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The Crossed Product by a Partial Endomorphism

Ruy Exel∗ and Danilo Royer∗∗

Abstract. Given a closed idealI in aC∗-algebraA, an idealJ (not necessarily closed)
in I , a *-homomorphismα : A → M(I ) and a mapL : J → A with some properties,
based on earlier works of Pimsner and Katsura, we define aC∗-algebraO(A, α, L)
which we call theCrossed Product by a Partial Endomorphism.We introduce the
Crossed Product by a Partial EndomorphismO(X, α, L) induced by a local homeo-
morphismσ : U → X whereX is a compact Hausdorff space andU is an open subset
of X. A bijection between the gauge invariant ideals ofO(X, α, L) and theσ, σ−1-
invariant open subsets ofX is showed. If(X, σ ) has the property that(X′, σ|X′ ) is
topologically free for each closedσ, σ−1-invariant subsetX′ of X then we obtain a
bijection between the ideals ofO(X, α, L) and the openσ, σ−1-invariant subsets ofX.
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Introduction

Since the pioneering work of Cuntz [1], many authors, notably Paschke [11],
Stacey [15], and Murphy [10], have proposed constructions of crossed products
of C∗-algebras by endomorphisms. Those constructions depends essentially on
an endomorphismα on aC∗-algebraA. In [3] it was introduced by the first
named author the concept of Crossed Product by an Endomorphism, based not
only on an endomorphismα but on a C∗-dynamical system(A, α, L). HereA
is a C∗-algebra,α is an endomorphism andL, following [3], is a transfer op-
erator, that is,L : A → A is a continuous linear map such thatL is positive
andL(α(a)b) = aL(b) for all a, b ∈ A. The Crossed Product by an Endomor-
phism is a quotient of the universal C∗-algebra generated by a copy ofA and an
elementSsubject to the relationsSa= α(a)SandS∗aS= L(a) for all a ∈ A.
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See[3] for more details. In this article it was shown that the Cuntz-Krieger alge-
bra is an example of Crossed Product by an Endomorphism. TheC∗-dynamical
system associated to this example is induced by the Markov subshift(�A, σ ),
that is, the endomorphismα : C(�A) → C(�A) is given byα( f ) = f ◦ σ and
L : C(�A) → C(�A) is defined by

L( f )(x) =
1

#σ−1(x)

∑

y∈σ−1(x)

f (y)

for eachx ∈ X and for eachf ∈ C(�A).
It was defined in [4] by the first named author and M. Laca the Cuntz-Krieger

algebra for infinite matrices. This algebra has a topological compact Hausdorff
space�̃A associated to it, which can be seen in [4, 4-7]. The difference be-
tween this case and the previous one is that the shiftσ can not be defined in the
whole spacẽ�A , but only in an open subsetU of �̃A . Then the local homeo-
morphismσ : U → �̃A induces the *-homomorphismα : C(�̃A ) → Cb(U )
given byα( f ) = f ◦ σ , whereCb(U ) is the set of all continuous and bounded
functions inU . Moreover, since #σ−1(x) may be infinite for somex ∈ �̃A ,
the convergence of the sum

∑
y∈σ−1(x) f (y) is not guaranteed and soL( f ) can

not be defined byL( f )(x) =
∑

y∈σ−1(x) f (y) for every f ∈ C(�̃A ). However,
we will show that for eachf ∈ Cc(U ), that is, for each function with compact
support inU , L( f ) defined byL( f )(x) =

∑
y∈σ−1(x) f (y) for eachx ∈ �̃A

is an element ofC(�̃A ). In this way we obtain a mapL : Cc(U ) → C(�̃A ).
Becauseα is not an endomorphism inC(�̃A ) and the domain ofL is not the
whole algebraC(�̃A ), the triple(A, α, L) (which we also call byC∗-dynamical
system) is not aC∗-dynamical system as in [3] and therefore the construction of
Crossed Product by an Endomorphism defined in [3] cannot be applied.

In this work we define, making use of the constructions of T. Katsura ([7])
and M. Pimsner ([13]), theCrossed Product by a Partial Endomorphism.We
show that our construction may be applied to the situation described in the pre-
vious paragraph. We study specially the case where the Crossed Product by
a Partial Endomorphism, wich we denote byO(X, α, L), is induced by a lo-
cal homeomorphismσ : U → X, whereU is an open subset of a topological
compact Hausdorff spaceX. More specifically, we show a bijection between
the gauge invariant ideals ofO(X, α, L) and theσ, σ−1-invariant open subsets
of X. Moreover, if(X, σ ) has the property that(X′, σ|X′ ) is topologically free
for every closedσ, σ−1-invariant subsetX′ of X then there exists a bijection
between the ideals ofO(X, α, L) and the openσ, σ−1-invariant subsets ofX.
Finally we present a simplicity criteria for the Cuntz-Krieger algebras for in-

Bull Braz Math Soc, Vol. 38, N. 2, 2007



“main” — 2007/6/12 — 15:13 — page 221 — #3

THE CROSSED PRODUCT BY A PARTIAL ENDOMORPHISM 221

finite matrices. The choice of the name Crossed Product by a Partial Endo-
morphism for the algebraO(A, α, L) defined in this work was motived by the
local homeomorphismσ : U → X whereU is an open subset ofX.

There is a strong relationship between the Crossed Product of a Partial Endo-
morphism associated to a commutativeC∗-dynamical system, and the algebra
studied by J. Renault in [14]. However, our approach is completely different
from the one used by Renault. Moreover, the construction of the Crossed Prod-
uct by a Partial Endomorphism introduced in our paper applies also to non com-
mutativeC∗-dynamical systems.

In [8], B.K. Kwasniewski defined an algebra which he calledCovariance al-
gebra of a partial dynamical systembased on a partial dynamical system(X, α),
that is, a continuous mapα : 1 → X whereX is a compact Hausdorff space
and1 is a clopen subset ofX andα(1) is open. In our construction1 need
not be clopen, only open, but we require thatα is a local homeomorphism.
The possible relationship between these two constructions will be studied in a
future paper.

1 The crossed product by a partial endomorphism

In this section we define the crossed product by a partial endomorphism and show
some results about its structure. We study the gauge action and gauge-invariant
ideals of this algebra.

1.1 Definitions and basic results

Let A be aC∗-algebra andI a closed two-sided ideal inA.

Definition 1.1. A partial endomorphism is a *-homomorphismα : A → M(I )
whereM(I ) is the multiplier algebra ofI .

Let J be a two-sided self adjoint idempotent (not necessarily closed) ideal inI
and letα : A → M(I ) andL : J → A be functions. We denote a such situation
by (A, α, L).

Definition 1.2. (A, α, L) is a C∗-dynamical system if(A, α, L) has the follow-
ing properties:

• α is a partial endomorphism,

• L is linear, positive and preserves * ,

• L(α(a)x) = aL(x) for all a in A andx in J.
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The functionL is positive in the sense thatL(x∗x) is a positive element of
A for all x in J. Moreover, denotingα(a) by (La, Ra), α(a)x is a notation
for the elementLa(x). Note that ifx, y ∈ J anda ∈ A then La(x) ∈ I and
so La(xy) = La(x)y ∈ J. Since J is idempotent we have in general that
α(a)x ∈ J for all a ∈ A and x ∈ J. Thereforeα(a)x lies in fact in the
domain ofL. Definingxα(a) = Ra(x) for all x ∈ J anda ∈ A we have that
(α(a)x)∗ = x∗α(a∗) for everyx ∈ J anda ∈ A. In fact,

(α(a)x)∗ = (La(x))∗ = (Ra)∗(x∗) = Ra∗
(x∗) = x∗α(a∗) .

In the same way(xα(a))∗ = α(a∗)x∗.
If (A, α, L) is aC∗-dynamical system thenL(xα(a)) = L(x)a for all a ∈ A

and x ∈ J. In fact, givena ∈ A e x ∈ J, sincea∗ ∈ A and x∗ ∈ J we
have thatL(α(a∗)x∗) = a∗L(x∗). ThereforeL(xα(a)) = L((xα(a))∗)∗ =
L(α(a∗)x∗)∗ = (a∗L(x∗))∗ = L(x)a.

The next goal is to define a leftA-module which is also a right HilbertA-
module. Define the operation

. : J × A → J
(x,a) 7→ xα(a)

.

It is easy to verify that this operation is bilinear and associative. ThusJ is a right
A-module. It is also easy to see that the function

〈 , 〉 : J × J → A
(x, y) 7→ L(x∗y)

is a semi-inner product. Considering the quotient ofJ by N0 = {x ∈ J : 〈x, x〉
= 0} and denoting the elementsx of J by x̃ in J/N0 (or by (x)̃ ) we obtain an
inner product ofJ/N0 in A defined by〈̃x , ỹ 〉 = 〈x, y〉. So the function

‖ , ‖ : J/N0 → R+

x̃ 7→
√

‖〈̃x , x̃ 〉‖

defines a norm inJ/N0. Denote byM the right HilbertA-module(J/N0)
‖‖

.
Let us now define a leftA-module structure forM . Givena ∈ A andx ∈ J

we have thatx∗a∗ax, ‖a‖2x∗x ∈ J. Sincex∗(‖a‖2 − a∗a)x may be written
in the form(bx)∗(bx) with bx ∈ J we have thatL(x∗‖a‖2x − x∗a∗ax) ≥ 0
and soL(x∗a∗ax) ≤ ‖a‖2L(x∗x) from where‖L(x∗a∗ax)‖ ≤ ‖a‖2‖L(x∗x)‖.
Therefore

‖ãx‖2 = ‖〈ãx , ãx 〉‖ = ‖L(x∗a∗ax)‖ ≤ ‖a‖2‖L(x∗x)‖

= ‖a‖2‖〈̃x , x̃ 〉‖ = ‖a‖2‖x̃ ‖2,
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and so,‖ãx‖ ≤ ‖a‖‖x̃ ‖. This allows us define the operation

. : A × M → M
(a,m) 7→ am

,

whereax̃ = ãx , which is bilinear and associative, and soM is a left A-module.
This operation gives rise to a *-homomorphism fromA in L(M). In fact, defining
ϕ : A → L(M) by ϕ(a)m = am we have:

Proposition 1.3.ϕ is a *-homomorphism.

Proof. For all a ∈ A, ϕ(a) : M → M defined byϕ(a)(m) = am for all
m ∈ M is a linear function. Moreover, forx, y ∈ J,

〈ϕ(a)̃x , ỹ 〉 = 〈ãx , ỹ 〉 = L((ax)∗y) = L(x∗a∗y) = 〈̃x , ã∗y 〉 = 〈̃x , ϕ(a∗)ỹ 〉,

and sinceJ/N0 is dense inM it follows that〈ϕ(a)m, n〉 = 〈m, ϕ(a∗)n〉 for all
m, n ∈ M . This shows thatϕ(a) is adjointable andϕ(a)∗ = ϕ(a∗). Obviously
ϕ is linear and multiplicative. �

Definition 1.4. The Toeplitz algebraT (A, α, L) associated to theC∗-dynamical
system(A, α, L) is the universalC∗-algebra generated byA ∪ M with the rela-
tions ofA, of M, theA-bi-module products andm∗n = 〈m, n〉 for all m, n ∈ M.

Note that the universal algebra in fact exists, since the relations are admissible.
We will denote byK̂1 the closed sub-algebra ofT (A, α, L) generated by the
elements of the formmn∗, for m, n ∈ M .

Definition 1.5. A redundancy inT (A, α, L) is a pair (a, k) wherea ∈ A,
k ∈ K̂1 andam = km for all m ∈ M.

Let I0 = ker(ϕ)⊥∩ϕ−1(K (M))whereϕ : A → L(M) is the *-homomorphism
given by the left multiplication.

Definition 1.6. The Crossed Product by a partial Endomorphism associated to
the C∗-dynamical system(A, α, L) is the quotient ofT (A, α, L) by the ideal
generated by the elementsa − k for all redundancies(a, k) such thata ∈ I0,
and will be denoted byO(A, α, L).

It follows from [7] thatA 3 a → a ∈ O(A, α, L) is injective. In the following
proposition will be showed some consequences of this fact. Let us temporarily
denote bŷa andm̂ the elements ofA andM in T (A, α, L). Define

K̂n = span{m̂1 ∙ ∙ ∙ m̂nl̂1
∗
∙ ∙ ∙ l̂ n

∗
: mi , l i ∈ M}
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and denote byq the quotient map fromT (A, α, L) toO(A, α, L).

Proposition 1.7.

a) A 3 a 7→ q(̂a) ∈ O(A, α, L) is an injective *-homomorphism.

b) A 3 a 7→ â ∈ T (A, α, L) andq|Â
are injective *-homomorphisms.

c) M 3 m 7→ m̂ ∈ T (A, α, L) is an isometry.

d) q|M̂ is an isometry.

e) M 3 m 7→ q(m̂) ∈ O(A, α, L) is an isometry.

f) q|K̂n
is an injective *-homomorphism.

Proof.

a) Is a consequence of [7].

b) Follows from a) .

c) Givenm ∈ M , ‖m̂‖2 = ‖m̂∗m̂‖ = ‖〈̂m,m〉‖. Since〈m,m〉 ∈ A, it fol-
lows from b) that‖〈̂m,m〉‖ = ‖〈m,m〉‖. Moreover‖m‖2 = ‖〈m,m〉‖.
Then‖m̂‖2 = ‖〈m,m〉‖ = ‖m‖2.

d) For allm̂ ∈ M̂ we havêm∗m̂ ∈ Â. By a),q| Â
is injective and therefore an

isometry. Then‖q(m̂)‖2 = ‖q(m̂∗m̂)‖ = ‖m̂∗m̂‖ = ‖m̂‖2.

e) Follows from c) and d) .

f) Let k ∈ K̂n and supposeq(k) = 0. Thenq((M̂∗)nkM̂n) = 0. Since
(M̂∗)nkM̂n ⊆ Â it follows from b) that(M̂∗)nkM̂n = 0. ThenK̂nkK̂n

= 0 and sok = 0. �

From now on we will identify the elementŝa ∈ T (A, α, L) and q(̂a) ∈
O(A, α, L) with the elementa of A. This notation will not cause confusion, by
a) and b) of the previous proposition. In the same way, justified by c) and e)
we will identify the elementŝm ∈ T (A, α, L) andq(m̂) ∈ O(A, α, L) with the
elementm ∈ M . With these identifications,

K̂n = span
{
m1 ∙ ∙ ∙ mnl ∗1 ∙ ∙ ∙ l ∗n : mi , l i ∈ M

}
⊆ T (A, α, L).
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Define

Kn = span
{
m1 ∙ ∙ ∙ mnl ∗1 ∙ ∙ ∙ l ∗n : mi , l i ∈ M

}
⊆ O(A, α, L)

and note thatq(K̂n) = Kn. If (a, k) ∈ A × K̂1 is a redundancy anda ∈ I0

thenq(a) = q(k). Sincea = q(a) in O(A, α, L) it follows that a = q(k) in
O(A, α, L).

The spacesKn e K̂n are clearly closed under the sum and are self-adjoint.
Moreover, the following proposition shows that they are closed under multipli-
cation, and so areC∗-algebras.

Proposition 1.8.

a) K̂nK̂m ⊆ ̂Kmax{n,m} and alsoKnKm ⊆ Kmax{n,m}.

b) AK̂n ⊆ K̂n, K̂n A ⊆ K̂n and alsoAKn ⊆ Kn and Kn A ⊆ Kn.

Proof. Since Kn = q(K̂n) it suffices to show the result for the algebra
T (A, α, L).

a) Taking adjoins we may supposen ≤ m. Givenl1 . . . lnt∗
1 . . . t

∗
n ∈ K̂n and

p1 . . . pmq∗
1 . . .q

∗
m ∈ K̂m, how a = t∗

1 . . . t
∗
n p1 . . . pn ∈ A it follows that

lna ∈ M . Therefore

l1 . . . lnt∗
1 . . . t

∗
n p1 . . . pmq∗

1 . . .q
∗
m = l1 . . . lnapn+1 . . . pmq∗

1 . . .q
∗
m ∈ K̂m.

This is enough sincêKn are generated by elements of this form.

b) Follows by the fact thatam ∈ M for all a ∈ A andm ∈ M . �

We will denote bym⊗ n the element ofK (M) given bym⊗ n(ξ) = m〈n, ξ 〉,
for all ξ ∈ M .

Proposition 1.9. There exists a *-isomorphismS: K̂1 → K (M) such that
S(mn∗) = m ⊗ n.

Proof. Given k ∈ K̂1 and m ∈ M then km ∈ M becauseM is closed in
T (A, α, L) by the proposition 1.7 c). InT (A, α, L), 〈km, n〉 = (km)∗n =
m∗k∗n = 〈m, k∗n〉, and how〈m, k∗n〉, 〈km, n〉 ∈ A, by 1.7 b) 〈m, k∗n〉 =
〈km, n〉 in A. So, definingS(k) : M → M by S(k)(m) = km it follows that
〈S(k)m, n〉 = 〈km, n〉 = 〈m, k∗n〉 = 〈m, S(k∗)n〉 for all m, n ∈ M . This shows
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that S(k) is adjointable andS(k)∗ = S(k∗). SinceS(k) ∈ L(M) we may de-
fine S: K̂1 → L(M) which is clearly linear and multiplicative, and soS is a
*-homomorphism. ObviouslyS(mn∗) = m ⊗ n, and thereforeS(k) ∈ K (M)
for all k ∈ K̂1. MoreoverS(K̂1) is a dense set inK (M) and soS(K̂1) = K (M).
In order to see thatS is injective supposeS(k) = 0, that is,kM = 0. Then
kK̂1 = 0 and sincek ∈ K̂1 it follows thatk = 0. �

If (a, k) is a redundancy thenam = kmfor all m ∈ M , from whereϕ(a)(m) =
S(k)(m) for eachm ∈ M . SinceS(k) ∈ K (M) it follows thatϕ−1(a) ∈ K (M).
So the algebraO(A, α, L) coincides with the quotient ofT (A, α, L) by the ideal
generated by the elements of the form(a−k) for all redundancy(a, k) such that
a ∈ ker(ϕ)⊥.

Given aC∗-dynamical system(A, α, L) and a closed idealN in A such that
J ⊆ N ⊆ I , we may consider an otherC∗-dynamical system(A, β, L) where
the partial endomorphismβ : A → M(N) is given byβ(a) = (La

|N
, Ra

|N
), con-

sidering thatα(a) = (La, Ra). Sincexβ(a) = xα(a) for all x ∈ J anda ∈ A it
follows thatO(A, α, L) = O(A, β, L). By this reason we may suppose thatJ
is a dense ideal inI . This situation will occur in the second section.

It may be showed without much difficulty that the crossed product by endo-
morphism introduced in [3] in some situations may be seen as crossed products
by a partial endomorphism. More specifically, this holds if〈α(A)〉 = A andL
is faithfull or if α : A → A is injective,α(A) = α(1)Aα(1), andL : A → A is
given byL(a) = α−1(α(1)aα(1)). The first situation occurs in Cuntz-Krieger
algebras (see [3, 6]) end the last situation occurs in Pashke’s crossed product and
in the crossed product proposed by Cuntz (see [3]).

1.2 The gauge action

The next goal is to show that every gauge-invariant ideal ofO(A, α, L) has non-
trivial intersection with the fixed point algebra of the gauge action inO(A, α, L).

By the universal property ofT (A, α, L) it follows that for eachλ ∈ S1

there exists a *-homomorphismθλ : T (A, α, L) → T (A, α, L) which satis-
fies θλ(a) = a for all a in A and θλ(m) = λm for all m ∈ M . If (a, k) is
a redundancy, becauseθλ(a) = a andθλ(k) = k it follows that (θλ(a), θλ(k))
is also a redundancy, and so we may considerθλ : O(A, α, L) → O(A, α, L).
Note thatθλ1θλ2 = θλ1λ2 from whereθλ is a *-automorphism, with inverseθλ.
Moreover, givenr ∈ O(A, α, L), the functionS1 3 λ 7→ θλ(r ) ∈ O(A, α, L) is

Bull Braz Math Soc, Vol. 38, N. 2, 2007
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continuous. Then we may consider

E : O(A, α, L) → O(A, α, L)

r 7→
∫

S1

θλ(r )dλ .

Proposition 1.10.The fixed point algebra ofθ is K = span
{

A, Kn; n ∈ N
}

and
E is a faithful conditional expectation ontoK .

Proof. It is not difficult to show thatE is a faithful conditional expectation onto
the fixed point algebra. So it suffices to show that Im(E) = K . The equality
holds because

E(am1 ∙ ∙ ∙ mkn
∗
1 ∙ ∙ ∙ n∗

l b) =

{
am1 ∙ ∙ ∙ mkn∗

1 ∙ ∙ ∙ n∗
l b se k = l

0 se k 6= l

and the space generated by elements of the formam1 ∙ ∙ ∙ mi n∗
1 ∙ ∙ ∙ m∗

j b is dense
in O(A, α, L). �

Definition 1.11. A ideal I in O(A, α, L) is gauge-invariant ifθλ(I ) ⊆ I for
eachλ ∈ S1.

If I is gauge-invariant, the gauge action inO(A, α, L)/I is given by

βλ : O(A, α, L)/I → O(A, α, L)/I
π(r ) 7→ π(θλ(r ))

,

whereπ is the quotient map. In this caseπ is covariant by the gauge actions
θ andβ, in the sense thatπ(θλ(r )) = βλ(π(r )) for all r ∈ O(A, α, L) and
for eachλ ∈ S1. Moreover, the fixed point algebra forβ is π(K ) because the
conditional expectationF induced byβ is such thatF(π(r )) = π(E(r )) for
eachr ∈ O(A, α, L).

Proposition 1.12.If 0 6= I E O(A, α, L) is gauge-invariant thenI ∩ K 6= 0.

Proof. Sinceθλ(I ) ⊆ I for all λ ∈ S1 then E(r ) ∈ I for all r ∈ I . By the
fact thatE is faithful it follows that, given 06= r ∈ I thenE(r ∗r ) 6= 0. Since
E(r ∗r ) ∈ K ∩ I , the result is proved. �
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Defining

L0 = A and Ln = A + K1 + ∙ ∙ ∙ + Kn for every n ≥ 1

we have that
L0 ⊆ L1 ⊆ L2 ⊆ ∙ ∙ ∙ and K =

⋃

n∈N

Ln .

This form to see the algebraK will be useful in some situations which will
appear latter. In some of this situations we will use the fact, given by the follow-
ing proposition, that the algebrasLn (by the proposition 1.8Ln are algebras) are
closed, for alln ∈ N.

Proposition 1.13.For eachn ∈ N the algebrasLn are closed.

Proof. The caseL0 follows by 1.7 a). By induction supposeLn closed. Note
that Kn+1 E Ln+1 and thatLn is a closed sub-algebraof Ln+1. By [12, 1.5.8],
Ln + Kn+1 is a closed sub-algebraof Ln+1. Therefore

Ln+1 = Ln + Kn+1 = Ln + Kn+1 = Ln+1 . �

2 The Crossed Product by a Partial Endomorphism induced by a local
homeomorphism

Given a topological compact Hausdorff spaceX and a local homeomorphism
σ : X → X, definingα : C(X) → C(X) by α( f ) = f ◦ σ and L : C(X) →
C(X) by L( f )(x) =

∑
y∈σ−1(x) f (y) for all x ∈ X, we obtain aC∗-dynamical

system. This situation occurs in the Cuntz-Krieger algebra in [3]. A more gen-
eral situation consists in considering an open setU ⊆ X and a local homeo-
morphismσ : U → X. In this case, definingα as above, for allf ∈ C(X)
α( f ) is an element ofCb(U ), whereCb(U ) is the set of all continuous and
bounded functions inU . Moreover, #σ−1(x) may be infinite for somex ∈ X,
and thereforeL can not be defined as above.

Although, if f ∈ Cc(U ), that is, f ∈ C(X) such that

supp( f ) =
{
x ∈ X : f (x) 6= 0

}
⊆ U ,

we will show that
∑

y∈σ−1(x) f (y) involves finitely many summands for every
x ∈ X. We will also show that, for eachf ∈ Cc(U ), L( f ) defined byL( f )(x) =∑

y∈σ−1(x) f (y) is an element inC(X), and so we may defineL : Cc(U ) →
C(X). Moreover, sinceCb(U ) and M(C0(U )) are *-isomorphic we obtain a
partial endomorphism̃α : C(X) → M(C0(U )).
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We begin this section by showing that(C(X), α̃, L) is aC∗-dynamical system
which will give us the crossed product by a partial endomorphismO(X, α, L).

The second part is dedicated to presenting some basic results about the struc-
ture ofO(X, α, L), and the most important result of this part is that every ideal
of O(X, α, L) which has nonzero intersection withK (the fixed point algebra
of the gauge action) has nonzero intersection withC(X).

In the last part we show that the Cuntz-Krieger algebra for infinite matrices
(see [4]) is a crossed product by a partial endomorphism. This is the example
which motivated this work.

The choice of the nameCrossed Product by a Partial Endomorphismfor the
algebraO(A, α, L) was motivaded by the local homeomorphismσ .

2.1 The algebraO(X, α, L)

Let X be a topological compact Hausdorff space,U ⊆ X an open subset and
σ : U → X a local homeomorphism. Define

α : C(X) → Cb(U )
f 7→ f ◦ σ

which is a *-homomorphism. For eachf ∈ Cc(U ) define for allx ∈ X,

L( f )(x) =






∑

y∈U
σ(y)=x

f (y) if σ−1(x) 6= ∅

0 otherwise
.

If K ⊆ U is a compact subset, taking an open coverU1, ∙ ∙ ∙ ,Un of K in U
such thatσ|Ui

is homeomorphism, for everyx ∈ X there exists no more than
one elementxi in eachσ−1(x) ∩ Ui . Therefore there exists at mostn ele-
ments inσ−1(x) ∩ K . It follows that the sum which definesL( f )(x) involves
finitely many summands for eachx ∈ X, and soL( f )(x) in fact may be defined
as above.

Lemma 2.1.For each f ∈ Cc(U ), L( f ) is an element ofC(X).

Proof. Let f ∈ Cc(U ) andK = supp( f ). We will show thatL( f ) is continuous
on each point ofX. Givenx ∈ X \ σ(K ), sinceX \ σ(K ) is open andL( f )y =
0 for all y ∈ X \ σ(K ), it follows that L( f ) is continuous inx. Let x ∈
σ(K ), {x1, . . . , xk} = σ−1(x) ∩ K , andUj open disjoint neighbourhoods ofxj

such thatσ|U j
is a homeomorphism. TheU j may be taken such thatσ(Uj ) are

open, becauseσ is a local homeomorphism.
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Claim. There exists an open setV 3 x such that

σ−1(V) ∩



K\




k⋃

j =1

Uj







 = ∅.

Supposeσ−1(V) ∩
(
K\

( ⋃k
j =1 U j

))
6= ∅ for each open setV which contains

x. For every open subsetW 3 x define

FW = σ−1(W) ∩



K\




k⋃

j =1

Uj







 .

Sinceσ−1(W) is closed inU andK\
( ⋃k

j =1 Uj

)
⊆ U is compact, it follows that

FW is compact, and therefore closed inX. MoreoverFW is nonempty because

∅ 6= σ−1(W) ∩



K\




k⋃

j =1

Uj







 ⊆ FW.

GivenW1, . . . ,Wm open neighbourhoods ofx, we have thatF⋂m
j =1 Wj

⊆ FWj for
each j from where

F⋂m
j =1 Wj

⊆
m⋂

j =1

FWj , and so
m⋂

j =1

FWj 6= ∅

for each finite collection of open neighbourhoodsW1, . . . ,Wm of x. By the fact
that X is compact it follows that there existsy ∈

⋂
W3x;

W open
FW. Since

⋂

W3x;
W open

FW ⊆ K\




k⋃

j =1

Uj





it follows thatσ(y) 6= x. Choose an open setWx 3 x such thatσ(y) /∈ Wx.
Theny /∈ FWx , which is an absurd. This proves the claim.

Let V0 3 x be an open subset according to the claim and define

V = V0

⋂



k⋂

j =1

σ(Uj )



 .
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Let (yi )i an net such thatyi → x. We may suppose that(yi )i ⊆ V , and so
σ−1(yi ) =

{
y1,i , . . . , yk,i

}
whereyj,i ∈ Uj . How σ|U j

is a homeomorphism we

have thatyj,i
i →∞
−→ xj for each j , and so

L( f )(yi ) =
∑

z∈U
σ(z)=yi

f (z) =
k∑

j =1

f (yj,i )
i →∞
−→

k∑

j =1

f (xj ) =
∑

y∈U
σ(y)=x

f (y) = L( f )(x).

This shows thatL( f ) is continuous on the points ofσ(K ), and the lemma is
proved. �

Now we are in the situation whereCc(U ) is an idempotent self-adjoint ideal
of C0(U ), which is an ideal ofC(X), and by the previous lemma,L : Cc(U ) →
C(X) is a function. Moreover, composingα with the *-isomorphismCb(U ) 3
g 7→ (Lg, Rg) ∈ M(C0(U )) we obtain the partial endomorphism̃α : C(X) →
M(C0(U )). It is easy to verify that(C(X), α̃, L) is aC∗-dynamical system.

Sincẽα is essentialy given byα we will use the notation(C(X), α, L) to us re-
fer to theC∗-dynamical system(C(X), α̃, L). Moreover, sincegα̃( f ) = gα( f )
for eachg ∈ Cc(U ) and f ∈ C(X), no more references will be made tõα. So
we have the Toeplitz algebraT (C(X), α, L) and the crossed product by a partial
endomorphismO(C(X), α, L). From now on we will denoteT (C(X), α, L) by
T (X, α, L) andO(C(X), α, L) byO(X, α, L).

2.2 Basic results

Here we will prove some basic results about the crossed product by a partial
endomorphismO(X, α, L).

Lemma 2.2.Given f ∈ Cc(U ), we have that:

a) f̃ = 0 if and only if f = 0.

b) if σ|supp( f ) is a homeomorphism then‖ f ‖∞ = ‖ f̃ ‖.

Proof.

a) Given f ∈ Cc(U ) andx ∈ U such thatf (x) 6= 0 then

L( f ∗ f )(σ (x)) =
∑

σ(y)=σ(x)

f ∗(y) f (y) =
∑

y6=x
σ(y)=σ(x)

| f (y)|2 + | f (x)|2 > 0.

This shows thatL is faithful, and sof̃ = 0 if and only if f = 0.
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b) Since‖ f̃ ‖2 = ‖L( f ∗ f )‖∞ it suffices to show that‖L( f ∗ f )‖∞ = ‖ f ‖2
∞.

For this note that

L( f ∗ f )(x) =

{
| f (σ−1(x))|2 if x ∈ σ(supp( f ))

0 otherwise
.

Then‖L( f ∗ f )‖∞ ≤ ‖ f ‖2
∞. On the other hand, choosex ∈ U such that

| f (x)| = ‖ f ‖∞, and note thatL( f ∗ f )(σ (x)) = ( f ∗ f )(x), which means
that‖L( f ∗ f )‖∞ ≥ ‖ f ‖2

∞. �

Consider the *-homomorphismϕ : C(X) → L(M) given by the left product
of A by M . Note that f ∈ ker(ϕ) if and only if f m = 0 for eachm ∈ M ,
which occurs if and only if̃f g = f g̃ = 0 for eachg ∈ Cc(U ). By a) of
the previuos lemmãf g = 0 if and only if f g = 0. Thereforef ∈ ker(ϕ) if
and only if f g = 0 for everyg ∈ Cc(U ) and so f g = 0 for all g ∈ C0(U ).
So, giveng ∈ C0(U ) it follows that f g = 0 for every f ∈ ker(ϕ) and so
f ∈ ker(ϕ)⊥. This means thatC0(U ) ⊆ ker(ϕ)⊥.

Lemma 2.3.

a) If f, g ∈ Cc(U ) andσ|supp( f )∪ supp(g) is a homeomorphism then( f g∗, f̃ g̃ ∗)

is a redundancy ofT (X, α, L) and f g∗ = f̃ g̃ ∗ in O(X, α, L).

b) C0(U ) ⊆ ϕ−1(K (M)).

c) C0(U ) ⊆ I0 (= ϕ−1(K (M)) ∩ ker(ϕ)⊥).

d) C0(U ) ⊆ K1.

Proof.

a) Let f, g ∈ Cc(U ) such thatσ|supp( f )∪ supp(g) is a homeomorphism andh ∈
Cc(U ). Notice that f̃ g̃ ∗h̃ = ( f α(L(g∗h)))̃ . Sinceσ|supp( f )∪ supp(g) is a
homeomorphism, for each elementx ∈ supp( f ) we have that

f (x)
∑

y∈U
σ(y)=σ(x)

(g∗h)(y) = f (x)g(x)∗h(x) .
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Therefore for thesex,

f α(L(g∗h))(x) = f (x)L(g∗h)(σ (x)) = f (x)
∑

y∈U
σ(y)=σ(x)

(g∗h)(y)

= f (x)g∗(x)h(x) = ( f g∗h)(x).

If x /∈ supp( f ) then ( f α(L(g∗h)))(x) = 0 = ( f g∗h)(x). Therefore
f α(L(g∗h)) = f g∗h. Then f̃ g̃ ∗h̃ = ( f α(L(g∗h)))̃ = f̃ g∗h = f g∗h̃
for everyh ∈ Cc(U ), from where f̃ g̃ ∗m = f g∗m for all m ∈ M . It
follows that( f g∗, f̃ g̃ ∗) is a redundancy. Sincef g∗ ∈ C0(U ) ⊆ ker(ϕ)⊥

we have thatf g∗ = f̃ g̃ ∗ in O(X, α, L).

b) It is enough to show thatCc(U ) ⊆ K (M). Let f ∈ Cc(U ), choose a
cover V1, ∙ ∙ ∙ ,Vn of supp( f ) such thatσ|Vi

is a homeomorphism. Let

ξ ′′
i be a partition of unity relative to this cover. Defineξi = f

√
ξ ′′

i and

ξ ′
i =

√
ξ ′′

i . Then f =
∑n

i =1 ξi ξ
′∗
i . By a), (ξi ξ

′∗
i , ξ̃i ξ̃

′
i

∗
) is a redundancy

from where( f, k) is a redundancy wherek =
∑n

i =1 ξ̃i ξ̃
′
i

∗
∈ K̂1. In this

way f m = km for all m ∈ M and soϕ( f )(m) = f m = km = S(k)(m)
for everym ∈ M , whereS is the *-isomorphism of 1.9. It follows that
ϕ( f ) = S(k) and sof ∈ ϕ−1(K (M)). ThereforeCc(U ) ⊆ ϕ−1(K (M)).

c) Follows by b) and by the fact thatC0(U ) ⊆ ker(ϕ)⊥.

d) Given f ∈ Cc(U ), by b) it follows that( f, k) is a redundancy for some
k ∈ K̂1. Since f ∈ C0(U ) ⊆ I0 it follows that f = q(k) ∈ K1. So
Cc(U ) ⊆ K1 from whereC0(U ) ⊆ K1. �

The following lemma will be used several times in this work.

Lemma 2.4. If (k0, k1, . . . , kn) ∈ C(X)× K1 × ∙ ∙ ∙ × Kn such that

g
n∑

i =0

ki = 0

for eachg ∈ C0(U ) then:

a) k0|∂(U ) = 0, k0 = f1 + f2 where f1 ∈ C0(U ) and f2 ∈ C0(X \ U ).

b)
∑n

i =0 ki = f2.
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Proof. Let ε > 0 be fixed. For everyi ≥ 1 choose

k′
i =

Ni∑

j =1

mi
j,1 ∙ ∙ ∙ mi

j,i

(
l i

j,1

)∗
∙ ∙ ∙

(
l i

j,i

)∗
∈ Ki

such thatmi
j,k = f̃ i

j,k with f i
j,k ∈ Cc(U ) and‖ki − k′

i ‖ ≤ ε
n . Define

kε = k′
1 + ∙ ∙ ∙ + k′

n and Kε =
⋃

i, j,k

supp
(

f i
j,k

)
⊆ U

which is compact. Givenx ∈ U \ Kε take f ∈ C0(U ) such thatf (x) = 1, 0≤
f ≤ 1 and f|Kε = 0. Then f kε = 0 by the choice off and f k0 = − f

∑n
i =1 ki

by hypothesis. It follows that

‖ f k0‖ =

∥
∥
∥
∥
∥
− f

n∑

i =1

ki + fxkε

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

f

(

−
n∑

i =1

ki + kε

)∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

f
n∑

i =1

(
k′

i − ki
)
∥
∥
∥
∥
∥

≤ ε

from where|k0(x)| ≤ ε. In this way we have showed that|k0(x)| ≤ ε for
all x ∈ U \ Kε. Given y ∈ ∂(U ), take a net(xl )l ⊆ U such thatxl → y.
Sincey /∈ Kε andU \ Kε is open we may suppose(xl )l ⊆ U \ Kε from where
|k0(xl )| ≤ ε for eachl . By continuity ofk0, |k0(y)| ≤ ε. This shows (taking
ε sufficiently small) thatk0|∂(U ) = 0. Defining f1 = k01U and f2 = k01Uc, we
obtain a).

We will show b). For eachε > 0 choosegε ∈ C0(U ) such that 0≤ g ≤ 1
andg|Kε = 1. Definehε = gεk0. So we obtain a set of functions(hε)ε ⊆ C0(U ).

Claim. limε→0 hε = f1.

For eachε, givenx ∈ X,

|(hε − f1)(x)| = |(gε − 1U )(x)k0(x)| =
{

|gε(x)− 1| |k0(x)| if x ∈ U \ Kε

0 x ∈ Kε ∪ Uc

For x ∈ U \ Kε it holds that|k0(x)| ≤ ε and so for such elements

|gε(x)− 1| |k0(x)| ≤ 2ε.

So‖hε − f1‖ ≤ 2ε. This shows the claim.

Notice thatgεkε = kε andhε = gεk0 = −gε(k1 + ∙ ∙ ∙ + kn) becausegε ∈
C0(U ). Then

hε + (k1 + ∙ ∙ ∙ + kn) = hε + kε − kε + (k1 + ∙ ∙ ∙ + kn)

= −gε(k1 + ∙ ∙ ∙ + kn)+ kε − kε + (k1 + ∙ ∙ ∙ + kn)

= −gε(k1 + ∙ ∙ ∙ + kn − kε)− kε + (k1 + ∙ ∙ ∙ + kn),

Bull Braz Math Soc, Vol. 38, N. 2, 2007



“main” — 2007/6/12 — 15:13 — page 235 — #17

THE CROSSED PRODUCT BY A PARTIAL ENDOMORPHISM 235

and so

‖hε + (k1 + ∙ ∙ ∙ + kn)‖ = ‖gε(−(k1 + ∙ ∙ ∙ + kn)+ kε)+ ((k1 + ∙ ∙ ∙ + kn)− kε)‖

≤ ‖gε(−(k1 + ∙ ∙ ∙ + kn)+ kε)‖ + ‖(k1 + ∙ ∙ ∙ + kn)− kε‖

≤ 2ε.

This shows that limε→0 hε = −(k1 + ∙ ∙ ∙ + kn). By the claim limε→0 hε = f1,
and sof1 = −(k1 + ∙ ∙ ∙ + kn). Then

n∑

i =0

ki = f1 + f2 + k1 + ∙ ∙ ∙ + kn = f2,

proving b). �

Corollary 2.5. K1 ∩ C(X) = C0(U )

Proof. Let r ∈ K1 ∩ C(X). Thenr = f = k where f ∈ C(X) andk ∈ K1.
Then f − k = 0 and sog( f − k) = 0 for all g ∈ C0(U ), and so by 2.4,
f = f1+ f2 with f1 ∈ C0(U ), f2 ∈ C0(X \U ) and f −k = f2. How f −k = 0
it follows that f2 = 0. Thereforef = f1, which means thatr = f1 ∈ C0(U ).
In this wayK1 ∩ C(X) ⊆ C0(U ). The other inclusion is the lema 2.3 d). �

In the construction ofO(X, α, L) we have considered the idealI0 =
ϕ−1(K (M)) ∩ ker(ϕ)⊥. The previous corollary allows us to identify this ideal.

Corollary 2.6. I0 = C0(U )

Proof. Given f ∈ I0 thenϕ( f ) = k ∈ K (M). Choosek′ ∈ K̂1 such that
S(k′) = k where S is the *-isomorphism of 1.9. Thenf m = ϕ( f )(m) =
k(m) = S(k′)(m) = k′m for all m ∈ M . Therefore( f, k′) is a redundancy.
Since f ∈ I0 it follows that f = q(k′) ∈ K1 in O(X, α, L). By the previous
corollary we have thatf ∈ C0(U ). So I0 ⊆ C0(U ). The reverse inclusion
follows by 2.3 c). �

Recall thatK is the fixed point algebra of the gauge action and that

K =
⋃

n∈N

Ln

whereLn = C(X)+ K1 + ∙ ∙ ∙ + Kn for n ≥ 1 andL0 = C(X).
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Proposition 2.7.Every ideal ofO(X, α, L)which has nonzero intersection with
K has nonzero intersection withC(X).

Proof. Let I be an ideal ofO(X, α, L) such thatI ∩ K 6= 0. By [2, III.4.1]
there existsn ∈ N such thatI ∩ Ln 6= 0. Let n0 = min{n ∈ N : I ∩ Ln 6= 0}
and choose 06= k ∈ I ∩ Ln0. Supposen0 6= 0. Supposingm∗kk∗l = 0 for all
m, l ∈ M we have thatm∗k = 0 for all m ∈ M . SoK1k = 0 and by the fact that
C0(U ) ⊆ K1 it follows that f k = 0 for all f ∈ C0(U ). By 2.4,k ∈ C(X) = L0,
which is a contradiction because we are supposingn0 6= 0. So there exists
m, l ∈ M such thatm∗kk∗l 6= 0. Notice thatm∗kk∗l ∈ I ∩ Ln0−1 which again
is an absurd becausen0 = min{n ∈ N : I ∩ Ln 6= 0}. Thereforen0 = 0, that is,
k ∈ L0 = C(X). �

By this proposition and by 1.12 follows the corollary:

Corollary 2.8. If 0 6= I is a gauge-invariant ideal ofO(X, α, L) then
I ∩ C(X) 6= 0.

2.3 The Cuntz-Krieger algebra for infinite matrices

We show that that the Cuntz-Krieger algebra for infinite matrices, introduced in
[4], is an example of crossed product by partial endomorphism. We begin by
presenting a short summary of the construction of this algebra.

Ler G be a set andA = A(i, j )i, j ∈G a matrix where eachA(i, j ) ∈ {0, 1}.
Define the universalC∗-algebraÕA generated by a set of partial isometries
{Sx}x∈G with the following relations:

1. S∗
i Si andS∗

j Sj commute,

2. S∗
i Sj = 0 for all i 6= j ,

3. S∗
i Si Sj = A(i, j )Sj ,

4.
∏

x∈X S∗
x Sx

∏
y∈Y(1 − S∗

y Sy) =
∑

j ∈G A(X,Y, j )Sj S∗
j , wheneverX,Y

are finite subsets ofG such that

A(X,Y, j ) :=
∏

x∈X

A(x, j )(1 −
∏

y∈Y

A(y, j )) 6= 0

only for finitely many j ∈ G.
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The Cuntz-Krieger algebra for infinite matrices was defined in [4] as the sub-
algebraOA of ÕA generated by theSx.

LetF be the free group generated byG and let{0, 1}F be the topological space
(with the product topology), which can also be seen as the set of the subsets of
F. In {0, 1}F consider the set�e = {ξ ⊆ F; e ∈ ξ }, which is compact. For each
t ∈ F define1′

t = {ξ ∈ �e; t ∈ ξ }, which is an clopen subset. Denoting by
1t the characteristic function of1′

t consider the setRA ⊆ C(�e) formed by the
following functions:

1. 1x1y for all x 6= y, x, y ∈ G,

2. 1x−11y − A(x, y)1y for all x, y ∈ G,

3. 1ts1t − 1ts for t, s ∈ F such that|ts| = |t | + |s|, (where|s| is the number
of generators of the reduced form ofs),

4.
∏

x∈X 1x−1
∏

y∈Y(1 − 1y−1) −
∑

j ∈G A(X,Y, j )1 j whereX,Y are finite
subsets ofG such thatA(X,Y, j ) 6= 0 only for finitely many j ∈ G.

In�e consider the closed set̃�A = {ξ ∈ �e; f (t−1ξ) = 0 ∀ t ∈ ξ, f ∈ RA}.
In [4, 7.3] it was showed that̃�A is the closure in�TA of the set of the elements
which have an infinite stem (see [4, 5.5]), where

�TA =

{
ξ ∈ �e : e ∈ ξ, ξ is convex

if t ∈ ξ there is at most onex ∈ G such thatt x ∈ ξ
if t ∈ ξ, y ∈ G andty ∈ ξ thent x−1 ∈ ξ ⇔ A(x, y) = 1

}

The homeomorphismsht : 1′
t−1 → 1′

t given byht(ξ) = tξ induces a partial
action ({Dt}t∈F, {θt}) (see [5] and [9]) ofF in C(�̃A ) where Dt = C(1t),
1t = 1′

t ∩ �̃A andθt : Dt−1 → Dt is given byθ( f ) = f ◦ ht−1 and so we may
consider the partial crossed productC(�̃A )oθ F (see [5] and [9]).

It was showed in [4, 7.10] that there exists a *-isomorphism8 : ÕA →
C(�̃A )oθ F such that8(Sx) = 1xδx.

Based on these informations we will show that̃OA is an example of crossed
product by a partial endomorphism.

Let
U ⊆ �̃A , U =

⋃

x∈G

1x .

By the fact that each1x is open it follows thatU is open. Moreover,U is
dense in�̃A , becauseU contains all the elements of�TA which have an infinite
stem, and these elements form a dense set in�̃A . Since eachξ ∈ U contains a
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uniquex ∈ G, we may define the continuous functionσ : U → �̃A given by
σ(ξ) = x−1ξ wherex is the unique element ofG which lies inξ . This function
is a local homeomorphism (in fact,σ|1x

: 1x → 1x−1 is a homeomorphism).
Defining

α : C(�̃A ) → Cb(U ) by α( f ) = f ◦ σ

and
L : Cc(U ) → C(�̃A ) by L( f )(ξ) =

∑

η∈U
σ(η)=ξ

f (η)

we have that(C(�̃A ), α, L) is a C∗-dynamical system, and so we obtain the
algebraO(�̃A , α, L) (see section 2.1).

The next step is to show that the algebrasO(�̃A , α, L)andÕA are isomorphic.

Lemma 2.9.

a) L(1x) = 1x−1 for eachx ∈ G.

b) f 1xαL(1xg) = 1x f g for eachx ∈ G and f, g ∈ C(�̃ A).

Proof. Both a) and b) follow by direct calculation. To prove the first part notice
thatσ−1(ξ) = {xξ : x−1 ∈ ξ }. �

Proposition 2.10.There exists an unitary *-homomorphism

ψ : ÕA → O(�̃A , α, L)

such thatψ(Sx) = 1̃x .

Proof. We will show thatψ preserves the relations 1-4 which defines̃OA . The
first relation follows by the fact thatψ(Sx)

∗ψ(Sx) = 1̃x
∗
1̃x ∈ C(�̃ A). To verify

the second relation note that 1x1y = 0 for x, y ∈ G andx 6= y, from where
ψ(Sx)

∗ψ(Sy) = 1̃x
∗
1̃y = L(1x1y) = 0. The third relation follows by 2.9 a)

and by the fact that 1x−11y = A(x, y)1y in �̃A . In fact,

ψ(Sx)
∗ψ(Sx)ψ(Sy) = 1̃x

∗
1̃x 1̃y = L(1x)1̃y = 1x−11̃y

= 1̃x−11y = A(x, y)1̃y = A(x, y)ψ(Sy).

Let us verify the fourth relation. By 2.3 a) 1x = 1̃x 1̃x
∗

in O(�̃A , α, L). There-
fore, also

n∑

i =1

1xi =
n∑

i =1

1̃xi 1̃xi

∗
in O(�̃A , α, L) .
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Let X,Y ⊆ G finite such thatA(X,Y, xi ) 6= 0 only for i = 1, ∙ ∙ ∙ , n. Then

∏

x∈X

1−1
x

∏

y∈Y

(1 − 1−1
y ) =

n∑

i =1

1xi in �̃ A

and so
∏

x∈X

ψ(Sx)
∗ψ(Sx)

∏

y∈Y

(1 − ψ(Sy)
∗ψ(Sy)) =

∏

x∈X

1−1
x

∏

y∈Y

(1 − 1−1
y )

=
n∑

i =1

1 ji =
n∑

i =1

1̃xi 1̃xi

∗
=

n∑

i =1

ψ(Sxi )ψ(Sxi )
∗

=
∑

x∈G

A(X,Y, x)ψ(Sx)ψ(Sx)
∗.

�

We will show that the *-homomorphism defined in this proposition is a
*-isomorphism. The following lemma will be useful to show that this *-homo-
morphism is surjective.

Lemma 2.11. The C∗-algebra B generated bỹ1x : x ∈ G in O(�̃A , α, L)
contains all the elements ofC(�e) of the form1r : e 6= r ∈ F and moreoverB
coincides with theC∗-algebra generated byM.

Proof. By 2.9 a),1̃x
∗
1̃x = 1x−1. Givenβ = x−1

1 ∙ ∙ ∙ x−1
n ∈ F with xi ∈ G, by

induction

1̃xn

∗
∙ ∙ ∙ 1̃x1

∗
1̃x1 ∙ ∙ ∙ 1̃xn = 1̃xn

∗
1x−1

n−1∙∙∙x
−1
1

1̃xn = L(1xn1x−1
n−1∙∙∙x

−1
1
) = 1x−1

n ∙∙∙x−1
1
.

If b = yr−1 with r = x1 ∙ ∙ ∙ xn andxi , y ∈ G then

1̃y 1̃xn

∗
∙ ∙ ∙ 1̃x1

∗
1̃x1 ∙ ∙ ∙ 1̃xn 1̃y

∗
= 1̃y 1r −11̃y

∗
= (1yα(1r −1))˜1̃y

∗
.

By 2.3 a)(1yα(1r −1))̃ 1̃y
∗

= 1yα(1r −1), and by direct calculation 1yα(1r −1) =
1yr−1. Therefore 1yr−1 ∈ B for all y ∈ G, r = x1 ∙ ∙ ∙ xn with xi ∈ G. The
general case,β = sr−1, with s = x1 ∙ ∙ ∙ xn, r = y1 ∙ ∙ ∙ ym andxi , yi ∈ G follows
by induction. Ift ∈ F andt is not of the formβ = sr−1 like above, then 1t = 0
em �̃A by [4, 5.8]. Therefore 1t ∈ B for all e 6= t ∈ F. We will show thatB
is the algebra generated byM . For eachx ∈ G, span{1x

∏
s 1s} is dense inDx

and by 2.2 b), sinceσ|1x
is a homeomorphism, it follows that span{(1x

∏
s 1s)̃ }

is dense iñDx . Since(1x
∏

s 1s)̃ = 1x
∏

s 1s1̃x ∈ B we have that̃Dx ⊆ B,
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becauseB is closed. SõCc(U ) ⊆ B and sinceB is closed it follows thatM ⊆ B.
This shows thatB contains the algebra generated byM . On the other hand, since
1̃x ∈ M for eachx ∈ G, it is clear that the algebra generated byM containsB,
and this concludes the proof. �

Proposition 2.12.There exists a *-homomorphism

φ : O(�̃A , α, L) → C(�̃ A)oθ F

such thatφ( f ) = f δe for all f ∈ C(X) andφ( f̃x ) = fxδx for all f ∈ Dx and
x ∈ G.

Proof. Let us define initially a homomorphism from the Toeplitz algebraT (�̃A,

α, L) to C(�̃ A)o F. Define

φ′ : C(�̃A ) → C(�̃A )oθ F by φ′( f ) = f δe

and
φ′′ : C̃c(U ) → C(�̃A )oθ F by φ′′( f̃x ) = fxδx

for fx ∈ Dx. Clearlyφ′ is a *-homomorphism. By 2.2 a)φ′′ is well defined.
Moreoverφ′′ is linear and giveng =

∑
gx and f =

∑
fx in Cc(U ), where

fx, gx ∈ Dx, we have that

φ′′(g̃ )∗φ′′( f̃ ) =
( ∑

gxδx

)∗( ∑
fyδy

)
=

( ∑
θx−1(g∗

x)δx−1

)( ∑
fyδy

)

=
∑

x,y

θx−1(g∗
x)δx−1 fyδy =

∑

x,y

θx−1(g∗
x fy)δx−1y

=
∑

x

θx−1(g∗
x fx)δe.

Claim. L(g∗ f ) =
∑
θx−1(g∗

x fx).

It is enough to show thatL(g∗
x fx) = θ−1

x (g∗
x fx) becauseg∗

x fy = 0 for x 6= y.
For this notice that ifx−1 /∈ ξ thenL(g∗

x fx)(ξ) = 0 = θ−1
x (g∗

x fx)(ξ). Moreover,
if x−1 ∈ ξ then we have

L(g∗
x fx)(ξ) = (g∗

x fx)(xξ) = (g∗
x fx)(hx(ξ)) = θ−1(g∗

x fx)(ξ).

So the claim is proved. �
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Then
∑

x θx−1(g∗
x fx)δe = L(g∗ f )δe = φ′(〈g̃ , f̃ 〉), and so,φ′′(g̃ )∗φ′′( f̃ ) =

φ′(〈g̃ , f̃ 〉). Therefore

‖φ′′( f̃ )‖2 = ‖φ′′( f̃ )∗φ′′( f̃ )‖ = ‖φ′(〈 f̃ , f̃ 〉)‖ ≤ ‖〈 f̃ , f̃ 〉‖ = ‖ f̃ ‖2
M

from where we may extendφ′′ to M . In this way we obtain a function

φ : C(�̃A ) ∪ M → C(�̃ A)oθ F

defined byφ( f ) = φ′( f ) if f ∈ C(�̃A ) andφ(m) = φ′′(m) for m ∈ M .

Claim. φ satisfies the relations which definesT (�̃A , α, L).

By density ofC̃c(U ) in M it suffices to verify ifφ satisfies the relations for

elements of the form̃f =
∑

f̃x , g̃ =
∑

g̃y ∈ C̃c(U ) , where fx, gx ∈ Dx, and
h ∈ C(�̃A ). We already know thatφ preserves the relations ofC(�̃A ), of M
and thatφ( f̃ )∗φ(g̃ ) = φ(〈 f̃ , g̃ 〉). Moreover,

φ(h)φ( f̃ ) = hδe

∑
fxδx =

∑
h fxδx = φ(h̃ f ) = φ(h f̃ )

and

φ( f̃ )φ(h) =
( ∑

fxδx

)
hδe =

∑
θx(θ

−1
x ( fx)h)δx =

∑
fxα(h)δx

= φ( f̃ α(h) ) = φ( f̃ h).

This proves the claim. �

So we may extendφ toT (�̃A , α, L). We will show that if(a, k) is a redun-
dancy thenφ(a) = φ(k). For each

fx ∈ Dx, φ( f̃x 1̃x
∗
) = fxδx1x−1δx−1 = fxδe = φ( fx)

and so if f =
∑

x fx with fx ∈ Dx thenφ( f ) =
∑

x φ( f̃x 1̃x
∗
). Given a

redundancy( f, k)with f ∈ I0, and sof ∈ C0(U ) by 2.6, choose( fn)n ⊆ Cc(U )
such thatfn → f , and(kn)n ⊆ K̂1 such that

kn → k and kn =
tn∑

i =1

mi,nr ∗
i,n with mi,n, ri,n ∈ M .
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Since fn ∈ Cc(U ) for eachn, we have thatfn =
∑ln

i =1 fxi,n and soφ( fn) =
∑ln

i =1 φ( f̃xi,n 1̃xi,n

∗
). Then

φ( f − k)φ( f − k)∗ = lim
n
φ( f − k)(φ( fn)

∗ − φ(k∗
n))

= lim
n
φ( f − k)

(

φ

( ∑
1̃xi,n f̃xi,n

∗
)

− φ

( ni∑

i =1

ri,nm∗
i,n

))

= lim
n
φ

(

( f − k)

(
∑

1̃xi f̃xi

∗
−

ni∑

i =1

ri,nm∗
i,n

))

= 0.

The last equality follows by the fact that( f −k)m = 0 for eachm ∈ M , because
( f, k) is a redundancy. This shows thatφ( f ) = φ(k). �

Proposition 2.13. The *-homomorphismψ : ÕA → O(�̃A , α, L) defined in
2.10 is a *-isomorphism.

Proof. To prove thatψ is surjective it is anough to prove thatM ∪ C(�̃A ) ⊆
Im(ψ). By the lemma 2.11, M ⊆ Im(ψ). By the same lemma, the elements of
the form 1r : e 6= r ∈ F are in the range ofψ and moreover,ψ(1) = 1 = 1e.
The algebra generated by the elements{1r : r ∈ F} is self-adjoint, contains the
constant functions and separate points, and so is dense inC(�̃A ). It follows that
C(�̃A ) ⊆ Im(ψ). In order to see thatψ is injective, note that8−1φψ = I dÕ A

whereφ is the *-homomorphism of 2.12 and8 is the *-isomorphism between
ÕA andC(�̃A )oθ F such that8(Sx) = 1xδx. �

By this proposition and by 2.11 it follows that the Cuntz-Krieger algebra for
infinite matricesOA is isomorphic to the algebraB, generated byM . Note that
the algebra generated byM coincides with the ideal〈M〉 of O(�̃A , α, L).

3 Relationship between the gauge-invariant ideals ofO(X, α, L) and
open sets of X

We show in this section a bijection between the gauge-invariant ideals of
O(X, α, L) and theσ, σ−1-invariant subsets ofX. In particular, we prove that
every gauge-invariant ideal ofO(X, α, L) is generated by the setC0(V) for
someV ⊆ X whith isσ, σ−1-invariant.

Definition 3.1.

a) A setV ⊆ X is σ -invariant if σ(V ∩ U ) ⊆ V.
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b) A setV ⊆ X is σ−1-invariant if σ−1(V) ⊆ V.

c) A setV ⊆ X is σ, σ−1-invariant if it is σ -invariant andσ−1-invariant.

Let V ⊆ X be an open set. We say thatC0(V) is L-invariant if L(C0(V) ∩
Cc(U )) ⊆ C0(V).

Proposition 3.2.

a) An open setV ⊆ X is σ -invariant if and oly ifC0(V) is L-invariant.

b) An open setV ⊆ X is σ−1-invariant if and only if f α(g) ∈ C0(V) for all
f ∈ Cc(U ) andg ∈ C0(V).

Proof.

a) SupposeV σ -invariant. Given f ∈ C0(V) ∩ Cc(U ), choosex /∈ V .
Supposingy ∈ σ−1(x) ∩ V , we havex = σ(y) ∈ V becauseV is σ -
invariant. So there does not exists a suchy, and thereforeL( f )(x) = 0.
This shows thatL( f ) ∈ C0(V). On the other hand, supposeC0(V) L-
invariant. Supposex ∈ U ∩ V and choosefx ∈ Cc(U ) ∩ C0(V) such
that fx(x) 6= 0. ThenL( f ∗

x fx) ∈ C0(V) andL( f ∗
x fx)(σ (x)) 6= 0, which

shows thatσ(x) ∈ V .

b) SupposeV σ−1-invariant. Let f ∈ Cc(U ), g ∈ C0(V) andx /∈ V . If
x /∈ U , then f (x) = 0 and so( f α(g))(x) = 0. If x ∈ U , sinceV is σ−1-
invariant thenσ(x) /∈ V and thereforef α(g)(x) = f (x)g(σ (x)) = 0.
So f α(g) ∈ C0(V). On the other hand, letx ∈ σ−1(y), y ∈ V . Choose
g ∈ C0(V) such thatg(y) 6= 0 and f ∈ Cc(U ) such thatf (x) 6= 0. Then,
since f α(g) ∈ C0(V) and( f α(g))(x) = f (x)g(y) 6= 0 it follows that
x ∈ V . SoV is σ−1-invariant. �

If V ⊆ X is an openσ, σ−1-invariant set thenX′ = X \ V is a compact
σ, σ−1-invariant set. DefineU ′ = U ∩ X′ (= U \ V) and considerσ ′ :=
σ|′U

: U ′ → X′ which is a local homeomorphism. Consider theC∗-dynamical
system(X′, α′, L ′) whereα′ and L ′ are defined asα and L in the section 2.1.
Denote byM ′ the Hilbert module generated byCc(U ′), by 〈C0(V)〉 the ideal

generated byC0(V) in O(X, α, L) and by b the image of the elementsb ∈
O(X, α, L) by the quotient map ofO(X, α, L) onO(X, α, L)/〈C0(V)〉.
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Theorem 3.3. There exists a *-isomorphism9 : O(X, α, L)/〈C0(V)〉 →

O(X′, α′, L ′) such that9( f ) = f|X′ for each f ∈ C(X).

Proof. Define91 : C(X) → C(X′) by 91( f ) = f|X′ which is a *-homomor-

phism and is surjective, by Tietze’s theorem. Moreover, for everyf̃ ∈ C̃c(U ) ⊆

M define92( f̃ ) = f̃|X′ , which is a linear and contractive map of̃Cc(U ) ⊆ M
to M ′ and so we may extend it toM . So we may define in an obvious manner
93 : C(X)∪M → T (X′, α′, L ′). It is easy to verify that93 satisfies the relations
that definesT (X, α, L) and so93 has an extension toT (X, α, L), which will
be denoted by93. We will show that93 is surjective. Givenh ∈ Cc(U ′), choose
g ∈ Cc(U ) such thatg|supp(h) = 1 and f ∈ C(X) such that93( f ) = h. Then
f g ∈ Cc(U ) and93( f )93(g̃ ) = hg̃|X′ = h̃g|X′ = h̃ . This shows that93(M)
is dense inM ′, and with the fact thatC(X′) ⊆ Im(93), it follows that93 is
surjective.

Claim. If ( f, k) is a redundancy ofT (X, α, L) and f ∈ I0 then (93( f ),
93(k)) is a redundancy ofT (X′, α′, L ′) and93( f ) ∈ I ′

0.

Let ( f, k) be a redundancy ofT (X, α, L) and f ∈ I0. Then f m = km, from
where93( f )93(m) = 93(k)93(m). Since93( f ) ∈ C(X′)and93(k) ∈ K̂ ′

1 and
moreover93(M) is dense inM ′ it follows that(93( f ),93(k)) is a redundancy.
Since f ∈ I0, and I0 = C0(U ) by 2.6, it follows that f ∈ C0(U ) and therefore
93( f ) = f|X′ ∈ C0(U ′) = I ′

0.

If q is the quotient map ofT (X′, α′, L ′) onO(X′, α′, L ′) then the composition
q◦93 is a *-homomorphism ofT (X, α, L) onO(X′, α′, L ′)which by the claim
above vanishes on the elements(a − k) for all redundancies(a, k) such that
a ∈ I0. By passage to the quotient we obtain a *-homomorphism ofO(X, α, L)
toO(X′, α′, L ′) which will be denoted by90. Moreover, givenf ∈ C0(V) note
that90( f ) = f|X′ = 0, and again passing to the quotient we obtain an other
*-homomorphism ofO(X, α, L)/〈C0(V)〉 toO(X′, α′, L ′), which will be called
9. It remains to show that9 is injective. Note that〈C0(V)〉 is gauge-invariant.
Consider the gauge action onO(X, α, L)/〈C0(V)〉 whose fixed point algebrais

K =
⋃

n∈N

Ln

(see paragraph following 1.11) and the gauge action onO(X′, α′, L ′). Since9
is covariant by these actions, by [5, 2.9] it is enough to show that9 restricted to
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K is injective. For this we will show that9 restrictedto Ln is injective for all
n ∈ N.

Claim 1. Let k0 + k1 + ∙ ∙ ∙ + kn ∈ Ln. If φ(k0 + k1 + ∙ ∙ ∙ + kn) = 0 then

k0 ∈ K1.

Let k′
i = 9(ki ) and notice thatk′

0 ∈ C(X′) andk′
i ∈ K ′

i for i ≥ 1. Then
k′

0 + k′
1 + ∙ ∙ ∙ + k′

n = 0 and sog(k′
0 + k′

1 ∙ ∙ ∙ + k′
n) = 0 for all g ∈ C0(U ′). By

2.4 it follows thatk′
0 = f1 + f2 where f1 ∈ C0(U ′) andk′

0 + k′
1 ∙ ∙ ∙ + k′

n = f2

from where f2 = 0. Thenk′
0 ∈ C0(U ′) and sok0 ∈ C0(U ∪ V) from where

k0 ∈ C0(U ∪ V) = C0(U )+ C0(V) ⊆ K1 .

Claim 2. 9 restrictedto C(X) is faithful, and also9 restrictedto Kn is faithful.

If f ∈ C(X) and9( f ) = 0 then f ∈ C0(V) andso f = 0. This shows the

first part. To prove the second assertionlet kn ∈ Kn and suppose that9(kn) = 0.

Then9(M
∗n

kn M
n
) = 0 and how M

∗n
kn M

n
⊆ C(X) and9 restrictedto

C(X) is faithful it follows that M
∗n

kn M
n

= 0 from whereKn kn Kn = 0 and

sokn = 0. �

We will prove now the following claim which will conclude the proof of the
theorem.

Claim 3. For all n ∈ N,9 restrictedto Ln is faithful

By claim 29 restrictedto L0 is faithful. By induction, suppose that9 re-

strictedto Ln is faithful, take k0 + k1 + ∙ ∙ ∙ + kn+1 ∈ Ln+1 and suppose that

9(k0 + k1 + ∙ ∙ ∙ + kn+1) = 0. Then

9(M
∗
(k0 + k1 + ∙ ∙ ∙ + kn+1)

∗ (k0 + k1 + ∙ ∙ ∙ + kn+1)M) = 0

and by the induction hypothesis,

M
∗
(k0 + k1 + ∙ ∙ ∙ + kn+1)

∗ (k0 + k1 + ∙ ∙ ∙ + kn+1)M = 0,

from where(k0 + k1 + ∙ ∙ ∙ + kn+1)M = 0 and so

(k0 + k1 + ∙ ∙ ∙ + kn+1)(K1 + ∙ ∙ ∙ + Kn+1) = 0 .

By claim1, k0 ∈ K1, from wherek0 + k1 + ∙ ∙ ∙ + kn+1 ∈ (K1 + ∙ ∙ ∙ + Kn+1) and

thereforek0 + k1 + ∙ ∙ ∙ + kn+1 = 0. �
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Given an idealI in O(X, α, L), the setI ∩ C(X) is an ideal ofC(X) and so
it is of the formC0(V) for some open setV ⊆ X. The following proposition
shows a feature of these open sets.

Proposition 3.4. Let I E O(X, α, L) and V ⊆ X the open set such that
I ∩ C(X) = C0(V). ThenV is aσ, σ−1-invariant set.

Proof. Given f ∈ Cc(U ) ∩ C0(V), takeg ∈ Cc(U ) such thatg|supp( f ) = 1.
Then f g̃ = f̃ ∈ I and soL( f ) = g̃ ∗ f̃ ∈ I ∩ C(X) = C0(V). By 3.1 a) it
follows thatV is σ -invariant. We will show thatV is aσ−1-invariant set. Letx
be an element ofV andy ∈ σ−1(x). Choosefx ∈ C0(V) such thatfx(x) = 1
and fy ∈ Cc(U ) such thatfy(y) = 1 andσ|supp( fy)

is a homeomorphism. Then

( fyα( fx))̃ = f̃ y fx ∈ I ∩ M and therefore( fyα( f ))̃ f̃ y
∗

∈ I . By 2.3 a),
fyα( fx) f ∗

y = ( fyα( fx))̃ f̃ y
∗

and so fyα( fx) f ∗
y ∈ I ∩ C(X) = C0(V). Note

that
( fyα( fx) f ∗

y )(y) = | fy|
2(y) fx(σ (y)) = | fy(y)|

2 fx(x) = 1,

which shows thaty ∈ V . �

This proposition shows that there exists a map

8 :
{
ideals ofO(X, α, L)

}
→

{
openσ, σ−1-invariant sets ofX

}

given by8(I ) = V whereV is the open set ofX such thatI ∩ C(X) = C0(V).
The following proposition shows that8 is surjective. To prove this proposition
we need some lemmas.

Lemma 3.5.Let V a σ -invariant set andf1, ∙ ∙ ∙ , fn, g1, ∙ ∙ ∙ , gn ∈ Cc(U ) such
that fi ∈ C0(V) or gi ∈ C0(V) for somei . Thenf̃n

∗
∙ ∙ ∙ f̃1

∗
g̃1 ∙ ∙ ∙ g̃n ∈ C0(V).

Proof. Supposefi ∈ C0(V) and defineh j = f̃ j
∗
∙ ∙ ∙ f̃1

∗
g̃1 ∙ ∙ ∙ g̃j for j ≥ 1

andh0 = 1. Sinceh j ∈ C(X) for each j it follows that f ∗
i hi −1gi ∈ C0(V).

By 3.2C0(V) is L-invariant, and sohi = f̃i
∗
hi −1g̃i = L( f ∗

i hi −1gi ) ∈ C0(V).
By induction it may be showed thathn ∈ C0(V). If gi ∈ C0(V) the proof
is analogous. �

To show that the map8 is surjective we will show that ifV is an openσ, σ−1-
invariant set then〈C0(V)〉 ∩ C(X) = C0(V). The following arguments are a
preparation to prove this fact. Givenf ∈ 〈C0(V)〉 ∩ C(X) andε > 0 then there
areai , bi ∈ O(X, α, L), hi ∈ C0(V) such that

∥
∥
∥
∥
∥

f −
N∑

i =1

ai hi bi

∥
∥
∥
∥
∥

≤ ε
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where eachai is of the formai = m1 ∙ ∙ ∙ mri n
∗
1 ∙ ∙ ∙ n∗

si
or ai ∈ C(X) and each

bi is of the formbi = p1 ∙ ∙ ∙ pti q
∗
1 ∙ ∙ ∙ q∗

l i
or bi ∈ C(X). Moreover we may

suppose thatmj = z̃j , nj = w̃ j , pj = ũ j , qj = ṽ j for eachmj , nj , pj , andqj .
Considering the conditional expectationE induced by the gauge action and that

∥
∥
∥
∥
∥

f −
N∑

i =1

E(ai hi bi )

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

E

(
f −

N∑

i =1

ai hi bi

)∥
∥
∥
∥
∥

≤ ε,

we may suppose thatri + ti = si + l i , because

E(ai hi bi ) =

{
ai hi bi if ri + ti = si + l i

0 otherwise
.

Lemma 3.6. Let V be an openσ, σ−1-invariant set. Then for eachi we have
that ai hi bi ∈ C0(V) or ai hi bi = f̃1 ∙ ∙ ∙ f̃n g̃n

∗ ∙ ∙ ∙ g̃1
∗ where f j ∈ C0(V) for

somej or gj ∈ C0(V) for somej .

Proof. Recall thatai = z̃1 ∙ ∙ ∙ z̃ri w̃1
∗ ∙ ∙ ∙ w̃si

∗ or ai ∈ C(X), bi = ũ1 ∙ ∙ ∙
ũti ṽ1

∗ ∙ ∙ ∙ ṽl i
∗ or bi ∈ C(X) andri + ti = si + l i .

Supposesi ≤ ti . By 3.5w = w̃1
∗ ∙ ∙ ∙ w̃si

∗hi ũ1 ∙ ∙ ∙ ũsi ∈ C0(V) (if si = 0
thenw = hi ). If ti 6= si then writeai hi bi = z̃1 ∙ ∙ ∙ z̃ri w̃usi +1 ∙ ∙ ∙ ũti ṽ1

∗ ∙ ∙ ∙ ṽl i
∗,

and note thatwusi +1 ∈ C0(V) and thereforeai hi bi is in the desired form. If
ti = si thenri = l i . If ri = 0 (and sol i = 0) thenai hi bi = w ∈ C0(V). If

ri 6= 0 write ai hi bi = z̃1 ∙ ∙ ∙ z̃ri α(w) ũsi +1 ∙ ∙ ∙ ũti ṽ1
∗ ∙ ∙ ∙ ṽl i

∗, and in this case
zri α(w) ∈ C0(V) by the fact thatV is σ−1-invariant, and soai hi bi is in the
desired form.

Supposingsi > ti consider the element(ai hi bi )
∗, which is in the desired form

of the lemma by the proof above, and thereforeai hi bi is also in the desired
form. �

The following lemma is only a summary from 3.5 to 3.6.

Lemma 3.7. If V is an openσ, σ−1-invariant set then givenf ∈ 〈C0(V)〉 ∩
C(X) andε > 0, there existsd0 ∈ C0(V) anddi = f̃ i

1 ∙ ∙ ∙ f̃ i
ni

g̃i
ni

∗
∙ ∙ ∙ g̃i

1

∗
, with

f i
j ∈ C0(V) or gi

j ∈ C0(V) for somej , i = 1, ∙ ∙ ∙ , N, such that

∥
∥
∥
∥
∥

f −
(

d0 +
N∑

i =1

di

)∥
∥
∥
∥
∥

≤ ε .
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Now we prove the proposition which shows that the map8 is surjective.

Proposition 3.8. If V ⊆ X isσ, σ−1-invariant then〈C0(V)〉∩C(X) = C0(V).

Proof. It is clear thatC0(V) ⊆ 〈C0(V)〉 ∩ C(X). To show that〈C0(V)〉 ∩ C(X)
⊆ C0(V)we will show that givenf ∈ 〈C0(V)〉∩C(X), for everyε > 0 it holds
that| f (x)| ≤ ε for eachx /∈ V .

Given f ∈ 〈C0(V)〉 ∩ C(X) andε > 0, by 3.7 we may consider‖ f − (d0 +
∑N

i =1 di )‖ ≤ εwith d0 ∈ C0(V), di = f̃ i
1 ∙ ∙ ∙ f̃ i

ni
g̃i

ni

∗
∙ ∙ ∙ g̃i

1

∗
where f i

j ∈ C0(V)
for some j or gi

j ∈ C0(V) for some j . Define

K =
N⋃

i =1

ni⋃

j =1

(
supp( f i

j ) ∪ supp(gi
j )

)

which is a compact subset ofU .

Claim 1. If x /∈ V andx /∈ U then| f (x)| ≤ ε

If x /∈ U , chooseh ∈ C(X), 0 ≤ h ≤ 1, such thath(x) = 1 eh|K = 0. Then
hdi = 0 for i ≥ 1 and so‖h( f − d0)‖ = ‖h( f − d0 +

∑N
i =1 di )‖ ≤ ε from

where| f (x) − d0(x)| = |(h( f − d0))(x)| ≤ ε. Sincex /∈ V it follows that
d0(x) = 0 and therefore| f (x)| ≤ ε.

Now we study the casex /∈ V and x ∈ U . Let N0 = max{n1, . . . , nN}.
SupposingN0 = 0, that is,di = 0 fore eachi ≥ 1, we have that| f (x)| = | f (x)−
d0(x)| ≤ ε. Suppose therefore thatN0 ≥ 1. Let us analyse the caseσ N0−1(x) ∈
U . Definexj = σ j (x) for j ∈ {0, . . . , N0}. For eachj ∈ {0, . . . , N0 − 1}
takeh j ∈ Cc(U ) such thath j (xj ) = 1, 0 ≤ h j ≤ 1 andσsupp(h j ) is a homeo-
morphism.

Claim 2. For eachi ∈ {0, ∙ ∙ ∙ , N}, h′
i = h̃N0−1

∗
∙ ∙ ∙ h̃0

∗
di h̃0 ∙ ∙ ∙ h̃N0−1 ∈

C0(V).

For i ≥ 1, since f i
j ∈ C0(V) or gi

j ∈ C0(V) for some j , by 3.5 we have that

u = h̃ni −1
∗
∙ ∙ ∙ h̃0

∗
f̃ i
1 ∙ ∙ ∙ f̃ i

ni
∈ C0(V) or

v = g̃i
ni

∗
∙ ∙ ∙ g̃i

1

∗
h̃0 ∙ ∙ ∙ h̃ni −1 ∈ C0(V).
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Thenuv ∈ C0(V) and again by 3.5 it follows that

h′
i = h̃N0−1

∗
∙ ∙ ∙ h̃0

∗
di h̃0 ∙ ∙ ∙ h̃N0−1

= h̃N0−1

∗
∙ ∙ ∙ h̃ni

∗
ũvhni h̃ni +1 ∙ ∙ ∙ h̃N0−1 ∈ C0(V).

For i = 0, sinced0h0 ∈ C0(V), again by 3.5h′
0 = h̃N0−1

∗
∙ ∙ ∙ h̃0

∗
d0h̃0 ∙ ∙ ∙

h̃N0−1 ∈ C0(V). This shows the claim. �

Define f ′ = h̃N0−1

∗
∙ ∙ ∙ h̃0

∗
f h̃0 ∙ ∙ ∙ h̃N0−1 . By the fact thatσ|supp(h j )

is a
homeomorphism it follows thatf (xN0) = f (x). Moreover, sincexN0 /∈ V ,
by the fact thatV is σ−1-invariant andx /∈ V , it follows thath′

i (xN0) = 0 for
eachi . Since f ′, h′

i ∈ C(X) we have that
∥
∥
∥
∥
∥

f ′ −

(

h′
0 +

n∑

i =1

h′
i

)∥
∥
∥
∥
∥

∞

=

∥
∥
∥
∥
∥
h̃N0−1

∗
∙ ∙ ∙ h̃0

∗

(

f −

(

d0 +
N∑

i =1

di

))

h̃0 ∙ ∙ ∙ h̃N0−1

∥
∥
∥
∥
∥

≤

∥
∥
∥
∥
∥

f −

(

d0 +
N∑

i =1

di

)∥
∥
∥
∥
∥
< ε,

from where| f (x)| = |( f ′ − (h′
0 +

∑n
i =1 h′

i ))(xN0)| < ε.

It remains to analyze the casex /∈ V , x ∈ U but σ n(x) /∈ U for some
n ≤ N0 − 1. For i ∈ {0, ∙ ∙ ∙ .n − 2} defineh j as above, that is,h j ∈ Cc(U )
such thath j (x1) = 1, 0 ≤ h j ≤ 1 andσ|supp(h j )

is a homeomorphism. Forxn−1

choosehn−1 ∈ Cc(U ) such that 0≤ hn−1 ≤ 1, hn−1(xn−1) = 1, σ|supp(hn−1)

is a homeomorphism andσ(supp(hn−1)) ⊆ X \ K . It is possible to choose
suchhn−1 becauseσ(xn−1) = σ n(x) ∈ X \ U ⊆ X \ K .

Claim 3. For ni ≥ n + 1, h̃n−1
∗
∙ ∙ ∙ h̃0

∗
di h̃0 ∙ ∙ ∙ h̃n−1 = 0.

Denote byu the elementh̃n−2
∗
∙ ∙ ∙ h̃0

∗
f̃ i
1 ∙ ∙ ∙ f̃ i

n−1 which is an element of
C(X). Then

h̃n−1
∗
∙ ∙ ∙ h̃0

∗
f̃ i
1 ∙ ∙ ∙ f̃ i

n+1 = h̃n−1
∗
ũ f i

n f̃ i
n+1 = (L(h∗

n−1u f i
n) f i

n+1)
˜.

We will show thatL(h∗
n−1u f i

n) f i
n+1 = 0. If x /∈ supp( f i

n+1) or if σ−1(x) =
∅ then (L(h∗

n−1u f i
n) f i

n+1)(x) = 0. Suppose thereforex ∈ supp( fn+1) and
y ∈ σ−1(x). Supposing thaty ∈ σ−1(x) ∩ supp(hn−1) we have thatx =
σ(y) ∈ σ(supp(hn−1)) ⊆ X \ K , which is an absurd becausex ∈ K . There-
fore if y ∈ σ−1(x) then y /∈ supp(hn−1), and by this wayL(h∗

n−1u f i
n)(x) =∑

y∈σ−1(x)(h
∗
n−1u f i

n)(y) = 0. SoL(h∗
n−1u f i

n) f i
n+1 = 0 and the claim is proved.

Bull Braz Math Soc, Vol. 38, N. 2, 2007



“main” — 2007/6/12 — 15:13 — page 250 — #32

250 RUY EXEL and DANILO ROYER

Claim 4. For ni ≤ n, h′
i = h̃n−1

∗
∙ ∙ ∙ h̃0

∗
di h̃0 ∙ ∙ ∙ h̃n−1 ∈ C0(V).

The proof of this claim is analogous to the proof of claim 2.

Again h̃n−1
∗
∙ ∙ ∙ h̃0

∗
f h̃0 ∙ ∙ ∙ h̃n−1 = f ′ com f ′(xn) = f (x). Moreover, by

the fact thatxn /∈ V it follows thath′
i (xn) = 0 for eachi . Then

∥
∥
∥
∥
∥

f ′ − h′
0 −

∑

ni ≤n

h′
i

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥
h̃n−1

∗
∙ ∙ ∙ h̃0

∗

(

f − (d0 +
N∑

i =1

di )

)

h̃0 ∙ ∙ ∙ h̃n−1

∥
∥
∥
∥
∥
< ε

from where| f (x)| = |( f ′ − h′
0 −

∑
ni ≤n h′

i )(xn)| < ε.

In this way, givenε > 0, for all x /∈ V , we have that| f (x)| ≤ ε. Therefore
f ∈ C0(V). �

The following theorem is the main result of this section.

Theorem 3.9. There exists a bijection between the gauge-invariant ideals of
O(X, α, L) and the openσ, σ−1-invariant subsets ofX.

Proof. All what we have to do is to show that the map

8 :
{
gauge invariant ideals ofO(X, α, L)

}

→
{
openσ, σ−1-invariant subsets ofX

}
,

given by8(I ) = V whereV is the open subset ofX such thatI ∩C(X) = C0(V),
is bijective. By the previous proposition8 is surjective. It remains to show that
8 is injective. For this, givenI E O(X, α, L) gauge-invariant, letV ⊆ X the
open subsetσ, σ−1-invariant such thatI ∩ C(X) = C0(V). We will show that
〈C0(V)〉 = I . It is clear that〈C0(V)〉 ⊆ I . By 3.3 there exists a *-isomorphism

9 :
O(X, α, L)

〈C0(V)〉
→ O(X′, α′, L ′)

whereX′ = X \ V . Let I the image ofI by the quotient map ofO(X, α, L)

onO(X, α, L)/〈C0(V)〉. Since I is gauge-invariant and9 is covariant by the

gauge actions we have that9(I ) is gauge-invariant.SupposingI 6= 0, and

so9(I ) 6= 0, it follows that9(I ) ∩ C(X′) = C0(V ′) 6= 0 by 2.8. Let 0 6=

g ∈ C0(V ′). Then g = 9( f ) for some f ∈ C(X) and g = 9(a) with

a ∈ I . Therefore9( f ) = g = 9(a) from where f = a. In this way,
f − a ∈ 〈C0(V)〉 ⊆ I and so f ∈ I . It follows that f ∈ I ∩ C(X) = C0(V),

that is,g = 9( f ) = 0, which is an absurd.ThereforeI = 0 and this shows that
I = 〈C0(V)〉. �
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Notice that we have showed that every gauge-invariant idelI of O(X, α, L)
is of the form〈C0(V)〉 whereV is theσ, σ−1-invariant open subset such that
I ∩ C(X) = C0(V). By this theorem we have the following non simplicity
criteria ofO(X, α, L):

Corollary 3.10. If U is nonempty andU ∪ σ(U ) is not dense inX then
O(X, α, L) has at least one gauge-invariant nontrivial ideal.

Proof. Note thatV = X \ U ∪ σ(U ) is an openσ, σ−1-invariant set. Since
U ∪ σ(U ) is not dense inX it follows that V is nonempty. Then〈C0(V)〉
is a nonzero gauge-invariant ideal ofO(X, α, L). By the previous theorem,
supposing〈C0(V)〉 = O(X, α, L) we have thatC0(V) = C(X), which is a
contradiction, becauseV 6= X, by the fact thatU is nonempty. �

4 Topologically free transformations

In this section we prove that under certain hypothesis aboutX, every ideal of
O(X, α, L) has nonzero intersection withC(X) and based on this fact we show
a relationship between the ideals ofO(X, α, L) and theσ, σ−1-invariant open
subsets ofX. Also we show a simplicity criteria for the Cuntz-Krieger algebras
for infinite matrices.

4.1 The theorem of intersection of ideals ofO(X, α, L) with C(X)

Let us begin with the lemma:

Lemma 4.1.

a) For each f ∈ Cc(U ), supp(L( f )) ⊆ σ(supp( f )).

b) Let h, f1, . . . , fn, g1, . . . , gn be elements ofCc(U ) such thatσ n−1

(supp(h)) ⊆ U. Thensupp( f̃k
∗
∙ ∙ ∙ f̃1

∗
hg̃1 ∙ ∙ ∙ g̃k ) ⊆ σ k(supp(h)) for

eachk ∈ {0, . . . , n}.

Proof.

a) The proof of this fact is similar to the proof given in [6, 8.7], although our
context is a little different. Letx ∈ X with L( f )(x) 6= 0. Supposex /∈
σ(supp( f )). Chooseg ∈ C(X) such thatg(x) = 1 andg|σ(supp( f )) = 0. If
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y ∈ supp( f ) thenα(g)(y) = g(σ (y)) = 0 becauseσ(y) ∈ σ(supp( f )).
This shows thatf α(g) = 0. So we have

0 6= L( f )(x) = L( f )(x)g(x) = (L( f )g)(x) = L( f α(g)) = 0,

which is an absurd. Thereforex ∈ σ(supp( f )).

b) By a) we have that

supp( f̃1
∗
hg̃1 ) = supp(L( f ∗

1 hg1)) ⊆ σ(supp( f ∗
1 hg1)) ,

and it is clear thatσ(supp( f ∗
1 hg1)) ⊆ σ(supp(h)). Suppose that

supp( f̃k−1
∗
∙ ∙ ∙ f̃1

∗
hg̃1 ∙ ∙ ∙ g̃k−1 ) ⊆ σ k−1(supp(h)) for 2 ≤ k ≤ n.

Then, by placingg = f̃k−1
∗
∙ ∙ ∙ f̃1

∗
hg̃1 ∙ ∙ ∙ g̃k−1 , by a) we have that

supp( f̃k
∗
gg̃k ) = supp(L( f ∗

k ggk)) ⊆ σ(supp( f ∗
k ggk)).

Since supp( f ∗
k ggk) ⊆ supp(g), and by the induction hypothesis supp(g) ⊆

σ k−1(supp(h)), it follows that supp( f ∗
k ggk) ⊆ σ k−1(supp(h)). By hypothesis

we have thatσ k−1(supp(h)) ⊆ U and soσ(supp( f ∗
k ggk)) ⊆ σ k(supp(h)). �

For eachi 6= j in N define

Vi, j = {x ∈ X : σ i (x) = σ j (x)}.

Note that forx ∈ X to be an element ofVi, j it is necessary thatx lies in
dom(σ i ) ∩ dom(σ j ).

Lemma 4.2. If f1, ∙ ∙ ∙ fi , g1, ∙ ∙ ∙ , gj ∈ Cc(U ) with i 6= j then for each
x /∈ Vi, j there existsh ∈ C(X) such that0 ≤ h ≤ 1, h(x) = 1, and
h f̃1 ∙ ∙ ∙ f̃i g̃ j

∗..g̃1
∗h = 0.

Proof. By taking adjoints we may suppose thati > j , and soi > 0. Define
the set

K =

(
i⋃

r =1

supp( fr )

)(
j⋃

s=1

supp(gs)

)

which is a compact subset ofU . If x /∈ U , takeh ∈ C(X), 0 ≤ h ≤ 1,
h(x) = 1 andh|K = 0. Thenh f1 = 0, which proves the lemma in this case.
So we may suppose thatx ∈ U . We will consider two cases: the first when
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x /∈ dom(σ i ) and the second whenx ∈ dom(σ i ). Supposex /∈ dom(σ i ). Then
there exists 1≤ k ≤ i − 1 such thatσ k(x) /∈ U (note thati ≥ 2 because
x ∈ U = dom(σ )). So σ k(x) /∈ K . Take V0 ⊆ X an open subset with
σ k(x) ∈ V0 andV0 ∩ K = ∅. ThenV = σ−k(V0) 3 x is an open subset inU .
Chooseh ∈ Cc(U ) with supp(h) ⊆ V , 0 ≤ h ≤ 1 andh(x) = 1. Then, since
σ k−1(supp(h2)) ⊆ σ k−1(V) ⊆ U , by 4.1 b),

supp( f̃k
∗
∙ ∙ ∙ f̃1

∗
h2 f̃1 ∙ ∙ ∙ f̃k ) ⊆ σ k(supp(h2)) ⊆ σ k(V) ⊆ V0.

SinceV0 ∩ K = ∅ and supp( fk+1) ⊆ K we have that

( f̃k
∗
∙ ∙ ∙ f̃1

∗
h2 f̃1 ∙ ∙ ∙ f̃k ) f̃k+1 = 0

from whereh f̃1 ∙ ∙ ∙ f̃k+1 ∙ ∙ ∙ f̃i = 0. Thereforeh f̃1 ∙ ∙ ∙ f̃i g̃j
∗ ∙ ∙ ∙ g̃1

∗h = 0.
It remains to show the casex ∈ dom(σ i ). By the fact thati > j it follows
that x ∈ dom(σ j ). Therefore, sincex /∈ Vi, j we have thatσ i (x) 6= σ j (x).
Let Vi 3 σ i (x) and Vj 3 σ j (x) open subsets such thatVi ∩ Vj = ∅. Let
V = σ−i (Vi ) ∩ σ− j (Vj ) and note thatV is an open subset which containsx.
Takeh ∈ Cc(U ) with 0 ≤ h ≤ 1, h(x) = 1 and supp(h) ⊆ V . Then, since
σ i −1(V) ⊆ U andσ j −1(V) ⊆ U , by 4.1 b) we have that

supp( f̃i
∗
∙ ∙ ∙ f̃1

∗
h2 f̃1 ∙ ∙ ∙ f̃i ) ⊆ σ i (supp(h2)) ⊆ Vi

and
supp(g̃j

∗ ∙ ∙ ∙ g̃1
∗h2g̃1 ∙ ∙ ∙ g̃j ) ⊆ σ j (supp(h2)) ⊆ Vj .

SinceVi andVj are disjoints it follows that

( f̃i
∗
∙ ∙ ∙ f̃1

∗
h2 f̃1 ∙ ∙ ∙ f̃i )(g̃j

∗ ∙ ∙ ∙ g̃1
∗h2g̃1 ∙ ∙ ∙ g̃j ) = 0,

from whereh f̃1 ∙ ∙ ∙ f̃i g̃ j
∗ ∙ ∙ ∙ g̃1

∗h = 0. �

Definition 4.3. We say that the pair(X, σ ) is topologically free if for each
Vi, j , the closure Vi, j in X has empty interior.

By the Baire’s theorem,X is topologically free if
⋃

i, j ∈N
Vi, j has empty interior.

In this way,Y = X \
⋃

i, j ∈N
Vi, j is dense inX.

Let Sbe the set of positive linear functionals ofO(X, α, L) given by

S = {ϕ : ϕ is a positive linear functional andϕ|C(X) = δy for somey ∈ Y}
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whereδy( f ) = f (y) for each f ∈ C(X). We don’t know the characteristic of
these functionals, nevertheless fora ∈ O(X, α, L) and f ∈ C(X) it holds the
following relation:

Lemma 4.4. If ϕ is a positive linear functional ofO(X, α, L) such that
ϕ|C(X) = δx for somex ∈ X then for eachf ∈ C(X) and a ∈ O(X, α, L)
we have thatϕ( f a) = ϕ( f )ϕ(a) andϕ(a f ) = ϕ(a)ϕ( f ).

Proof. By taking adjoints it suffices to prove the caseϕ(a f ) = ϕ(a)ϕ( f ). For
eachb ∈ O(X, α, L) we have that(b − ϕ(b))∗(b − ϕ(b)) ≥ 0. Therefore ifϕ is
a positive functional thenϕ(b∗b) − ϕ(b∗)ϕ(b) = ϕ((b − ϕ(b))∗(b − ϕ(b))) ≥
0, from whereϕ(b)∗ϕ(b) ≤ ϕ(b∗b). Since f ∗a∗a f ≤ f ∗ f ‖a‖2 it follows
that ϕ( f ∗a∗a f ) ≤ ϕ( f ∗ f )‖a‖2. Put b = a f , and so 0≤ ϕ(a f )∗ϕ(a f ) ≤
ϕ( f ∗a∗a f ) ≤ ϕ( f ∗ f )‖a‖2 = ‖a‖2| f (x)|2, wherex is such thatϕ|C(X) = δx.
This shows that iff (x) = 0 thenϕ(a f ) = 0. Defineg = f − f (x). Then
g(x) = 0 and soϕ(ag) = 0. By this way

ϕ(a f )− ϕ(a)ϕ( f ) = ϕ(a f )− ϕ(a) f (x) = ϕ(a f )− ϕ(a f (x))

= ϕ(a( f − f (x))) = ϕ(ag) = 0

and the lemma is proved. �

For eacha ∈ O(X, α, L) define

‖|a‖| = sup
{
|ϕ(a)| : ϕ ∈ S

}

which is a seminorm forO(X, α, L).

We are not able to show that‖| ‖| is nondegenerated inO(X, α, L), but in Ln

‖| ‖| has the property, given by the following lemma, that‖|r ‖| 6= 0 for every
positive nonzero element ofLn, remembering thatLn = C(X)+ K1 + ∙ ∙ ∙+ Kn

for eachn ≥ 1 andL0 = C(X).

Lemma 4.5. Let (X, σ ) be topologically free. For eachr ∈ Ln with r ≥ 0
andr 6= 0 it holds that‖|r ‖| 6= 0.

Proof.

Claim 1. If 0 6= r ∈ Ln, r positive andr /∈ C(X) then there existsg ∈ Cc(U )
with σ|supp(g) a homeomorphism and̃g ∗r g̃ 6= 0.

Sincer ≥ 0 we may writer = b∗b with b ∈ Ln. Suppose that for each
g ∈ Cc(U ) with σ|supp(g) homeomorphism, it holds that̃g ∗r g̃ = 0, and so
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g̃ ∗b∗ = 0. Then (making use of partition of unity we may write eachf ∈ Cc(U )
as a sum ofg as above) we have that̃f

∗
b∗ = 0 for each f ∈ Cc(U ) and so

M∗b∗ = 0. It follows that K1b∗ = 0, and sinceC0(U ) ⊆ K1 by 2.3 b) we
have thatC0(U )b∗ = 0 and by 2.4 b) it follows thatb∗ ∈ C(X). In this way
r = b∗b ∈ C(X), which contradicts the hypothesis and the claim is proved.

Claim 2. If 0 6= r ∈ Ln, r ≥ 0 and r /∈ C(X) then there existsg1, . . . ,

gi ∈ Cc(U ) such thatσ|supp(gj )
is a homeomorphism for eachj and0 6= g̃i

∗ ∙ ∙ ∙
g̃1

∗r g̃1 ∙ ∙ ∙ g̃i ∈ C(X).

By Claim 1 there existsg1 ∈ Cc(U ) such thatσ|supp(g1)
is homeomorphism

and 0 6= g̃1
∗r g̃1 . Note thatg̃1

∗r g̃1 ∈ Ln−1. By induction suppose 06=
g̃l

∗ ∙ ∙ ∙ g̃1
∗r g̃1 ∙ ∙ ∙ g̃l ∈ L1 wheregj ∈ Cc(U ) andσ|supp(gj )

is a homeomorphism
for each j . Then, by Claim 1, or̃gl

∗ ∙ ∙ ∙ g̃1
∗r g̃1 ∙ ∙ ∙ g̃l ∈ C(X) or there exists

gl+1 ∈ Cc(U ) with σ|supp(gl+1)
homeomorphims and 06= g̃l+1

∗g̃l
∗ ∙ ∙ ∙ g̃1

∗r g̃1 ∙ ∙ ∙
g̃l g̃l+1 . Sinceg̃l+1 g̃l

∗ ∙ ∙ ∙ g̃1
∗r g̃1 ∙ ∙ ∙ g̃l g̃l+1 ∈ C(X) the claim is proved.

We will now show the lemma. Letr ∈ Ln, r positive and no null. It is enough
to show that there existsϕ ∈ Ssuch thatϕ(r ) 6= 0. Since(X, σ ) is topologically
free then

Y =



X \
⋃

i, j

V i, j





is dense inX. So, if r ∈ C(X) then there existsy ∈ Y such thatr (y) > 0.
Takeϕ which extendsδy, and thereforeϕ(r ) 6= 0. Supposer /∈ C(X). Choose
fx1, ∙ ∙ ∙ , fxi ∈ Cc(U ) as in Claim 2. Then 06= h = f̃xi

∗
∙ ∙ ∙ f̃x1

∗
r f̃x1 ∙ ∙ ∙ f̃xi ∈

C(X). So

h∗hh∗ = f̃xi

∗
∙ ∙ ∙ f̃x1

∗
r f̃x1 ∙ ∙ ∙ f̃xi h f̃xi

∗
∙ ∙ ∙ f̃x1

∗
r f̃x1 ∙ ∙ ∙ f̃xi 6= 0

from whereg = f̃x1 ∙ ∙ ∙ f̃xi h f̃xi

∗
∙ ∙ ∙ f̃x1

∗
6= 0. How σ|supp( fxi )

is homeomor-

phism it follows by 2.3 a) that f̃xi h f̃xi

∗
∈ C(X). Applying these arguments

sucessively it may be proved thatg = f̃x1 ∙ ∙ ∙ f̃xi h f̃xi

∗
∙ ∙ ∙ f̃x1

∗
∈ C(X). By

the the same argments it follows thatu = f̃x1 ∙ ∙ ∙ f̃xi f̃xi

∗
∙ ∙ ∙ f̃x1

∗
∈ C(X).

Sinceg 6= 0 there existsy ∈ Y such thatg(y) 6= 0. Takeϕ ∈ S which
extendsδy. Then we have thatϕ(g) = g(y) 6= 0. By 4.4, sinceg = uru,
ϕ(g) = ϕ(uru) = ϕ(u)ϕ(r )ϕ(u) and thereforeϕ(r ) 6= 0. �

Now we are able to prove the main result of this section.
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Theorem 4.6. If (X, σ ) is topologically free then each nonzero ideal ofO(X,
α, L) has nonzero intersection withC(X).

Proof. By 2.7 it suffices to prove that every nonzero ideal ofO(X, α, L) has
nonzero intersection withK . Let 0 6= I E O(X, α, L). SupposeI ∩ K = 0.
Then the quotient *-homomorphismπ : O(X, α, L) → O(X, α, L)/I is such
thatπ|K is an isometry.

Claim. For eachb ∈ O(X, α, L) it holds that‖|E(b)‖| ≤ ‖π(b)‖ whereE is
the conditional expectation defined in section1.2.

Let a be of the form
a =

∑

0≤i ≤n
0≤ j ≤m

ai, j

with a0,0 ∈ C(X) andai, j ∈ Mi M j ∗ for i 6= 0 or j 6= 0, ai, j =
∑

1≤k≤ni, j
ak

i, j ,

ak
i, j = f̃ k

i, j,1 ∙ ∙ ∙ f̃ k
i, j,i g̃k

i, j,1

∗
∙ ∙ ∙ g̃k

i, j, j

∗
where f k

i, j,l , g
k
i, j,t ∈ Cc(U ) for eachi , j ,

k, l andt . Givenε > 0 there existsϕ ∈ S which extendsδy for somey ∈ Y
such that‖|E(a)‖| − ε ≤ |ϕ(E(a))|. Note thaty /∈ Vi, j for i 6= j . Then, for
everyak

i, j with i 6= j , by 4.2 there existshk
i, j ∈ C(X), 0 ≤ hk

i, j ≤ 1, such that
hk

i, j (y) = 1 andhak
i, j h = 0. Define

h =
∏

0≤i ≤n
0≤ j ≤m

∏

1≤k≤ni, j

hk
i, j .

Thenhai, j h = 0 for eachi 6= j from wherehah = hE(a)h, and moreover
h(y) = 1. By 4.4 ϕ(hE(a)h) = ϕ(h)ϕ(E(a))ϕ(h) = h(y)ϕ(E(a))h(y) =
ϕ(E(a)), and soϕ(E(a)) = ϕ(hE(a)h) = ϕ(hah). Sincehah = hE(a)h ∈ K
eπ|K is an isometry it follows that‖hah‖ = ‖π(aha)‖. Then

‖|E(a)‖| − ε ≤ |ϕ(E(a))| = |ϕ(hah)| ≤ ‖hah‖ = ‖π(hah)‖ ≤ ‖π(a)‖.

Sinceε is arbitrary it follows that‖|E(a)‖| ≤ ‖π(a)‖ for a in this form. Given
b ∈ O(X, α, L), for eachε > 0 choosea ∈ O(X, α, L) as above such that
‖a − b‖ ≤ ε. Then

‖|E(b)‖| ≤ ‖|E(b − a)‖| + ‖|E(a)‖| ≤ ‖|E(a)‖| + ε ≤ ‖π(a)‖ + ε

≤ ‖π(a − b)‖ + ‖π(b)‖ + ε ≤ ‖π(b)‖ + 2ε.

Again, sinceε is arbitrary it follows that‖|E(b)‖| ≤ ‖π(b)‖, and the claim is
proved. �
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Observethat E(I ) is a closed ideal ofK . Also, E(I ) is nonzero, because
0 6= I andE is faithful. ThenE(I ) ∩ Ln 6= 0 for somen (see [2, III.4.1]). Let
0 6= c ∈ E(I ) ∩ Ln. Then, sincec∗c ∈ Ln andc∗c is positive and nonzero it
follows by 4.5 that‖|c∗c‖| 6= 0. We shall prove that‖|c∗c‖| = 0, and this will
be an absurd. For eacha = E(b) ∈ E(I ) with b ∈ I we have that

‖|a∗a‖| = ‖|E(b∗)E(b)‖| = ‖|E(b∗E(b))‖| ≤ ‖π(b∗E(b))‖.

By the fact thatb∗E(b) ∈ I it follows thatπ(b∗(E(b))) = 0 and so‖|a∗a‖| = 0.
This shows that‖|a∗a‖| = 0 for eacha ∈ E(I ). Givenε > 0, takea ∈ E(I )
such that‖a∗a − c∗c‖ ≤ ε. Then

‖|c∗c‖| ≤ ‖|c∗c − a∗a‖| + ‖|a∗a‖| = ‖|c∗c − a∗a‖| ≤ ‖c∗c − a∗a‖ ≤ ε.

So‖|c∗c‖| ≤ ε for eachε > 0 from where‖|c∗c‖| = 0, and that is an absurd.
ThereforeI ∩ K 6= 0, and the theorem is proved. �

4.2 Relationship between the ideals ofO(X, α, L) and theσ, σ−1-invariant
open subsets ofX

We obtain here a relationship between the ideals ofO(X, α, L) and theσ, σ−1-
invariant open subsets ofX under an additional hypothesis about(X, σ ), which
is that for every closedσ, σ−1-invariant subsetX′ of X, (X′, σ|X′ ) is topologi-
cally free.

Proposition 4.7. Let I be an ideal ofO(X, α, L) and V ⊆ X the open subset
such thatI ∩ C(X) = C0(V). If (X′, σ|X′ ) is topologically free (whereX′ =
X \ V) thenI = 〈C0(V)〉.

Proof. By 3.4 V is σ, σ−1-invariant, from whereX′ is alsoσ, σ−1-invariant.
By 3.3 there exists a *-isomorphism

9 :
O(X, α, L)

〈C0(V)〉
→ O(X′, α′, L ′) .

Obviously〈C0(V)〉 ⊆ I . SupposeI 6= 〈C0(V)〉. Then I 6= 0 and so9(I ) 6= 0.

By 4.6,9(I ) ∩ C(X′) 6= 0. Let 0 6= g ∈ 9(I ) ∩ C(X′). Theng = 9(a)

for somea ∈ I and alsog = 9( f ), because9(C(X)) = C(X′). Therefore

9(a) = 9( f ) from wherea = f and so f − a ∈ 〈C0(V)〉 ⊆ I , in other

words, f ∈ I . In this way f ∈ I ∩ C(X) = C0(V) andso f = 0 from where

g = 9( f ) = 0, which is a absurd. So we conclude thatI = 〈C0(V)〉. �

Bull Braz Math Soc, Vol. 38, N. 2, 2007



“main” — 2007/6/12 — 15:13 — page 258 — #40

258 RUY EXEL and DANILO ROYER

Theorem 4.8. If (X, σ ) is such that(X′, σ|X′ ) is topologically free for every
closed subsetσ, σ−1-invariant X′ of X then every ideal ofO(X, α, L) is of the
form〈C0(V)〉 for some open subsetV ⊆ X. Moreover, the mapV −→ 〈C0(V)〉
is a bijection between the openσ, σ−1-invariante subsets ofX and the ideals
ofO(X, α, L).

Proof. Let I E O(X, α, L), andC0(V) = I ∩ C(X). By 3.4 V is σ, σ−1-
invariant, from whereX′ = X \ V is alsoσ, σ−1-invariant. By hypothesis
(X′, σ|X′ ) is topologically free. By 4.7,I = 〈C0(V)〉. In particular, note that
every ideal ofO(X, α, L) is gauge-invariant. So, by 3.9 the map aV −→
〈C0(C)〉 is a bijection. �

4.3 A simplicity criteria for the Cuntz-Krieger algebras for infinite
matrices

Recall thatGR(A) is the oriented graph whose vertex are the elements ofG such
that givenx, y ∈ G there exists an oriented edge fromx to y if A(x, y) = 1.
An path fromx to y is a finite sequencex1 ∙ ∙ ∙ xn such thatx1 = x, xn = y
and A(xi , xi +1) = 1 for eachi . We will say thatGR(A) é transitive if for each
x, y ∈ G there exists a path fromx to y.

The main result of this section is that ifGr(A) is transitive then the Cuntz-
Krieger algebraOA is simple. This result is essentially Theorem [4, 14.1].

The following proposition singles out theσ, σ−1-invariant open subsets
of �̃A .

Proposition 4.9. If GR(A) is transitive, the uniqueσ -invariants nonempty
open subsets of̃�A are �̃A \ ∅ and�̃A.

Proof. Let V be aσ -invariant open subset of̃�A. Let ξ ∈ V an element
whose stem is infinite. (such elements form a dense subset in�̃A). ChooseVn

neighbourhood ofξ in V ,

Vn = {ν ∈ �̃A;w(ν)|n = w(ξ)|n}

wherew(ν) is the stem ofν. Letμ ∈ �̃A such that|w(μ)| ≥ 1 and letx ∈ G,
with x ∈ μ. SinceGR(A) is transitive there exists a pathx1 ∙ ∙ ∙ xm fromw(ξ)n
to x, and by this wayw(ξ)|n x2 ∙ ∙ ∙ xm−1μ ∈ Vn ⊆ V . SinceV is σ -invariant it
follows thatμ ∈ V becauseμ = σ n+m−2(w(ξ)|n x2 ∙ ∙ ∙ xm−1μ). SoU ⊆ V . If
∅ 6= ξ ∈ �̃A \ U then there existsx ∈ G such thatx−1 ∈ ξ . Sincexξ ∈ U ⊆ V
andσ(xξ) = ξ it follows thatξ ∈ V . This shows that̃�A \ ∅ ⊆ V , from where
the result follows. �
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Since�̃A and�̃A \ ∅ areσ−1-invariant it follows by the previous proposition
that the uniqueσ, σ−1-invariant open nonempty subsets of̃�A are �̃A and
�̃A \ ∅.

Given ξ ∈ dom(σ i ) with w(ξ) = x1x2 ∙ ∙ ∙ we have thatw(σ i (ξ)) =
xi +1xi +2 . . . This shows that ifξ ∈ Vi, j thenw(ξ) is infinite, because if we
suppose that|w(ξ)| = n, then we have thatn− i = |w(σ i (ξ))| = |w(σ j (ξ))| =
n − j from wherei = j , which is an absurd.

The following proposition shows a relationship betweenGr(A) and�̃A .

Proposition 4.10.If Gr(A) is transitive theñ�A is topologically free.

Proof. Supposei > j , i = j + k andthatVi, j has nonempty interior. Letν be
an interior pointof Vi, j andVν ⊆ Vi, j an open subset which containsν. Then
there exists an elementξ ∈ Vν ∩ Vi, j . Sinceσ i (ξ) = σ j (ξ) we have that

xi +1xi +2 ∙ ∙ ∙ = w(σ i (ξ)) = w(σ j (ξ)) = xj +1xj +2 ∙ ∙ ∙ ,

from where xi +r = xj +r for r ≥ 1. Since i = j + k it follows that
xi +k = xj +k = xi , and also thatxi +(k+r ) = xj +(k+r ) = x( j +k)+r = xi +r for
eachr ≥ 1. Applying the last equality repeatedly it follows thatxi +nk+r = xi +r

for eachn ∈ N andr ≥ 1. This shows thatw(ξ) = x1 ∙ ∙ ∙ xi −1sss∙ ∙ ∙ , where
s = xi xi +1 ∙ ∙ ∙ xi +(k−1). Sincew(ξ) is infinite, there existsn ≥ i such that
Vn = {η ∈ �̃A : w(η)|n = x1 ∙ ∙ ∙ xn = w(ξ)|n} ⊆ Vν .

Claim. Vn = {ξ }.

Supposingη ∈ Vn ∩ Vi, j , with the same arguments as above it may be proved
thatw(η) = x1x2 ∙ ∙ ∙ xi −1sss∙ ∙ ∙ , from wherew(η) = w(ξ), and sinceη, ξ have
infinite stems it follows thatη = ξ . Let ν ∈ Vn. Then, sinceVn ⊆ Vi, j there
exists a net(νl )l ⊆ Vi, j such thatνl → ν. Sinceν ∈ Vn andVn is open we may
suppose that(νl )l ⊆ Vn. Thereforeνl = ξ for eachl and soν = ξ . This proves
the claim. �

Let y ∈ G \ {xi , xi +1, ∙ ∙ ∙ , xi +(k−1)}. By the fact thatGr(A) is transitive there
exists a pathy1 ∙ ∙ ∙ yr wherey1 = xn+1 andyr = y and an other pathz1 ∙ ∙ ∙ zt such
thatz1 = y e zt = x1. In this way we may consider the infinite admissible word
x1 ∙ ∙ ∙ xny1 ∙ ∙ ∙ yr z2 ∙ ∙ ∙ zt−1w(ξ) which is the stem of some elementμ ∈ �̃A .
Notice thatμ ∈ Vn by the definition ofVn and thatμ 6= ξ , because its stems
are distinct. This contradicts the claim.Therefore,Vi, j has empty interior, and
so�̃A is topologically free. �

We will prove now the main result of this section.
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Proposition 4.11. If Gr(A) is transitive the unique ideals of̃OA are the null
ideal, OA and ÕA .

Proof. By 4.9 the unique closedσ, σ−1-invariants subsets of̃�A are�̃A , the
set{∅} (if ∅ ∈ �̃A , that is, ifOA 6= ÕA by [4, 8.5]) and the empty set. Since these
subsets are topologically free, by 4.8 the ideals ofO(�̃A , α, L) are precisely 0,
〈C0(�̃A \∅)〉 andO(�̃A , α, L). Therefore if∅ /∈ �̃A (that is, ifOA = ÕA ) then
O(�̃A , α, L) has no nontrivial ideals and the proposition is proved in this case.
If ∅ ∈ �̃A then by 4.8O(�̃A , α, L) has exactly one nontrivial ideal, which is
〈C0(�̃A \ ∅)〉. ThereforeÕA has also exactly one nontrivial ideal. By [4, 8.5]
OA 6= ÕA and since 06= OA E ÕA it follows that OA is a nontrivial ideal of
ÕA , and so is unique. �

A direct consequence of this proposition is that ifGR(A) is transitive thenOA

is simple.
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