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Abstract. We prove a dichotomy dof? partially hyperbolic sets with one-dimensional
center direction admitting no zero Lyapunov exponents, either hyperbolicity over the
supports of ergodic measures or approximation by a heterodimensional cycle. This
provides a partial result to th@! Palis Conjecture that claims a dichotomy, hyperbol-
icity or homoclinic bifurcations in a dense subset of the spad@'adiffeomorphisms.
Moreover, a theorem of Mafié applied in the proof is modified to have an additional
property concerning the Hausdorff distance between a periodic orbit and the support of
a hyperbolic ergodic measure.
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1 Introduction

Let M be a smooth compact manifold without boundary, and let Diffy (r > 1)

be the space &' diffeomorphisms with th€' topology. In order to understand

the dynamics beyond uniform hyperbolicity, Palis has conjectured that every
diffeomorphismf < Diff" (M) in the complement of the closure of Axiom A
diffeomorphisms (hyperbolicity of the nonwandering Qétf ) that is the closure

of all periodic points) can be approximated by sogne Diff' (M) exhibiting

a homoclinic tangency or a heterodimensional cycle [P]. Foithease (that

is considered to be the only realistic one in the present situation), Pujals and
Sambarino solved it when dirM = 2 [PS]. For higher dimensions, partial
results have been obtained by Pujals ([Pul], [Pu2]) and Wen ([W]). On the other
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hand, the study of partially hyperbolic dynamics is crucial for the understanding
of nonhyperbolic dynamics, and has been one of the main subject of dynamical
systems (see [BDV]). So, it is reasonable to ask @tePalis Conjecture for
partially hyperbolic diffeomorphisms. In this paper, we shall give a partial result
to this problem.

A dominated splittingon a compact invariant set of f e Diff!(M) is a
continuous D f -invariant splitting

TMIA=E®F
such that there exish € Z* and 0< A < 1 satisfying
[(DFMHIEE) - [(DF™HIFETOO) < A

for all x € A. In particular, if dimE(x) is constant for alk € A, we call it a
homogeneoudominated splitting.

We say thaff M|A = F; & F, @ F3 is adouble dominated splitting both
F1® (F, ® F3) and(F, & F,) @ F3 are dominated splittings. In particular, we
say that a subbundlg; (resp. F3) is contracting(resp.expandingif there exist
m € Z* and 0< A < 1 satisfying

I(DFMIFLON < A

(resp.[[(Df ™™IFs(x) || <)

forall x € A.
We say thatA is a partially hyperbolic set with one-dimensional centdr
f e Diff}(M) if there exists a continuouB f -invariant splitting

TMIA=E*® E°® E"
with dimE®(x) = 1 (x € A), satisfying the following properties:
a) the splitting is double dominated;
b) both subbundlegs andE" are not zero;
c) E®is contracting ande" is expanding.

Denote byW3i(x) (resp. Wi (x)) the local strong stable (resp. unstable) mani-

fold of x tangent toES(x) (resp.E"Y(x)) atx. Note that ifEC is zero them is a
hyperbolic set. When = M is a partially hyperbolic set with one-dimensional
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center, f is called apartially hyperbolic diffeomorphism with one-dimensional
center

We define, for every hyperbolic periodic poipt its index Ind(p) by the di-
mension of the stable subspae®g(p). A heterodimensional cycls a geomet-
ric configuration between two hyperbolic periodic points with different indices
such that their stable and unstable manifolds have mutual nonempty intersection;
i.e., if p,q € Per f) with Ind (p) # Ind(q) satisfyWs(p) N WY(q) # @ and
WY(p) N W3(q) # ¢ then we say thaf exhibits a heterodimensional cycle.
Note that one of the intersections is not transversal. In particular, we say that
exhibits a heterodimensional cyclelihif there are pointx € W3(p) N WY(q)
andy € WY(p) N W3(q) such that the closure of the full orbit @fand that of
y are both contained ib. Since any partially hyperbolic diffeomorphism with
one-dimiensional center does not exhibit a homoclinic tangency, the dichotomy
in a dense subset of DHfM), either Axiom A diffeomorphisms or ones with a
heterodimensional cycle, is the conjecture in our case.

Let M(M) denote the set of probabilities on the BosehlgebraB of M
endowed with its usual topology; i.e., the unique metrizable topology such that
uk — w if and only if [ @dux — [ ¢du for every continuous functiop :

M — R. Denote byM (M) the set off -invariant elements oM (M) and by
Me(f) the setof ergodic elements®i; (M). If f e Diff}(M), denote byA ( )

the set of regular points; i.e., the set of point& M satisfying the following
properties: there exists a splittiigM = ;_, E;i (x) (the Lyapunov splitting
atx) and numbera;(X) > --- > A5(X) (theLyapunov exponentd x) such that
Iimn_,iooﬁlog [(Dx TN = Aij(X) forevery 1< i < sand 0# v € E{(X).

By Oseledets’ theorenmf\ ( f) has total measure; that ig(A (f)) = 1 for every
uw € M¢(M). (See [BP], [M1] or [Po].) Define

Ex= P Ex, E'0= P E,

A (x)<0 A (X)>0

and
E°0 = P EX
Ai(x)=0
at everyx € A(f). We say thatu € Me(f) is hyperbolicif E%(x) = {0}
at u-a.e.x. Similarly to the index of a hyperbolic periodic point, we denote
the index of hyperbolic ergodic measyreby Ind () = dim E~(x) for u-a.e.
x € A(f). Define

S(f) = {x € supp(n) : u € Me(f) is hyperbolid.
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Denote by Petf) the set of periodic points of and Peg( ) that of hyperbolic
ones in Petf). Notethat Peg(f) c S(f).
The following theorem provides a partial result to the conjecture above.

Theorem A. Let f e Diff}(M) be aC? diffeomorphism admitting no zero
Lyapunov exponents (any Lyapunov exponent of any ergodic measiires of
non-zero) and\ be a partially hyperbolic set with one-dimensional centef of
Then, one of the following properties holds:

a) S(f)N Ais ahyperbolic set;

b) given aC! neighborhoodU of f and a neighborhood) of S(f) N A,
there existg € ‘U exhibiting a heterodimensional cyclelih

A theorem of Mafié [M2, Theorem I.1] will be applied in the proof of Theo-
rem A to our partially hyperbolic setting. The following theorem is its modified
version, giving us an additional property (which is not necessary to prove The-
orem A) concerning the Hausdorff distance between the periodic orbit given
in the conclusion and the support of a hyperbolic ergodic measure. The hy-
pothesis is stronger than the original one, but includes the case whisrthe
closure of hyperbolic periodic points with the same index to which [M2, The-
orem I1.1] actually applied in the proof of th@! Stability Conjecture [M2].
Denote byO7 (x) (resp. OF(x)) the forward (resp. backward-orbit of x,
and letO¢(x) = OF (x) U 05 (x). A finite part of orbit{x, f(x),..., y} with
y = f"(x) in ©F (x) is called astringand written asix, y; f) orjust(x, f"(x))
when it is not necessary to specify

Theorem B. Let A be a compact invariant set gf € Diff!(M) written as:

A = {x e supp(p) : n € M}

for someM C M(g) consisting of hyperbolic measures with the same index,
and letT M|A = E® F be ahomogeneous dominated splitting with @) =

Ind (n) (X € A, u € M) such thatE is contracting. Suppose that there exists
¢ > Osuch that

1 . :
lim inf HJZ_;IOQH(DQ IF @ ) < —c (1)

at u-a.e. x for all u € M. Then eitherF is expanding or for every sufficiently
small neighborhoo® of A, every0 < y < 1and§ > 0, there exists a periodic

Bull Braz Math Soc, Vol. 38, N. 2, 2007
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point p € M(g, V) N Perg) with arbitrarily large period¢ such thatOg4(p)
contains a substring-close tosupp(u) for someu € M with respect to the
Hausdorff distance and satisfying

l
y' <[] IPg™HIF@ ol < 1, )

j=1

whgreEis given by the unique homogeneous dominated splittikgM (g, V)
= E® F thatextendd M|A = E® F, andM (g, V) is the maximag-invariant
setinV.

In Section |, we consider a partially hyperbolic dynamics and create a hetero-
dimensional cycle from the lack of hyperbolicity & f) N A to prove Theo-
rem A. For the creation, we first find a transversal intersection of two hyperbolic
periodic points with different indices under the circumstance of Pesin Theory.
Then, we apply extended versions of th& Connecting Lemma to have also a
nontransversal one. In Section Il, we prove Theorem B based on the proof of
[M2, Theorem I1.1].

|. Proof of Theorem A

In this section, we shall prove Theorem A using Theorem B and extended Con-
necting Lemmas.

First, we give definitions and notations. By the Ergodic Decomposition Theo-
rem, a Borel sef ( f) defined asthe setafe M for which we havei, € Mg(f)
andx € supp(uy) has total measure, whepg is the unique probability measure
on the Boreb-algebra ofM such that, for every continuoys: M — R,

1 n-1 .
= lim = f!
fM pdix = lim ,Z;; w(t1(x)
holds, which comes from the Riesz Representation Theorem. (See [M1, Chap-
ter 11.6].) Define
I'(f)={xe A(H)yNT(f):Ind () =i}.

It is easy to see thdt'(f) is a Borel set (see [Po] for instance), and f) N
ri(fy=gifi # j. Fori > 1, let

S(f) = {x esupp(p) : u € Me(f) is hyperbolic, Indu) =i}.
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The following lemma isC* perturbation results proved in [H2], which are
diffeomorphisms versions extended from the Connecting Lemma introduced in
[H1]. So, we give the definitions for diffeomorphisms similar to those for flows
given in [H2].

For p, g andr in M, we say thap is forwardly related tog if g ¢ ©7 (p) and
there exists a sequence of strif@s,, Yn; fn) : n > 1} with lim,_, ;o fn = f,
liIMy 100 Xn = pand lim_ ., Yo = q. Moreover, we say thap is forwardly
related toq, orq is backwardly related t@, with one jump at if pis forwardly
related tar andr is forwardly related tay.

Lemma I.1 (Extended Connecting Lemmas [H2]).

) Given a neighborhood! of f e Diff'(M) and p, g € M \ Perf)
such thatp is forwardly related tog by f, — f, then there exist > 0
and g € ‘U coinciding with f outside an arbitrarily small neighbor-
hood of(p, 2" (p); f)U(fI (q),q; f) for someJ* (U, p, f) > 0and
J~(U,q, f) < 0andsuchthatthere arng’ andq’, respectively arbitrarily
close top andq independent ofj, satisfying the following properties:

a) (ﬁn(p’) = q' for arbitrarily large n;
b) gN(p’) = g for someN > 0;
c) (B,(p) UB,@) N (P, g"(p)9) = {p,a}.

I) Letp, g € M\ Per(f) be such thatp is forwardly (resp. backwardly)
related tog with one jump at some € M \ Per(f), thenp is forwardly
(resp. backwardly) related by somef, — f coinciding withf outside
an arbitrarily small neighborhood af7 (r).

Properties 1) and 1) correspond to [H2, Theorem A and Theorem B], respec-
tively.

Let us see how this lemma will be used to create a heterodimensional cycle.
First, we will see that iS( f )N A is not hyperbolic, then there appears a sequence
of strings with arbitrarily large length and arbitrarily bad hyperbolicity. Since
there is no zero Lyapunov exponents by our hypothesis, the bad hyperbolicity
comes from the mixing of positive and negative Lyapunov exponents over the
one-dimensional center direction. By the partial hyperbolicity and Katok Closing
Lemma, the existence of such orbit causes the transversal intersection between
two hyperbolic periodic points with different indices. Then, applying Lemma
I.1, we create a nontransversal intersection of the stable and unstable manifolds
as the counterpart by an arbitrarily sm&ft perturbation. Since the previous
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intersection is robust by the transversality, a heterodimensional cycle is created
by the perturbation.

We apply Theorem B in the following setting ¢p= f 1. Let
TMIA=ES® E°@ E 1)

be the partially hyperbolic splitting with dinE®(x) = 1 (x € A). Taking
a subset ofA if necessary, we let the dimension BFf(x) be constant for all
X € A. Suppose thaf e Diff}(M) is aC? diffeomorphism admitting no zero
Lyapunov exponents. Without loss of generality, we may assume that

SUf) NA=S(f)NA, iog=dmESx)+1 2)

for all X € S(fYNA; forothgrwiseSO*l(f)mA =+ ¢ for some compact invariant
subsetA C S(f) N A with AU (SO(f) NA) = S(f)N A and then it is enough
to considerf |A as well asf ~1|(S°(f) N A). Let

TM|I(S(f)NA)=Ea®F (3

be a homogeneous dominated splitting With= (ES @ E®)|(S°(f) N A) and

F = EY|(S°(f) N A). Then, by (1),F is an expanding subbundle. In order to
prove Theorem A, it suffices to show thatS(f) N A is not hyperbolic then
we can findg exhibiting a heterodimensional cycle in a given neighborhded
of So(f) N A by aC* small perturbation.

By Theorem B forg = f~1, if So(f) N A is not hyperbolic, then either
the hypothesis corresponding to (1) of Theorem B does not hold or one of the
two options of the conclusion in whick of (3) is not contracting forf holds.

First suppose that the hypothesis does not hold. Then, there exist sequences
n € Me(f) of indexig, un-a.e. pointsx,, ¢, > 0 withc, — 0 and¢, € Z*
with lim,_, ;o £n = 400 that can be arbitrarily large witk, fixing, satisfying

lh—1

1 .
A > log [[(DHIE(H ()| > —Cn. 4)
n J=0

By domination property, we have

h—1 h—1

[TIOHIEE xapll = [T IOHIESE )

j=0 j=0
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for sufficiently largen. From this, (2) and (4) together with hypothesis tBAt
is one-dimensional, we have a choicelgsuch that

lh—1

e < TT IDHIEFI )l = I(DFMES ()|l < 1 ()
j=0

for largen. Define a continuous function: A — R by:
@(x) = log [(DF)IE°(X)

and a sequence of probabilitieg n > 1, by:

€n1

= Z5fl(xn)

Then, from (5), we have

lh—1

1 .
~o0 = [ g = = 3 log DN ET ()]
n j:O

1
= E—Iog||(DfZ”)|E°(Xn)|| <0.
n

Taking anf -invariant measure € M (M) as an accumulation point ¢fy :
n > 1} in M(M) and applying Birkhoff’'s Ergodic Theorem, we get

' lnfl .
0= /fpdv = fngrpmﬁZlog||<Df>|E°<fJ<p>>||dv(p>
j=0
(6)

i Nn—4+00 N

- Z/F im ZIog||<Df>|EC<f'<p>>||dv<p)

wherel't = |3 T (f) andr2 = ., I ().
Forj =1,2andc € Z*, let
rl=rinlJA.
k=1

wherel J,~ ; Ak is the Pesin set (see [BP] or [Po]). Sinteloes not admit zero
Lyapunov exponents, (6) implies that thereis Z* such that bothv(I'!) > 0
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andv(I'?) > 0 hold. By the regularity ob, v(B) = sup{v(C) : C is closed,
C c B} for everyB € B. So, we can take compact sets (that may not be
invariant):

Scsupp)NTEc A and T csupp(v)NT2cC A

such that(S) > 0 andv(T) > 0. ThenSNT = @. Lets(k) > 0 be such
that local stable and unstable manifold@’m(x), X € FKl U FKZ (o = s,u) are
defined (see [BP] or [Po]). By continuity, there exists<05 < §(x) such that
we have transversal intersections

oo (y) M WBU(K)/Z(S) #¢ and Wgi(2) i W§(K)/2(T) £
forally e Us(S) N A andz € Us(T) N A with
Us(S NUs(T) =0

and
Us(So(f)NA) C Uy, (7)

whereU,(G) = {x € M : d(x,G) < p}. By Katok Closing Lemma (see
[K] or [P0o]), we can findg € Us,2(S) N Per(f) andr € Us,»(T) N PeR(f)
approximating some pointse Sandr € T, respectively, and such that

01 (@ UOt(r) cUs(S°(f)ynA) C Vo 8)
for any smalls > 0, whereVp = U;,2(S°(f) N A). Then,
Wioe(Yn) h W (@) # @ and  Wige(za) h Wy, () # 9 ©)

for someyn, z, € (Xn, f(xy)) with largen becausg(x,, f(x,)) : n > 1}
accumulates on bot8andT. Hence, by the partial hyperbolicity, we get

WHY(q, f) m WS, f) £0,

which is preserved by a small perturbation. Note tha® dr T is a periodic
orbit, we don’t need Katok Closing Lemma, 8s= O:(q) = O:(q) or T =

O¢(F) = O¢(r). In order to prove Theorem A, it is enough to show tliatan
be perturbed to havg such that

WS(qg, 9) N W(rg, g) # ¥
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by an arbitrarily smalC? perturbation, whergg andrg are the continuations of
g andr for g. Then, ifgis sufficiently close tdf , g exhibits a heterodimensional
cycle associated tgy andrg.

We may suppose that bothand T are not periodic orbits for otherwise the
problem becomes easier and a slight modification of the proof below gives a
proof. Foran open sét of @ ¢ (p) with a hyperbolic periodic saddlg denote by
H: (p, U) the closure of transversal homoclinic points whose orbits are contained
in U associated t@, and letH¢(p) = H¢(p, M). Itis easy to see from the
A-lemma that given pointg, y € H¢(p,U) ande > 0O, there exists a string
(z, T"(2)) contained ifJ such thad(x, z) < ¢ andd(y, f"(2)) < .

Let{r; :i > 1} and{q :i > 1} be sequences ofandq obtained by Katok
Closing Lemma converging to nonperiodic pointandd, respectively. Then,
it is easy to see from the proof of Katok Closing Lemma through the Lyapunov
neighborhoods thatl¢ (rj) = H¢(ri/) andH:(g) = H:(qgy) foralli,i’ > 1
sufficiently large. By (8), we can fix some largsuch thaf € H¢(r;, Vo) and
G € H: (g, Vo). To simplify the notations, set = r; andgq = ¢q;. Then, as
seen above, there exists a strimg w ; f) C Vg such thatw andw approximate
r andr, respectively. Take a substrii@", w; f) C (w, w; f) such thatw"
approximate some" € WU(r) \ @¢(r). Then, givere > 0, we get a finite part
of e-pseudo-orbit off,

", w; HYyu(z, vis 1)

for somey),, z, € (X, (X)) with y/, andz, approximatingj andf, respec-
tively. By consideringf ~! andSinstead off andT, we get a similar finite part
of e-pseudo-orbit off ~2,

WS, w, FHU(Y, z; f7H

with (ws, w; f~1) C Vo, wherew® andi approximate somps € W3(q)\O¢(q)
andq, respectively. Here, we may assume tjfat 07 (w") andz, ¢ 07 (w®).
Thus, we obtain finite parts efpseudo-orbits,

(w", w; f) U (z,, yp; )
by which p is forwardly related toy;, with one jump af, and
(w®, w5 £ U (yp, 2z F7H

by which p® is backwardly related ta@, with one jump atj. Then, applying
Lemma I.1, 1) twice, we have" forwardly related top®>. Moreover, by using
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Lemma I.1, I), we easily ged arbitrarily C* close tof such that
W2(dg, 9) N W"(rg, 9) # ¥

as required. Here, from (7), (8) and (9), Lemma I.1 can be applied to ¢pave
exhibiting a heterodimensional cyclelify.

Next, let us consider the case where the option of the conclusion in vizhich
of (3) is not contracting forf occurs. Letv be a neighborhood d8o(f) N A
such that we hav& M|M(f, V) = E & F that extend§ M|A = E & F. Then,
we have sequences of positive numbers Oy, < 1 with limp_ 1o vn = 1,
neighborhood¥,, c V of So(f) N A with

(Vo =S°(f)NA, (10)
n>1

and periodic pointg, € Per f) such that: (p,) C V, and

In
yar < [THOHIEE (o)l < 1

j=1
for all n > 1, where¢, is the period ofp, with lim,_, . £, = 4+oc0. Then,
similarly to (5), we have

yin < [(DF™) ES(po)ll < 1

for large n, where Ec(pn) is the eigenspace associated to the eigenvalue of
(Df‘n)|§(pn) with modulus closest to 1. From this together with (10) it
follows that an accumulation point € M;:(M) in M(M) of the sequence

of probabilitiesv,, n > 1, defined by:

h—1

- 1
=2 8ticpn

n i—0
can play the same role ase M+ (M) in (6). Hence, by the same argument as
in the previous case using we obtain a heterodimensional cycleUg. This
completes the proof of Theorem A.

Il. Proof of Theorem B

We prepare the so-called Pliss Lemma (see [M1, Lemma 11.8] for the proof). For
a string(x, g"(x)) in a compact invariant set admitting a dominated splitting

Bull Braz Math Soc, Vol. 38, N. 2, 2007



214 SHUHEI HAYASHI

TM|A = E @ F, we say thatx, g"(x)), n > 0, isy-string if

n

[T1@gHIF@ ol < »"

j=1
and we say that it is aniform y-string if (g“(x), g"(x)) is a y-string for all
0<k<n.

Lemma Il.1 (Pliss Lemma [PI]). Forall 0 < y < y < 1 there exist
N(y, y) > 0and0 < c(y,y) < 1 such that if(x, g"(x)) is a y-string and
n > N(y, 7), then there exis®0 < n; < --- < ng < n, k > 1, such that
k > nc(y, 7) and(x, g" (x)) is a uniformy-string forall1 < i < k.

The essential part of Theorem B corresponds to [M2, Lemma 11.6]. We mod-
ify the proof of [M2, Lemma 11.6] to have the additional property concerning
the Hausdorff distance. A compact invariant 8gtC A is a(t, y)-set(t € Z™,

0 < y < 1)ifforeveryx € Xothere exists-t < ty < t such thatg—"(x), g©)
is ay-string for alln > 0. Note thatt, y)-set is a hyperbolic set.

Takeyi, y2, 2, y3 With
O<e<yr<pm<ip<m<l Q)

and N = N(j», y3), wherec > 0 is given in the hypothesis of Theorem B
and N(y», y3) is given by Lemma Il.1. We say thay, g"(y)) is an(N, y»)-
obstructionif (y, g (y)) is not ay,-string for allN < j < n. Denote byA(N)
the set of pointyy € A such that(y, g"(y)) is an (N, y»)-obstruction for all

n > N. Then, observe that given> 0 there existdN(¢) > N such that when
(y, g"(y)) is an(N, y»)-obstruction anch > N(¢), thend(y, A(N)) < ¢. Let

¥ be the set of the union of all théN(¢), y3)-sets. Then, itglosureX is an
(N(e), y3)-set. Forn > 1 andu-a.e. x € I'(g) for someu € M, denote by
L(x, n) the set ofm > n such thaix, g™(x)) is a uniformys-string. Let

LxX,nN={m<m<...}L

Since supfuy) = 0§ (x), if

supmi1 — m;) < N(e)

i>1
then suppx) (= supp(u)) is an(N(e), y3)-set. Therefore, when suppy) is
not an(N (¢g), y3)-set, for arbitrarily large there existn;, mj 1 € £(X, n) such
thatm; .1 —m; > N(e). Then, by Lemma Il.1¢g™ (x), g™+1(x)) is an(N, j»)-
obstruction and therefore the above observation implies (@fétx), A(N))
< €. Thus, we have proved the following claim:
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Claim. For everye > Oandu-a.e. X € T'(g) N A for someu € m, either
supp(uyx) is an(N(g), v3)-set or there exisy € A and arbitrarily largem > 0
satisfying the following properties:

a) (x, gM(x)) is a uniformys-string;
b) d(g™(x), y) < ¢;
c) (v, g"(y)) isan(N, y»)-obstruction for alln > N.

Here, givens > 0, we choose sufficiently largm > 0 so that(x, g™(x))
is §/2-close to suppu) with respect to the Hausdorff distance. The next step
is approximatingy by a pointx, € I'(g) N A taken fromv-a.e. points for
somev € M so that(xz, g"2(x2)) is a uniformys-string but not ay;-string for
arbitrarily largen,. This is possible by Lemma 1.1, (1) of Theorem B and the
Claim. (See the proof of [M2, Theorem II.1] for the details.) Itis important that
N, goes to+oo asx, approaches ty.

Suppose that we can take ¢ ~. Then, repeat this choice of two strings to
get the other two strings, g™ (X)) and(Xs, g™ (X4)) with d(x3, g"2(X2)) < 2¢
satisfying the same property as in the previous two strings if we canxtake
. Inductively, continue this process until we havesap$eudo-periodic orbit

written as: )

i1, Gai-106i-1)) U (Xai, Gz (Xa1))

i=]
by settingx = x;, m = n;andg = g" (1 < | < 2k) forsome O< j < k. Here,
observe thahy can be chosen arbitrarily larger thag_;. Given0< y < 1
andé > 0, takey; in (1) with y < y1 ande > 0 sufficiently small depending
on these constants. Then,n§; is much larger thamy_1 forall j < i < Kk,
the 4-pseudo-periodic orbit givessd2-shadowing periodic orbé( p) satisfy-
ing (2) of Theorem B as in the proof of [M2, Lemma 11.6]. By our construction,
O4(p) contains a substring-close to supfux, ,) for everyj < i < k with
respect to the Hausdorff distance.

Now let us consider the case where we cannot tgk¢ X. (Other cases
for x5 can be treated similarly, so it is enough to consider only this case.) Let
{x2(n) : n > 1} be a sequence of the choicesxafapproximatingy € A(N)
such that lim_ ;. X2(n) = y andx,(n) € =. Then,y € ¥ N A(N) becaus&
is compact, satisfying

[T1H@g HIFG I > s 2)

j=1
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foralln > N. Definev, € M(M) by:

l n
Yn =0 Z‘Sgi(y)’
=1

andletv = lim;_, 1« vy, anaccumulation pointdb, : n > 1}in M(M). Then,

using (2) and taking a subsequenceé ef 1, 2, ... if necessary, we have
i [ v, = [ o= logre @)
| —>-+00

whereyr : A — R is a continuous function defined by:

¥ (x) = log [[(Dg™H[F ()lI.
By (3) and Birkhoff’'s Ergodic Theorem, we get

o 0t i | ]
gy < [ im - 09, 1109 DIF (/001

Note that suppv) C X because is in a compact invariarget:. Hence, there
existsy € I'(g) N T such that

. 1 n—-1 i o

ngmooﬁlog;umg IF@ ()l = logye. (4)
This implies that there existbl; > 0 such that(y, g"(y)) is an (Ng, y1)-
obstruction for alln > Nj, anduy € Me(g). Then, supguy) C E. Let
us suppose that therewse M such thatv = uy, and proceed assuming that
y ¢ Per(g). Since supuy) = O§(Y), given 0 < ¢ < §, there is a string
(¥, 9(¥)) C supp(uy), €1 > N1, §/2-close to suppuy) with respect to the
Hausdorff distance. Moreover, we can fitgl > ¢, such that(y, g‘2(y)) is an
e-pseudo-periodic orbit, which is nota-string by the choice dfi; coming from
(4). SinceX is a hyperbolic set, if > 0 has been chosen small enough, Anosov
Closing Lemma ([S]) gives us the required periodic orj( p), satisfying (2)
of Theorem B and-close to supjv) = supp(uy) in the Hausdorff distance.
Wheny € Per(g), this periodic orbit9q(y) itself (in the hyperbolicsetT) is
the required one making & y < 1 larger if necessary to have a large period.
Indeed, property (2) of Theorem B is trivially holds and if the periods were uni-
formly bounded whenr — 1, there would exist a nonhyperbolic periodic orbit
in X, contradicting the hyperbolicitgf X.
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On the other hand, if there is noe M such that = .y, recall thaty can be
approximated by some,-a.e. pointx,(n) for someu, € M with supp(un) C
X. Then, we can fing/ on which someuy-a.e. pointy, € supp(in), n > 1,
accumulate. As before, take ampseudo-periodic orbi®g(iun) C sSupp(in) as
a string fromy,, 8/2-close to supgu,) with respect to the Hausdorff distance.
Fix n so large thatl(y,, ¥) < €. Then, for anyk > 1,

Og(,un) U Og(l/«y) U---U Og(M)’/)

ktimes

forms a 4-pseudo-periodic orbih X, whereOg(uy) = Og(y) wheny e Per(Q)
andOg(1y) = (Y, g*2(y)) otherwise. Therefore we get a periodic orbjj( pk)
containing a substringr-close to suppw,) by Anosov Closing Lemma i > 0
is small enough. Observe that the average contraction ré&2gof over F along

k
Og(Mn) U Og(My) U---U Og(My)

can be arbitrarily close to that @q(1.y) ask — +oo. Hence, for sufficiently
large k, the periodic orbitO4(p) with p = p* satisfies also property (2) of
Theorem B as required. This concludes the proof of Theorem B.
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