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1 Introduction

The second fundamental formndetermines the shape operators associated to
the family of normal vector fields on a surfaammersed inR", n > 3, and
hence their corresponding principal configurations. The study of this dynamics
goes back to the works of Monge [19] and Darboux [4], who described the
behavior of the principal curvature lines in the neighborhood of umbilic points
of analytic surfaces in Euclidean 3-space. A complete treatment of the subject
in terms of the structural stability of the principal lines for surfaces of class
C',r > 4, has been provided more recently (Gutierrez and Sotomayor [13],
[14], Bruce and Fidal [1]). The generic behavior of principal configurations on
surfaces ilR* has been studied along these lines by Ramirez Galarza and Sanchez
Bringas in [24]. Besides the principal configurations, the extrinsic geometry of
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the surfaces determines other interesting foliations such as the mean curvature
configurations of surfaces iR® described by Garcia and Sotomayor in [9] and

[8], the axiumbilic configurations ([12], [7]), the asymptotic configurations ([6],

[2]) and the mean curvature direction configurations for surfac®é aescribed

by L.F. Mello [18].

The definition of these configurations relies on the concept of curvature ellipse
of a surfaceS immersed im-space ([17], [26]). This is defined as the image
througha of the unit tangent vectors circle into the normal sphigeS at each
point p € S. The vectorH (p) € NpSdetermined by the center of the curvature
ellipse atp is known as the mean curvature vector. For a surface immersed into
R4, the normal line defined byl (p) cuts the ellipse in two opposite points (except
at the special situations in which the ellipse degenerates into a radial segment,
or if H(p) = 0). These two points determine a couple of orthogonal tangent
directions known as the mean curvature directiop.alhese are characterized
by the fact that the curvature vector of the normal section of the surface along
them is parallel to the mean curvature vedtbip).

The generalization of this procedure to surfaces immerséRl'ivith n >
4 embodies some problems due to the fact that the plane determined by the
curvature ellipse does not pass through the origin of the normal space at a generic
point p. This means that there are no tangent directions whose normal section’s
curvature vector is parallel td (p). In other words, there aren’t mean curvature
directions on surfaces immersed with codimension higher than 2. The way we
use here to overcome this difficulty is based on the property described in [21]
that, from a qualitative viewpoint, all the principal configurationsSarise from
normal vector fields parallel to the subspace determined by the curvature ellipse
at every point. In fact, any normal vectore N,S can be decomposed into a
sumv’ + v, with v andv! respectively parallel and orthogonal to the plane
determined by the curvature ellipse. It can be shown that the shape operator
associated to+ is a multiple of the identity ([20]) and thus the eigenvectors of
the shape operatd¥, coincide with those o¥V,r. This induces us to eliminate
the orthogonal parH (p)* of the mean curvature vector and apply the above
setting to the directiom (p) " contained in the plane defined by the curvature
ellipse atp translated to the origin. Then we define thtative mean curvature
directions at a pointp of a surface immersed iR" with n > 4 as those inducing
normal sections whose curvature vector is parall¢fitg) ". We obtain in this
way two orthogonal foliations globally defined on the surface whose critical
points are the semiumbilics and the pseudo-umbilics (with inflection points and
minimal points considered as non-generic particular cases).

In section 2 we introduce the basic geometrical concepts and notations for
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surfaces immersed iR". In section 3 we analyze their generic behavior with
respect to the relative positions of the veckb¢p) and the curvature ellipse at
each point. We determine in section 4 the differential equations associated to the
relative mean curvature configuration. Section 5 is devoted to the description of
the generic behavior of the foliations in a neighborhood of their critical points:
pseudo-umbilics and semiumbilics. There is an essential difference between
the two types: whereas the pseudo-umbilics present generically the Darboux-
ian configurationd;, D, and D3 (with indices:l:%), the semiumbilics appear
generically asD3, points (see [15]). We finally obtain some global results as

a consequence of the Poincaré-Hopf index formula for foliations on closed ori-
entable surfaces.

2 Second fundamental form and curvature ellipses

Let S be a surface immersed R", n > 3, that we can locally consider as the
image of an embedding : R2 — R", (R?) = S. At each pointp € Scon-
sider the decompositioR,R" = T, S® N, S, whereN,Sdenotes the orthogonal
complement of the tangent plamgSin R", that is the normal subspace®at p.
Let V denote the Riemannian connection®. Given two vector fields and
Y, locally defined alongs, we can choose local extensioksY overR", and
define the Riemannian connection BrasVgY = (?XY)T, whereT denotes
the tangent component of the normal connect¥on

If we denote by (S) and NV (S) respectively the spaces of tangent and normal
fields onS, the second fundamental form &is defined as follows:

a : X xXOS — N
(X, Y) — VY — VyY,

This is a well defined bilinear symmetric map.
Now, givenp € Sanyv € NS, v # 0, induces a bilinear form on the tangent
spaceT, S given by

H, : T,SxTp,S — R
(v, w) — a(v,w) v,
and a quadratic form
a, : T,S — R
v +—— H,(v,v) =a(v,v)- .
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If we take local coordinate&, y) and an orthonormal framws, - - - , wp} of
the normal bundleN Sin a neighborhood op = ¢(0,0) € S, the matrix of
the second fundamental form in the frafgg, ¢y, w3, ..., wn} is given by

a; bl C1

ag(p) = : ,
an—2 bn_2 Ch2
where
3%¢ 8%¢ 9%¢

g = W(O, 0) - wit2, b= m(oa 0) - wiy2, G = a—yz(O, 0) - w42,
fori=1,---,n—2.

We can complete the orthonormal frafaes, - - - , wn} by means of

_ ﬂ E¢v - F¢u

w1 = , W= —(/———,

VE VE(EG - F?)
whereE, F and G are the coefficients of the first fundamental form &nf
w € x(S), we can writew = Aqw1 + Awy, for some functiong,,i = 1, 2 and
then we have

a(w, w) = Ma(w, wr) + 2hia (w1, wa) + A50(wa, wy).

Given the tangent unit field, the functionse, = «a(wy, wy) - v, f, =
a(wy, wp) - v andg, = a(w;z, wp) - v are thecoefficients of the second fun-
damental form in the direction on the framdawi, w»).

Given p € S, consider the unit circle iT,S parameterized by the angle
6 € [0, 27r) with respect tav;. Denote byy, the curve obtained by intersecting
Swith the hyperplane ab composed by the direct sum of the normal subspace
NpS with the line inT,S defined by the directiof. Such curve is called the
normal section o (S) in the directiorp. The curvature vectay(9) of y, at p
lies in NpS. Varying 6 from 0 to 2r, this vector describes an ellipse My, S,
called thecurvature ellipseof Sat p. In fact, the curvature ellipse is the image
of the map

n:StC TpS—> NS

given by

1 1
n(w@)) = > (a(wy, wy) + a(w, wp)) + > (a(w, w1) — a(wz, wp)) COS D

+ a (w1, wy) SIN Y,
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wherew(0) = w1 cog0) + w» sin(f) is a unit vector inl,S.
A shorter expression for the curvature ellipse is given by

n(w@)) =H+ Bcosd + Csin,

where

1
H = 5 (x(wyq, w1) + a(wa, wr)),

1
B = é (a(wlv wl) - Ol(w2, wZ)) )
C = a(wy, wy).

The vectorH (p) is known as thenean curvature vectaat p. It joins the
origin of the normal spac&,S to the center of the ellipse described by the
image of the map. On the other hand, the vectdBgp) andC(p) generate an
affine subspace dN,S, passing byH (p), which is in general an affine plane.
Following the nomenclature introduced by Montaldi in [22], if that plane is
orthogonal toH (p) we say thatp is apseudo-umbiligoint. If it degenerates
to a line we say thap is semiumbilic If that line passes by the origin, the point
is called aninflection point Finally, if it degenerates into a poing is called
umbilic. We observe that all the points of surfaces immerséfiare inflection
points and that umbilics correspond to the critical points of the principal direction
fields. WhenH (p) = 0, we say thap is aminimalpoint.

Remark 2.1. It can be seen that a point is pseudo-umbilic if and only if it is
a umbilical point for theH -principal configuration ors [20].

3 Generic surfaces inR"

We analyze in this section the distribution of semiumbilics, inflection, umbilic,
pseudo-umbilic and minimal points on generically embedded surfacRS.in
The main tool used here is the multijet version of Thom’s Transversality Theo-
rem ([10]).

Given a pointp € S, consider the immersiog in the Monge form in a small
enough neighborhood g,

¢: (R? q) — R", p=¢(@)
(X’ y) [ — (X’ y’ ¢1(Xv y)a ceey ¢n72(xv Y)),
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where we can supposg = (0,0), ¢(q) = 0, %(q) = %(q) = 0 for
i=1...,n—2
The curvature ellipse gt = ¢(q) = 0 is given by

2

n(w(é))=2[ @ +c)e2+ 5 (a—C.)a+zcosz9+ba+zsm29]

i=1 P

and we have
21 n—21 n-2
=Z§(a +6) 82 Bzgé(aa—ci)em and C=;bia+2

whereg;, by andc; are as in the previous section.

Proposition 3.1. Let Sbe a surface iR>. There is a residual subset of im-
mersions? C Imm(S, R®), with WhitneyC> topology such tha¥ f e 7 it
verifies

i) the semiumbilic points of (S) are isolated;
i) the pseudo-umbilic points df (S) are isolated,;

i) (S has neither inflection points, nor umbilic, nor minimal, nor points
that are simultaneously semiumbilic and pseudo-umbilic.

Proof. Withthe above notation, we have that the condition thiatsemiumbilic
isgivenbyBAC =0, i.e.

(g —Ccphby —by(ay —c) =0
(a3 — C3)by —b3(@; —cy) =0
(a2 — C)bz — by(ag — C3) =

These conditions on the second derivatives of the embedduhgfine a closed
algebraic varietyV; of codimension 2 in the 2-jets spadé(R?, R®). Then,
as a consequence of Thom’s Transversality Theorem, there is a residual subset
7, € Imm(S, R®) such thatv f € 71, j2f AV,. But this means thaf has only
isolated semiumbilic points.

Pseudo-umbilic points are characterized by the conditiansB = 0 and
H.C = 0, which lead to an algebraic variéty of codimension 2 i) ?(R?, R®).
A further application of Thom’s Transversality Theorem implies the existence
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of a residual subset, ¢ Imm(S, R®), whose maps may only have isolated
pseudo-umbilic points.

The condition for an inflection point is rafid, B, C} = rank{a, b, c} = 1.
This can be written in the above coordinatesagys — axc; = a1b, — axb; =
aybs —agh; = a;c3—azc; = 0 and determines a codimension 4 algebraic variety
V3 in J2(R?, R%). In this case, it follows from Thom’s Transversality Theorem
that there exists a residual subgget- Imm(S, R®) such that' f € 73, f has no
inflection points. Analogously, at an umbilic poiBt= C = 0, or equivalently,
a;—C; = ap—Cy = ag—C3 = by = b, = by = 0, which determines an algebraic
variety V, of codimension 6 inJ?(R2, R®). So we get the existence of a new a
residual subset; C Imm(S, R®), whose maps have no umbilics.

Finally, a pointp € Sis minimal if and only ifH(p) = 0. Thatisa; + ¢; =
a, + ¢ = ag+ ¢z = 0. The same procedure gives rise to a residual subset
75 C Imm(S, R®), whose maps have no minimal points.

Finally, it is obvious that a point is both semiumbilic and pseudo-umbilic iff
it belongs to the intersection of two independent algebraic varieties of codimen-
sion 2. Thus, there is a residual sub&etc Imm(S, R®), whose elements have
no such points.

The proof is now concluded by takifg= 7, N7, N 73 N 74N I5 N T. O

Proposition 3.2. LetSbe a surface ilR", n > 5. There is an open and dense
subset of immersiorisC Imm(S, R"), with the WhitneyC> topology, such that
vV f € 7 the following conditions hold:

i) f (S has neither semiumbilic, nor inflexion, nor umbilic, nor minimal
points;

ii) the pseudo-umbilic points df (S) are isolated.

Proof. Whenn > 6, the condition of linear dependence of the vecB®endC

at a semiumbilic point gives rise to— 3 independent equations which define an
algebraic variety/; of codimensiom —3 > 2 in J2(R?, R®). The transversality

of j2 f to V, implies thatf (S) has no semiumbilics. This leads, as a consequence
of Thom'’s Transversality Theorem, to a residual sulisetf Imm(S, R"). An
analogous argument implies that there are no inflection, nor umbilic points on
the immersed surfaces corresponding to conveniently defined residual slgbsets
and7s; of Imm(S, R"). The minimal points are characterized in this case by the
n—2>4equationsy + €, = --- = a,_2 + &—2 = 0. And thus, we get that
there exists a residual subggtwhose immersions have no minimal points.
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Finally, the conditiondH - B = 0 andH - C = 0 on pseudo-umbilics lead
to an algebraic variety of codimension 2 J8(R?, R") also in this case. And
thus we obtain a residual subgetc Imm(S, R"), whose maps may only have
isolated pseudo-umbilic points.

Again, we takel =71, N7, N I3 N T4 N Ts. O

In what follows, all the considered immersions will belong to the residual
subset.

4 Relative mean curvature lines: differential equations

We define in this section the direction fields for surfaces immersgé,im > 5,
that generalize, as explained in the Introduction, the mean directionally curved
lines on surfaces immersedRf studied by Mello [18].

If Sis asurface immersed&f, the vector line generated by the mean curvature
vectorH meets in general the ellipse of curvature at poir(is (0)) that satisfy

n(w@) AH=0. (4.2)

These points induce two orthogonal directionsigi® and, hence, two direc-
tion fields onS, called H-direction fields ([18]). The singularities of these fields
are either minimal points or inflection points.

By substituting the expression fg(w(6)) obtained in section 2 in the equa-
tion 4.1, we get the following expression

0=nw@®))-IJH = (hcbb— hbbgcos® + (hcbc— hbco sin 2,

wherehb = H - B, etc., andJ denotes the rotation of anggein the planer,S.
There are two such rotations, but both give rise to the same equation.

Suppose now th&is a surface immersed inR', n > 5, and denote bR the
open subset of points € Sfor which B(p) andC(p) are linearly independent,
andH (p) is not orthogonal to botB(p) andC(p).

Proposition4.1. p ¢ Riff pis either a semiumbilic or a pseudo-umbilic point.

Proof. Let p ¢ R. Suppose thatB(p), C(p)} is linearly independent; then
H(p) - B(p) = H(p) - C(p) = 0. Thus, p is pseudo-umbilic. On the other
hand, if{B(p), C(p)} are linearly dependent, thgnis a semiumbilic point.C]

If we take p € R, then there is a unique hyperplageof N,S containing
H (p) and orthogonal to the plane generatedBp) andC(p). In fact, it is
the hyperplane whose normal vectors are those linear combinati@{gpaind
C(p) that are orthogonal tél (p).

Bull Braz Math Soc, Vol. 38, N. 2, 2007



RELATIVE MEAN CURVATURE CONFIGURATIONS FOR SURFACES INR",n > 5 165

Definition 4.2. Letp € R andf < Sl(TpS). We say thaf is arelative mean
curvature directionf n(w(#)) € &.

Proposition 4.3. The tangent directiod € S'(T,9S) is a relative mean curva-
ture direction if and only if

(bbhc—bchbcosd + (bchc—cchbsin2 =0. (4.2)

Proof. By the hypotheses, the vector= hc B— hb Cis orthogonal taH and
does not vanish. Thusis a normal of the hyperplang It follows thaté is a
relative mean curvature direction if and onlyifw(6)) - n = 0, that is iff

(H+Bcos?d +Csin®)-(hcB—-hbC)

]
= (bbhc—bchbcos?® + (bchc—cchbsin® =0.

Since this equation, fon = 4, is the same as the equation for the mean
curvature directions studied by Mello, we may regard relative mean curvature
directions as a generalization of Mello’s ones.

Definition 4.4. A curvey : (—¢,¢) — Swill be said to be arelative mean
curvature lingorovided its tangeny’(t) is parallel to a relative mean curvature
direction of Sat the pointy (t), Vt € (—¢, ¢).

Theorem 4.5. Let the surfacesimmersed iR", n > 5, be parameterized by
the isothermal coordinates: (u, v) € U — ¢ (u, v) € Swith firstfundamental
form E(du? + dv?) and lety (t) = ¢ (u(t), v(t)) be a smooth curve i6. The
differential equation thay must satisfy for being a relative mean curvature line
is given by

N (u, v)(U? — v"?) + 2P(u, v)u'v' = 0, (4.3)

whereN = bb hc—bc hbandP = bc hc— cc hbshould be computed by means
of wy = ¢u/VE, w2 = ¢,/VE.

Proof. We consider the orthonormal fran(eul = %UE’ w2 = ¢

have

S ) Then we

1 1 1
BZE(¢ulu_¢vLu)v C:E¢ulu and H:E(¢t}u+¢i}),
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and the curvature ellipse is given by the equation

1 1 1 .
nw®) = = (d5u + b0) + > (¢, — o) cos D + Eq&jv sin ¥
so that

1 1 1
H= g @utdn). B=og(@u—9u). C=g@uw).
We can write
y' = m(wy coSh + w;, SiNG) = U'¢y + v'e,.

Thus co® = ‘/WEU’, sing = %v’, and the result follows by substituting these
expressions for casand sirv in equations 4.2. O

The coefficients that appear in the above differential equations are well defined
differentiable functions at any point &f, and vanish simultaneously exactly at
the pseudo-umbilic and the semiumbilic pointsSf That is, its singularities
are exactly the points away froR. As we have seen in the previous section,
for a generic immersion of the surfaGin R5, that is forS € 7, the subseR
is open and dense and its complement is made of isolated pseudo-umbilic and
isolated semiumbilic points (that are not pseudo-umbilic). When the surface
is generically immersed int®", n > 5, the only critical points are isolated
pseudo-umbilics with no other special property (umbilics, etc.).

We observe that in the case= 4, we obtain the equation of the mean cur-
vature lines studied by Mello (see [18]) as a particular case. In this case the
coefficients vanish exactly at the inflection points and the minimal points, which
occur generically as isolated points 8n

If p € R, then the discriminant of equation 4.3(p) = (N? + P?)(p),
is positive. Therefore there exist two orthogonal solutions of the differential
equation of the relative mean curvature lines. In a neighborhopdltodre exist
two families of orthogonal curves. These two families determine two foliations,
denoted byl ; andL,, on the open subs&. Each isolated singularity defines
an isolated singularity of both foliations. Under the orientability hypothesis on
the surface it is possible to distinguish the foliatibn from L, all over R,

(see [16]).

5 Generic configurations for the relative mean curvature lines
5.1 Some basic tools

We denote byP Sthe projective tangent fiber bundle ov&@rand byl : PS— S
the natural projection. For any isothermal ch@rtv) on an open neighborhood
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U of Sthere are two chartu, v; p = ) and (u, v; g = 9%), which cover
I1-1(U). The differential equation of relative mean curvature lines 4.3 defines a
surfacelF over PS. In the chart(u, v; p = d—fj) the surface is given b ~1(0),
whereF (u, v; p) = N(u, v)(1 — p? + 2P(u, v)p. Suppose that0, 0) is a
critical point of the equation 4.3, that (0, 0) = P(0, 0) = 0. The projective

line II-1(0, 0) is contained irF, because

F(0,0, p) = N(0,0)(1 — p? + 2P(0,0)p = 0.
We have
dF = (Nu(1— p?) +2P,p, N,(1 - p®) +2P,p, —2Np+ 2P).

The value ofdF at (0,0, p), dFgo,p). is equal to(N,(0,0)(1 — p?) +
2P,(0,0)p, N,(0,00(1 — p?) + 2P,(0,0)p, 0). If a;': P)) (0,0) # 0O then

dFe,0,p # 0 forall p. In this case, there is a nelghborhovdof (0, 0), such
that the surfac& is regular inf1=1(V).

Definition 5.1. We say that the singularity &0, 0) verifies the transversality

e 9(NLP)
condition |fm(0, 0) # 0.

The transversality condition is equivalent to the transversality of the curves
N =0, P = 0 at(0, 0). If that condition does not hold &0, 0) then there are
exactly two critical points of in T1=%(0, 0).

Away from the critical points of 4.3 the surfad@eis regular and in fact is a
double covering ob.

Let¢ : F — TF be the Lie-Cartan vector field corresponding to equation 4.3.
It is tangent taF and its components are given by

w, ) = BF oF 8F+ oF
¢l v p p pap’ au pav

The functionF is a first integral ofz. The projections of the integral curves
of ¢ by IT(u, v; p) = (u, v) are the relative mean curvature lines. Namely, the
singularities ofdI1(¢) occur only at the critical points of 4.3, and in addition, if
(U, v; pj) € F, thendIT(¢(u, v; pj)) defines a mean relatively curved direction
with slopep;, j = 1, 2. The singularities of the field, lying on the projective
line IT~1(0, 0), are given by the roots of the cubic polynomial

aF IF
¢(p) = —-(0.0: p) + p7~(0.0: p).
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Definition 5.2. We say that the singularity &0, 0) verifies the hyperbolicity
condition if the polynomiap has only simple roots.

Both conditions, transversality and hyperbolicity, imply that the vector field
¢ has only singularities of saddle or node type, that inducg configurations
known as Darbouxian typd3;, D, or D3, according to there is only one root of
¢ (type D,), or three roots (saddle-node-saddle; saddle-saddle-saddIBg)
(see [13] for a detailed description).

In what follows, S will be a surface immersed iR", n > 5andp € S. If
n = 4, it is enough to consider th&is contained on the subspace given by
Xsg ==X, =0.

Proposition 5.3.  Given any poinp € S, there is an orthonormal basis 6}, S
such thatB(p) - C(p) =0, |B(p)| = |C(p)I.

Proof. Letw;, w, be an orthonormal basis fdi,S. Hence, ife is the second
fundamental form of5, we have

B= %(a(wl, w1) — a(wz, w2)), C =a(wy, wy).
Givenyr € [0, 2r), the vectors
U; = w1 COSY + woSiNy, Uy = —wq SINY + wy COSY
also form an orthonormal basis ©f S and we can write
B = 7 (@lus, up) — o, 1)
1 . .
=5 (a(w1, w1) COF Y + (w1, wo) SIN 2 + a(wa, wo) SINF Y
— (w1, wy) SIP Y + a(wy, wp) SIN 2P — a(wz, wy) COF )
= % (a(w1, w1) — a(wz, w2)) COS A + a(wy, w) SiN 2
= Bcos2) + Csin2y.
Analogously
C = a(uy, up)
= — %Ol(wl, w1) — a(wz, wp) SiN 2y + a(wi, wa) COS 2

= — Bsin2y + Ccos 2).
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From here, we obtaiB-C = 2(C-C—B-B)sin4 + B-Ccos 4. If y = Z,

then one ha8 = C, C = —B, and hence we can choose the larger vector
amongB andC. We callm = \/(%(C-C— B-B)2+(B-C)2.1fm=0
ThenB - C = 0 and we only need to make an interchange as indicated. If
m # 0, it is enough take

C.-C-B-B
2m

. B-C
sindy = e cos4) =

in order to get8 - C = 0. O

Given a surfac& C R", suppose thdig }i_; is the canonical basis &" and
let p € S. By applying an affine isometry &" if necessary, we can consider
without loss of generality thagp is the origin ofR" and that the basigw,, w»}
of TS determined by the above proposition coincides Wéh e,}. Moreover,
since the vector8(p) andC(p) lie in NpS, we can also rotate the axes es
so thatB(p) = be; andC(p) = cey, b > ¢, whereb, ¢ € R are the respective
lengths of the vectorB(p) andC(p). As for the mean curvature vectet(p)
we can writeH (p) = Zi‘r’zg hig . For this, itis enough to choosg so thatH (p)
is contained in the 3-space spanned{by &4, es}, or in other words, the first
normal spaceNéS at p is spanned by the vectoes, e; andes.

Lety : U — R" be an isothermal chart & such thaty/(0,0) = p =
0, ¥y(0,0) = e, ¥,(0,0) = e. We observe that i : C — C is a holo-
morphic function, then it is a conformal function too, and thus the composition
¢ = ¥ o his also an isothermal chart. We shall takein a neighborhood of
the origin, as a complex polynomial, namélyz) = z 4 ¢,z°> + Gz° + ...,
wherecy, ¢z, - - - € C. This will allow us to simplify the Taylor series @& on
the considered chart by conveniently choosing the complex coeffiggms ...
so that the compositioy o h satisfy additional conditions at the origin. The
choice of the coefficient 1 for the term of degree one guarantees that the property
e; = Yy (0, 0), & = ¥, (0, 0) will also hold for the new chap.

In the remaining part of this section we study the generic configurations near
the critical points.

5.2 Generic configurations for the relative mean curvature lines at semi-
umbilic points

In this subsection, we will consider an immersi8in the subsef ¢ Imm(R?;
R%) and we shall study the configuration of the lines of relative mean curvature
in the proximity of a semiumbilic point. Thus that point will not be umbilic, nor
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pseudo-umbilic, nor minimal, nor an inflection point. We shall obtain a reduced
form for the expansion of the binary differential equation near that critical point.

Proposition 5.4. Letm be any point ofS. Then, we can find an orthonormal
affine basis ofR®> and an isothermal chaip of Sin a neighborhood ofn such
that the fourth order expansion ¢f(u, v) in that affine base verifies:

1. The second degree terms and the terms iand in u* of the first two
components are zero;

2. The expansion of the third, fourth and fifth component has neither constant
nor linear terms;

3. The remaining terms of the first two components are determined by the
coefficients of the terms of the third, fourth and fifth components.

Proof. Most of the following statements of a computing nature have been
obtained with the aid of a symbolic computation program (Mathenf&jica

Consider an affine basis B and a charty of Sas in the last section and let:
¥(u, v) = (XU, ), Y(U,v), Z(U, v), WU, v), T(U, v)).
Firstly we consider the change of variable given by:
(X,Y) = z2+C 2%+ +CZ', z=u+iv, o =a+ibkeC, k=234

We compute the derivatives of the resulting chiagt (0, 0) and observe that
we can pick out the coefficients, by, as, bs, a4, b4 in order that:

XUU = YUU = quu = Yuuu = quuu = Yuuuu =0.

Here, and in the following, symbols &, denote the corresponding derivatives
atu = v = 0. Next, since the chart is isothermal, we must have

E_G=¢u'¢u_¢v'¢v50a
F=d¢u ¢, =0.

Therefore, the functiong — G and F and its first and second derivatives
vanish at the origin. Then we obtain a system of eighteen equations that are
linear in eighteen of the coefficients, and may be solved uniquely so that:

— the coefficientXyy, Xyv, Yuu, Yoo are zero

— the remaining non-null coefficients o€, Y up to fourth degree can be
written as function of the coefficients @, W, T. O

Bull Braz Math Soc, Vol. 38, N. 2, 2007



RELATIVE MEAN CURVATURE CONFIGURATIONS FOR SURFACES INR",n > 5 171

Proposition 5.5. Let m be a semiumbilic point 06. Then, we can find an
orthonormal affine basis ofR® and an isothermal chart¢ of Sin a
neighborhood ofm such that the function:

¢ (U, v) = (XU, v), Y(U,v), Z(u, v), W(u, v), T(u, v)).
obtained in the preceeding result verifies:

Tuu = Tvv = Tuv = O,
Wuu = va 7& O, Wuv = O,
[Zuul # 1Zwls  Zuy = 0.

Proof. We have:

Zyu+ Zyy Wou+ Wy Tuu+ Tow
H@,0) = (0,0
( ) ) < b ’ 2 b 2 9 2 >
Zuu - Zvv Wuu - va Tuu - Tvv
B 0, O == O, O, ) 9
©.0 ( 2 2 2 )

C(Oa O) = (0, Ov ZUU’ WUU’ Tuv)'

Since the minor semiaxis of the curvature ellipse is z€@, 0) = 0. Thus
we can suppose that the 4th componenB@, 0) and the 5th components of
B(0, 0) andH (0, 0) vanish, and this implies the proposition. As a consequence,
we have:

Zuu+ Zuy

H(@O,00 = (0,0,
0,0 ( >

’ WLIU» 0) ’

2
C0,0) = (0,0,0,0,0.

Z - Zvv
B(0,0) = (o, 0, %=, 0),

Thus,Z,, # Z,, becausen is not umbilic; W,, # 0 becausen is not a point
of inflection; andZ,, # —Z,, becausen is not a pseudo-umbilic. O

Theorem 5.6. Letm be a semiumbilic point db. The Taylor expansion an
of the differential binary equation of the relative mean curvature lineSisf
(Noau + Nigv + 0(2))(du? — dv?) + O(2)dudv = 0,
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where )
NOl = WuuWuuv(Zuu - Zvv) s

NlO = WUUWUUU(ZUU - Zvv)27
WUU # O’
| Zuul # 12yl

(5.1)

and the coefficientdy,,, Wy, are arbitrary.

Proof. The linear part comes from the expressiop@ind after some calculus
with a symbolic computing program it is obtained that each coefficient of the
guadratic term can be controlled by a different coefficient of the expansion of
the functiong. O

Clearly, the semiumbilic points are not of Darbouxian type for the equation of
the mean relative curvature lines, because they do not satisfy the transversality
condition. The leaves of the linearized equation consist of an orthogonal net.

We shall see now that, though the transversality conditions fail at a semiumbilic
pointp € S, itis possible to analyze, following the method developed in [15], the
configuration of the relative mean curvature lines around a generic semiumbilic
point. By generic we mean here thaimmust not satisfy some (non-necessary)
equality atm.

Definition 5.7 ([15]). Letm be a singular point of a binary differential equa-
tion. It is said to be of typeDi3 if the following conditions hold:(1) The
transversality conditiors.1 fails atm; (2) In the two critical points of the func-
tion F onIT~1(m) (see subsectioh.2), the functionF is of Morse type.

The topological index of a singularity of typ?%3 is zero and its configuration
is described in the figure 1. For details see [15] and [11].

One of the foliations near@; ; point has two semiumbilic separatrices and two
hyperbolic sectors. The other has three semiumbilic separatrices, one parabolic
and two hyperbolic sectors.

Theorem 5.8. Letm be a generic semiumbilic point & Then, as a singular
point of the binary differential equation of the relative mean curvature lines of
S, itis of typeD; 5.
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Proof. Consider the preceding chatof S, aroundm. The polynomiaky(p)
whose zeroes give the singularities of the vector fiElds given by

1
p(p) = ZWuu(Zuu - Zvu)z(Wuuv + quvv)(p2 - 1.

Itis of third degree if, as we assume by generidity,, = 0. Then, its roots are

Wuw
= — , = —1, = l
Po Wioo P1 P2
If by genericity we assume that
Wuuv
_ 1,
WUUU 7&

we see that they are simple and the hiperbolicity condition holds.
The critical points ofF in the fibre ovemm are given by the equation

1 1
(Z(l — POWuuWou (Zuu — Zuw)?, 20— P2 WuuWapy (Zuu — Zuw)?, 0) =0.

SinceW,, # 0, Z,, — Z,, # 0 and we have assumed that,, # Wu..,
we see that the critical points a(@, 0, +1). The corresponding values of the
Hessian ofF, computed with Mathematiare

1
:l:ZWuzu(Tuvauuv - Tuquuvv)z(Zuu - Zvv)s(zuu + Zvv)

and they are non-zero if, as we assume by genericityn,othat Ty,, Wyuw —
Tuquuvv # 0 |:|

The figure below shows an example illustrating the generic configuration of
the relative mean curvature lines around a semiumbilic point of a surfa2 in
The drawing has been produced with the aid of the program “ParametricasR5”
due to the third author, which is available on request.

Example 5.9. In this figure the mag : R> — R® is given by

5uv? uvd® 3t

Y +14u2v2—%—%,v+u2v

503 vt U2 &S

_43 2.2 _ 12 3_ - - _
u“v — uv 3+ Uv 3 3

du,v) = (u —ud—

u3 uvd U2 2

+ ?U+UZ—2UU2+%,?+U2U+%—2UUZ
v3 Wl udv 208
— 4 —, 207 ——uz——).

+ 3+ 5 v+ 3 v 3
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Figure 1: Relative mean curvature lines configuration around semiumbilic point,
for a surface orR®.

Its coefficients have been obtained by choosing more or less at random the
coefficients in the expressions ¥f Y, Z, W, T that do not depend on other
coefficients.

5.3 Generic configurations at pseudo-umbilic points

In this section we will see that a generic pseudo-umbilic poirdgf a surface

S e 7 ¢ Imm(R?, R) is of Darbouxian type. We recall that at these points
the mean curvature vector is perpendicular to the plane of the curvature ellipse,
which is not degenerate. Thus, in this case the conditibgs 0, B A C # 0,
H.-B=H.C =0 hold at(0, 0).

Proposition 5.10. Letm be a pseudo-umbilic point & Then, we can find an
orthonormal affine base @?® and an isothermal chagt of Sin a neighborhood
of m such that the function:

#(u, v) = (XU, v), Y(U,v), Z(u, v), W(U, v), T(u, v)),
obtained in the preceding section verifies:

Wuu = va = Zuv = Tuv = 07 Tvv = TUUa Zvv = _Zuu-

Proof. The proof proceeds as in 5.2, taking the affine reference s®ti8a0)
=bea, C(0,0) =ce andH (0, 0) = hes. O
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Theorem 5.11. Let m be a generic pseudo-umbilic point 8 Then, as a
singular point of the binary differential equation of the relative mean curvature
lines of S, it is of Darbouxian type.

Proof. The differential equation of the relative mean curvature lines up to
degree one is given by

(Ju+ Lv + 02)(dw? — dv?) 4+ 2(Pu+ Qu + O(2))dudv = 0,
where
J = ZSU(ZTuuTuuv + Wuo (Wouuu + Waw));
L = ZSu(ZTUUTUUU + Wuv(Wuuv + vav));
P = W2 (Tuu(Tuwe — Tuw) — Zuu(Zuwu + Zuw));
Q = Wuzv(Tuu(Tvvv - Tuuv) - Zuu(zuuu + Zvvv))-

The coefficienW,,,,, appears linearly in the produBt(0, 0)L (0, 0), whereas it
does not appear in the produbto, 0) Q(0, 0). Conversely, the coefficieMi,y,
appears linearly id (0, 0) Q(0, 0) and not at all inP (0, 0)L (0, 0). Hence, ifmis
generic,P(0, 0)L (0, 0) — J(0, 0)Q(0, 0) does not vanish, and the transversality
condition is verified.

We check now the hyperbolicity condition.

In the chart(u, v, p = ) on P SaroundI1~%(0, 0), the singularities of the
Lie-Cartan vector field are determined by the roots of the cubic polynomial

p(p=Lp*+ I -2Q)p* -~ (2P + L)p—J.

This polynomial has only simple roots provided its discriminant does not
vanish, which is a generic condition. O

5.4 Some global consequences

Application of the Poincaré-Hopf index formula for foliations on closed oriented

surfaces leads to the following:

Corollary 5.12. The numberN,s of pseudo-umbilic points of a closed

oriented surfaces generically immersed intR", n > 5, satisfies the relation
Nps = 2|x ()],

wherey (S) denotes de Euler number &f
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Proof. Just observe that the index of the relative mean curvature foliations is
zero at generic semiumbilics aﬂﬁ% at generic pseudo-umbilics. d

Then from the definition of pseudo-umbilic point it follows:

Corollary 5.13. Any generic immersion of 3-sphere intoR" has at least
4 points at which the mean curvature vectdr is orthogonal to the normal
subspace determined by the curvature ellipse.

In the general case of non necessarily generic immersions we can assert:

Corollary 5.14. Closed oriented surfaces with non vanishing Euler number
immersed intdR", n > 5, always have either some semiumbilic, pseudo-umbilic,
inflection, or minimal point.

On the other hand, we can consider the special subset of 2-regular immersions
of surfaces imlR", n > 5. These were introduced independently by E.A. Feld-
man [5] and W. Pohl [23]. They are characterized by the fact that the normal
subspace spanned by the second fundamental form has maximal dimension at
every point (or in other words, dirNgS = 3, Vp € S). This means in our
context that the vectorl, B andC are linearly independent at every point. It
was shown by Feldman [5] that the subset of 2-regular immersions of any closed
surface inR" is open and dense (in the Whitn&y°-topology over the set of
immersions) providedh > 7. A 2-regular immersion of the 2-sphere irt8
was described in [3] and the existence of a wider class of such immersions is
discussedin[25]. Nevertheless the existence of 2-regularimmersions of surfaces
with non zero genus int&® still remains as a conjecture.

The above considerations imply the following.

Corollary 5.15. Closed oriented-regular surfaces with non vanishing Eu-
ler number inR", n > 5, always have pseudo-umbilic points (minimal points
considered as a particular case).
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