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Abstract. In this paper, we define robust transitivity for actionsRdfon closed con-
nected orientable manifolds. We prove that if the ambient manifold is three dimensional
and the dense orbit of a robustly transitive action is not planar, then the action is defined
by an Anosov flow, i.e. its orbits coincide with the orbits of an Anosov flow.
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1 Introduction

In some recent works in the theory of dynamical systems robust transitivity of
diffeomorphisms and flows has been investigated. It has been shown that, weak
forms of hyperbolicity are necessary conditions for robust transitivity of flows
and diffeomorphisms of compact manifolds. Bonatti-Diaz-Pujals [1] proved
that C1-robustly transitive diffeomorphisms admit dominated splittings. Pre-
vious to their work, Diaz-Pujals-Ures [3] had proved that robustly transitive
diffeomorphism on three dimensional manifolds are partially hyperbolic. For
Cl-flows, there are parallel results on robust transitivity. See for example a re-
sult of Vivier [15] about robustly transitive flows on any dimension and a result
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of Doering [4] in three dimensional case. For more recent results about robustly
transitive subsets of flows, see [6] or [8].

Using Kupka-Smale theorem in one dimensional case, one deduces that there
does not exist any robustly transitive diffeomorphism on one dimensional mani-
folds. Also, by a result of Peixoto [9], we know that the Morse-Smale flows form
a dense subset of the set®f-flows on any surface. As Morse-Smale flows can
not be transitive, we conclude that robustly transitive flows may exist only on
manifolds with dimension higher than two.

If we consider the diffeomorphisms or flows defined on a manifold as the
action ofZ, R on it, a natural question arises: “what about robustly transitive
actions of higher dimensional groups?”

In this paper, we begin with the study of robustly transitive action®by
giving some examples of these actions and proving that in three dimensional
manifolds the only robustly transitive actions Bf (We do not consider the
case when all orbits are planar) are defined by robustly transitive flows (see
Theorem 1.3). By a result of Doering, we know that robustly transitive flows on
three dimensional manifolds are in fact Anosov.

Let N denote a closed connected orientable three manifolgparif x N —

N be aC'-action. By definition

@(U, p(v, X)) = (U + v, X), VU, v € R?, ¥x € N.

For eachw € R?\ {0}, ¢ induces aC'-flow (¢! )iz given by ¢! (p) =
¢(tw, p) and its corresponding’ ~*-vector field X,, is defined byX,,(p) =
D1¢(0, p)-w. If {w1, w,} isabaseofR?, the associated vector fields,,, X,
satisfy the commutativity ConditiO{Ile, sz] = 0 and determine completely
the actiong. They are callednfinitesimal generatorsf ¢. This condition of
commutativity between two vector fields is a necessary and sufficient condition
for them to be generators of an actioX1 o) and X 1) are called theanonical
infinitesimal generators

Denote byA"(R?,N) 1 < r < o the set of actions off? on N whose
infinitesimal generators are of clag¥. Given two actions{¢; X1,0), X1}
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and{v; Y0, Y1)} define,

dap (e, ¥) = max{[Xwo — Yol 1 Xon — Youli}-

With this distanceA” (R?, N) is a metric space and its corresponding topology is
called theC*V-topology.Note that this topology is finer than th@?-topology
and coarser than th€*-topology. For any actiopp € A"(R?, M), O, =
{¢(®, p), » € R?} is called the orbit ofp € M. The orbit is callecsingular if

its dimension is less than two.

Given anyC!-vector field, one can construct an actionRsf with all orbits
singular. LetX be aC?! vector field onN. Let X; = X and X, = f X such
that X (f) = 0. Itis clear thatX; and X, commute and consequently define an
action onN.

Definition 1.1. We say that an actiop € A'(R?, N) is defined by a flowif
there existsX € X*(N) such that the orbits ap coincide with the orbits oK.

Clearly if ¢ is defined by a flow corresponding ¥then any other generator
of ¢ is linearly dependent tiX.

Definition 1.2. An actiong € A(R? N) is calledtransitiveif it admits a
dense orbit.p is robustly transitivef all actions in aC? neighborhood of it,
are transitive.

Our main result is the following theorem.

Theorem 1.3. Let N be a closed orientabl&-manifold. Assume thag €
A'(R?, N) is robustly transitive with a dense orbit which is not homeomorphic
to R?. Then,p is defined by an Anosov flow.

We mention that the hypotheses about the topological type of the dense orbit
is important to our result. By this hypotheses, the dense orbit is cylindrical or
homeomorphic t®. However, we conjecture that the same result is true without
this hypotheses.

We would like to thank C. Bonatti for mentioning us, that Rosenberg had left
the stability problem of the action with all leaves planar (which is the case we
are avoiding here) as an open problem. More precisely, ket an action oR?
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on T with all leaves homeomorphic 2. It is not known whether in general
¢ is topologically stable or not. It is known that such action is topologically
equivalent to a linear action &? (see [2]).

To prove our main result, we study the topological type of the orbits of a
robustly transitive action. In general, one can have only three different topo-
logical types for non singular (two dimensional) orbits of an actioriRéf
The non-singular orbits are homeomorphiStox R, R? or St x St. Firstly we
show that under the hypotheses of the main theorem, if the dense orbit of the
robustly transitive action is homeomorphicRothen it is defined by an Anosov
flow. Finally, by means of a closing lemma f&¢ actions, we prove that a ro-
bustly transitive action (whitout dense orbit homeomorphiRtpcan not have
a dense cylinder.

The paper is organized as following: In section 2, we give some examples of
robustly transitive actions and prove some topological properties of the orbits
of R? actions. The lemmas proved in this section are used in section 3. In
section 3, firstly, we recall a closing lemma for actions without planar leaves and
then prove the main theorem.

2 Examples and basic results
Let us give some examples of robustly transitive action&of

Example 2.1. Firstly we construct a singular (defined by flow) example of a
robustly transitive action. Consider a robustly transitive expansive (we demand
robustness of both transitivity and expansiveness) flow defined by vectoKfield
onamanifold\. Any robustly transitive Anosov flow is an example of such flow.
Letgp € AY(R? N) be the action defined by, := X andX; := cX(c € R).

It is obvious thal{Xl, X2] = 0 and so they define a transitive actionR#
in N. Clearly, all orbits of this action are singular. We claim thds a robustly
transitive action. Indeed, suppogee A'(R?, N) any C*Y perturbation of
¢. By the definition ofC*Y-topology in A'(R?, N) we conclude that/ is
defined byXy, X, such thaf X1, X,] = 0 andX; is C*- close toX;,i = 1, 2.
So, X; is also an expansive transitive vector field. By a result of Masatoshi [7]
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ROBUSTLY TRANSITIVE ACTIONS 193

the centralizer of an expansive flow is trivial. This means that= f X; (f is
a first integral) and consequentilyis also defined by a transitive flow. Observe
that, in this way, for ank > 2 we can give example @& robustly transitive
actions onl —dimensional manifoldd, > k + 1.

Let denote byX' the flow of a vector fieldX.

Example 2.2. Let N be a three dimensional manifold supporting a robustly
transitive Anosov flow. We construct a robustly transitive actioblih= N x St
which is not defined by a flow. Consider the coordinate systers) in M#4,

x € N,6 e St In what follows, for a real functiom(x, 6), by a(x,@)% we
meanala‘%l + a2& + a3& wherex;, X», X3 are coordinates iiN.

Letp € AL(R2 M*) be defined byX; and X, such thatX; = a(x)- is a
robustly transitive Anosov flow itN and X, := % We claim thatp is robustly
transitive.

Consider &% V-perturbationy of the initial actiong. It is generated by two
vector fieldsY; andY, which are respectivelZ?! close toX; and X».

Let Ng := {(x, 0): x € N}. By transversality ofX, to Ng and closeness of
X5 andY, we conclude thaY, is also transverse tiNg.

In our coordinate systems

ad 0]
Y1 = a(x,0)— +b(x,0)—.
1 (X, 0) 7~ +Db(x )89

9 9
Yo = ¢(X,0)— +d(X,0)—.
2 ( )ax+( )89

whereb andc are close to zero i€!-topology,a anda are close in each coor-
dinates andl is close to constant 1. We define

ad
I1(Y,) = dY; —bY, = (ad — bC)a_X

Observe that ifN, I1(Y;) is aC*-vector field close toX; and consequently it
is transitive. The intersection of the orbitsyfwith Ny coincide with the orbits
of IT(Y1)|n,- Let Xo € No with aIl(Y1) dense orbit. We claim that the orbit of
¥ passing throughy is dense ifM4. To see this, just observe thisg is a global
transverse manifold for,. LetU € M*an open setand =  J, g Y2(U) N No.
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Then,V is an open subset ™y and by density of the orbit ofy by TT1(Y;) there
existst € R, Y;{(xo) € V and consequently for songee R, Y5(Y; (X)) € U
and this means that thig—orbit of X, is dense irM and+/ is transitive.

Now, we outline some basic results about actionRofhich will be used in
the proof of the main theorem. Recall that, for any action A'(R?, N), O :=
{#(w, p), w € R?} isthe orbitofp € N andGy := {w € R?: ¢(w, p) = p}is
called the isotropy group gf. Observe that groups isomorphicRox R, R x Z,

R, Z, Z x 7Z and{0}, are respectively isotropy groups of orbits homeomorphic
to single point, circle, line, cylinder, torus and plane.

Lemma 2.3. Suppose that), is accumulated by, thenG, € G4. Conse-
guently, any two dense orbits are homeomorphic.

Proof. To prove, just observe that fes € G, by definition of action and
isotropy group we have (w, ¢(n, p)) = ¢(n, p), for anyn € R? So, by
continuity of ¢ we conclude that, iz is an accumulation point ob, then
¢ (w, 2) = zand consequently we havee Gq.

Finally, observe that if botld , and®, are dense, we conclude tha} = G
and this implies that the two orbits are homeomorphic. O

Using the above lemma we can show that all the dense orbitshaive the
same topological type. In the setting of Theorem 1.3 all the dense orbits are
either line or cylinder. In fact, it is easy to see that the existence of a dense line
prohibits the existence of any (not necessarily dense) cylinder.

Lemma 2.4.1f ¢ € AY(R?, N) has a dense orbit homeomorphicRgtheng is
given by a transitive flow.

Proof. Let X;, X, be two infinitesimal generators f@r. By existence of a
dense orbit homeomorphic ® and continuity ofX; and X,, we conclude that
foranyx € N, X1(x), Xz2(x) are linearly dependent. So, by definitipiis given
by a transitive flow. O

Lemma 2.5.1f ¢ € A}(R?, N) has a dense cylinder orbit, then any two dimen-
sional orbit is either homeomorphic to torus or to cylinder.
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Proof. Suppose that, is a dense cylinder orbit. The isotropy groupmfs

Zu for some 0+ u € R?. Let Y be the vector field such that' = ¢ (tu, -). It

is clear thaty'(p) = p. Let X be the vector field whose flow corresponding is
X! = ¢ (tv, -), wherev is any linearly independent 1o As X andY commute
every point on9,, is periodic with period one foY. Indeed, any € O, can be
written asz = Y!(X3(x)). So,

Yi(2) = YHYH(X3(x))) = YHX3(Y(x))) = YH(X3(x) = z.

Now, using denseness 6f, and continuity ofY* we conclude that any point of
the manifold is a periodic point for¥ which finishes the proof of the lemmal

3 Closing lemma and proof of the main result

First of all let us recall the closing lemma of Pugh ([10, Theorem 6.1]) for the
flows in a two dimensional manifold.

Theorem 3.1.Let X € X1(M?) have a nontrivial recurrent trajectory through
p* € M, letU be a neighborhood gb* ande > 0 be given. Then, there exists
Z € X (M) such that:

1. X — Z vanishes orM \ U,
2. theC!-size ofX — Z is less thare respecting th&J -coordinates,

3. Z has a closed orbit througip*.

In [13], Roussarie and Weil proved a closing lemma for the actioR%6n
three manifolds. More precisely one of their results is the following:

Theorem 3.2. Let N be an orientable compact clos€d (r > 2), 3-manifold
and ¢ a locally freeC"-action. If all orbits ofp are not planar, then there is a
locally free actionp; € A"(R?, N) with a compact orbit an€*-close togp.

To prove the above theorem, the authors firstly observe that eittias a
compact orbit or all the orbits are dense. In the latter case justgakey;.
In the former case, the denseness of all orbits is a corollary of a result of
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Sacksteder [14] about the minimal setsR¥f ! actions omn—manifolds. The
result of Sacksteder states that there is no exceptional minimal set for locally
free actions. Using the denseness of a cylinder, one can show that all other orbits
are cylindrical. In this setting (all the orbits are cylindrical) the proof of Pugh
closing lemma for flows on surfaces can be carried on to provegtttain be
perturbed to give a compact orbit.

Let us mention that the above theorem is not the main result of Roussarie
and Weil's paper. In fact, their paper is mainly dedicated to the proof of the
following theorem [13, Theorem 2 (1)].

Theorem 3.3. Let¢ be aC"-action. For all non-planar and recurrent orbis

and for alle > 0 there exists a submanifold diffeomorphicTtd, e-close toA

such that the plane field tangent to this submanifold can be extended to a plane
field C* near to plane field corresponding o

The main issue in this result is to find a nearby torus to the recurrent leaf.
Here we have a general action which can have singularities. However, we
suppose that there exists a dense cylinder and claim a closing lemma.
Let Op be a cylindrical orbit ofp € A*(R?, N) and{w;, w,} be a base of
R? such thatw; is a generator of the group,, . Write X = X,,,, Y = X,,, then
Y has periodic orbit througp. We may suppose that it has period one.

Theorem 3.4. Let N be an orientable compact close8manifold andy €
A'(R?,N). If there exists a dense orb#?, of ¢ homeomorphic t&* x R,
then there is an actiop; € A'(R?, N) with a compact orbit an€®-V-close to

¢. Moreover, the perturbation is supported on a neighborhood of the periodic
orbit of Y through p.

Proof. To use the closing lemma of Pugh, we should adapt the ideas for the
case of actions. We emphasize that the lack of planar orbits is crucial to obtain
such a closing lemma. Whenever, we have a dense cylinder we choose a closed
orbit of one of the infinitesimal generating vector fields and take an adequate
system of coordinates around this closed orbit. Firstly, we introduce this coor-
dinate system.
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3.1 Infinitesimal generators adapted to aS* x R-orbit.

Note that ifq € Op, then the orbit ofy passing throughy is periodic of period
one too (see proof of Lemma 2.5). Put a Riemannian metrisl @nd leté be
the norm one vector field defined in a neighborhood oﬁrtbdahat is orthogonal
to the orbits ofp.

Let c be the circle orbit ofY throughp. For smalle > 0, define the ring
A = {Y'(£'(©), It] < €} (see figure 1). As the action ¢sis orientable and
is small, A, is diffeomorphic toS! x (—e, €). We parametrize with 6 < [0, 1]
such thata% = Y|c. We put a coordinate systefr, 6, z) in a small neighborhood
of ¢ diffeomorphic toS! x (—e¢, €) x (=1, 1) such that:

xzi, y=2, g:i
X a0 0z
In this new coordinates system the (pieces of) orbitg fside such neighbor-
hood arez = constant.

Figure 1: Adapted coordinates near

An small box in our new coordinates will serve as a flow box of the closing
lemma of Pugh. All the orbits passing through this box are two dimensional.
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Like in the closing lemma for flows, we have a transversal section, which is a
ring in our case. We construct this ring foliated by closed orbit¥ ofNow,

we should take care about the returns of the dense orbit in our neighborhood.
More precisely, we show that the dense orbit returns and intersects the transversal
section in closed orbits.

Lemma 3.5. Let @, be a dense cylindrical orbit op € A'(R? N) andc
(homeomorphic t&*) be the periodic orbit off passing througtp. Then, for
any neighborhood) (c) ¢ N of c there exists an unbounded sequetice R
such thatX%(c) c U (c).

This lemma was announced in [12] in the non-singular actions context. For
completeness of the proof we show that singularities do not matter. In what fol-
lows X andY are two generating infinitesimal vector fields fpe A'(R?, M).

Proof. Let U, be ane-neighborhood ot in M such thatY'(z) € U(c) for
anyz € ‘U,t € [0, 1]. By density of @, there existz € c,t € R such that
XY (2) € U.. It comes out thaty' (X!(z)) € U(c) whereY'(.) stands for
{YS(),s € | =10, 1]}. But by commutativity

Y!'(X'(2) = X'(Y'(2)) = X'(c) € U(c).
As ¢ can be any small number, we conclude that there is a seqiiereecc
such thatx' (c) € U (c). O

So, we can carry the proof of the closing lemma for flows to the case of
actions ofR? whose orbits are not planar. d

3.2 Proof of the main theorem

Let U be aC™? neighborhood of such that every action iftl is transitive.

We will prove thatp is defined by an Anosov flow. As previously we mentioned
(Lemma 2.4), if the dense orbit of a transitive action is one-dimensional then the
action is defined by a flow. In what follows we will show that a robustly transitive
action can not have a dense cylinder. So, we conclude that i faagiven by
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a robustly transitive flow and by a result of Doering [4], it comes out ¢hiatan
Anosov flow.

First of all, we state a technical lemma which is standard in algebraic
topology?

Lemma 3.6. Let N be a three dimensional compact orientable manifold. There
existsk € N such that ifTy, T, ..., Tx are submanifolds homeomorphic to
torusT?, then they form the boundary of a three dimensional submanifditl of

Having in mind the above lemma, we conclude thak itlask compact orbits
then there can not exist any dense orbit. Indeed, any dense two dimensional
submanifold should intersect one of théseri.

Suppose thaty has a dense cylinde®,. Let ¢ be the periodic orbit
(homeomorphic tcS') through p and A, the ring defined in 3.1. Recall that
{z=0NA =candall{z =t} N A, |t] < ¢ are periodic orbits of the
generating vector fieltY. By Lemma 2.5 all two dimensional orbits are either
cylindrical or homeomorphic to torus.

Takee > 0 such that all the orbits passing throughare cylindrical. In fact,
if there does not exist such amwe conclude that there are more thatorus and
using the above lemma we contradict the densene@g,ofor0<i <k—-1

et i i +1)
€l | €
A = {?<Z< K }

By the denseness @l, and Lemma 3.5 there exists a return tifnsuch that
X'(c) € {I1z] < £}. As X'(p) € {Iz| < £} we projectX'(p) along the orbit of
X and find out such thatX!(p) € Ao. By definition, A, is foliated by the orbits
of Y and by the commutativity oK andY one concludes thaX'(c) € A, for
somet. Indeed,

XHYS(p)) = Y3(XY(p)) € Ay forall sel0,1]

which means thaX!(c) € Ay.

1The authors would like to thank C. Biasi for usefull comments and a proof on this lemma. Later,
we find out that a similar lemma was proved in [11]. So, we omit the similar proof.
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Now, we use the closing lemma (Theorem 3.4) and perptjrtside{ |z| < ﬁ}
and find a new actiop; andC*Y-close top with a compact orbit. Ag, is also
transitive, it has a dense orbit which we claim it is of cylindrical type. To see this
remember that our perturbation is supportec{ fah < E} and consequently the
orbits passing through, i > 0 remains cylindrical. So, the dense orbitggf
which necessarily interse¢f < z < 2} is cylindrical. Perturbing again by the
closing lemma (Theorem 3.4) we obtain another invariant torus and by induction
we findg, € A*(R?, N) with k compact leaves which by Lemma 3.6 form the
frontier of a compact three manifold with boundary inshend consequently

no dense orbit can exist which gives a contradiction.

Acknowledgment. The authors would like to thank Fapesp (Fundacdo de
Amparo a Pesquisa de Estado de Sao Paulo) for financial support (projeto
tematico 05/03107-9.)
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