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The Crossed Product by a Partial Endomorphism
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Abstract. Given aclosed idedlin aC*-algebraA, an ideald (not necessarily closed)
in 1, a *~homomorphismx: A — M(l) and amafd: J — A with some properties,
based on earlier works of Pimsner and Katsura, we defi@é-algebra®(A, «, L)
which we call theCrossed Product by a Partial Endomorphisnwe introduce the
Crossed Product by a Partial Endomorphi®nX, «, L) induced by a local homeo-
morphismo : U — X whereX is a compact Hausdorff space adds an open subset
of X. A bijection between the gauge invariant idealsfX, «, L) and theo, o ~1-
invariant open subsets of is showed. If(X, o) has the property thatX’, o|,,) is
topologically free for each closed, o ~1-invariant subseX’ of X then we obtain a
bijection between the ideals 6f(X, «, L) and the opewm, o ~l-invariant subsets oX.
Keywords: partial endomorphism, crossed product.

Mathematical subject classification: 47L65, 37A99.

Introduction

Since the pioneering work of Cuntz [1], many authors, notably Paschke [11],
Stacey [15], and Murphy [10], have proposed constructions of crossed products
of C*-algebras by endomorphisms. Those constructions depends essentially on
an endomorphisne on aC*-algebraA. In [3] it was introduced by the first
named author the concept of Crossed Product by an Endomorphism, based not
only on an endomorphisma but on a C-dynamical systeniA, «, L). Here A

is a C-algebra,« is an endomorphism and, following [3], is a transfer op-
erator, that isL: A — A is a continuous linear map such tHatis positive

andL (x(a)b) = aL(b) for all a, b € A. The Crossed Product by an Endomor-
phism is a quotient of the universat-@lgebra generated by a copyAfand an
elementS subject to the relationSa= «(a)SandS*aS= L(a) foralla € A.
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220 RUY EXEL and DANILO ROYER

Seg[3] for more details. In this article it was shown that the Cuntz-Krieger alge-
bra is an example of Crossed Product by an EndomorphismCTHiynamical
system associated to this example is induced by the Markov sulighifto),

that is, the endomorphism: C(Q25) — C(24) is given bya(f) = f oo and

L: C(2a) — C(R24) is defined by

LX) =

>y

1
o100 yeo ~1(x)
for eachx € X and for eachf € C(Q24).

It was defined in [4] by the first named author and M. Laca the Cuntz-Krieger
algebra for infinite matrices. This algebra has a topological compact Hausdorff
spaceQa associated to it, which can be seen in [4, 4-7]. The difference be-
tween this case and the previous one is that the ghifin not be defined in the
whole space&2a, but only in an open subset of Qa. Then the local homeo-
morphismo: U — QA induces the * -homomorphisiaa: C(QA) — CPU)
given bya(f) = f o o, whereCP(U) is the set of all continuous and bounded
functions inU. Moreover, since # 1(x) may be infinite for some e QVA,
the convergence of the suﬁyea_l(x) f (y) is not guaranteed and 44 f) can
not be defined by (f)(x) = Zyeo,l(x) f(y) foreveryf e C(QA) However,
we will show that for eachf € C.(U), that is, for each function with compact
support inU, L(f) defined byL(f)(x) = Zyea—l(x) f (y) for eachx e Qa
is an element 0€(Q4). In this way we obtain a map: Co(U) — C(Qn).
Becausex is not an endomorphism iﬁ(ﬁ}) and the domain of is not the
whole algebra:(fsz ), the triple(A, «, L) (which we also call byC*-dynamical
system) is not £*-dynamical system as in [3] and therefore the construction of
Crossed Product by an Endomorphism defined in [3] cannot be applied.

In this work we define, making use of the constructions of T. Katsura ([7])
and M. Pimsner ([13]), th€rossed Product by a Partial Endomorphisim/e
show that our construction may be applied to the situation described in the pre-
vious paragraph. We study specially the case where the Crossed Product by
a Partial Endomorphism, wich we denote 8yX, «, L), is induced by a lo-
cal homeomorphism: U — X, whereU is an open subset of a topological
compact Hausdorff spacé. More specifically, we show a bijection between
the gauge invariant ideals ¢f(X, «, L) and theo, o ~-invariant open subsets
of X. Moreover, if(X, o) has the property thaiX’, o|,,) is topologically free
for every closedr, o ~1-invariant subseX’ of X then there exists a bijection
between the ideals ad(X, o, L) and the opemw, o ~-invariant subsets oX.
Finally we present a simplicity criteria for the Cuntz-Krieger algebras for in-
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THE CROSSED PRODUCT BY A PARTIAL ENDOMORPHISM 221

finite matrices. The choice of the name Crossed Product by a Partial Endo-
morphism for the algebr&@(A, «, L) defined in this work was motived by the
local homeomorphism: U — X whereU is an open subset of.

There is a strong relationship between the Crossed Product of a Partial Endo-
morphism associated to a commutat@&-dynamical system, and the algebra
studied by J. Renault in [14]. However, our approach is completely different
from the one used by Renault. Moreover, the construction of the Crossed Prod-
uct by a Partial Endomorphism introduced in our paper applies also to non com-
mutativeC*-dynamical systems.

In [8], B.K. Kwasniewski defined an algebra which he cali@alvariance al-
gebra of a partial dynamical systelpased on a partial dynamical systéK o),
that is, a continuous map: A — X whereX is a compact Hausdorff space
and A is a clopen subset oX anda(A) is open. In our construction need
not be clopen, only open, but we require thats a local homeomorphism.
The possible relationship between these two constructions will be studied in a
future paper.

1 The crossed product by a partial endomorphism

Inthis section we define the crossed product by a partial endomorphism and show
some results about its structure. We study the gauge action and gauge-invariant
ideals of this algebra.

1.1 Definitions and basic results

Let A be aC*-algebra and a closed two-sided ideal iA.

Definition 1.1. A partial endomorphism is a *-homomorphism A — M(l)
whereM (1) is the multiplier algebra of .

Let J be a two-sided self adjoint idempotent (not necessarily closed) idéal in
and lete: A— M(l)andL: J — Abe functions. We denote a such situation
by (A, a, L).

Definition 1.2. (A, «, L) is aC*-dynamical system {fA, «, L) has the follow-
ing properties:

 « is a partial endomorphism,

* L islinear, positive and preserves *,

* L(x(a)x) =aL(x) forallain Aandx in J.
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222 RUY EXEL and DANILO ROYER

The functionL is positive in the sense that(x*x) is a positive element of
A for all x in J. Moreover, denotinge(a) by (L2, R?), a(a)x is a notation
for the element?(x). Note that ifx,y € J anda € AthenL?(x) € | and
so L?(xy) = L#(x)y € J. SinceJ is idempotent we have in general that
a(@x € Jforalla € Aandx € J. Thereforea(a)x lies in fact in the
domain ofL. Definingxa(a) = R3(x) for all x € J anda € A we have that
(x(@)Xx)* = x*a(a*) for everyx € J anda € A. In fact,

(@@x)* = (LAx)* = (RH*(x*) = R (x*) = x*a(a").

In the same wayxw())* = a(@*)x*.

If (A, «,L)isaC*-dynamical system theh(xx(a)) = L(x)aforallae A
andx € J. Infact, givena € Aex € J, sincea* € Aandx* € J we
have thatL («(a*)x*) = a*L(x*). ThereforeL (Xa(a)) = L((Xa(a))*)* =
L(x(@a*)x*)* = (@*L(x*))* = L(X)a.

The next goal is to define a leA-module which is also a right Hilberk-
module. Define the operation

oI xA > ]
(Xx,a) — Xa(a)
Itis easy to verify that this operation is bilinear and associative. ThHas right
A-module. Itis also easy to see that the function

(,y:IxJ — A
X,y) — LX)
is a semi-inner product. Considering the quotiengdfy No = {x € J: (X, X)

= 0} and denoting the elementsof J by X in J/Np (or by (x) ) we obtain an
inner product ofJ/Ng in A defined by(X, ¥) = (X, y). So the function

Il 3/No — RF
X = JVIK X

defines a norm i/ Ng. Denote byM the right HilbertA-module(J/Ng) .
Let us now define a lefA-module structure foM. Givena € Aandx € J
we have that*a*ax, ||al|?x*x € J. Sincex*(||a|> — a*a)x may be written
in the form (bx)*(bx) with bx € J we have thal (x*||al|’x — x*a*ax) > 0
and soL (x*a*ax) < ||a|?L(x*x) from where|| L (x*a*ax)| < ||a|/?||L (x*X)]|.

Therefore

~, 12 ~, -~ 2
[ax||© = [[{aX, ax)| = [|[L(x"a*ax)|l < [lal|“[[ILX*X) ||
201/ & 215112
= [lal“l{X, X} = [lal“[Ix [,

Bull Braz Math Soc, Vol. 38, N. 2, 2007



THE CROSSED PRODUCT BY A PARTIAL ENDOMORPHISM 223

and so,|ax| < |lal|||IX|l. This allows us define the operation

AXM — M
am — am’

whereaX = ax, which is bilinear and associative, andMdais a left A-module.
This operation gives rise to a *-homomorphism frévm L (M). In fact, defining
¢: A— L(M) by ¢(@)m = amwe have:

Proposition 1.3. ¢ is a *-homomorphism.

Proof. Foralla € A ¢(@): M — M defined byp(a)(m) = am for all
m € M is a linear function. Moreover, fot, y € J,

(P@X,¥) = (8%, ¥) = L((ax*y) = L(x*a*y) = (X, a%y) = (X, p@")y),

and sincel/Ng is dense inM it follows that (¢ (a)m, n) = (m, ¢(a*)n) for all
m, n € M. This shows thap(a) is adjointable ang(a)* = ¢(a*). Obviously
@ is linear and multiplicative. O

Definition 1.4. The Toeplitz algebrd (A, «, L) associated to th€*-dynamical
system(A, «, L) is the universaC*-algebra generated bjA U M with the rela-
tions of A, of M, the A-bi-module products angh*n = (m, n) forallm, n € M.

Note that the universal algebra in fact exists, since the relations are admissible.
We will denote byK; the closed sub-algebra af (A, «, L) generated by the
elements of the forrmn*, form, n € M.

Definition 1.5. A redundancy inT (A, «, L) is a pair (a, k) wherea € A,
k € Ky andam = kmfor all m € M.

Letlo = ker(p)*Ne~ (K (M))wherep: A — L(M)isthe *-homomorphism
given by the left multiplication.

Definition 1.6. The Crossed Product by a partial Endomorphism associated to
the C*-dynamical systeniA, «, L) is the quotient ofT (A, «, L) by the ideal
generated by the elemerds— k for all redundanciega, k) such thata € I,

and will be denoted b@ (A, «, L).

Itfollows from [7]thatA > a — a € O(A, «, L) isinjective. In the following
proposition will be showed some consequences of this fact. Let us temporarily
denote bya andm the elements oA andM in T (A, «, L). Define

o~ o~

Kn:S‘F)_ar{r’TTl"‘mnll

%
Ih :

mi,li € M}
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and denote by the quotient map from@ (A, «, L) to O(A, «, L).
Proposition 1.7.
a) Asar q@) € O(A, «, L) is an injective *-homomorphism.
b) Asarae T(A a L)andg; are injective *-homomorphisms.
c) M>m—> mMe T(A a,lL)isanisometry.
d) g, is an isometry.
e) M >m q(M) € O(A, a, L) is an isometry.

f) O is an injective *-homomorphism.

Proof.
a) Is a consequence of [7].

b) Follows from a).

c) Givenm € M, ||m||2/:\||m*m|| = ||(m, m)||. Since{m, m) € A, it fol-
lows from b) that||(m, m)|| = ||(m, m)||. Moreover|m||? = ||(m, m)]|.
Then||M||* = |[(m, m)|| = |[m|°.

d) For all € M we havefi* e A. By a),q; is injective and therefore an
isometry. Therjjq(M)[|> = [|q(M*M)|| = |M*M|| = [|M]°.

e) Follows from c) and d).

f) Letk € Kn and supposeg (k) = 0. Thenq((M*)”kM”) = 0. Since
(M*)”kMn c At follows from b) that(M*)”kMn = 0. ThenK kK,
=0and sk = 0. O

From now on we will identify the elemen® € T (A,«, L) andq@) <
O(A, o, L) with the elemeng of A. This notation will not cause confusion, by
a) and b) of the previous proposition. In the same way, justified by c) and e)
we will identify the elementsn € T (A, «, L) andq(M) € O(A, «, L) with the
elementm € M. With these identifications,

Kn = span{my---moli---15: m,li e M} € T(A o, L).
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THE CROSSED PRODUCT BY A PARTIAL ENDOMORPHISM 225

Define
Kn = span{my---mpl---15: mi,li e M} C O(A, o, L)

and note thatj(K,) = Kn. If (a,k) € A x Ky is a redundancy and € Io
theng(a) = q(k). Sincea = g(a) in O(A, a, L) it follows thata = q(k) in
OA a, L).

The space¥, e K, are clearly closed under the sum and are self-adjoint.
Moreover, the following proposition shows that they are closed under multipli-
cation, and so ar€*-algebras.

Proposition 1.8.
a) KnKm S Kmagnm and alsok,Km S Kmaxn,my-
b) AK, € K, KnA C K, and alsoAK, € K, andK,A C K.

Proof. Since K,, = q(’K\n) it suffices to show the result for the algebra
T(A a,L).

a) Taking adjoins we may suppose< m. Givenly...Iqt7 ... t7 € K, and
P1...PmO; ... O € Km, howa = tf...t7py... pn € Ait follows that
Ihna € M. Therefore

Lyt P PO O =11 lh@Phsa. . Pml ... € K.
This is enough sinck, are generated by elements of this form.
b) Follows by the fact theam € M for alla € Aandm € M. U

We will denote bym ® n the element oK (M) given bym® n(¢§) = m(n, &),
forall & € M.

Proposition 1.9. There exists a *-isomorphisiS: K: — K(M) such that
S(mn*) =mE n.

Proof. Givenk e I’(\l andm € M thenkm € M becauseM is closed in
T (A, a, L) by the proposition 1.7 ¢). I (A, «, L), (km,n) = (km*n =
m*k*n = (m, k*n), and how{m, k*n), (km,n) € A, by 1.7 b)(m, k*n) =
(km, n) in A. So, definingS(k): M — M by S(k)(m) = km it follows that
(S(kkm, n) = (km, n) = (m, k*n) = (m, S(k*)n) for all m, n € M. This shows
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226 RUY EXEL and DANILO ROYER

that S(k) is adjointable and(k)* = S(k*). SinceS(k) € L(M) we may de-
fine S: R\l — L(M) which is clearly linear and multiplicative, and $is a
-homomorphlsm ObV|oustS(mrf") = maq® n, and thereforéS(k) e K(M)
forallk e Kl MoreoverS(Kl) is a dense setiK (M) and soS(Kl) = K(M).
In order to see tha$ is injective suppos&(k) = 0, that is,kM = 0. Then
kK; = 0 and since e Kj it follows thatk = O. O

If (a, k) is aredundancy theaam = kmforallm € M, from wherep(a)(m) =
S(k)(m) for eachm € M. SinceS(k) € K (M) it follows thatp—1(a) € K(M).

Sothe algebr@ (A, a, L) coincides with the quotient af (A, «, L) by the ideal
generated by the elements of the faof@- k) for all redundancya, k) such that
a < ker(p)*.

Given aC*-dynamical systendA, «, L) and a closed ideadll in A such that
J € N C |, we may consider an oth€*-dynamical systenfA, g8, L) where
the partial endomorphisi: A — M(N) is given byg(a) = (L‘N, |aN), con-
sidering thatr(a) = (L2, R?). SincexB(a) = xa(a) forall x € J anda € Ait
follows thatO (A, «, L) = O(A, 8, L). By this reason we may suppose tlat
is a dense ideal ih. This situation will occur in the second section.

It may be showed without much difficulty that the crossed product by endo-
morphism introduced in [3] in some situations may be seen as crossed products
by a partial endomorphism. More specifically, this hold&ifA)) = AandL
is faithfull or if @: A — Als injective,a(A) = a¢(1)Ax(l), andL: A — Ais
given byL(a) = a *(a(1)ax(1)). The first situation occurs in Cuntz-Krieger
algebras (see [3, 6]) end the last situation occurs in Pashke’s crossed product and
in the crossed product proposed by Cuntz (see [3]).

1.2 The gauge action

The next goal is to show that every gauge-invariant ided@l @, «, L) has non-
trivial intersection with the fixed point algebra of the gauge actiaf(A, «, L).
By the universal property of” (A, «, L) it follows that for eachA e St
there exists a *-homomorphisf: 7 (A,a, L) — T (A, «, L) which satis-
fiesf,(a) = aforallain Aandd,(m) = amforallm e M. If (@ k) is
a redundancy, becausg(a) = a andg; (k) = k it follows that (6, (a), 6, (k))
is also a redundancy, and so we may constjerO(A, o, L) — O(A, o, L).
Note thatd,,6,, = 0,,,, from whereg, is a *-automorphism, with inversg..
Moreover, giverr € O(A, «, L), the functionSt 5 A — 6,(r) € O(A, a, L) is

Bull Braz Math Soc, Vol. 38, N. 2, 2007
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continuous. Then we may consider

E: O(Aba,L) — OA o, L)
r— f@x(r)dk .
gt
Proposition 1.10.The fixed point algebra ¢fis K = span{ A, K,,; n € N} and
E is a faithful conditional expectation ontg.

Proof. It is not difficult to show thak is a faithful conditional expectation onto
the fixed point algebra. So it suffices to show thatlin = K. The equality
holds because

amg---mgni---nfb sek=I

E@m---mgni---n'b) = 0 sek |

and the space generated by elements of the tomp- - - mynJ - - - m’j“b is dense
in O(A, o, L). O

Definition 1.11. Aideal I in O(A, «, L) is gauge-invariant i, (1) < | for
eachi € S,.

If | is gauge-invariant, the gauge actionMA, «, L)/I is given by

Br: OA o, L)/l — O(A o L)/l
n(r) = m(6x(r) ’

wherer is the quotient map. In this caseis covariant by the gauge actions
6 and B, in the sense that (6, (r)) = By (x(r)) forallr € O(A,a, L) and
for eachir e S'. Moreover, the fixed point algebra f@ris 7 (K) because the
conditional expectatior induced byg is such thatF (7 (r)) = 7 (E(r)) for
eachr € O(A, a, L).

Proposition 1.12.1f 0 # | < O(A, «, L) is gauge-invariant theh N K # 0.

Proof. Sinced, (1) < | forall » € S'thenE(r) € | forallr € |. By the
fact thatE is faithful it follows that, given 0% r € | thenE(r*r) # 0. Since
E(r*r) e KNI, theresultis proved. O
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Defining
Lo=AandL,=A+K;+---+K, for everyn>1

we have that

LoSliclC - and K=|JL,.
neN
This form to see the algebrd will be useful in some situations which will
appear latter. In some of this situations we will use the fact, given by the follow-
ing proposition, that the algebrag (by the proposition 1.8 ,, are algebras) are
closed, for alin € N.

Proposition 1.13.For eachn € N the algebrad.,, are closed.

Proof. The casd.g follows by 1.7 a). By induction suppods, closed. Note
thatKn,1 < Lny1 and thatl, is a closed sub-algebdd L, 1. By [12, 1.5.8],
Ln + Kny1 is a closed sub-algebrd L, ;. Therefore

I—n+1 = I—n + Kn+1 = I—n + Kn-i-l = Ln+1- H

2 The Crossed Product by a Partial Endomorphism induced by a local
homeomorphism

Given a topological compact Hausdorff spaXeand a local homeomorphism
o: X = X, defininga: C(X) > C(X) bya(f) = f oo andL: C(X) —
CX)byL(f)(x) = Zye(,_l(x) f(y) for all x € X, we obtain aC*-dynamical
system. This situation occurs in the Cuntz-Krieger algebra in [3]. A more gen-
eral situation consists in considering an openl$e X and a local homeo-
morphismo: U — X. In this case, defining as above, for allf € C(X)
a(f) is an element ofC°(U), whereCP(U) is the set of all continuous and
bounded functions ity. Moreover, # ~1(x) may be infinite for some € X,
and thereford. can not be defined as above.

Although, if f € C.(U), thatis,f € C(X) such that

supp(f) = {x e X: f(x) #0} cU,

we will show thatzyeg,l(x) f (y) involves finitely many summands for every
x € X. We will also show that, foreach € C.(U), L(f) defined byL (f)(x) =
Zyea_l(x) f(y) is an element inC(X), and so we may define: C.(U) —
C(X). Moreover, sinceC’(U) and M(Cy(U)) are *-isomorphic we obtain a
partial endomorphisrd: C(X) — M(Co(U)).
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THE CROSSED PRODUCT BY A PARTIAL ENDOMORPHISM 229

We begin this section by showing th&(X), @, L) is aC*-dynamical system
which will give us the crossed product by a partial endomorphigiX, «, L).

The second part is dedicated to presenting some basic results about the struc-
ture of O(X, a, L), and the most important result of this part is that every ideal
of O(X, «, L) which has nonzero intersection wita (the fixed point algebra
of the gauge action) has nonzero intersection Witix).

In the last part we show that the Cuntz-Krieger algebra for infinite matrices
(see [4]) is a crossed product by a partial endomorphism. This is the example
which motivated this work.

The choice of the nam€rossed Product by a Partial Endomorphigar the
algebra®(A, «, L) was motivaded by the local homeomorphism

2.1 The algebra®(X, «, L)

Let X be a topological compact Hausdorff spateC X an open subset and
o: U — X alocal homeomorphism. Define

a: C(X) — CP)
fi> foo

which is a *-homomorphism. For eadhe C.(U) define for allx € X,

> oty if o7t £
L)) =1 otx
0 otherwise

If K € U is a compact subset, taking an open cdver--- ,U, of K in U
such thato, is homeomorphism, for every € X there exists no more than
one element; in eacho~1(x) N U;. Therefore there exists at mostele-
ments ino ~1(x) N K. It follows that the sum which definds( f )(x) involves
finitely many summands for eache X, and soL (f)(x) in fact may be defined
as above.

Lemma 2.1.For eachf € C;(U), L(f) is an element o€ (X).

Proof. Let f € C;(U)andK = supp(f). We will show thatL ( ) is continuous
on each point oK. Givenx € X\ o(K), sinceX \ o (K) isopenand.(f)y =

Oforally e X\ o(K), it follows that L(f) is continuous inx. Letx e

o(K), {X1,.... %} =07 1(X) N K, andU; open disjoint neighbourhoods Bf

such thab, is a homeomorphism. THe; may be taken such that(U;) are
open, because is a local homeomorphism.
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Claim. There exists an open s¢ét> x such that

at(vyn (K\ (OU,)) = 0.

Supposer (V) N (K\( U'j‘zl Uj)) # ¢ for each open s&t which contains
X. For every open subs®t > x define

k
Fw =0 YW)N (K\ (qu)) .
j=1

Sinceo ~*(W) is closed irJ andK \ U'J-‘zl Uj) € U is compact, it follows that
Fw is compact, and therefore closedXn MoreoverFyy is nonempty because

k
@ # o H(W)N (K\ (UU,)) C Fw.
j=1

GivenW,, ..., W, open neighbourhoods &f we have thaijmzle C Fy, for
eachj from where

m m
Frm,w, S m Fw,, andso ﬂ Fw, # 9
=1 =1

for each finite collection of open neighbourhoddlg, . . . , W, of x. By the fact
that X is compact it follows that there exisyse [ wsx; Fw. Since

W open
k
N Fwe K\ Y
W>x; j=1
W open

it follows thato (y) # x. Choose an open sk, > x such thaio (y) ¢ W,.
Theny ¢ Fw,, which is an absurd. This proves the claim.

Let Vp > x be an open subset according to the claim and define

V=Vo[) ((k]a(u,-)) :

j=1
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Let (yi); an net such thay; — X. We may suppose thdt;); € V, and so
o1 (y) = {yui..... Yki} wherey;; € Uj. How oy, is a homeomorphism we

have thaty;; == x; for eachj, and so

k _ K
Ly = Y. f@=Y fy) =Y foxp= Y fy=LH.
zeU j:l j:l yeU
o (D=y o (y)=x
This shows that_( f) is continuous on the points of(K), and the lemma is
proved. O

Now we are in the situation whefg.(U) is an idempotent self-adjoint ideal
of Co(U), which is an ideal o€ (X), and by the previous lemma,: C.(U) —
C(X) is a function. Moreover, composingwith the *-isomorphisnC?(U) >
g+ (Lg, Ry) € M(Cp(U)) we obtain the partial endomorphisin C(X) —

M (Co(U)). Itis easy to verify thatC(X), @, L) is aC*-dynamical system.

Sincex is essentialy given by we will use the notatioiC (X), «, L) to us re-
fer to theC*-dynamical systendiC(X), @, L). Moreover, sincga(f) = ga(f)
for eachg € C;(U) and f € C(X), no more references will be madedo So
we have the Toeplitz algeb@(C(X), «, L) and the crossed product by a partial
endomorphisn® (C(X), «, L). From now on we will denoté (C(X), a, L) by
T (X,a,L)andO(C(X),a, L) by O(X, a, L).

2.2 Basic results

Here we will prove some basic results about the crossed product by a partial
endomorphisn® (X, a, L).

Lemma 2.2.Given f € C.(U), we have that:
a) f =0ifandonlyif f = 0.

b) if ojsupp(t) iS @ homeomorphism thef ||, = || |-

Proof.

a) Givenf € C.(U) andx € U such thatf (x) # 0 then
L(f*Heon= Y. tmfy= Y [fyP+IfxP=>o0.

o (y)=0(x) Y#X
o (Y)=0(x)
This shows that. is faithful, and sof = 0 if and only if f = 0.
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b) Sincel| f |2 = [[L(f*f)||s it suffices to show thatL (f* )|, = || f[12..
For this note that

[f @t if x € o(supp(f))

L(f*f)(x) =
( )X) 0 otherwise

Then|L(f*f)|l < || f[|%. On the other hand, choogec U such that
| f(X)| = || f|lo, @nd note thak (f* f)(o (X)) = (f*f)(x), which means
that||L(f* )l = Il 1%, O

Consider the *-homomorphisgp: C(X) — L(M) given by the left product

of A by M. Note thatf € ker(yp) if and only if fm = 0 for eachm € M,

which occurs if and only iffvg = fg = 0 for eachg € C;(U). By a) of

the previuos Iemmefé] = Oif and only if fg = 0. Thereforef € ker(y) if
and only if fg = O for everyg € C.(U) and sofg = O for all g € Co(U).

So, giveng € Cp(U) it follows that fg = O for every f e ker(p) and so

f e ker(p)*t. This means thaty(U) < ker(p)*.

Lemma 2.3.

a) If f,g € Ce(U) andoyg,, 1)y sumpo 1S @ hOmeomorphism therf g, g%
is a redundancy of (X, o, L) and fg* = f§* in O(X, a, L).

b) Co(U) C ¢ H(K(M)).
c) Co(U) C lo (= ¢ H(K(M)) Nker(p)h).
d) Co(U) C Kj.

Proof.

a) Letf, g € Cc(U) such thabo, .\ cpng 1S @ hOmeomorphism artdl €
Ce(U). Notice thatf §*h = (fa(L(g*h))) . SINCEsI 1 vammg 1S &
homeomorphism, for each element supp( f) we have that

foo Y (@) = f0ge0*h(x) .
yeU
o (y)=0(X)
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b)

c)

d)

Therefore for thesg,

fa(L(g"h)(x) = f)L@) (X)) = f(X) Z (g*h)(y)
yeU
o (y)=0(x)

= f(X)g"(x)h(x) = (fg*h)(x).

If x ¢ supgf) then(fa(L(g h)x) =0 = (fg*h)(x) Therefore
fa(L(g*h)) = fg*h. Thenf g*h = (fa(L(g*h))) = fg*h = fg*h

for everyh € C.(U), from where f § g'm = fgmforallm e M. It
follows that( fg*, f~§*) is a redundancy. Sinceg* € Co(U) C ker(p)*

we have thatfg* = f §* in O(X, , L).

It is enough to show thaf.(U) € K(M). Let f € C.(U), choose a
coverVy, ---, V,, of supp(f) such tha'[crh,i is a homeomorphism. Let
& be a partition of unity relative to this cover. Defie= f\/g and
& = \/? Thenf = Zi”:l §&*. By a), (§§&™, gsi’*)Nis a redundancy
from where(f, k) is a redundancy whetle= """, & & " € K;. In this
way fm = kmforallm e M and sop(f)(m) = fm = km = S(k)(m)
for everym € M, whereS s the *-isomorphism of 1.9. It follows that
@(f) = S(k) and sof € ¢~ 1(K(M)). ThereforeC.(U) € ¢ 1(K(M)).

Follows by b) and by the fact th@(U) < ker(p)*.

Given f € C.(U), by b) it follows that(f, k) is a redundancy for some
k € K;. Sincef € Co(U) C Ig it follows that f = q(k) € K;. So
C.(U) C K4 from whereCy(U) C Kj. O

The following lemma will be used several times in this work.

Lemma2.4.1f (Ko, Kq, ..., kn) € C(X) x Ky x --- x K, such that

g) k=0
i=0

for eachg € Cy(U) then:

a) koj,,, = 0, ko = f1 + f wherefy € Co(U) and f, € Co(X \ U).

b)

Zin=0 ki = fa.
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Proof. Lete > 0 be fixed. For every > 1 choose
<= Zm 1) 1) e K

such thami, , = fj‘,k with f{, € Cc(U) and|k — k|| < £. Define

Sm

ke =k +---+k, and K, =|Jsupp(f/,)<U
ik
which is compact. Giver € U \ K, take f € Co(U) such thatf (x) =1,0<

f <landf, =0.Thenfk, =0 by the choice off andfko = —f >, k;
by hypothesis. It follows that

I fkoll = H—f > ki + kaH =
i=1

f<—§ki+ka> fg(k{—ki)

from where|kg(X)| < ¢. In this way we have showed thit(x)| < ¢ for
all x € U\ K,. Giveny € 3(U), take a net)x)); € U such thaty, — .
Sincey ¢ K, andU \ K, is open we may supposg ), < U \ K, from where
[ko(X)| < ¢ for eachl. By continuity ofkg, |Ko(y)| < . This shows (taking
¢ sufficiently small) thakob(U) = 0. Defining f; = koly and f, = kolyc, we
obtain a).

We will show b). For eacla > 0 choosey, € Co(U) suchthatO< g <1
andg,,. = 1. Defineh, = g.ko. So we obtain a set of functioris, ), < Co(U).

Claim. lim,_qgh, = f;.
For eache, givenx € X,

(he = 10001 = 1(@e — 10) (Oko(X)| ={ 19:0) = L ko)l TxeU A K

0 xe K, uU¢

Forx € U \ K, it holds thatkg(x)| < ¢ and so for such elements

[9:(X) — 1] [ko(X)| < 2e.

So|lh, — f1]| < 2¢. This shows the claim.
Notice thatg.k. = k. andh, = g.kp = —g.(ky + --- + kn) becauseay, €
Co(U). Then
he + (ki + -+ +kn) = he +k — K + (K + -+ kn)
—Qe(ky + -+ kn) + ke — ke + (kg + - - - + kn)
= Gkt +kn—ke) — ke + (ki + -+ kn),

Bull Braz Math Soc, Vol. 38, N. 2, 2007



THE CROSSED PRODUCT BY A PARTIAL ENDOMORPHISM 235

and so

lhe + (ki +- -+ k)l = [1Ge(— (K + -+ Kn) + ko) + (K1 + - - + kn) — ko)
< NGe(=(ke 4 - -+ kn) + Kl 4+ (ke + - - - + kn) — kel
< 2e¢.

This shows that lim.,oh, = —(ky + - -- + k,). By the claim lim_h, = fq,
and sof; = —(ky + --- + ky). Then

n
Zki =fh+fh+ki+-+ky= fy
i=0

proving b). 0

Corollary 2.5. K; N C(X) = Co(U)

Proof. Letr €¢ K; N C(X). Thenr = f = kwheref € C(X) andk € Kj.
Thenf — k = 0 and sog(f — k) = 0 for all g € Co(U), and so by 2,
f = fi+ fowith f; € Co(U), fo € Co(X\U)andf —k = f,. How f —k =0
it follows that f, = 0. Thereforef = f;, which means that = f; € Cyo(U).
In this wayK; N C(X) € Co(U). The other inclusion is the lema3d). O

In the construction of@(X, a, L) we have considered the ide&d) =
¢ 1(K(M)) Nnker(p)*. The previous corollary allows us to identify this ideal.

Corollary 2.6. 1o = Co(U)

Proof. Given f € lgtheng(f) = k € K(M). Choosek’ e K; such that
S(k') = k whereS is the *-isomorphism of 1.9. Therim = ¢(f)(m) =
k(m) = S(k')(m) = k'm for all m € M. Therefore(f, k') is a redundancy.
Since f € lg it follows that f = q(k’) € Ky in O(X, «, L). By the previous
corollary we have thaf € Cp(U). Solg € Cp(U). The reverse inclusion
follows by 2.3 c). g

Recall thatK is the fixed point algebra of the gauge action and that

K=Uu

neN

whereL, = C(X) + Ky + --- + K, forn > 1 andLo = C(X).
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Proposition 2.7. Every ideal ol (X, «, L) which has nonzero intersection with
K has nonzero intersection with(X).

Proof. Let| be an ideal 0f9(X, «, L) such thatl N K # 0. By [2, 1ll.4.1]
there exists1 € N such that N L, #£ 0. Letng = min{n e N: | NL,, # 0}
and choose G4 k € | N Lp,. Supposery # 0. Supposingn*kk*l = 0 for all
m, | € M we have tham*k = 0 for allm € M. SoK;k = 0 and by the fact that
Co(U) C K,itfollowsthat fk = Oforall f € Co(U). By 2.4,k € C(X) = Lo,
which is a contradiction because we are supposings 0. So there exists
m,| € M such tham*kk*l # 0. Notice thatm*kk*l € | N Lp,—1 which again
is an absurd becausg = min{n € N: | N L, # 0}. Thereforeny = 0, that is,
ke Lo=C(X). O

By this proposition and by.12 follows the corollary:

Corollary 2.8. If 0 # | is a gauge-invariant ideal of9(X, «, L) then
I NC(X) #0.
2.3 The Cuntz-Krieger algebra for infinite matrices

We show that that the Cuntz-Krieger algebra for infinite matrices, introduced in
[4], is an example of crossed product by partial endomorphism. We begin by
presenting a short summary of the construction of this algebra.

Ler G be a set andh = A(, j)i jec @ matrix where eacl\(i, j) € {0, 1}.
Define the universaC*—aIgebraCi generated by a set of partial isometries
{S}xec With the following relations:

1. §S andS}“Sj commute,
2. §S =0foralli # j,
3. §SS§ = AG, ))S,

4 [hiex SSlyeyX = §S) = X6 AX Y, )S S, wheneverX, Y
are finite subsets db such that

A Y, ) =[] Ax DA-TTAW. i) #0

xeX yeY

only for finitely manyj € G.
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The Cuntz-Krieger algebra for infinite matrices was defined in [4] as the sub-
algebraO, of On generated by th§,.

LetF be the free group generated Gyand let{0, 1}" be the topological space
(with the product topology), which can also be seen as the set of the subsets of
F. In {0, 1}¥ consider the se®. = {¢ C F; e € &}, which is compact. For each
t € F defineA; = {§ € Q¢ t € £}, which is an clopen subset. Denoting by
1; the characteristic function af; consider the seRa € C(2¢) formed by the
following functions:

1. L, forallx #y,Xx,yeG,
2. L1, — AKx,y)l, forallx,y € G,

3. Ll — L fort, s € F such thatts| = |t| + |s|, (where|s| is the humber
of generators of the reduced forms)f

4 [lyex Lt [lyey (@ = L) = 326 ACX, Y, )1 where X, Y are finite
subsets ofs such thatA(X, Y, j) # 0 only for finitely manyj € G.

In ¢ consider the closed iéfA ={EeQe f(t71E)=0Vteg f eRal
In[4, 7.3] it was showed tha® 5 is the closure im{ of the set of the elements
which have an infinite stem (see [4, 5.5]), where

£§e€Qe: ecég &isconvex
QF = if t € & there is at most one € G such thatx € &
ifteé, yeGandtyeéthentx et o Ax,y) =1

The homeomorphisms : A{_; — A{ given byh;(§) = t& induces a partial
action ({Di}ier, {6:)) (see [5] and [9]) ofF in C(Qa) whereD; = C(Ay),
A= AN Qa andd,: D1 — Dy is given byd(f) = f o h,-1 and so we may
consider the partial crossed prodmnfsz) X F (see [5] and [9]).

It was showed in [4, 7.10] that there exists a *-isomorphim O, —
C(Qa) ¢ F such thatb(S,) = 1.

Based on these informations we will show ti@y is an example of crossed
product by a partial endomorphism.

Let

UcQa, U=[]ax
xeG
By the fact that each\, is open it follows that) is open. Moreoverl is
dense in{ﬁ, becausd& contains all the elements @f,{ which have an infinite
stem, and these elements form a dense s@iin Since eacl§ € U contains a
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uniquex € G, we may define the continuous functien U — Q4 given by
o (§) = x~1& wherex is the unique element @& which lies in&. This function
is a local homeomorphism (in faat;, : Ax — A1 is @ homeomorphism).
Defining
a: C(Qpa) —> C°U) by a(f)=foo
and B
L: Cc(U) — C(Qa) by L(F)(§) = Z f(m)

neu
o(n)=¢

we have th(C(Sﬂ), a, L) is aC*-dynamical system, and so we obtain the
algebra®(Q2a, «, L) (see section 2.1).

The next stepis to show thatthe algetrr)aéﬁ ,o, L) and@ are isomorphic.
Lemma 2.9.

a) L(1x) = 1,1 for eachx € G.

b) flL(1,9) = 1, fgforeachx € Gand f, g e C(Q p).
Proof. Both a) and b) follow by direct calculation. To prove the first part notice
thato ~1(¢) = {x&: x L € £). O
Proposition 2.10. There exists an unitary *-homomorphism

¥: Oa > 0@, e, L)

such thaty (S = 1 .

Proof. We will show thatyr preserves the relationg 1-4 which defi@s. The
first relation follows by the fact that (S)* vy (S) = 1« "1, € C(Qa). ToO verify
the second relatpngote thatll, = O for x,y € G andx # vy, from where
Y(SO*Y(S) = I, "1y = L(1y) = 0. The third relation follows by 2 a)
and by the fact that, 111, = A(X, y)1,in Q4. Infact,
VSOV (SOV(S) = L Ldy = Lol = 1,0,
=111y = A, I, = A Y(S).

Let us verify the fourth relation. By.3 a) L = 1, 1, " in ©(Qa., «, L). There-
fore, also

n n
Y =) L in 0@Qa.aL).
i=1 i=1

Bull Braz Math Soc, Vol. 38, N. 2, 2007



THE CROSSED PRODUCT BY A PARTIAL ENDOMORPHISM 239

Let X, Y C G finite such thatA(X, Y, x;) Z0only fori = 1,--. ,n. Then

[ [a- 11)_le, in QA

xeX yeY
and so
[Trsovso[Ta-vsyvE) =[5 [Ja-1Y
xeX yeY xeX yey
=Y 1, =) Ll =) w(SOwS)” 0
i=1 i=1 i=1
=D A Y 0P (SO¥(S)™
xeG

We will show that the *-homomorphism defined in this proposition is a
*-isomorphism. The following lemma will be useful to show that this *-homo-
morphism is surjective.

Lemma 2.11. The C*-algebra B generated byl, : x € G in O(Qa,a, L)
contains all the elements @f(Q2¢) of the forml; : e 4 r € F and moreoveB
coincides with the&C*-algebra generated bi.

Proof. By 2.9 a),l~x*1~x = 1,-1. Giveng = xl‘l--'xn—1 € Fwith x; € G, by
induction

Lot By Ly = 50T ol =L@l o) =1 o
If b=yrtwithr = x;--- X, andx, y € G then
Lo Lo e Lo LT = 4 1l = Qe 4

By 2.3 a)(1ya(L,-1)) 1," = 1,a(1,-1), and by direct calculationyd(1,-1) =
1, 1. Therefore },» € Bforally € G, r = x;--- X, with X, € G. The
general casg = sr, withs = X;--- Xn, I = y1--- ymandx;, y; € G follows
by induction. Ift € IF andt is not of the formg = sr~! like above, thend= 0
emQa by [4, 5.8]. Therefore 1< B for alle £t € F. We will show thatB
is the algebra generated . For eachx € G, sparfl, [ [ 1s} is dense inDy
and by 2.2 b) since;,, isa homeomorph|sm it follows that spahy ]_[s 1) }
is dense inDy . Since(1x [ [« 1) =1, I[1s 1,1, € B we have thaD, < B,
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becausd is closed. Sm C BandsinceB is closed it follows thaM < B.
This shows thaB contains the algebra generated¥y On the other hand, since
1, € M for eachx € G, itis clear that the algebra generatedMycontainsB,
and this concludes the proof. g

Proposition 2.12. There exists a *-homomorphism
¢: O(Qa, o, L) > CQp) %o F

such thaip(f) = fé.forall f € C(X) andqb(f;) = f 4 forall f € Dy and
xeG.

Proof. Letus define initially a homomorphism from the Toeplitz algebia2 A,
o, L)to C(R2 o) x F. Define

¢':C(Qa) = C(Qa) x9 F by ¢'(f) = fs

and o N _
9" :Ce(U) — C(Q2a) xg F by ¢"(fx) = fxdx

for fx € Dyx. Clearly¢’ is a *-homomorphism. By 2.2 a)” is well defined.
Moreoverg” is linear and givery = > gy and f = ) fy in C;(U), where
fx, 0x € Dy, we have that

¢"@) " (F) = (Z gxsx) ( > fysy) = (Z ex-l(gbax-l) ( > fyay)

= 01(g)8x1 Tydy = Y Oy1(0; Fy)dcny
X,y X,y

= Z Qx*l(g;F fx)de.
X

Claim. L(g*f) =) 604-1(g; fx).

It is enough to show thdt (g} fx) = 6,1(g; fx) because;; f, = 0 forx # y.
For this notice that ik ¢ & thenL (g fx)(§) = 0 = 6, 1(g; fx)(£). Moreover,
if x ! e £ then we have

L (g f0(6) = (g5 F(x§) = (g5 F(hx(§) = 67(g; F) (&)

So the claim is proved. O
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Theny”, 6y-1(0; 08 = L(g* F)de = ¢'((F. 1)), and sog”@)*¢"(T) =
¢’ (g, f)). Therefore
le" (N2 = lle"(F)*¢” (D)l = o'« T, Tl < I(F, )i =113
from where we may extergl’ to M. In this way we obtain a function
¢: C(QA)UM — C(Q24) x5 F
defined byp (f) = ¢'(f)if f € C(Qn) and¢(m) = ¢”(m) form € M.

Claim. ¢ satisfies the relations which definf€4Qa, o, L).

By density ofC.(U) in M it suffices to verify if¢ satisfies the relations for

elements of the forni =3 x,§ =Y. 6§ € Cc(U), wherefy, O € Dy, and
h e C(QA); We already kgow thap preserves the relations @f(2,), of M
and thatp (f )*¢(g) = ¢((f,T)). Moreover,

pp(F) =hse Y fid =Y hfd=p(T)=o(hT)

and

¢(Frgh) = (Z fxsx)hse =Y 0O (Fos, =Y fra(h)sy

=¢(fa(h) =¢(fh).
This proves the claim. g

So we may exteng to T(fsz , o, L). We will show that if(a, k) is a redun-
dancy thenp(a) = ¢ (k). For each

fx € Dy, d’(ﬁ( j:;(*) = fx8><:|-><—18x—1 = fyde = ¢ (fx)

and so iff = Y, f, with f, € Dy theng(f) = 3, ¢(fx1x"). Given a
redundancy f, k) with f € Iy, and sof € Cy(U) by 2.6, chooséf,), € Cc(U)
such thatf, — f, and(k,)n € K7 such that

tn
kn—k and ky=> mr’, with m.ri,eM.
i=1
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Since f, € C.(U) for eachn, we have thatf, = !”:1 fx, and sog (fn) =
Y, o(Fen L, ). Then

¢(f =Ko (f =" =1lm o (f — k)@ (fn)* — ¢ (kn))

= lim ¢(f — k) (qs(zfxfn Q*)—qs( | n,nm;ﬁn))
i=1

N
=|im¢<(f -k (fo‘ fx *_Zri,nmf‘,n ) =0.
i=1

The last equality follows by the fact thét —k)m = 0 for eachm € M, because
(f, k) is aredundancy. This shows thatf) = ¢ (k). O

Proposition 2.13. The *-homomorphisny : Op — O(Qn,a, L) defined in
2.10is a *-isomorphism.

Proof. To prove thaty is surjective it is anough to prove thit U C(Qa) C
Im(yr). By the lemma 211, M C Im(y). By the same lemma, the elements of
the form 1: e £ r € I are in the range off and moreovery (1) = 1 = L.
The algebra generated by the elemdits r € F} is self-adjoint, contains the
constant functions and separate points, and so is de®@ln ). It follows that
C(Qa) C Im(y). In order to see that is injective, note tha® ¢y = lds ,
whereg is the *-homomorphism of 22 and® is the *-isomorphism between
Oa andC($2x) x4 F such thatb (S,) = 148x. O

By this proposition and by.21 it follows that the Cuntz-Krieger algebra for
infinite matricesO4 is isomorphic to the algebrg, generatedgw. Note that
the algebra generated b coincides with the idealM) of O(Qa, @, L).

3 Relationship between the gauge-invariant ideals ad (X, «, L) and
open sets of X

We show in this section a bijection between the gauge-invariant ideals of
O(X, a, L) and theo, o ~-invariant subsets oK. In particular, we prove that
every gauge-invariant ideal @b (X, «, L) is generated by the s€q(V) for
someV C X whith iso, o ~1-invariant.

Definition 3.1.

a) AsetV C Xiso-invariantifo(V NU) C V.
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b) AsetV C X isot-invariantifo~1(V) C V.
c) AsetV C X isao, o t-invariant if it is o-invariant ando ~*-invariant.

LetV C X be an open set. We say tha§(V) is L-invariant if L(Co(V) N
Cc(U)) € Co(V).

Proposition 3.2.
a) AnopenseY C X iso-invariant if and oly ifCy(V) is L-invariant.

b) AnopenseV C X iso ~t-invariant if and only iff a(g) € Co(V) for all
f € C.(U) andg € Co(V).

Proof.

a) Suppose/ o-invariant. Givenf e Cy(V) N C.(U), choosex ¢ V.
Supposingy € o~1(x) NV, we havex = o(y) € V becauseV is o-
invariant. So there does not exists a sycland thereford (f)(x) = 0.
This shows that. (f) € Cy(V). On the other hand, suppo§g(V) L-
invariant. Suppose& € U NV and choosefy, € C.(U) N Cy(V) such
that fx(x) # 0. ThenL (f; fy) € Co(V) andL(f} fx)(o (X)) # 0, which
shows that (x) € V.

b) Suppose/ o~ l-invariant. Letf € Cc(U), g € Co(V) andx ¢ V. If
x ¢ U, thenf(x) =0andsa fa(g))(x) =0. If x € U, sinceV iso~1-
invariant theno (x) ¢ V and thereforef «(g)(x) = f(x)g(o(x)) = O.
So fa(g) € Co(V). On the other hand, let € o~%(y), y € V. Choose
g € Co(V) suchthag(y) # 0andf € C.(U) such thatf (x) # 0. Then,
since fa(g) € Co(V) and(fa(g))(X) = f(X)g(y) # 0 it follows that
X € V. SoV is o~ t-invariant. O

If V € X is an openo, o ~t-invariant set thenX’ = X \ V is a compact
o, o "-invariant set. DefindJ’ = U N X' (= U \ V) and consider’ :=
oy, : U” — X" which is a local homeomorphism. Consider the-dynamical
system(X’, o', L") wherea’ andL’ are defined ag andL in the section 2.1.
Denote byM’ the Hilbert module generated Wy (U’), by (Co(V)) the ideal

generated byCo(V) in O(X, «, L) and by b the image of the elements
O(X, a, L) by the quotient map of (X, o, L) on O(X, «, L) /{Co(V)).
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Theorem 3.3. There exists a *-isomorphism: O(X, o, L)/{Co(V)) —
O(X', o, L") such thatw (f) = f, foreachf € C(X).

Proof. Definew;: C(X) — C(X') by w1(f) = f|,, which is a *-homomor-

—~—

phism and is surjective, by Tietze’s theorem. Moreover, fore\?ezlgjcc(U) C

M define\IJZ(fN) = ﬂ; , which is a linear and contractive map@§(U) € M

to M’ and so we may extend it thl. So we may define in an obvious manner
W3: C(X)UM — T (X', o, L). Itis easy to verify that; satisfies the relations
that definesT (X, «, L) and soW¥; has an extension t@ (X, «, L), which will

be denoted by;. We will show that¥s is surjective. Givein € C.(U’), choose

g € Cc(U) such thag,,,., = 1 andf e C(X) such that¥s(f) = h. Then
fg e Co(U) andWa(f)Wa(@) = hgy, = hg, = h. This shows thaws(M)

is dense inM’, and with the fact tha€(X’) C Im(W3), it follows that W3 is
surjective.

Claim. If (f,k) is a redundancy off (X,«, L) and f € Ig then (W3(f),
W3(k)) is aredundancy of (X', o, L") andW3(f) € I{.

Let (f, k) be aredundancy af (X, «, L) and f € Io. Thenfm = km, from
wherews( f)Ws(m) = W3(k)Ws(m). Sincevs(f) e C(X')and¥z(k) € K;and
moreoveryz(M) is dense inM’ it follows that (W3 ( f), W3(K)) is a redundancy.
Sincef € lg, andly = Co(U) by 2.6, it follows thatf € Co(U) and therefore
W3(f) = fi,, € Co(U) = 1.

If qisthe quotientmap of (X', ', L") onO(X', «’, L) then the composition
go Y3is a*-homomorphism of (X, «, L) onO(X’, &', L") which by the claim
above vanishes on the elemeiigs— k) for all redundanciega, k) such that
a € lg. By passage to the quotient we obtain a *-homomorphisi©f, «, L)
to O(X', «’, L") which will be denoted by,. Moreover, givenf € Cy(V) note
that Wo(f) = f|,, = 0, and again passing to the quotient we obtain an other
*-homomorphism o9 (X, «, L)/{Co(V)) to O(X', &’, L"), which will be called
W, It remains to show thab is injective. Note thatCy(V)) is gauge-invariant.
Consider the gauge action (X, «, L)/{Co(V)) whose fixed point algebria

(see paragraph following 1.11) and the gauge actio®@X’, «’, L’). Sincew
is covariant by these actions, by [5, 2.9] it is enough to showthegstricted to
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K is injective. For this we will show tha¥ restrictedtoL:n is injective for all
ne N.

Claim 1. Letkg+ki+---+ky € Ly If ¢(kg+ ki + --- + ky) = Othen
ko € Kj.

Letk = W(k) and notice thak) € C(X’) andk/ € K/ fori > 1. Then
ko +ki+---+k, =0andsayky+ K, ---+k\) =0forallg € Co(U’). By
2.4 it follows thatky = f; + f, wheref; € Co(U’) andky + K| --- + ki, = f
from wheref; = 0. Thenk; € Co(U’) and sokg € Co(U U V) fromwhere

ko € Co(U UV) = Co(U) + Co(V) < Ki.

Claim 2. W restrictedto C(X) is faithful, and alsoV restrictedtoK:n is faithful.

If f eC(X) and\lf(f) = Othenf e Co(V) andso T = 0. This shows the
first part. T To prove the second assertierk, € K, and 1d suppose thdt(kn) =

—xN——n
Then \IJ(M kn M ) = 0 and hav M kn M < C(X) and W restrictedto

C(X) is faithful it follows thatM k M = 0 fromwhereK, k, K, = 0 and
sok, = 0. O

We will prove now the following claim which will conclude the proof of the
theorem.

Clam3. Forallne N, ¥ restrictedtoL:n is faithful

By claim 2 W restrictedto Lo is faithful. By induction, suppose thalt re-
strlctedto Ln is falthful tale kg + kl + -+ + kny1 € Lnyq and suppose that
W(ko + ki + - - - + kns) = 0. Then

w(ﬁ*<ﬁ+k:1+---+kn:+1>*<E+k:1+---+kn+1>ﬁ) =0

and by the inductionypothesis,

from where(E + kzl 4+ 4 Knr1) M = 0andso

Ko+ K+ + ko) (K + Knpp) = 0

Byclaim&EiK:l, fromw_hereE+k:1+---+m € (Ki+---+ Knp) and
thereforekg 4+ ky + - - - + Kny1 = O. O
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Given anideal in O(X, a, L), the setl N C(X) is an ideal ofC(X) and so
it is of the formCy(V) for some open seéf C X. The following proposition
shows a feature of these open sets.

Proposition 3.4. Let|l < O(X,«a,L) andV < X the open set such that
| NC(X) = Co(V). ThenV is ac, o ~t-invariant set.

Proof. Given f € Cc(U) N Co(V), takeg € C¢(U) such thatg,,,.,, = 1.
Thenfd = f e l andsoL(f) = §*f € | NC(X) = Co(V). By 3.1 )it
follows thatV is o-invariant. We will show thaV is ac ~-invariant set. Lek
be an element o¥ andy € o ~1(x). Choosefy € Co(V) such thatf,(x) = 1
and fy € Cc(U) such thatf,(y) = 1 andoy,,,,, is @ homeomorphism. Then
(fya(f)) = f, fx € 1 N M and thereforg fya(f)) f,” € |. By 2.3 a),
fyor(fy) f; = (fya(fx))~ ﬂ,* and sofyo ( fy) f;; el NC(X) = Cy(V). Note
that
(fya () £)(y) = 1 fy12(y) o () = | fy(NI* (0 = 1,
which shows thay € V. g

This proposition shows that there exists a map
®: {ideals ofo(X,a, L)} — {openo, o “-invariant sets ok}

given by® (1) = V whereV is the open set oX such that N C(X) = Cp(V).
The following proposition shows thdt is surjective. To prove this proposition
we need some lemmas.

Lemma 3.5.LetV ao-invariant setandfy, - - , fn, g1, - -+, gn € Cc(U) such
that f € Co(V)org € Co(V) forsome. Thenf, - f, "G --- G € Co(V).

Proof. Supposef; € Co(V) and defineh; = ;.. f,"Gi ---@; forj > 1
andhg = 1. Sinceh; € C(X) for eachj it follows that f*h;_1g; € Co(V).
By 3.2Co(V) is L-invariant, and sd = T, "hi_1§ = L(f*hi_1g) € Co(V).
By induction it may be showed th&i, € Co(V). If g € Co(V) the proof
is analogous. O

To show that the mag is surjective we will show that i¥/ is an opens, o —1-
invariant set theqCq(V)) N C(X) = Co(V). The following arguments are a
preparation to prove this fact. Givehe (Co(V)) N C(X) ande > 0 then there
aregj, b € O(X, a, L), hj € Co(V) such that

N
f—Zaihibi
i=1
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where eacly is of the forma; = my---myni---ng ora € C(X) and each
b is of the formb; = p;--- PyQy - - - qp or by € C(X). Moreover we may
suppose thah; = z; , nj = wj, p; = Uj, q; = v; foreachm;, nj, p;, andg;.
Considering the conditional expectati&induced by the gauge action and that

‘: E(f—gahibi)

we may suppose that+t = s +;, because

N
f—> E@hib)

i=1

ahibi if ri+t =5+l

E(ahib) =
@hiby) { 0 otherwise

Lemma 3.6. LetV be an operv, g*l-inxariant set. Then for eachwe have
thatahiby € Co(V) or ashiby = f1 -+ f, Ga*--- G " where f; € Co(V) for
somej or g; € Co(V) for somej.

Proof. Recall thatay = 2; ---Z; w1*---wg *org € C(X), by = U ---
Gg 01%--- 0 “orby € C(X) andri +t =5 +1;.

Supposes < tj. By 3.5w = w1 *---wg *hi(y - uS IS CO(V) (|f S = 0
thenw = h;). If t; # 5 thenwriteahiby =71 --- 7, wus+1 U R M
and note thaivus 11 € Co(V) and thereforeg; hib; is in the desired form If
ti = s thenr; = I;. Ifr; = O/(aln/d sd; = 0) thenahjbj = w € Cyo(V). If
r # 0writeahiby = 21 -+ z,a(w)Ug 1 --- Uy 01*--- 0y, *, and in this case
z,a(w) € Co(V) by the fact thatv is o ~t-invariant, and s@ h;b; is in the
desired form.

Supposings > t; consider the elemetig; h;by)*, which is in the desired form
of the lemma by the proof above, and therefayh;b; is also in the desired
form. O

The following lemma is only a summary from 3.5 to 3.6.

Lemma 3.7. If V is an openo, o ~t-invariant set then glverf e (CO(V))
C(X) ande > 0, there existsly € Co(V) anddI = f' f' gnl g1 ,W|th
f' e Co(V) or gJ € Co(V) for somej,i =1, - N such that

f—(do+idi)
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Now we prove the proposition which shows that the rdajs surjective.
Proposition 3.8.1f V C X is o, o ~t-invariant then(Co(V)) N C(X) = Co(V).

Proof. Itis clear thalCqy(V) C (Co(V)) NC(X). To show thafCq(V)) N C(X)
C Co(V) we will show that givenf € (Co(V)) NC(X), for everys > 0 it holds
that| f (x)| < ¢ foreachx ¢ V.

leen f e (Co(V)) NC(X) ande > 0, by 3.7 we may con5|de|rf — (do +
d)|| < egwithdy € Co(V),d; = f' f' gnI gl Wheref' € Co(V)
for somej orgI € Co(V) for somej. Define

N n;
L U (supp(f)) U supp(g)))
i=1 j=1

which is a compact subset bf.

Claim1. If x ¢ Vandx ¢ U then|f(X)| < e

If x ¢ U, choosenh € C(X), 0 < h <1, such thah(x) =1eh, =0. Then
hd = 0fori > 1and sojh(f —do)|| = |[h(f —do+ Y\, d)]| < e from
where| f (x) — do(X)| = [(h(f — dp))(X)| < e. Sincex ¢ V it follows that
do(X) = 0 and thereforgf (x)| < e.

Now we study the casg ¢ V andx € U. Let Np = max{ng,..., ny}.
SupposindNg = 0, thatisd; = Ofore each > 1, we have thatf (x)| = | f (X)—
do(X)| < e. Suppose therefore thil > 1. Let us analyse the caséo—1(x) e
U. Definex; = o)(x) for j € {0,..., No}. Foreachj € {0,..., No — 1}
takeh; € C¢(U) such thathj(xj) = 1, 0 < h; < 1 andogyppn,) is @ homeo-
morphism.

Claim 2. For eachi € {0,---,N}, h/ = h/,\;_/l*u-r%*di%~--h/N;_/1 €
Co(V).

Fori > 1, sincef| € Co(V) or g € Co(V) for somej, by 3.5 we have that

U=hy_1 - ho i‘v'?ni € Co(V) or

—~ %

v=g, g fo Py 1 €Co(V),
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Thenuv € Cy(V) and again by 3.5 it follows that

h = hngz --- o "difg -+ gz

= hNO,]_ s ﬁ:l *lJ/—l)\I’_];I ﬁr;:r/l s hNofl € Co(V)

Fori = 0, sincedghy € Co(V), again by 3.5h) = h/N\o,/l* -+~ hg “dohg - - -

hno—1 € Co(V). This shows the claim. O
Define f' = hyy_1 ---ho" fhg -+ hng_1. By the fact thato,,,, , is a

homeomorphism it follows that (xn,) = f(x) Moreover, sincexy, ¢ V,
by the fact thatv is o ~*-invariant andx ¢ V, it follows thath/(xy,) = O for
eachi. Sincef’, hi e C(X) we have that

n e - N _ o
—( 6+Zh|/> hNo—l ---hg <f—<d0+Zdi)>ho-~-hNo_1
i=1 i=1
N
f—<d0+Zdi)
i=1

from where| f (x)| = |(f' — (hj + X h))(Xng)| < €.

It remains to analyze the case¢ V, x € U buto"(x) ¢ U for some
n < No—1. Fori € {0,---.n — 2} defineh; as above, that if); € C.(U)
such thah;(x;) = 1,0 < h <1 anda‘supnh) is a homeomorphism. Fo%_q
chooseh,_; € C.(U) such that 0< hy,_1 < 1, hp_1(Xp—1) = 1, Olsuphy 1)
is a homeomorphism ang(suppgh,_1)) € X \ K. It is possible to choose
suchh,_; because (x,_1) = o"(x) € X\ U C X\ K.

o]

Claim3.Forn; >n+1,h, 1 ---hy“dhg ---hy_y = O.

Denote byu the element, " - - - ﬁ)*le' ﬂ‘:l which is an element of
C(X). Then

—_~ ~

By P ™ f oo £ = Ry "UTL £ = (L(hE qufiy i)
We will show thatL (h;; ufh i, =0 1f x ¢ supp(fl, ) orif o71(x) =
¢ then (L(h} luf')f +0(X) = 0. Suppose therefore € supp(f,;1) and
y € o~1(x). Supposing thay € o~1(x) N supp(h,_1) we have thaix =
o(y) € o(supp(hp_1)) € X\ K, which is an absurd becaugec K. There-
fore if y € o~1(x) theny ¢ supp(h,_1), and by this wayL (h}_,ufl)(x) =
Y yeo-100 (MU (y) = 0. SoL(hi_yuf)) fi,, = 0and the claim is proved.
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Claim 4. Form; <n,hl =h, 1" -hy"dihg - --hy_1 € Co(V).
The proof of this claim is analogous to the proof of claim 2.

Againh,_1 - -ho fhy ---hhq = f’ com f'(x,) = f(x). Moreover, by
the fact thatx, ¢ V it follows thath{(x,) = O for each. Then

N
f/—hé—zhi/ o1 --ho” <f—(d0+Zdi)>ﬁb---h?1

ni<n i=1
from where| f (X)| = [(f" —hy — >, . M)W < e

In this way, givens > 0, for allx ¢ V, we have thatf (x)| < . Therefore
f € Co(V). O

The following theorem is the main result of this section.

<¢€

Theorem 3.9. There exists a bijection between the gauge-invariant ideals of
O(X, a, L) and the opemw, o ~!-invariant subsets oX.

Proof. All what we have to do is to show that the map

®: {gauge invariant ideals @ (X, a, L)}
— {openo, o ~*-invariant subsets ok},
givenby® (1) = V whereV isthe open subset &f suchthat NC(X) = Cp(V),
is bijective. By the previous propositiah is surjective. It remains to show that

@ is injective. For this, given < O(X, «, L) gauge-invariant, le¥/ C X the
open subset, o ~t-invariant such that N C(X) = Co(V). We will show that

(Co(V)) = I. ltis clear that{Cy(V)) C |. By 3.3 there exists a *-isomorphism
OX,a, L) R
——= = O0X,d, L)
(Co(V))

where X’ = X\ V. Let T the image ofl by the quotient map ob(X, «, L)
on O(X, a, L)/{Co(V)). Sincel is gauge-invariant an@ is covariant by the
gauge actions we have thaft(I:)_ is gauge-invariant.SupposingI: # 0, and
soWw(l) # 0, it follows thatw (1) N C(X) = Co(V’) # 0 by 2.8. Let 0+
g € Co(V). Theng = lp(?) for somef € C(X) andg = W(a) with

a € |. Thereforew(f) = g = W(@) from where f = a. In this way,
f —ae (Co(V)) €I andsof € I. Itfollows thatf € | N C(X) = Co(V),

thatis,g = W(f) = 0, which is an absurdThereforel = 0 and this shows that
I = (Co(V)). O
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Notice that we have showed that every gauge-invariantlidel O (X, «, L)
is of the form(Cy(V)) whereV is theo, o ~t-invariant open subset such that
I NC(X) = Cy(V). By this theorem we have the following non simplicity
criteria of O(X, «, L):

Corollary 3.10. If U is nonempty andJ U o(U) is not dense inX then
O(X, a, L) has at least one gauge-invariant nontrivial ideal.

Proof. Note thatV = X \ U Uo(U) is an operns, o ~*-invariant set. Since
U U o (U) is not dense inX it follows that V is nonempty. ThenCy(V))
iS a nonzero gauge-invariant ideal 6{ X, «, L). By the previous theorem,
supposing(Co(V)) = O(X, «, L) we have thaCqy(V) = C(X), which is a
contradiction, becausé # X, by the fact that) is nonempty. O

4 Topologically free transformations

In this section we prove that under certain hypothesis abQuavery ideal of
O(X, a, L) has nonzero intersection wi@(X) and based on this fact we show
a relationship between the ideals ®tX, «, L) and theo, o ~-invariant open
subsets oK. Also we show a simplicity criteria for the Cuntz-Krieger algebras
for infinite matrices.

4.1 The theorem of intersection of ideals 0® (X, «, L) with C(X)

Let us begin with the lemma:
Lemma 4.1.

a) Foreachf € C.(U), supp(L(f)) C o(supp(f)).

b) Let h, fi,..., f,, O - On_ be e[gments ofC.(U) such thato"—1
(supp(h)) € U. Thensupp(fy™--- f1'h@i --- Gc) < o*(supp(h)) for
eachk € {0, ..., n}.

Proof.

a) The proof of this fact is similar to the proof given in [6, 8.7], although our
context is a little different. Lex € X with L(f)(x) # 0. Suppose ¢
o (supp(f)). Choosgg € C(X) such thag(x) = 1 andg,, q,, 1, = 0. If

Bull Braz Math Soc, Vol. 38, N. 2, 2007



252 RUY EXEL and DANILO ROYER

y € supp(f) thena(g)(y) = g(o(y)) = 0 because (y) € o (supp(f)).
This shows thaff «(g) = 0. So we have

0#L(H(X) =L(HHx)gx) = (L(HHg)(x) = L(fa(g) =0,
which is an absurd. Therefoxee o (supp(f)).
b) By a) we have that
supp(f1"h@r) = supp(L(f7ha) < o (supp(frhar),
and it is clear that (supp(f;"har)) € o (supp(h)). Suppose that

supp(fics - 7L "h@ - - g1) € 0" H(supp(h)) for 2 < k < n.
Then, by placingy = fr_1 " --- f1"hd1 - - - ge=1, by @) we have that

supp( Tk g6k ) = supp(L(fgg)) € o (supp( fag)).

Since supp fgg) < supp(g), and by the induction hypothesis su@p <
o*=L(supp(h)), it follows that supp fga) < o*~*(supp(h)). By hypothesis
we have that*~1(supp(h)) € U and soo (supp( fFga)) < o*(supp(h)). O

For each # j in N define
Vi ={x e X: o' (x) = o ().

Note that forx € X to be an element o¥/'-/ it is necessary that lies in
dom(c') Ndom(c’!).

Lemma 4.2. If fi,---fi,01,---,0; € Cc(U) withi # | then for each
X ¢ V"Nj there existsh € C(X) such that0 < h < 1, h(x) = 1, and
hfy--- fig;*..."h=0.

Proof. By taking adjoints we may suppose that j, and soi > 0. Define

the set , .
i J
K = ( U supp( fr)> ( U supp(gs))

r=1 s=1
which is a compact subset &f. If x ¢ U, takeh € C(X), 0 < h < 1,

h(x) = 1 andh;, = 0. Thenhf; = 0, which proves the lemma in this case.
So we may suppose thate U. We will consider two cases: the first when
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x ¢ dom(c') and the second whene dom(c'). Suppose ¢ dom(c'). Then
there exists 1< k < i — 1 such thatz¥(x) ¢ U (note thati > 2 because
x € U = dom(o)). Sook(x) ¢ K. TakeVy € X an open subset with
o¥(x) € Vo andVo N K = ¢@. ThenV = o ¥(V,) > x is an open subset id.
Chooseh € C.(U) with supp(h) € V, 0 < h < 1andh(x) = 1. Then, since
o“L(supp(h?)) € o¥1(V) C U, by 41 b),

supp(fi*- - 71 7h2T1 -+ fo) € o (supp(h?) < o*(V) < Vo
SinceVy N K = ¢ and supg fkr1) € K we have that
(" T'h2f - ) figr =0

from wherehf, --- fi;1 --- f = 0. Thereforenf, ---f g *---Gi*h = 0.

It remains to show the case € dom(c'). By the fact thai > | it follows

thatx € dom(c)). Therefore, sincex ¢ V'-/ we have that' (x) # o/ (x).

Let Vi > o'(x) andV; > o!(x) open subsets such thet NV, = @. Let

V = o7 (V})) No~I(V)) and note tha¥ is an open subset which contairs
Takeh € C;(U) with0 < h < 1, h(x) = 1 and supgh) € V. Then, since
o' ~X(V) C U andoi~%(V) C U, by 41 b) we have that

supp(f "+~ . "h?y -+~ ) € o' (supp(h?)) € Vi
and _
supp(@; * - -- G *h?Gi - -- G; ) S ol (supp(h?)) C V.

SinceV; andV; are disjoints it follows that

~

(fi*...ﬂ*hzﬁ...ﬁ)(gNj*...g“l*hzg“l...g‘])zo,

fromwherehf~1---ﬁgj*---gl*hzo. O

Definition 4.3. We say that the paitX, o) is topologically free if for each
V"1 the closue Vi in X has empty interior.

By the Baire’s theorem is topologically free if | J V-1 has empty interior.
ijeN
In this way,Y = X\ |J Vi is dense inX.
i,jeN
Let Sbe the set of positive linear functionals@f X, «, L) given by

S={¢: ¢ isapositive linear functional ang ,, = 3y for somey € Y}
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wheresy (f) = f(y) foreachf e C(X). We don't know the characteristic of
these functionals, nevertheless foe O(X, o, L) and f € C(X) it holds the
following relation:

Lemma 4.4. If ¢ is a positive linear functional of9(X, «, L) such that
Piex, = Ox for somex € X then for eachf € C(X) anda € O(X, a, L)
we have thap(fa) = ¢(f)ep(a) andp(af) = p(@e(f).

Proof. By taking adjoints it suffices to prove the cas@f) = p(a)p(f). For
eachb € O(X, a, L) we have thatb — ¢(b))*(b — ¢(b)) > 0. Therefore ifp is
a positive functional thep(b*b) — ¢(b*)p(b) = ¢((b — ¢(b))*(b — ¢(b))) >
0, from whereg(b)*p(b) < @(b*b). Since f*a*af < f*f|al® it follows
that o(f*a*af) < @(f*f)|lal|>. Putb = af, and so 0< g¢(af)*p(af) <
p(fraraf) < o(f*f)lal? = l|lall? f (x)|?, wherex is such thatp.,, = d.
This shows that iff (x) = 0 theng(af) = 0. Defineg = f — f(x). Then
g(x) = 0 and sap(ag) = 0. By this way

p@f) —p@e(f) = p@f) — @ f(x) = p@f) — p@f(x)
=p@(f — (X)) =¢p@g =0
and the lemma is proved. O

For eacha € O(X, a, L) define

llalll = sup{le(a)|: ¢ € S}
which is a seminorm fo® (X, «, L).

We are not able to show tht ||| is nondegenerated iD(X, «, L), butinLy
Ill Il has the property, given by the following lemma, thjgtj|| # O for every
positive nonzero element &f,, remembering that, = C(X) + K1+ ---+ K,
for eachn > 1 andLgy = C(X).

Lemma 4.5. Let (X, o) be topologically free. For each € L, withr > 0
andr £ 0it holds that||r ||| # O.
Proof.

Claim 1. If 0 £r € Ly, r positive and ¢ C(X) then there existg € C;(U)
with oy .., @ homeomorphism argi*rg # 0.

Sincer > 0 we may writer = b*b with b € L,. Suppose that for each
g € Cc(U) with oy, homeomorphism, it holds th&*rg = 0, and so
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g*b* = 0. Then (making use of partition of unity we may write edck C;(U)

as a sum ofy as above) we have thdt"'b* = 0O for eachf ¢ C.(U) and so
M*b* = 0. It follows thatK;b* = 0, and sinceCo(U) € K; by 2.3 b) we
have thatCy(U)b* = 0 and by 24 b) it follows thatb* € C(X). In this way
r = b*b € C(X), which contradicts the hypothesis and the claim is proved.

Clam?2. If0 #r € Ly, r > 0andr ¢ C(X) then there existgy, ...,
g € Cc(U) such thab|supmj) is a homeomorphism for eaghand0 # §i *
Gi*rG -G € C(X).

By Claim 1 there existg, € Cc(U) such thatoy,,.., is homeomorphism
and 0 # §1*r@.. Note that§;*rg; € L,_1:. By induction suppose G
G*--G1*rGi---G € Lywheregj € Cc(U) anda|supngj) is a homeomorphism
for eachj. Then, by Claim 1, oG *---G."r@G --- G € C(X) or there exists
011 € Cc(U) with o|sup“g| 0 homeomorphlms and& g .G *---G1rgy -

G G71-Sinceg 1§ ---G*rdr--- G g1 € C(X) the claim is proved.

We will now show the lemma. Lete Ly, r positive and no null. Itis enough
to show that there exisis € Ssuch thatp(r) # 0. Since(X, o) is topologically

free then
(]

is dense inX. So, ifr € C(X) then there existy € Y such that (y) > 0.

Takeg which extendsy, and therefore(r) # 0. Suppose ¢ C(X) Choose
fx,, -+, fx, € Cc(U)asinClaim 2. Then G¢ h = fX, fX1 rfx1 fXI €

C(X). So

h*thh* = f, " F, rfy - Hohfe " F iy - #0

from whereg = f., --- fx hfx "--- £, " # 0. How oy, , is homeomor-

phism it follows by 23 a) that, hf, * e C(X). Applying these arguments
sucessively it may be proved thgt= f;l . fx, hfx, fxl* e C(X). By

the the same argments it follows that= f, --- f, . "--- f,© € C(X).
Sinceg # 0 there existsy € Y such thatg(y) # 0. Takey € S which
extendssy. Then we have thap(g) = g(y) # 0. By 44, sinceg = uru,

©(g) = p(uru) = p(We(r)e(u) and therefore(r) # 0. O

Now we are able to prove the main result of this section.
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Theorem 4.6. If (X, o) is topologically free then each nonzero ideal@fX,
o, L) has nonzero intersection with(X).

Proof. By 2.7 it suffices to prove that every nonzero ideal®@fX, «, L) has
nonzero intersection witkK. Let0# | < O(X, «, L). Supposd N K = 0.
Then the quotient *-homomaorphism: O(X,«, L) — O(X,«, L)/l is such
thatm), is an isometry.

Claim. For eachb € O(X, «, L) it holds that|||E(b)||| < ||z (b)| whereE is
the conditional expectation defined in sectibA.

D A

0<i<n
0<j<m

with ag o € C(X) andﬂa\LJ € M'MJ fori #0o0rj #0,a; = Zl<k<nlja, i

af| = f" f"J,gIjl g,)JJ Wheref,J,,g,’MeCc(U)foreachl i,

k, | andt leens > 0 there existp € Swhich extendsy for somey € Y

such thau||E(a)||| — ¢ < |p(E(a))|. Note thaty ¢ V"I fori # j. Then, for

everya1 withi # j, by 4.2 there eX|stlslI e C(X),0< h"- < 1, such that
) (y) =1 andha“h = 0. Define

h=TT T[T n.

O<i<n 1<k=<njj
0<j<m

Let a be of the form

g

Thenha jh = 0 for eachi # j from wherehah = hE(a)h, and moreover

h(y) = 1. By 44 o(hE(@h) = ¢(h)e(E(@)e(h) = h(y)p(E@)h(y) =
¢(E(@)), and sop(E(a)) = ¢(hE(a)h) = ¢(hah). Sincehah= hE(a)h € K
e, is an isometry it follows thaghah|| = ||z (aha)||. Then

INE@lIl — & < lo(E@)] = lp(hah)| < |[hah] = |z (hah)|| < |z (@)].

Sinceg is arbitrary it follows that||E(a)||| < || (a)| for ain this form. Given
b e O(X, a, L), for eache > 0 choosea € O(X, a, L) as above such that
la—Db| <e&. Then

NE®II = IIEG—a)ll+ IIE@IIl < IIE@Il +¢ < z@] + ¢
< lz@—=b)| + lz®| + & < |7 (b)]| + 2.

Again, sinceg is arbitrary it follows thatj|| E(b)||| < || (b)||, and the claim is
proved. 0
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Observethat E(1) is a closed ideal oK. Also, E(l) is nonzero, because
0 # | andE is faithful. ThenE(l) N L, # O for somen (see [2, I1l.4.1]). Let
0 # ce E(I)N L, Then, since*c € L, andc*c is positive and nonzero it
follows by 45 that|||c*c||| # 0. We shall prove thaf|c*c||| = 0, and this will
be an absurd. For eaeh= E(b) € E(l) with b € | we have that

la*alll = IIE(HEMII = IIEG E®O)I < 7 (b ED)].

By the fact thab*E(b) € | it follows thatz (b*(E(b))) = 0 and sg|ja*a||| = O.
This shows thatfl|a*al|| = O for eacha € E(l). Giveng > 0, takea € E(l)
such thafla*a — c*c|| < ¢. Then

lic*c|l| < lllc*'c —a*a|l| + l[la*al|| = [llc"c — a*al|| < |Ic"c — a*al| < e.

So|l|c*c||| < ¢ for eache > 0 from where]||c*c||| = 0, and that is an absurd.
Thereforel N K # 0, and the theorem is proved. g

4.2 Relationship between the ideals ad(X, o, L) and the o, o ~*-invariant
open subsets oiX

We obtain here a relationship between the ideal® Of, «, L) and thes, o ~1-
invariant open subsets of under an additional hypothesis ab@it, o), which
is that for every closed, o ~-invariant subseX’ of X, (X, o|,,) is topologi-
cally free.

Proposition 4.7. Let | be an ideal ofo(X, «, L) andV C X the open subset
such thatl N C(X) = Co(V). If (X', 0),,) is topologically free (whereX’ =
X\ V) thenl = (Cp(V)).

Proof. By 3.4V is o, 0 ~-invariant, from whereX’ is alsoo, o ~*-invariant.
By 3.3 there exists a *-isomorphism
0(X,a, L)

OX,a', L.
Cotvy O

Obviously(Co(V)) < I. Supposé # (Co(V)). ThenT # 0 and so¥ (1) # O.
By 4.6, w(I) NC(X) # 0. Let 0 g € w(I) N C(X). Theng = U(@)
for somea € | and alsog = W(f), becausel(C(X)) = C(X’'). Therefore
(@) = w(T) fromwherea = f and sof — a e (Co(V)) C I, in other
words,f_e I. Inthiswayf € | NC(X) = Co(V) andso f = 0 from where
g = ¥ (f) = 0, which is a absurd. So we conclude that (Co(V)). O
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Theorem 4.8. If (X, o) is such that(X’, o|,,) is topologically free for every
closed subset, o ~-invariant X’ of X then every ideal ob (X, a, L) is of the
form (Cy(V)) for some open subs®t C X. Moreover, the maly — (Co(V))
is a bijection between the open o ~!-invariante subsets ok and the ideals
of O(X, a, L).

Proof. Letl < O(X,a,L), andCo(V) = | NC(X). By 3.4V iso, 07 1-
invariant, from whereX’ = X \ V is alsoo, o ~-invariant. By hypothesis
(X', 0y,,) is topologically free. By 4.7) = (Co(V)). In particular, note that
every ideal ofO(X, «, L) is gauge-invariant. So, by 3.9 the mapgva—>
(Co(C)) is a bijection. O

4.3 A simplicity criteria for the Cuntz-Krieger algebras for infinite
matrices

Recall thalGr(A) is the oriented graph whose vertex are the elemenBsafch
that givenx, y € G there exists an oriented edge frorrio y if A(x,y) = 1.
An path fromx to y is a finite sequencg; - - - X, such that; = x, x, = vy
and A(x, x11) = 1 for eachi. We will say thatGr(A) é transitive if for each
X, Y € G there exists a path fromto y.

The main result of this section is that@r (A) is transitive then the Cuntz-
Krieger algebraD, is simple. This result is essentially Theorem [4, 14.1].

Thg following proposition singles out the, o ~*-invariant open subsets
of Qa.

Proposition 4.9. If Ggr(A) is transitive, the uniquer-invariants honempty

~

open subsets @t 5 are Qa \ ¥ and Qa.

Proof. Let V be aoc-invariant open subset dk. Let& € V an element
whose stem is infinite. (such elements form a dense subsgt)inChoosev,
neighbourhood of in V,

Vo = (v € Qa; w(v)), = w(§)),}

wherew(v) is the stem ob. Let u € Qa such thajw(p)| > 1 and letx € G,
with x € u. SinceGr(A) is transitive there exists a pa- - - X, from w (&),
to x, and by this wayw(£),X2 - - - Xm—1t € Vo € V. SinceV is o-invariant it
follows thatu € V becausgt = o™ 2(w(£); X2+ - - Xm_114). SOU C V. If
% + & € Qa \ U then there exists € G such that—! € &. Sincex¢é e U C V
ando (x¢) = & it follows thaté € V. This shows tha©a \ ¥ C V, fromwhere
the result follows. O
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SinceQ2, andQa \ ¥ arec ~L-invariant it follows by the previous proposition
that the uniquer, o ~-invariant open nonempty subsets @h are Qa and
Qa\ 9.

Given ¢ € dom(c') with w(¢) = X1Xo--- we have thatw(o'(§)) =
Xi+1Xi42 ... This shows that it € V"I thenw(&) is infinite, because if we
suppose thdtw(£)| = n, then we have that—i = |w(c' (§))| = |lw(co! (§))| =
n — j from wherei = j, which is an absurd.

The following proposition shows a relationship betw&an(A) andQa .

Proposition 4.10.If Gr(A) is transitive therQ2, is topologically free.

Proof. Supposé > j,i = j + k andthatVi-i has nonempty interior. Letbe
an interior pointof Vi-i andV, € Vi.i an open subset which contains Then
there exists an elemeéte V, N V'-!. Sinces' (§) = ¢! (£) we have that

Xi+1Xi42 - = w(0' () = w0 (§)) = Xj41Xj42- - ,
from wherex, = Xj;r forr > 1. Sincei = | + k it follows that
Xitk = Xj4k = Xi, and also thaki;qiry = Xjrker) = X(j+o+r = Xi4r fOr

eachr > 1. Applying the last equality repeatedly it follows that k. r = Xiir
for eachn € N andr > 1. This shows thaty(§) = X;---X_1SSS - - , where
S = XiXit1:: Xitk-1)- Sincew (&) is infinite, there exist: > i such that
Vh={neQa:wm), =% X =w(§),} S V..

Claim. V, = {&}.

Supposing; € V, N V"1, with the same arguments as above it may be proved
thatw(n) = X1Xo - - - X _1SSS - - , fromwherew(n) = w(§), and since), &£ have
infinite stems it follows that) = £. Letv € V,. Then, since/, C Vi there
exists a nety), < V"I such that, — v. Sincev € V, andV, is open we may
suppose thaty); € V,. Thereforey = & for eachl and sov = £. This proves
the claim. O

Lety € G\ {Xi, Xi+1, - - , Xi+(k—1}. By the factthaGr (A) is transitive there
exists apatly; - - - yr wherey; = X,1 andy, = yand an other path, - - - z such
thatz; = y ez = x;. In this way we may consider the infinite admissible word
X1+ - XaV1- - YrZo- - - zi_qw(€) Which is the stem of some elemente Q.
Notice thatu € V, by the definition ofV, and thatu # &, because its stems
are distinct. This contradicts the claimiherefore Vi-i has empty interior, and
S0Qp is topologically free. O

We will prove now the main result of this section.
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Proposition 4.11. If Gr(A) is transitive the unique ideals @, are the null
ideal, Op and Oy, .

Proof. By 4.9 the unique closed, o ~*-invariants subsets dﬁ arefsz, the
set{} (if ¥ € Qa, thatis, ifOa # Oa by[4, 8.5]) and the empty set. Since these
subsets are topologically free, by 4.8 the ideal®fa, o, L) are precisely 0,
(Co(Qa \¥)) andO(Qa , o, L). Thereforeifd ¢ Qa (thatis, ifOx = O )then
O(Qa, a, L) has no nontrivial ideals and the proposition is proved in this case.
If € Qa then by 4.80(Qa, «, L) has exactly one nontrivial ideal, which is
(Co(Qa \ 9)). ThereforeO, has also exactly one nontrivial ideal. By [4, 8.5]
Oa # Oa and since 0 Op < O, it follows that O, is a nontrivial ideal of
Oa, and so is unique. O

A direct consequence of this proposition is thabi( A) is transitive therOa
is simple.
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