We define the relative mean curvature directions on surfaces immersed in
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1 Introduction

The second fundamental formα determines the shape operators associated to
the family of normal vector fields on a surfaceS immersed inRn, n ≥ 3, and
hence their corresponding principal configurations. The study of this dynamics
goes back to the works of Monge [19] and Darboux [4], who described the
behavior of the principal curvature lines in the neighborhood of umbilic points
of analytic surfaces in Euclidean 3-space. A complete treatment of the subject
in terms of the structural stability of the principal lines for surfaces of class
Cr , r ≥ 4, has been provided more recently (Gutierrez and Sotomayor [13],
[14], Bruce and Fidal [1]). The generic behavior of principal configurations on
surfaces inR4 has been studied along these lines by Ramirez Galarza and Sánchez
Bringas in [24]. Besides the principal configurations, the extrinsic geometry of
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the surfaces determines other interesting foliations such as the mean curvature
configurations of surfaces inR3 described by Garcia and Sotomayor in [9] and
[8], the axiumbilic configurations ([12], [7]), the asymptotic configurations ([6],
[2]) and the mean curvature direction configurations for surfaces inR4 described
by L.F. Mello [18].

The definition of these configurations relies on the concept of curvature ellipse
of a surfaceS immersed inn-space ([17], [26]). This is defined as the image
throughα of the unit tangent vectors circle into the normal spaceNpS at each
point p ∈ S. The vectorH(p) ∈ NpSdetermined by the center of the curvature
ellipse atp is known as the mean curvature vector. For a surface immersed into
R4, the normal line defined byH(p)cuts the ellipse in two opposite points (except
at the special situations in which the ellipse degenerates into a radial segment,
or if H(p) = 0). These two points determine a couple of orthogonal tangent
directions known as the mean curvature direction atp. These are characterized
by the fact that the curvature vector of the normal section of the surface along
them is parallel to the mean curvature vectorH(p).

The generalization of this procedure to surfaces immersed inRn with n >

4 embodies some problems due to the fact that the plane determined by the
curvature ellipse does not pass through the origin of the normal space at a generic
point p. This means that there are no tangent directions whose normal section’s
curvature vector is parallel toH(p). In other words, there aren’t mean curvature
directions on surfaces immersed with codimension higher than 2. The way we
use here to overcome this difficulty is based on the property described in [21]
that, from a qualitative viewpoint, all the principal configurations onSarise from
normal vector fields parallel to the subspace determined by the curvature ellipse
at every point. In fact, any normal vectorv ∈ NpS can be decomposed into a
sumv> + v⊥, with v> andv⊥ respectively parallel and orthogonal to the plane
determined by the curvature ellipse. It can be shown that the shape operator
associated tov⊥ is a multiple of the identity ([20]) and thus the eigenvectors of
the shape operatorWv coincide with those ofWv> . This induces us to eliminate
the orthogonal partH(p)⊥ of the mean curvature vector and apply the above
setting to the directionH(p)> contained in the plane defined by the curvature
ellipse atp translated to the origin. Then we define therelative mean curvature
directionsat a pointp of a surface immersed inRn with n ≥ 4 as those inducing
normal sections whose curvature vector is parallel toH(p)>. We obtain in this
way two orthogonal foliations globally defined on the surface whose critical
points are the semiumbilics and the pseudo-umbilics (with inflection points and
minimal points considered as non-generic particular cases).

In section 2 we introduce the basic geometrical concepts and notations for
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surfaces immersed inRn. In section 3 we analyze their generic behavior with
respect to the relative positions of the vectorH(p) and the curvature ellipse at
each point. We determine in section 4 the differential equations associated to the
relative mean curvature configuration. Section 5 is devoted to the description of
the generic behavior of the foliations in a neighborhood of their critical points:
pseudo-umbilics and semiumbilics. There is an essential difference between
the two types: whereas the pseudo-umbilics present generically the Darboux-
ian configurationsD1, D2 and D3

(
with indices±1

2

)
, the semiumbilics appear

generically asD1
23 points (see [15]). We finally obtain some global results as

a consequence of the Poincaré-Hopf index formula for foliations on closed ori-
entable surfaces.

2 Second fundamental form and curvature ellipses

Let S be a surface immersed inRn, n ≥ 3, that we can locally consider as the
image of an embeddingφ : R2 −→ Rn, φ(R2) = S. At each pointp ∈ S con-
sider the decompositionTpRn = TpS⊕ NpS, whereNpSdenotes the orthogonal
complement of the tangent planeTpSinRn, that is the normal subspace ofSat p.
Let ∇̄ denote the Riemannian connection ofRn. Given two vector fieldsX and
Y, locally defined alongS, we can choose local extensionsX̄, Ȳ overRn, and
define the Riemannian connection onS as∇XY =

(
∇̄X̄Ȳ

)>
, where> denotes

the tangent component of the normal connection∇̄.
If we denote byX(S) andN (S) respectively the spaces of tangent and normal

fields onS, the second fundamental form onS is defined as follows:

α : X(S)× X(S) −→ N (S)
(
X,Y

)
7−→ ∇̄X̄Ȳ − ∇XY,

This is a well defined bilinear symmetric map.
Now, givenp ∈ Sanyν ∈ NpS, ν 6= 0, induces a bilinear form on the tangent

spaceTpSgiven by

Hν : TpS× TpS −→ R

(v,w) 7−→ α(v,w) ∙ ν,

and a quadratic form

αν : TpS −→ R

v 7−→ Hν(v, v) = α(v, v) ∙ ν.
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If we take local coordinates(x, y) and an orthonormal frame{w3, ∙ ∙ ∙ , wn} of
the normal bundleN S in a neighborhood ofp = φ(0, 0) ∈ S, the matrix of
the second fundamental form in the frame{φx, φy, w3, . . . , wn} is given by

αφ(p) =






a1 b1 c1
...

an−2 bn−2 cn−2




 ,

where

ai =
∂2φ

∂x2
(0, 0) ∙ wi +2, bi =

∂2φ

∂x∂y
(0, 0) ∙ wi +2, ci =

∂2φ

∂y2
(0, 0) ∙ wi +2,

for i = 1, ∙ ∙ ∙ , n − 2.
We can complete the orthonormal frame{w3, ∙ ∙ ∙ , wn} by means of

w1 =
φu√

E
, w2 =

Eφv − Fφu√
E(EG − F2)

,

whereE, F andG are the coefficients of the first fundamental form onS. If
w ∈ χ(S), we can writew = λ1w1 + λ2w2, for some functionsλi , i = 1, 2 and
then we have

α(w,w) = λ2
1α(w1, w1)+ 2λ1λ2α(w1, w2)+ λ2

2α(w2, w2).

Given the tangent unit fieldν, the functionseν = α(w1, w1) ∙ ν, fν =
α(w1, w2) ∙ ν and gν = α(w2, w2) ∙ ν are thecoefficients of the second fun-
damental form in the directionν on the frame(w1, w2).

Given p ∈ S, consider the unit circle inTpS parameterized by the angle
θ ∈ [0, 2π) with respect tow1. Denote byγθ the curve obtained by intersecting
Swith the hyperplane atp composed by the direct sum of the normal subspace
NpS with the line inTpS defined by the directionθ . Such curve is called the
normal section ofφ(S) in the directionθ . The curvature vectorη(θ) of γθ at p
lies in NpS. Varying θ from 0 to 2π , this vector describes an ellipse inNpS,
called thecurvature ellipseof S at p. In fact, the curvature ellipse is the image
of the map

η : S1 ⊂ TpS −→ NpS

given by

η(w(θ)) =
1

2
(α(w1, w1)+ α(w2, w2))+

1

2
(α(w1, w1)− α(w2, w2)) cos 2θ

+ α(w1, w2) sin 2θ,
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wherew(θ) = w1 cos(θ)+ w2 sin(θ) is a unit vector inTpS.
A shorter expression for the curvature ellipse is given by

η(w(θ)) = H + B cos 2θ + C sin 2θ,

where

H =
1

2
(α(w1, w1)+ α(w2, w2)) ,

B =
1

2
(α(w1, w1)− α(w2, w2)) ,

C = α(w1, w2).

The vectorH(p) is known as themean curvature vectorat p. It joins the
origin of the normal spaceNpS to the center of the ellipse described by the
image of the mapη. On the other hand, the vectorsB(p) andC(p) generate an
affine subspace ofNpS, passing byH(p), which is in general an affine plane.
Following the nomenclature introduced by Montaldi in [22], if that plane is
orthogonal toH(p) we say thatp is apseudo-umbilicpoint. If it degenerates
to a line we say thatp is semiumbilic. If that line passes by the origin, the point
is called aninflection point. Finally, if it degenerates into a point,p is called
umbilic. We observe that all the points of surfaces immersed inR3 are inflection
points and that umbilics correspond to the critical points of the principal direction
fields. WhenH(p) = 0, we say thatp is aminimalpoint.

Remark 2.1. It can be seen that a point is pseudo-umbilic if and only if it is
a umbilical point for theH-principal configuration onS [20].

3 Generic surfaces inRn

We analyze in this section the distribution of semiumbilics, inflection, umbilic,
pseudo-umbilic and minimal points on generically embedded surfaces inRn.
The main tool used here is the multijet version of Thom’s Transversality Theo-
rem ([10]).

Given a pointp ∈ S, consider the immersionφ in the Monge form in a small
enough neighborhood ofp,

φ : (R2,q) −→ (Rn, p = φ(q))

(x, y) 7−→ (x, y, φ1(x, y), . . . , φn−2(x, y)),
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where we can supposeq = (0, 0), φ(q) = 0, ∂φi
∂x (q) = ∂φi

∂y (q) = 0 for
i = 1, . . . , n − 2.

The curvature ellipse atp = φ(q) = 0 is given by

η(w(θ)) =
n−2∑

i =1

[
1

2
(ai + ci ) ei +2 +

1

2
(ai − ci ) ei +2 cos 2θ + bi ei +2 sin 2θ

]

p

and we have

H =
n−2∑

i =1

1

2
(ai + ci ) ei +2, B =

n−2∑

i =1

1

2
(ai − ci ) ei +2 and C =

n−2∑

i =1

bi ei +2

whereai , bi andci are as in the previous section.

Proposition 3.1. Let S be a surface inR5. There is a residual subset of im-
mersionsI ⊂ Imm(S,R5), with WhitneyC∞ topology such that∀ f ∈ I it
verifies

i) the semiumbilic points off (S) are isolated;

ii) the pseudo-umbilic points off (S) are isolated;

iii) f (S) has neither inflection points, nor umbilic, nor minimal, nor points
that are simultaneously semiumbilic and pseudo-umbilic.

Proof. With the above notation, we have that the condition thatp is semiumbilic
is given byB ∧ C = 0, i.e.:






(a1 − c1)b2 − b1(a2 − c2) = 0
(a3 − c3)b1 − b3(a1 − c1) = 0
(a2 − c2)b3 − b2(a3 − c3) = 0.

These conditions on the second derivatives of the embeddingf define a closed
algebraic varietyV1 of codimension 2 in the 2-jets spaceJ2(R2,R5). Then,
as a consequence of Thom’s Transversality Theorem, there is a residual subset
I1 ⊂ Imm(S,R5) such that∀ f ∈ I1, j 2 f ∩>V1. But this means thatf has only
isolated semiumbilic points.

Pseudo-umbilic points are characterized by the conditionsH ∙ B = 0 and
H ∙C = 0, which lead to an algebraic varietyV2 of codimension 2 inJ2(R2,R5).
A further application of Thom’s Transversality Theorem implies the existence
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of a residual subsetI2 ⊂ Imm(S,R5), whose maps may only have isolated
pseudo-umbilic points.

The condition for an inflection point is rank{H, B,C} = rank{a, b, c} = 1.
This can be written in the above coordinates asa1c2 − a2c1 = a1b2 − a2b1 =
a1b3−a3b1 = a1c3−a3c1 = 0 and determines a codimension 4 algebraic variety
V3 in J2(R2,R5). In this case, it follows from Thom’s Transversality Theorem
that there exists a residual subsetI3 ⊂ Imm(S,R5) such that∀ f ∈ I3, f has no
inflection points. Analogously, at an umbilic pointB = C = 0, or equivalently,
a1−c1 = a2−c2 = a3−c3 = b1 = b2 = b3 = 0, which determines an algebraic
varietyV4 of codimension 6 inJ2(R2,R5). So we get the existence of a new a
residual subsetI4 ⊂ Imm(S,R5), whose maps have no umbilics.

Finally, a pointp ∈ S is minimal if and only ifH(p) = 0. That isa1 + c1 =
a2 + c2 = a3 + c3 = 0. The same procedure gives rise to a residual subset
I5 ⊂ Imm(S,R5), whose maps have no minimal points.

Finally, it is obvious that a point is both semiumbilic and pseudo-umbilic iff
it belongs to the intersection of two independent algebraic varieties of codimen-
sion 2. Thus, there is a residual subsetI6 ⊂ Imm(S,R5), whose elements have
no such points.

The proof is now concluded by takingI = I1 ∩ I2 ∩ I3 ∩ I4 ∩ I5 ∩ I6. �

Proposition 3.2. Let Sbe a surface inRn, n > 5. There is an open and dense
subset of immersionsI ⊂ Imm(S,Rn), with the WhitneyC∞ topology, such that
∀ f ∈ I the following conditions hold:

i) f (S) has neither semiumbilic, nor inflexion, nor umbilic, nor minimal
points;

ii) the pseudo-umbilic points off (S) are isolated.

Proof. Whenn ≥ 6, the condition of linear dependence of the vectorsB andC
at a semiumbilic point gives rise ton−3 independent equations which define an
algebraic varietyV1 of codimensionn−3> 2 in J2(R2,R5). The transversality
of j 2 f to V1 implies thatf (S) has no semiumbilics. This leads, as a consequence
of Thom’s Transversality Theorem, to a residual subsetI1 of Imm(S,Rn). An
analogous argument implies that there are no inflection, nor umbilic points on
the immersed surfaces corresponding to conveniently defined residual subsetsI2

andI3 of Imm(S,Rn). The minimal points are characterized in this case by the
n − 2 ≥ 4 equationsa1 + c1 = ∙ ∙ ∙ = an−2 + cn−2 = 0. And thus, we get that
there exists a residual subsetI4 whose immersions have no minimal points.
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Finally, the conditionsH ∙ B = 0 andH ∙ C = 0 on pseudo-umbilics lead
to an algebraic variety of codimension 2 inJ2(R2,Rn) also in this case. And
thus we obtain a residual subsetI5 ⊂ Imm(S,Rn), whose maps may only have
isolated pseudo-umbilic points.

Again, we takeI = I1 ∩ I2 ∩ I3 ∩ I4 ∩ I5. �

In what follows, all the considered immersions will belong to the residual
subsetI.

4 Relative mean curvature lines: differential equations

We define in this section the direction fields for surfaces immersed inRn, n ≥ 5,
that generalize, as explained in the Introduction, the mean directionally curved
lines on surfaces immersed inR4 studied by Mello [18].

If Sis a surface immersed inR4, the vector line generated by the mean curvature
vectorH meets in general the ellipse of curvature at pointsη(w(θ)) that satisfy

η(w(θ)) ∧ H = 0. (4.1)

These points induce two orthogonal directions onTpSand, hence, two direc-
tion fields onS, called H-direction fields ([18]). The singularities of these fields
are either minimal points or inflection points.

By substituting the expression forη(w(θ)) obtained in section 2 in the equa-
tion 4.1, we get the following expression

0 = η(w(θ)) ∙ J H = (hc bb− hb bc) cos 2θ + (hc bc− hb cc) sin 2θ,

wherehb = H ∙ B, etc., andJ denotes the rotation of angleπ2 in the planeTpS.
There are two such rotations, but both give rise to the same equation.

Suppose now thatSis a surface immersed intoRn, n ≥ 5,and denote byR the
open subset of pointsp ∈ S for which B(p) andC(p) are linearly independent,
andH(p) is not orthogonal to bothB(p) andC(p).

Proposition 4.1. p /∈ R iff p is either a semiumbilic or a pseudo-umbilic point.

Proof. Let p /∈ R. Suppose that{B(p),C(p)} is linearly independent; then
H(p) ∙ B(p) = H(p) ∙ C(p) = 0. Thus, p is pseudo-umbilic. On the other
hand, if{B(p),C(p)} are linearly dependent, thenp is a semiumbilic point.�

If we take p ∈ R, then there is a unique hyperplaneξ of NpS containing
H(p) and orthogonal to the plane generated byB(p) andC(p). In fact, it is
the hyperplane whose normal vectors are those linear combinations ofB(p) and
C(p) that are orthogonal toH(p).
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Definition 4.2. Let p ∈ R andθ ∈ S1(TpS). We say thatθ is a relative mean
curvature directionif η(w(θ)) ∈ ξ .

Proposition 4.3. The tangent directionθ ∈ S1(TpS) is a relative mean curva-
ture direction if and only if

(bb hc− bc hb) cos 2θ + (bc hc− cc hb) sin 2θ = 0. (4.2)

Proof. By the hypotheses, the vectorn = hc B− hb C is orthogonal toH and
does not vanish. Thusn is a normal of the hyperplaneξ. It follows thatθ is a
relative mean curvature direction if and only ifη(w(θ)) ∙ n = 0, that is iff

(H + B cos 2θ + C sin 2θ) ∙ (hc B− hb C)

= (bb hc− bc hb) cos 2θ + (bc hc− cc hb) sin 2θ = 0.
�

Since this equation, forn = 4, is the same as the equation for the mean
curvature directions studied by Mello, we may regard relative mean curvature
directions as a generalization of Mello’s ones.

Definition 4.4. A curveγ : (−ε, ε) → S will be said to be arelative mean
curvature lineprovided its tangentγ ′(t) is parallel to a relative mean curvature
direction ofSat the pointγ (t), ∀t ∈ (−ε, ε).

Theorem 4.5. Let the surfaceSimmersed inRn, n ≥ 5, be parameterized by
the isothermal coordinatesφ : (u, v) ∈ U 7→ φ(u, v) ∈ Swith first fundamental
form E(du2 + dv2) and letγ (t) = φ(u(t), v(t)) be a smooth curve inS. The
differential equation thatγ must satisfy for being a relative mean curvature line
is given by

N(u, v)(u′2 − v′2)+ 2P(u, v)u′v′ = 0, (4.3)

whereN ≡ bb hc−bc hbandP ≡ bc hc−cc hbshould be computed by means
ofw1 = φu/

√
E, w2 = φv/

√
E.

Proof. We consider the orthonormal frame
(
w1 = φu√

E
, w2 = φv√

E

)
. Then we

have

B =
1

2E

(
φ⊥

uu − φ⊥
vv

)
, C =

1

E
φ⊥

uv and H =
1

2E

(
φ⊥

uu + φ⊥
vv

)
,
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and the curvature ellipse is given by the equation

η(w(θ)) =
1

2E

(
φ⊥

uu + φ⊥
vv

)
+

1

2E

(
φ⊥

uu − φ⊥
vv

)
cos 2θ +

1

E
φ⊥

uv sin 2θ

so that

H =
1

2E

(
φ⊥

uu + φ⊥
vv

)
, B =

1

2E

(
φ⊥

uu − φ⊥
vv

)
, C =

1

E
(φ⊥

uv) .

We can write

γ ′ = m(w1 cosθ + w2 sinθ) = u′φu + v′φv.

Thus cosθ =
√

E
m u′, sinθ =

√
E

m v′, and the result follows by substituting these
expressions for cosθ and sinθ in equations 4.2. �

The coefficients that appear in the above differential equations are well defined
differentiable functions at any point ofU , and vanish simultaneously exactly at
the pseudo-umbilic and the semiumbilic points ofS. That is, its singularities
are exactly the points away fromR. As we have seen in the previous section,
for a generic immersion of the surfaceS in R5, that is forS ∈ I, the subsetR
is open and dense and its complement is made of isolated pseudo-umbilic and
isolated semiumbilic points (that are not pseudo-umbilic). When the surface
is generically immersed intoRn, n > 5, the only critical points are isolated
pseudo-umbilics with no other special property (umbilics, etc.).

We observe that in the casen = 4, we obtain the equation of the mean cur-
vature lines studied by Mello (see [18]) as a particular case. In this case the
coefficients vanish exactly at the inflection points and the minimal points, which
occur generically as isolated points onS.

If p ∈ R, then the discriminant of equation 4.3,4(p) = (N2 + P2)(p),
is positive. Therefore there exist two orthogonal solutions of the differential
equation of the relative mean curvature lines. In a neighborhood ofp there exist
two families of orthogonal curves. These two families determine two foliations,
denoted byL1 andL2, on the open subsetR. Each isolated singularity defines
an isolated singularity of both foliations. Under the orientability hypothesis on
the surface it is possible to distinguish the foliationL1 from L2 all overR,
(see [16]).

5 Generic configurations for the relative mean curvature lines

5.1 Some basic tools

We denote byPSthe projective tangent fiber bundle overS, and by5 : PS→ S
the natural projection. For any isothermal chart(u, v) on an open neighborhood

Bull Braz Math Soc, Vol. 38, N. 2, 2007
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U of S there are two charts(u, v; p = dv
du) and (u, v; q = du

dv ), which cover
5−1(U ). The differential equation of relative mean curvature lines 4.3 defines a
surfaceF over PS. In the chart(u, v; p = dv

du) the surface is given byF−1(0),
whereF(u, v; p) = N(u, v)(1 − p2) + 2P(u, v)p. Suppose that(0, 0) is a
critical point of the equation 4.3, that isN(0, 0) = P(0, 0) = 0. The projective
line5−1(0, 0) is contained inF, because

F(0, 0, p) = N(0, 0)(1 − p2)+ 2P(0, 0)p = 0.

We have

d F =
(
Nu(1 − p2)+ 2Pu p, Nv(1 − p2)+ 2Pv p, −2N p+ 2P

)
.

The value ofd F at (0, 0, p), d F(0,0,p), is equal to
(
Nu(0, 0)(1 − p2) +

2Pu(0, 0)p, Nv(0, 0)(1 − p2) + 2Pv(0, 0)p, 0
)
. If ∂(N,P)

∂(u,v) (0, 0) 6= 0 then
d F(0,0,p) 6= 0 for all p. In this case, there is a neighborhoodV of (0, 0), such
that the surfaceF is regular in5−1(V).

Definition 5.1. We say that the singularity at(0, 0) verifies the transversality
condition if ∂(N,P)

∂(u,v) (0, 0) 6= 0.

The transversality condition is equivalent to the transversality of the curves
N = 0, P = 0 at (0, 0). If that condition does not hold at(0, 0) then there are
exactly two critical points ofF in 5−1(0, 0).

Away from the critical points of 4.3 the surfaceF is regular and in fact is a
double covering ofS.

Let ζ : F → TF be the Lie-Cartan vector field corresponding to equation 4.3.
It is tangent toF and its components are given by

ζ(u, v; p) =
(
∂F

∂p
, p
∂F

∂p
,−

(
∂F

∂u
+ p

∂F

∂v

))

The functionF is a first integral ofζ. The projections of the integral curves
of ζ by5(u, v; p) = (u, v) are the relative mean curvature lines. Namely, the
singularities ofd5(ζ) occur only at the critical points of 4.3, and in addition, if
(u, v; pj ) ∈ F, thend5(ζ(u, v; pj )) defines a mean relatively curved direction
with slopepj , j = 1, 2. The singularities of the fieldζ , lying on the projective
line5−1(0, 0), are given by the roots of the cubic polynomial

ϕ(p) =
∂F

∂u
(0, 0; p)+ p

∂F

∂v
(0, 0; p).
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Definition 5.2. We say that the singularity at(0, 0) verifies the hyperbolicity
condition if the polynomialϕ has only simple roots.

Both conditions, transversality and hyperbolicity, imply that the vector field
ζ has only singularities of saddle or node type, that induce inS configurations
known as Darbouxian typesD1, D2 or D3, according to there is only one root of
ϕ (type D1), or three roots (saddle-node-saddle,D2; saddle-saddle-saddle,D3)
(see [13] for a detailed description).

In what follows,S will be a surface immersed inRn, n ≥ 5 andp ∈ S. If
n = 4, it is enough to consider thatS is contained on the subspace given by
x5 = ∙ ∙ ∙ = xn = 0.

Proposition 5.3. Given any pointp ∈ S, there is an orthonormal basis ofTpS
such thatB(p) ∙ C(p) = 0, |B(p)| ≥ |C(p)|.

Proof. Letw1, w2 be an orthonormal basis forTpS. Hence, ifα is the second
fundamental form ofS, we have

B =
1

2
(α(w1, w1)− α(w2, w2)), C = α(w1, w2).

Givenψ ∈ [0, 2π), the vectors

u1 = w1 cosψ + w2 sinψ, u2 = −w1 sinψ + w2 cosψ

also form an orthonormal basis ofTpSand we can write

B̃ =
1

2
(α(u1, u1)− α(u2, u2))

=
1

2
(α(w1, w1) cos2ψ + α(w1, w2) sin 2ψ + α(w2, w2) sin2ψ

− α(w1, w1) sin2ψ + α(w1, w2) sin 2ψ − α(w2, w2) cos2ψ)

=
1

2
(α(w1, w1)− α(w2, w2)) cos 2ψ + α(w1, w2) sin 2ψ

= B cos 2ψ + C sin 2ψ.

Analogously

C̃ = α(u1, u2)

= −
1

2
α(w1, w1)− α(w2, w2) sin 2ψ + α(w1, w2) cos 2ψ

= − B sin 2ψ + C cos 2ψ.
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From here, we obtaiñB ∙ C̃ = 1
2(C ∙C − B ∙ B) sin 4ψ+ B ∙C cos 4ψ. If ψ = π

4 ,
then one has̃B = C, C̃ = −B, and hence we can choose the larger vector

amongB andC. We call m =
√
(1

2(C ∙ C − B ∙ B))2 + (B ∙ C)2. If m = 0
Then B ∙ C = 0 and we only need to make an interchange as indicated. If
m 6= 0, it is enough take

sin 4ψ = −
B ∙ C

m
, cos 4ψ =

C ∙ C − B ∙ B

2m

in order to getB̃ ∙ C̃ = 0. �

Given a surfaceS ⊂ Rn, suppose that{ei }n
i =1 is the canonical basis ofRn and

let p ∈ S. By applying an affine isometry ofRn if necessary, we can consider
without loss of generality thatp is the origin ofRn and that the basis{w1, w2}
of TpS determined by the above proposition coincides with{e1, e2}. Moreover,
since the vectorsB(p) andC(p) lie in NpS, we can also rotate the axese3, e4

so thatB(p) = be3 andC(p) = ce4, b ≥ c, whereb, c ∈ R are the respective
lengths of the vectorsB(p) andC(p). As for the mean curvature vectorH(p)
we can writeH(p) =

∑5
i =3 hi ei . For this, it is enough to choosee5 so thatH(p)

is contained in the 3-space spanned by{e3, e4, e5}, or in other words, the first
normal spaceN1

pSat p is spanned by the vectorse3, e4 ande5.

Let ψ : U → Rn be an isothermal chart ofS such thatψ(0, 0) = p =
0, ψu(0, 0) = e1, ψv(0, 0) = e2. We observe that ifh : C → C is a holo-
morphic function, then it is a conformal function too, and thus the composition
φ = ψ ◦ h is also an isothermal chart. We shall takeh, in a neighborhood of
the origin, as a complex polynomial, namelyh(z) = z + c2z2 + c3z3 + . . . ,

wherec2, c3, ∙ ∙ ∙ ∈ C. This will allow us to simplify the Taylor series ofS on
the considered chart by conveniently choosing the complex coefficientsc2, c3, ...

so that the compositionψ ◦ h satisfy additional conditions at the origin. The
choice of the coefficient 1 for the term of degree one guarantees that the property
e1 = ψu(0, 0), e2 = ψv(0, 0) will also hold for the new chartφ.

In the remaining part of this section we study the generic configurations near
the critical points.

5.2 Generic configurations for the relative mean curvature lines at semi-
umbilic points

In this subsection, we will consider an immersionS in the subsetI ⊂ Imm(R2;
R5) and we shall study the configuration of the lines of relative mean curvature
in the proximity of a semiumbilic point. Thus that point will not be umbilic, nor
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pseudo-umbilic, nor minimal, nor an inflection point. We shall obtain a reduced
form for the expansion of the binary differential equation near that critical point.

Proposition 5.4. Let m be any point ofS. Then, we can find an orthonormal
affine basis ofR5 and an isothermal chartφ of S in a neighborhood ofm such
that the fourth order expansion ofφ(u, v) in that affine base verifies:

1. The second degree terms and the terms inu3 and in u4 of the first two
components are zero;

2. The expansion of the third, fourth and fifth component has neither constant
nor linear terms;

3. The remaining terms of the first two components are determined by the
coefficients of the terms of the third, fourth and fifth components.

Proof. Most of the following statements of a computing nature have been
obtained with the aid of a symbolic computation program (Mathematicar).

Consider an affine basis ofR5 and a chartψ of Sas in the last section and let:

ψ(u, v) = (X(u, v),Y(u, v), Z(u, v),W(u, v), T(u, v)).

Firstly we consider the change of variable given by:

(x, y) = z+c2z2+c3z3+c4z4, z = u+i v, ck = ak+ibk ∈ C, k = 2, 3, 4

We compute the derivatives of the resulting chartφ at (0, 0) and observe that
we can pick out the coefficientsa2, b2,a3, b3,a4, b4 in order that:

Xuv = Yuv = Xuuu = Yuuu = Xuuuu = Yuuuu = 0.

Here, and in the following, symbols asXuv denote the corresponding derivatives
atu = v = 0. Next, since the chart is isothermal, we must have

E − G = φu ∙ φu − φv ∙ φv ≡ 0,

F = φu ∙ φv ≡ 0.

Therefore, the functionsE − G and F and its first and second derivatives
vanish at the origin. Then we obtain a system of eighteen equations that are
linear in eighteen of the coefficients, and may be solved uniquely so that:

– the coefficientsXuu, Xvv,Yuu,Yvv are zero

– the remaining non-null coefficients ofX,Y up to fourth degree can be
written as function of the coefficients ofZ,W, T . �
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Proposition 5.5. Let m be a semiumbilic point ofS. Then, we can find an
orthonormal affine basis ofR5 and an isothermal chartφ of S in a
neighborhood ofm such that the function:

φ(u, v) = (X(u, v),Y(u, v), Z(u, v),W(u, v), T(u, v)).

obtained in the preceeding result verifies:

Tuu = Tvv = Tuv = 0,

Wuu = Wvv 6= 0, Wuv = 0,

|Zuu| 6= |Zvv|, Zuv = 0.

Proof. We have:

H(0, 0) =
(

0, 0,
Zuu + Zvv

2
,

Wuu + Wvv

2
,

Tuu + Tvv
2

)

B(0, 0) =
(

0, 0,
Zuu − Zvv

2
,

Wuu − Wvv

2
,

Tuu − Tvv
2

)

C(0, 0) = (0, 0, Zuv,Wuv, Tuv).

Since the minor semiaxis of the curvature ellipse is zero,C(0, 0) = 0. Thus
we can suppose that the 4th component ofB(0, 0) and the 5th components of
B(0, 0) andH(0, 0) vanish, and this implies the proposition. As a consequence,
we have:

H(0, 0) =
(

0, 0,
Zuu + Zvv

2
,Wuu, 0

)
,

B(0, 0) =
(

0, 0,
Zuu − Zvv

2
, 0, 0

)
,

C(0, 0) = (0, 0, 0, 0, 0).

Thus,Zuu 6= Zvv becausem is not umbilic;Wuu 6= 0 becausem is not a point
of inflection; andZuu 6= −Zvv becausem is not a pseudo-umbilic. �

Theorem 5.6. Let m be a semiumbilic point ofS. The Taylor expansion atm
of the differential binary equation of the relative mean curvature lines ofS is:

(N01u + N10v + O(2))(du2 − dv2)+ O(2)dudv = 0,
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where
N01 = WuuWuuv(Zuu − Zvv)

2,

N10 = WuuWuvv(Zuu − Zvv)
2,

Wuu 6= 0,

|Zuu| 6= |Zvv|

(5.1)

and the coefficientsWuuv,Wuvv are arbitrary.

Proof. The linear part comes from the expression ofφ and after some calculus
with a symbolic computing program it is obtained that each coefficient of the
quadratic term can be controlled by a different coefficient of the expansion of
the functionφ. �

Clearly, the semiumbilic points are not of Darbouxian type for the equation of
the mean relative curvature lines, because they do not satisfy the transversality
condition. The leaves of the linearized equation consist of an orthogonal net.

We shall see now that, though the transversality conditions fail at a semiumbilic
point p ∈ S, it is possible to analyze, following the method developed in [15], the
configuration of the relative mean curvature lines around a generic semiumbilic
point. By generic we mean here thatS must not satisfy some (non-necessary)
equality atm.

Definition 5.7 ([15]). Letm be a singular point of a binary differential equa-
tion. It is said to be of typeD1

2,3 if the following conditions hold:(1) The
transversality condition5.1 fails atm; (2) In the two critical points of the func-
tion F on5−1(m) (see subsection5.2), the functionF is of Morse type.

The topological index of a singularity of typeD1
2,3 is zero and its configuration

is described in the figure 1. For details see [15] and [11].
One of the foliations near aD1

2,3 point has two semiumbilic separatrices and two
hyperbolic sectors. The other has three semiumbilic separatrices, one parabolic
and two hyperbolic sectors.

Theorem 5.8. Letm be a generic semiumbilic point ofS. Then, as a singular
point of the binary differential equation of the relative mean curvature lines of
S, it is of typeD1

2,3.
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Proof. Consider the preceding chartφ of S, aroundm. The polynomialϕ(p)
whose zeroes give the singularities of the vector fieldT is given by

ϕ(p) =
1

4
Wuu(Zuu − Zvv)

2(Wuuv + pWuvv)(p
2 − 1).

It is of third degree if, as we assume by genericity,Wuvv 6= 0. Then, its roots are

p0 = −
Wuuv

Wuvv
, p1 = −1, p2 = 1.

If by genericity we assume that
∣
∣
∣
∣−

Wuuv

Wuvv

∣
∣
∣
∣ 6= 1,

we see that they are simple and the hiperbolicity condition holds.

The critical points ofF in the fibre overm are given by the equation
(

1

4
(1 − p2)WuuWuuv(Zuu − Zvv)

2,
1

4
(1 − p2)WuuWuvv(Zuu − Zvv)

2, 0

)
= 0.

SinceWuu 6= 0, Zuu − Zvv 6= 0 and we have assumed thatWuuv 6= Wuvv,

we see that the critical points are(0, 0,±1). The corresponding values of the
Hessian ofF, computed with Mathematicar are

±
1

4
W2

uu(TuvvWuuv − TuuvWuvv)
2(Zuu − Zvv)

5(Zuu + Zvv)

and they are non-zero if, as we assume by genericity ofm, that TuvvWuuv −
TuuvWuvv 6= 0. �

The figure below shows an example illustrating the generic configuration of
the relative mean curvature lines around a semiumbilic point of a surface inR5.

The drawing has been produced with the aid of the program “ParametricasR5”
due to the third author, which is available on request.

Example 5.9. In this figure the mapφ : R2 → R5 is given by

φ(u, v) =
(
u − u3v −

5uv2

2
+ 14u2v2 −

uv3

3
−

3v4

2
, v + u2v

− 4u3v − u2v2 −
5v3

3
+ 12uv3 −

v4

3
,

u2

2
−

4v3

3

+
u3v

3
+ v2 − 2uv2 +

uv3

2
,

u2

2
+ u2v +

v2

2
− 2uv2

+
v3

3
+

uv3

2
, 2u2v +

u3v

3
− uv2 −

2v3

3

)
.
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Figure 1: Relative mean curvature lines configuration around semiumbilic point,
for a surface onR5.

Its coefficients have been obtained by choosing more or less at random the
coefficients in the expressions ofX,Y, Z,W, T that do not depend on other
coefficients.

5.3 Generic configurations at pseudo-umbilic points

In this section we will see that a generic pseudo-umbilic pointm of a surface
S ∈ I ⊂ Imm(R2,R5) is of Darbouxian type. We recall that at these points
the mean curvature vector is perpendicular to the plane of the curvature ellipse,
which is not degenerate. Thus, in this case the conditionsH 6= 0, B ∧ C 6= 0,
H ∙ B = H ∙ C = 0 hold at(0, 0).

Proposition 5.10. Letm be a pseudo-umbilic point ofS. Then, we can find an
orthonormal affine base ofR5 and an isothermal chartφ of Sin a neighborhood
of m such that the function:

φ(u, v) = (X(u, v),Y(u, v), Z(u, v),W(u, v), T(u, v)),

obtained in the preceding section verifies:

Wuu = Wvv = Zuv = Tuv = 0, Tvv = Tuu, Zvv = −Zuu.

Proof. The proof proceeds as in 5.2, taking the affine reference so thatB(0, 0)
= be3, C(0, 0) = ce4 andH(0, 0) = he5. �
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Theorem 5.11. Let m be a generic pseudo-umbilic point ofS. Then, as a
singular point of the binary differential equation of the relative mean curvature
lines ofS, it is of Darbouxian type.

Proof. The differential equation of the relative mean curvature lines up to
degree one is given by

(Ju + Lv + O(2))(du2 − dv2)+ 2(Pu + Qv + O(2))dudv = 0,

where

J = Z2
uu(2TuuTuuv + Wuv(Wuuu + Wuvv));

L = Z2
uu(2TuuTuvv + Wuv(Wuuv + Wvvv));

P = W2
uv(Tuu(Tuvv − Tuuu)− Zuu(Zuuu + Zuvv));

Q = W2
uv(Tuu(Tvvv − Tuuv)− Zuu(Zuuv + Zvvv)).

The coefficientWvvv appears linearly in the productP(0, 0)L(0, 0), whereas it
does not appear in the productJ(0, 0)Q(0, 0). Conversely, the coefficientWuuu

appears linearly inJ(0, 0)Q(0, 0) and not at all inP(0, 0)L(0, 0).Hence, ifm is
generic,P(0, 0)L(0, 0)− J(0, 0)Q(0, 0) does not vanish, and the transversality
condition is verified.

We check now the hyperbolicity condition.
In the chart

(
u, v, p = dv

du

)
on PSaround5−1(0, 0), the singularities of the

Lie-Cartan vector field are determined by the roots of the cubic polynomial

ϕ(p) = Lp3 + (J − 2Q)p2 − (2P + L)p − J.

This polynomial has only simple roots provided its discriminant does not
vanish, which is a generic condition. �

5.4 Some global consequences

Application of the Poincaré-Hopf index formula for foliations on closed oriented
surfaces leads to the following:

Corollary 5.12. The numberNps of pseudo-umbilic points of a closed
oriented surfaceSgenerically immersed intoRn, n ≥ 5, satisfies the relation

Nps ≥ 2|χ(S)|,

whereχ(S) denotes de Euler number ofS.

Bull Braz Math Soc, Vol. 38, N. 2, 2007



“main” — 2007/6/12 — 14:21 — page 176 — #20

176 R. ANTONIO GONÇALVES et al.

Proof. Just observe that the index of the relative mean curvature foliations is
zero at generic semiumbilics and±1

2 at generic pseudo-umbilics. �

Then from the definition of pseudo-umbilic point it follows:

Corollary 5.13. Any generic immersion of a2-sphere intoRn has at least
4 points at which the mean curvature vectorH is orthogonal to the normal
subspace determined by the curvature ellipse.

In the general case of non necessarily generic immersions we can assert:

Corollary 5.14. Closed oriented surfaces with non vanishing Euler number
immersed intoRn, n ≥ 5, always have either some semiumbilic, pseudo-umbilic,
inflection, or minimal point.

On the other hand, we can consider the special subset of 2-regular immersions
of surfaces inRn, n ≥ 5. These were introduced independently by E.A. Feld-
man [5] and W. Pohl [23]. They are characterized by the fact that the normal
subspace spanned by the second fundamental form has maximal dimension at
every point (or in other words, dimN1

pS = 3, ∀p ∈ S). This means in our
context that the vectorsH, B andC are linearly independent at every point. It
was shown by Feldman [5] that the subset of 2-regular immersions of any closed
surface inRn is open and dense (in the WhitneyC∞-topology over the set of
immersions) providedn ≥ 7. A 2-regular immersion of the 2-sphere intoR5

was described in [3] and the existence of a wider class of such immersions is
discussed in [25]. Nevertheless the existence of 2-regular immersions of surfaces
with non zero genus intoR5 still remains as a conjecture.

The above considerations imply the following.

Corollary 5.15. Closed oriented2-regular surfaces with non vanishing Eu-
ler number inRn, n ≥ 5, always have pseudo-umbilic points (minimal points
considered as a particular case).
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