

The Crossed Product by a Partial Endomorphism

Ruy Exel* and Danilo Royer**

Abstract. Given a closed ideal *I* in a C^* -algebra *A*, an ideal *J* (not necessarily closed) in *I*, a *-homomorphism $\alpha : A \to M(I)$ and a map $L : J \to A$ with some properties, based on earlier works of Pimsner and Katsura, we define a C^* -algebra $\mathcal{O}(A, \alpha, L)$ which we call the *Crossed Product by a Partial Endomorphism*. We introduce the Crossed Product by a Partial Endomorphism $\mathcal{O}(X, \alpha, L)$ induced by a local homeomorphism $\sigma : U \to X$ where *X* is a compact Hausdorff space and *U* is an open subset of *X*. A bijection between the gauge invariant ideals of $\mathcal{O}(X, \alpha, L)$ and the σ , σ^{-1} invariant open subsets of *X* is showed. If (X, σ) has the property that $(X', \sigma|_{X'})$ is topologically free for each closed σ , σ^{-1} -invariant subset *X'* of *X* then we obtain a bijection between the ideals of $\mathcal{O}(X, \alpha, L)$ and the open σ , σ^{-1} -invariant subsets of *X*.

Keywords: partial endomorphism, crossed product.

Mathematical subject classification: 47L65, 37A99.

Introduction

Since the pioneering work of Cuntz [1], many authors, notably Paschke [11], Stacey [15], and Murphy [10], have proposed constructions of crossed products of C^* -algebras by endomorphisms. Those constructions depends essentially on an endomorphism α on a C^* -algebra A. In [3] it was introduced by the first named author the concept of Crossed Product by an Endomorphism, based not only on an endomorphism α but on a C*-dynamical system (A, α, L) . Here Ais a C*-algebra, α is an endomorphism and L, following [3], is a transfer operator, that is, $L: A \to A$ is a continuous linear map such that L is positive and $L(\alpha(a)b) = aL(b)$ for all $a, b \in A$. The Crossed Product by an Endomorphism is a quotient of the universal C*-algebra generated by a copy of A and an element S subject to the relations $Sa = \alpha(a)S$ and $S^*aS = L(a)$ for all $a \in A$.

Received 26 August 2006.

^{*}Partially supported by CNPq.

^{**}Supported by CNPq.

See [3] for more details. In this article it was shown that the Cuntz-Krieger algebra is an example of Crossed Product by an Endomorphism. The C^* -dynamical system associated to this example is induced by the Markov subshift (Ω_A, σ) , that is, the endomorphism $\alpha \colon C(\Omega_A) \to C(\Omega_A)$ is given by $\alpha(f) = f \circ \sigma$ and $L \colon C(\Omega_A) \to C(\Omega_A)$ is defined by

$$L(f)(x) = \frac{1}{\#\sigma^{-1}(x)} \sum_{y \in \sigma^{-1}(x)} f(y)$$

for each $x \in X$ and for each $f \in C(\Omega_A)$.

It was defined in [4] by the first named author and M. Laca the Cuntz-Krieger algebra for infinite matrices. This algebra has a topological compact Hausdorff space $\widetilde{\Omega}_A$ associated to it, which can be seen in [4, 4-7]. The difference between this case and the previous one is that the shift σ can not be defined in the whole space $\widetilde{\Omega}_A$, but only in an open subset U of $\widetilde{\Omega}_A$. Then the local homeomorphism $\sigma: U \to \widetilde{\Omega}_A$ induces the *-homomorphism $\alpha: C(\widetilde{\Omega}_A) \to C^b(U)$ given by $\alpha(f) = f \circ \sigma$, where $C^{b}(U)$ is the set of all continuous and bounded functions in U. Moreover, since $\#\sigma^{-1}(x)$ may be infinite for some $x \in \widetilde{\Omega}_A$, the convergence of the sum $\sum_{y \in \sigma^{-1}(x)} f(y)$ is not guaranteed and so L(f) can not be defined by $L(f)(x) = \sum_{y \in \sigma^{-1}(x)} f(y)$ for every $f \in C(\widetilde{\Omega}_A)$. However, we will show that for each $f \in C_c(U)$, that is, for each function with compact support in U, L(f) defined by $L(f)(x) = \sum_{y \in \sigma^{-1}(x)} f(y)$ for each $x \in \widetilde{\Omega_A}$ is an element of $C(\widetilde{\Omega}_A)$. In this way we obtain a map $L: C_c(U) \to C(\widetilde{\Omega}_A)$. Because α is not an endomorphism in $C(\widetilde{\Omega_A})$ and the domain of L is not the whole algebra $C(\widetilde{\Omega}_A)$, the triple (A, α, L) (which we also call by C^{*}-dynamical system) is not a C^* -dynamical system as in [3] and therefore the construction of Crossed Product by an Endomorphism defined in [3] cannot be applied.

In this work we define, making use of the constructions of T. Katsura ([7]) and M. Pimsner ([13]), the *Crossed Product by a Partial Endomorphism*. We show that our construction may be applied to the situation described in the previous paragraph. We study specially the case where the Crossed Product by a Partial Endomorphism, where we denote by $\mathcal{O}(X, \alpha, L)$, is induced by a local homeomorphism $\sigma: U \to X$, where U is an open subset of a topological compact Hausdorff space X. More specifically, we show a bijection between the gauge invariant ideals of $\mathcal{O}(X, \alpha, L)$ and the σ, σ^{-1} -invariant open subsets of X. Moreover, if (X, σ) has the property that $(X', \sigma|_{X'})$ is topologically free for every closed σ, σ^{-1} -invariant subset X' of X then there exists a bijection between the ideals of $\mathcal{O}(X, \alpha, L)$ and the open σ, σ^{-1} -invariant subsets of X. Finally we present a simplicity criteria for the Cuntz-Krieger algebras for in-

finite matrices. The choice of the name Crossed Product by a Partial Endomorphism for the algebra $\mathcal{O}(A, \alpha, L)$ defined in this work was motived by the local homeomorphism $\sigma: U \to X$ where U is an open subset of X.

There is a strong relationship between the Crossed Product of a Partial Endomorphism associated to a commutative C^* -dynamical system, and the algebra studied by J. Renault in [14]. However, our approach is completely different from the one used by Renault. Moreover, the construction of the Crossed Product by a Partial Endomorphism introduced in our paper applies also to non commutative C^* -dynamical systems.

In [8], B.K. Kwasniewski defined an algebra which he called *Covariance algebra of a partial dynamical system* based on a partial dynamical system (X, α) , that is, a continuous map $\alpha : \Delta \to X$ where X is a compact Hausdorff space and Δ is a clopen subset of X and $\alpha(\Delta)$ is open. In our construction Δ need not be clopen, only open, but we require that α is a local homeomorphism. The possible relationship between these two constructions will be studied in a future paper.

1 The crossed product by a partial endomorphism

In this section we define the crossed product by a partial endomorphism and show some results about its structure. We study the gauge action and gauge-invariant ideals of this algebra.

1.1 Definitions and basic results

Let A be a C^* -algebra and I a closed two-sided ideal in A.

Definition 1.1. A partial endomorphism is a *-homomorphism $\alpha : A \rightarrow M(I)$ where M(I) is the multiplier algebra of I.

Let *J* be a two-sided self adjoint idempotent (not necessarily closed) ideal in *I* and let $\alpha : A \to M(I)$ and $L : J \to A$ be functions. We denote a such situation by (A, α, L) .

Definition 1.2. (A, α, L) is a C^{*}-dynamical system if (A, α, L) has the following properties:

- α is a partial endomorphism,
- L is linear, positive and preserves *,
- $L(\alpha(a)x) = aL(x)$ for all a in A and x in J.

The function *L* is positive in the sense that $L(x^*x)$ is a positive element of *A* for all *x* in *J*. Moreover, denoting $\alpha(a)$ by (L^a, R^a) , $\alpha(a)x$ is a notation for the element $L^a(x)$. Note that if $x, y \in J$ and $a \in A$ then $L^a(x) \in I$ and so $L^a(xy) = L^a(x)y \in J$. Since *J* is idempotent we have in general that $\alpha(a)x \in J$ for all $a \in A$ and $x \in J$. Therefore $\alpha(a)x$ lies in fact in the domain of *L*. Defining $x\alpha(a) = R^a(x)$ for all $x \in J$ and $a \in A$ we have that $(\alpha(a)x)^* = x^*\alpha(a^*)$ for every $x \in J$ and $a \in A$. In fact,

$$(\alpha(a)x)^* = (L^a(x))^* = (R^a)^*(x^*) = R^{a^*}(x^*) = x^*\alpha(a^*).$$

In the same way $(x\alpha(a))^* = \alpha(a^*)x^*$.

If (A, α, L) is a C*-dynamical system then $L(x\alpha(a)) = L(x)a$ for all $a \in A$ and $x \in J$. In fact, given $a \in A$ e $x \in J$, since $a^* \in A$ and $x^* \in J$ we have that $L(\alpha(a^*)x^*) = a^*L(x^*)$. Therefore $L(x\alpha(a)) = L((x\alpha(a))^*)^* =$ $L(\alpha(a^*)x^*)^* = (a^*L(x^*))^* = L(x)a$.

The next goal is to define a left *A*-module which is also a right Hilbert *A*-module. Define the operation

It is easy to verify that this operation is bilinear and associative. Thus J is a right A-module. It is also easy to see that the function

$$\langle , \rangle : J \times J \rightarrow A$$

 $(x, y) \mapsto L(x^*y)$

is a semi-inner product. Considering the quotient of *J* by $N_0 = \{x \in J : \langle x, x \rangle = 0\}$ and denoting the elements *x* of *J* by \tilde{x} in J/N_0 (or by $(x)^{\sim}$) we obtain an inner product of J/N_0 in *A* defined by $\langle \tilde{x}, \tilde{y} \rangle = \langle x, y \rangle$. So the function

$$\begin{array}{cccc} \|\,,\|:\,J/N_0 & \to & \mathbb{R}^+ \\ \widetilde{x} & \mapsto & \sqrt{\|\langle \widetilde{x}\,,\widetilde{x}\,\rangle\|} \end{array} \end{array}$$

defines a norm in J/N_0 . Denote by M the right Hilbert A-module $\overline{(J/N_0)}^{\parallel\parallel}$.

Let us now define a left A-module structure for M. Given $a \in A$ and $x \in J$ we have that x^*a^*ax , $||a||^2x^*x \in J$. Since $x^*(||a||^2 - a^*a)x$ may be written in the form $(bx)^*(bx)$ with $bx \in J$ we have that $L(x^*||a||^2x - x^*a^*ax) \ge 0$ and so $L(x^*a^*ax) \le ||a||^2L(x^*x)$ from where $||L(x^*a^*ax)|| \le ||a||^2||L(x^*x)||$. Therefore

$$\|\widetilde{ax}\|^{2} = \|\langle \widetilde{ax}, \widetilde{ax} \rangle\| = \|L(x^{*}a^{*}ax)\| \le \|a\|^{2}\|L(x^{*}x)\|$$
$$= \|a\|^{2}\|\langle \widetilde{x}, \widetilde{x} \rangle\| = \|a\|^{2}\|\widetilde{x}\|^{2},$$

Bull Braz Math Soc, Vol. 38, N. 2, 2007

and so, $\|\widetilde{ax}\| \le \|a\| \|\widetilde{x}\|$. This allows us define the operation

$$: A \times M \to M$$
$$(a,m) \mapsto am$$

where $a\tilde{x} = \tilde{ax}$, which is bilinear and associative, and so *M* is a left *A*-module. This operation gives rise to a *-homomorphism from *A* in *L*(*M*). In fact, defining $\varphi: A \to L(M)$ by $\varphi(a)m = am$ we have:

Proposition 1.3. φ *is a* *-*homomorphism.*

Proof. For all $a \in A$, $\varphi(a): M \to M$ defined by $\varphi(a)(m) = am$ for all $m \in M$ is a linear function. Moreover, for $x, y \in J$,

$$\langle \varphi(a)\widetilde{x}\,,\,\widetilde{y}\,\rangle = \langle \widetilde{ax}\,,\,\widetilde{y}\,\rangle = L((ax)^*y) = L(x^*a^*y) = \langle \widetilde{x}\,,\,\widetilde{a^*y}\,\rangle = \langle \widetilde{x}\,,\,\varphi(a^*)\widetilde{y}\,\rangle,$$

and since J/N_0 is dense in M it follows that $\langle \varphi(a)m, n \rangle = \langle m, \varphi(a^*)n \rangle$ for all $m, n \in M$. This shows that $\varphi(a)$ is adjointable and $\varphi(a)^* = \varphi(a^*)$. Obviously φ is linear and multiplicative.

Definition 1.4. The Toeplitz algebra $\mathcal{T}(A, \alpha, L)$ associated to the C*-dynamical system (A, α, L) is the universal C*-algebra generated by $A \cup M$ with the relations of A, of M, the A-bi-module products and $m^*n = \langle m, n \rangle$ for all $m, n \in M$.

Note that the universal algebra in fact exists, since the relations are admissible. We will denote by $\widehat{K_1}$ the closed sub-algebra of $\mathcal{T}(A, \alpha, L)$ generated by the elements of the form mn^* , for $m, n \in M$.

Definition 1.5. A redundancy in $\mathcal{T}(A, \alpha, L)$ is a pair (a, k) where $a \in A$, $k \in \widehat{K_1}$ and am = km for all $m \in M$.

Let $I_0 = \ker(\varphi)^{\perp} \cap \varphi^{-1}(K(M))$ where $\varphi \colon A \to L(M)$ is the *-homomorphism given by the left multiplication.

Definition 1.6. The Crossed Product by a partial Endomorphism associated to the C^* -dynamical system (A, α, L) is the quotient of $\mathcal{T}(A, \alpha, L)$ by the ideal generated by the elements a - k for all redundancies (a, k) such that $a \in I_0$, and will be denoted by $\mathcal{O}(A, \alpha, L)$.

It follows from [7] that $A \ni a \to a \in \mathcal{O}(A, \alpha, L)$ is injective. In the following proposition will be showed some consequences of this fact. Let us temporarily denote by \hat{a} and \hat{m} the elements of *A* and *M* in $\mathcal{T}(A, \alpha, L)$. Define

$$\widehat{K_n} = \overline{\operatorname{span}}\{\widehat{m_1}\cdots\widehat{m_n}\widehat{l_1}^*\cdots\widehat{l_n}^*: m_i, l_i \in M\}$$

and denote by q the quotient map from $\mathcal{T}(A, \alpha, L)$ to $\mathcal{O}(A, \alpha, L)$.

Proposition 1.7.

- a) $A \ni a \mapsto q(\widehat{a}) \in \mathcal{O}(A, \alpha, L)$ is an injective *-homomorphism.
- b) $A \ni a \mapsto \widehat{a} \in \mathcal{T}(A, \alpha, L)$ and $q_{|_{\widehat{A}}}$ are injective *-homomorphisms.
- c) $M \ni m \mapsto \widehat{m} \in \mathcal{T}(A, \alpha, L)$ is an isometry.
- d) $q_{\mid_{\widehat{M}}}$ is an isometry.
- e) $M \ni m \mapsto q(\widehat{m}) \in \mathcal{O}(A, \alpha, L)$ is an isometry.
- f) $q_{|\widehat{k_n}|}$ is an injective *-homomorphism.

Proof.

- a) Is a consequence of [7].
- b) Follows from a).
- c) Given $m \in M$, $\|\widehat{m}\|^2 = \|\widehat{m}^*\widehat{m}\| = \|\langle \overline{m,m} \rangle\|$. Since $\langle m,m \rangle \in A$, it follows from b) that $\|\langle \overline{m,m} \rangle\| = \|\langle m,m \rangle\|$. Moreover $\|m\|^2 = \|\langle m,m \rangle\|$. Then $\|\widehat{m}\|^2 = \|\langle m,m \rangle\| = \|m\|^2$.
- d) For all $\widehat{m} \in \widehat{M}$ we have $\widehat{m}^* \widehat{m} \in \widehat{A}$. By a), $q_{|_{\widehat{A}}}$ is injective and therefore an isometry. Then $\|q(\widehat{m})\|^2 = \|q(\widehat{m}^* \widehat{m})\| = \|\widehat{m}^* \widehat{m}\| = \|\widehat{m}\|^2$.
- e) Follows from c) and d).
- f) Let $k \in \widehat{K_n}$ and suppose q(k) = 0. Then $q((\widehat{M}^*)^n k \widehat{M}^n) = 0$. Since $(\widehat{M}^*)^n k \widehat{M}^n \subseteq \widehat{A}$ it follows from b) that $(\widehat{M}^*)^n k \widehat{M}^n = 0$. Then $\widehat{K_n} k \widehat{K_n} = 0$ and so k = 0.

From now on we will identify the elements $\hat{a} \in \mathcal{T}(A, \alpha, L)$ and $q(\hat{a}) \in \mathcal{O}(A, \alpha, L)$ with the element *a* of *A*. This notation will not cause confusion, by a) and b) of the previous proposition. In the same way, justified by c) and e) we will identify the elements $\hat{m} \in \mathcal{T}(A, \alpha, L)$ and $q(\hat{m}) \in \mathcal{O}(A, \alpha, L)$ with the element $m \in M$. With these identifications,

$$\widehat{K_n} = \overline{\operatorname{span}} \left\{ m_1 \cdots m_n l_1^* \cdots l_n^* \colon m_i, l_i \in M \right\} \subseteq \mathcal{T}(A, \alpha, L).$$

Define

$$K_n = \overline{\operatorname{span}} \left\{ m_1 \cdots m_n l_1^* \cdots l_n^* : m_i, l_i \in M \right\} \subseteq \mathcal{O}(A, \alpha, L)$$

and note that $q(\widehat{K_n}) = K_n$. If $(a, k) \in A \times \widehat{K_1}$ is a redundancy and $a \in I_0$ then q(a) = q(k). Since a = q(a) in $\mathcal{O}(A, \alpha, L)$ it follows that a = q(k) in $\mathcal{O}(A, \alpha, L)$.

The spaces $K_n \in \widehat{K_n}$ are clearly closed under the sum and are self-adjoint. Moreover, the following proposition shows that they are closed under multiplication, and so are C^* -algebras.

Proposition 1.8.

Proof. Since $K_n = q(\widehat{K_n})$ it suffices to show the result for the algebra $\mathcal{T}(A, \alpha, L)$.

a) Taking adjoins we may suppose $n \le m$. Given $l_1 \dots l_n t_1^* \dots t_n^* \in \widehat{K_n}$ and $p_1 \dots p_m q_1^* \dots q_m^* \in \widehat{K_m}$, how $a = t_1^* \dots t_n^* p_1 \dots p_n \in A$ it follows that $l_n a \in M$. Therefore

$$l_1 \dots l_n t_1^* \dots t_n^* p_1 \dots p_m q_1^* \dots q_m^* = l_1 \dots l_n a p_{n+1} \dots p_m q_1^* \dots q_m^* \in \widehat{K_m}.$$

This is enough since $\widehat{K_n}$ are generated by elements of this form.

b) Follows by the fact that $am \in M$ for all $a \in A$ and $m \in M$.

We will denote by $m \otimes n$ the element of K(M) given by $m \otimes n(\xi) = m \langle n, \xi \rangle$, for all $\xi \in M$.

Proposition 1.9. There exists a *-isomorphism $S: \widehat{K_1} \to K(M)$ such that $S(mn^*) = m \otimes n$.

Proof. Given $k \in \widehat{K_1}$ and $m \in M$ then $km \in M$ because M is closed in $\mathcal{T}(A, \alpha, L)$ by the proposition 1.7 c). In $\mathcal{T}(A, \alpha, L)$, $\langle km, n \rangle = (km)^*n = m^*k^*n = \langle m, k^*n \rangle$, and how $\langle m, k^*n \rangle$, $\langle km, n \rangle \in A$, by 1.7 b) $\langle m, k^*n \rangle = \langle km, n \rangle$ in A. So, defining $S(k): M \to M$ by S(k)(m) = km it follows that $\langle S(k)m, n \rangle = \langle km, n \rangle = \langle m, k^*n \rangle = \langle m, S(k^*)n \rangle$ for all $m, n \in M$. This shows

that S(k) is adjointable and $S(k)^* = S(k^*)$. Since $S(k) \in L(M)$ we may define $S: \widehat{K_1} \to L(M)$ which is clearly linear and multiplicative, and so S is a *-homomorphism. Obviously $S(mn^*) = m \otimes n$, and therefore $S(k) \in K(M)$ for all $k \in \widehat{K_1}$. Moreover $S(\widehat{K_1})$ is a dense set in K(M) and so $S(\widehat{K_1}) = K(M)$. In order to see that S is injective suppose S(k) = 0, that is, kM = 0. Then $k\widehat{K_1} = 0$ and since $k \in \widehat{K_1}$ it follows that k = 0.

If (a, k) is a redundancy then am = km for all $m \in M$, from where $\varphi(a)(m) = S(k)(m)$ for each $m \in M$. Since $S(k) \in K(M)$ it follows that $\varphi^{-1}(a) \in K(M)$. So the algebra $\mathcal{O}(A, \alpha, L)$ coincides with the quotient of $\mathcal{T}(A, \alpha, L)$ by the ideal generated by the elements of the form (a - k) for all redundancy (a, k) such that $a \in \ker(\varphi)^{\perp}$.

Given a C^* -dynamical system (A, α, L) and a closed ideal N in A such that $J \subseteq N \subseteq I$, we may consider an other C^* -dynamical system (A, β, L) where the partial endomorphism $\beta \colon A \to M(N)$ is given by $\beta(a) = (L^a_{|_N}, R^a_{|_N})$, considering that $\alpha(a) = (L^a, R^a)$. Since $x\beta(a) = x\alpha(a)$ for all $x \in J$ and $a \in A$ it follows that $\mathcal{O}(A, \alpha, L) = \mathcal{O}(A, \beta, L)$. By this reason we may suppose that J is a dense ideal in I. This situation will occur in the second section.

It may be showed without much difficulty that the crossed product by endomorphism introduced in [3] in some situations may be seen as crossed products by a partial endomorphism. More specifically, this holds if $\langle \alpha(A) \rangle = A$ and *L* is faithfull or if $\alpha : A \to A$ is injective, $\alpha(A) = \alpha(1)A\alpha(1)$, and $L : A \to A$ is given by $L(a) = \alpha^{-1}(\alpha(1)a\alpha(1))$. The first situation occurs in Cuntz-Krieger algebras (see [3, 6]) end the last situation occurs in Pashke's crossed product and in the crossed product proposed by Cuntz (see [3]).

1.2 The gauge action

The next goal is to show that every gauge-invariant ideal of $\mathcal{O}(A, \alpha, L)$ has non-trivial intersection with the fixed point algebra of the gauge action in $\mathcal{O}(A, \alpha, L)$.

By the universal property of $\mathcal{T}(A, \alpha, L)$ it follows that for each $\lambda \in S^1$ there exists a *-homomorphism $\theta_{\lambda} : \mathcal{T}(A, \alpha, L) \to \mathcal{T}(A, \alpha, L)$ which satisfies $\theta_{\lambda}(a) = a$ for all a in A and $\theta_{\lambda}(m) = \lambda m$ for all $m \in M$. If (a, k) is a redundancy, because $\theta_{\lambda}(a) = a$ and $\theta_{\lambda}(k) = k$ it follows that $(\theta_{\lambda}(a), \theta_{\lambda}(k))$ is also a redundancy, and so we may consider $\theta_{\lambda} : \mathcal{O}(A, \alpha, L) \to \mathcal{O}(A, \alpha, L)$. Note that $\theta_{\lambda_1}\theta_{\lambda_2} = \theta_{\lambda_1\lambda_2}$ from where θ_{λ} is a *-automorphism, with inverse $\theta_{\overline{\lambda}}$. Moreover, given $r \in \mathcal{O}(A, \alpha, L)$, the function $S^1 \ni \lambda \mapsto \theta_{\lambda}(r) \in \mathcal{O}(A, \alpha, L)$ is continuous. Then we may consider

$$E: \mathcal{O}(A, \alpha, L) \rightarrow \mathcal{O}(A, \alpha, L)$$

 $r \mapsto \int_{S^1} heta_{\lambda}(r) d\lambda$

Proposition 1.10. The fixed point algebra of θ is $K = \overline{\text{span}} \{A, K_n; n \in \mathbb{N}\}$ and *E* is a faithful conditional expectation onto *K*.

Proof. It is not difficult to show that *E* is a faithful conditional expectation onto the fixed point algebra. So it suffices to show that Im(E) = K. The equality holds because

$$E(am_1\cdots m_k n_1^*\cdots n_l^*b) = \begin{cases} am_1\cdots m_k n_1^*\cdots n_l^*b & \text{se } k=l\\ 0 & \text{se } k\neq l \end{cases}$$

and the space generated by elements of the form $am_1 \cdots m_i n_1^* \cdots m_j^* b$ is dense in $\mathcal{O}(A, \alpha, L)$.

Definition 1.11. A ideal I in $\mathcal{O}(A, \alpha, L)$ is gauge-invariant if $\theta_{\lambda}(I) \subseteq I$ for each $\lambda \in S_1$.

If I is gauge-invariant, the gauge action in $\mathcal{O}(A, \alpha, L)/I$ is given by

$$\beta_{\lambda} : \mathcal{O}(A, \alpha, L)/I \rightarrow \mathcal{O}(A, \alpha, L)/I$$
$$\pi(r) \mapsto \pi(\theta_{\lambda}(r))$$

,

where π is the quotient map. In this case π is covariant by the gauge actions θ and β , in the sense that $\pi(\theta_{\lambda}(r)) = \beta_{\lambda}(\pi(r))$ for all $r \in \mathcal{O}(A, \alpha, L)$ and for each $\lambda \in S^1$. Moreover, the fixed point algebra for β is $\pi(K)$ because the conditional expectation *F* induced by β is such that $F(\pi(r)) = \pi(E(r))$ for each $r \in \mathcal{O}(A, \alpha, L)$.

Proposition 1.12. If $0 \neq I \leq O(A, \alpha, L)$ is gauge-invariant then $I \cap K \neq 0$.

Proof. Since $\theta_{\lambda}(I) \subseteq I$ for all $\lambda \in S^1$ then $E(r) \in I$ for all $r \in I$. By the fact that *E* is faithful it follows that, given $0 \neq r \in I$ then $E(r^*r) \neq 0$. Since $E(r^*r) \in K \cap I$, the result is proved.

Defining

$$L_0 = A$$
 and $L_n = A + K_1 + \cdots + K_n$ for every $n \ge 1$

we have that

$$L_0 \subseteq L_1 \subseteq L_2 \subseteq \cdots$$
 and $K = \bigcup_{n \in \mathbb{N}} L_n$

This form to see the algebra K will be useful in some situations which will appear latter. In some of this situations we will use the fact, given by the following proposition, that the algebras L_n (by the proposition 1.8 L_n are algebras) are closed, for all $n \in \mathbb{N}$.

Proposition 1.13. For each $n \in \mathbb{N}$ the algebras L_n are closed.

Proof. The case L_0 follows by 1.7 a). By induction suppose L_n closed. Note that $K_{n+1} \leq \overline{L_{n+1}}$ and that L_n is a closed sub-algebra of $\overline{L_{n+1}}$. By [12, 1.5.8], $L_n + K_{n+1}$ is a closed sub-algebra of $\overline{L_{n+1}}$. Therefore

$$L_{n+1} = L_n + K_{n+1} = L_n + K_{n+1} = L_{n+1}.$$

2 The Crossed Product by a Partial Endomorphism induced by a local homeomorphism

Given a topological compact Hausdorff space X and a local homeomorphism $\sigma: X \to X$, defining $\alpha: C(X) \to C(X)$ by $\alpha(f) = f \circ \sigma$ and $L: C(X) \to C(X)$ by $L(f)(x) = \sum_{y \in \sigma^{-1}(x)} f(y)$ for all $x \in X$, we obtain a C^* -dynamical system. This situation occurs in the Cuntz-Krieger algebra in [3]. A more general situation consists in considering an open set $U \subseteq X$ and a local homeomorphism $\sigma: U \to X$. In this case, defining α as above, for all $f \in C(X)$ $\alpha(f)$ is an element of $C^b(U)$, where $C^b(U)$ is the set of all continuous and bounded functions in U. Moreover, $\#\sigma^{-1}(x)$ may be infinite for some $x \in X$, and therefore L can not be defined as above.

Although, if $f \in C_c(U)$, that is, $f \in C(X)$ such that

$$\operatorname{supp}(f) = \overline{\left\{x \in X \colon f(x) \neq 0\right\}} \subseteq U$$
,

we will show that $\sum_{y\in\sigma^{-1}(x)} f(y)$ involves finitely many summands for every $x \in X$. We will also show that, for each $f \in C_c(U)$, L(f) defined by $L(f)(x) = \sum_{y\in\sigma^{-1}(x)} f(y)$ is an element in C(X), and so we may define $L: C_c(U) \to C(X)$. Moreover, since $C^b(U)$ and $M(C_0(U))$ are *-isomorphic we obtain a partial endomorphism $\tilde{\alpha}: C(X) \to M(C_0(U))$.

We begin this section by showing that $(C(X), \tilde{\alpha}, L)$ is a C^{*}-dynamical system which will give us the crossed product by a partial endomorphism $\mathcal{O}(X, \alpha, L)$.

The second part is dedicated to presenting some basic results about the structure of $\mathcal{O}(X, \alpha, L)$, and the most important result of this part is that every ideal of $\mathcal{O}(X, \alpha, L)$ which has nonzero intersection with *K* (the fixed point algebra of the gauge action) has nonzero intersection with C(X).

In the last part we show that the Cuntz-Krieger algebra for infinite matrices (see [4]) is a crossed product by a partial endomorphism. This is the example which motivated this work.

The choice of the name *Crossed Product by a Partial Endomorphism* for the algebra $\mathcal{O}(A, \alpha, L)$ was motivated by the local homeomorphism σ .

2.1 The algebra $\mathcal{O}(X, \alpha, L)$

Let *X* be a topological compact Hausdorff space, $U \subseteq X$ an open subset and $\sigma: U \to X$ a local homeomorphism. Define

$$\begin{aligned} \alpha \colon C(X) \to C^b(U) \\ f \mapsto f \circ \sigma \end{aligned}$$

which is a *-homomorphism. For each $f \in C_c(U)$ define for all $x \in X$,

$$L(f)(x) = \begin{cases} \sum_{\substack{y \in U \\ \sigma(y) = x}} f(y) & \text{if } \sigma^{-1}(x) \neq \emptyset \\ 0 & \text{otherwise} \end{cases}$$

If $K \subseteq U$ is a compact subset, taking an open cover U_1, \dots, U_n of K in U such that $\sigma_{|U_i|}$ is homeomorphism, for every $x \in X$ there exists no more than one element x_i in each $\sigma^{-1}(x) \cap U_i$. Therefore there exists at most n elements in $\sigma^{-1}(x) \cap K$. It follows that the sum which defines L(f)(x) involves finitely many summands for each $x \in X$, and so L(f)(x) in fact may be defined as above.

Lemma 2.1. For each $f \in C_c(U)$, L(f) is an element of C(X).

Proof. Let $f \in C_c(U)$ and K = supp(f). We will show that L(f) is continuous on each point of X. Given $x \in X \setminus \sigma(K)$, since $X \setminus \sigma(K)$ is open and L(f)y =0 for all $y \in X \setminus \sigma(K)$, it follows that L(f) is continuous in x. Let $x \in$ $\sigma(K), \{x_1, \ldots, x_k\} = \sigma^{-1}(x) \cap K$, and U_j open disjoint neighbourhoods of x_j such that $\sigma_{|U_j|}$ is a homeomorphism. The U_j may be taken such that $\sigma(U_j)$ are open, because σ is a local homeomorphism. **Claim.** There exists an open set $V \ni x$ such that

$$\sigma^{-1}(V) \cap \left(K \setminus \left(\bigcup_{j=1}^k U_j \right) \right) = \emptyset.$$

Suppose $\sigma^{-1}(V) \cap (K \setminus (\bigcup_{j=1}^{k} U_j)) \neq \emptyset$ for each open set *V* which contains *x*. For every open subset $W \ni x$ define

$$F_W = \sigma^{-1}(\overline{W}) \cap \left(K \setminus \left(\bigcup_{j=1}^k U_j \right) \right).$$

Since $\sigma^{-1}(\overline{W})$ is closed in *U* and $K \setminus \left(\bigcup_{j=1}^{k} U_j\right) \subseteq U$ is compact, it follows that F_W is compact, and therefore closed in *X*. Moreover F_W is nonempty because

$$\emptyset \neq \sigma^{-1}(W) \cap \left(K \setminus \left(\bigcup_{j=1}^k U_j \right) \right) \subseteq F_W.$$

Given W_1, \ldots, W_m open neighbourhoods of x, we have that $F_{\bigcap_{j=1}^m W_j} \subseteq F_{W_j}$ for each j from where

$$F_{\bigcap_{j=1}^{m} W_j} \subseteq \bigcap_{j=1}^{m} F_{W_j}, \text{ and so } \bigcap_{j=1}^{m} F_{W_j} \neq \emptyset$$

for each finite collection of open neighbourhoods W_1, \ldots, W_m of x. By the fact that X is compact it follows that there exists $y \in \bigcap_{\substack{W \ni x: \\ W \text{ open}}} F_W$. Since

$$\bigcap_{\substack{W\ni x;\\W \text{ open}}} F_W \subseteq K \setminus \left(\bigcup_{j=1}^k U_j\right)$$

it follows that $\sigma(y) \neq x$. Choose an open set $W_x \ni x$ such that $\sigma(y) \notin \overline{W_x}$. Then $y \notin F_{W_x}$, which is an absurd. This proves the claim.

Let $V_0 \ni x$ be an open subset according to the claim and define

$$V = V_0 \bigcap \left(\bigcap_{j=1}^k \sigma(U_j) \right).$$

Bull Braz Math Soc, Vol. 38, N. 2, 2007

Let $(y_i)_i$ an net such that $y_i \to x$. We may suppose that $(y_i)_i \subseteq V$, and so $\sigma^{-1}(y_i) = \{y_{1,i}, \ldots, y_{k,i}\}$ where $y_{j,i} \in U_j$. How $\sigma_{|_{U_j}}$ is a homeomorphism we have that $y_{j,i} \xrightarrow{i \to \infty} x_j$ for each j, and so

$$L(f)(y_i) = \sum_{\substack{z \in U \\ \sigma(z) = y_i}} f(z) = \sum_{j=1}^k f(y_{j,i}) \xrightarrow{i \to \infty} \sum_{j=1}^k f(x_j) = \sum_{\substack{y \in U \\ \sigma(y) = x}} f(y) = L(f)(x).$$

This shows that L(f) is continuous on the points of $\sigma(K)$, and the lemma is proved.

Now we are in the situation where $C_c(U)$ is an idempotent self-adjoint ideal of $C_0(U)$, which is an ideal of C(X), and by the previous lemma, $L: C_c(U) \rightarrow C(X)$ is a function. Moreover, composing α with the *-isomorphism $C^b(U) \ni$ $g \mapsto (L_g, R_g) \in M(C_0(U))$ we obtain the partial endomorphism $\tilde{\alpha}: C(X) \rightarrow M(C_0(U))$. It is easy to verify that $(C(X), \tilde{\alpha}, L)$ is a C^* -dynamical system.

Since $\widetilde{\alpha}$ is essentially given by α we will use the notation $(C(X), \alpha, L)$ to us refer to the C^* -dynamical system $(C(X), \widetilde{\alpha}, L)$. Moreover, since $g\widetilde{\alpha}(f) = g\alpha(f)$ for each $g \in C_c(U)$ and $f \in C(X)$, no more references will be made to $\widetilde{\alpha}$. So we have the Toeplitz algebra $\mathcal{T}(C(X), \alpha, L)$ and the crossed product by a partial endomorphism $\mathcal{O}(C(X), \alpha, L)$. From now on we will denote $\mathcal{T}(C(X), \alpha, L)$ by $\mathcal{T}(X, \alpha, L)$ and $\mathcal{O}(C(X), \alpha, L)$ by $\mathcal{O}(X, \alpha, L)$.

2.2 Basic results

Here we will prove some basic results about the crossed product by a partial endomorphism $\mathcal{O}(X, \alpha, L)$.

Lemma 2.2. Given $f \in C_c(U)$, we have that:

- a) $\tilde{f} = 0$ if and only if f = 0.
- b) if $\sigma_{|\text{supp}(f)}$ is a homeomorphism then $||f||_{\infty} = ||\widetilde{f}||$.

Proof.

a) Given $f \in C_c(U)$ and $x \in U$ such that $f(x) \neq 0$ then

$$L(f^*f)(\sigma(x)) = \sum_{\sigma(y) = \sigma(x)} f^*(y)f(y) = \sum_{\substack{y \neq x \\ \sigma(y) = \sigma(x)}} |f(y)|^2 + |f(x)|^2 > 0.$$

This shows that L is faithful, and so $\tilde{f} = 0$ if and only if f = 0.

b) Since $\|\widetilde{f}\|^2 = \|L(f^*f)\|_{\infty}$ it suffices to show that $\|L(f^*f)\|_{\infty} = \|f\|_{\infty}^2$. For this note that

$$L(f^*f)(x) = \begin{cases} |f(\sigma^{-1}(x))|^2 & \text{if } x \in \sigma(\text{supp } (f)) \\ 0 & \text{otherwise} \end{cases}$$

Then $||L(f^*f)||_{\infty} \le ||f||_{\infty}^2$. On the other hand, choose $x \in U$ such that $|f(x)| = ||f||_{\infty}$, and note that $L(f^*f)(\sigma(x)) = (f^*f)(x)$, which means that $||L(f^*f)||_{\infty} \ge ||f||_{\infty}^2$.

Consider the *-homomorphism $\varphi \colon C(X) \to L(M)$ given by the left product of A by M. Note that $f \in \ker(\varphi)$ if and only if fm = 0 for each $m \in M$, which occurs if and only if $\widetilde{fg} = f\widetilde{g} = 0$ for each $g \in C_c(U)$. By a) of the previuos lemma $\widetilde{fg} = 0$ if and only if fg = 0. Therefore $f \in \ker(\varphi)$ if and only if fg = 0 for every $g \in C_c(U)$ and so fg = 0 for all $g \in C_0(U)$. So, given $g \in C_0(U)$ it follows that fg = 0 for every $f \in \ker(\varphi)$ and so $f \in \ker(\varphi)^{\perp}$. This means that $C_0(U) \subseteq \ker(\varphi)^{\perp}$.

Lemma 2.3.

- a) If $f, g \in C_c(U)$ and $\sigma_{|_{supp(f) \cup supp(g)}}$ is a homeomorphism then $(fg^*, \tilde{f} g^*)$ is a redundancy of $\mathcal{T}(X, \alpha, L)$ and $fg^* = \tilde{f} g^*$ in $\mathcal{O}(X, \alpha, L)$.
- b) $C_0(U) \subseteq \varphi^{-1}(K(M)).$
- c) $C_0(U) \subseteq I_0 \ (= \varphi^{-1}(K(M)) \cap ker(\varphi)^{\perp}).$
- d) $C_0(U) \subseteq K_1$.

Proof.

a) Let $f, g \in C_c(U)$ such that $\sigma_{|_{supp}(f) \cup supp(g)}$ is a homeomorphism and $h \in C_c(U)$. Notice that $\tilde{f} \, \tilde{g}^* \tilde{h} = (f \alpha(L(g^*h)))^{\sim}$. Since $\sigma_{|_{supp}(f) \cup supp(g)}$ is a homeomorphism, for each element $x \in supp(f)$ we have that

$$f(x)\sum_{\substack{y\in U\\\sigma(y)=\sigma(x)}} (g^*h)(y) = f(x)g(x)^*h(x).$$

Therefore for these *x*,

$$f\alpha(L(g^*h))(x) = f(x)L(g^*h)(\sigma(x)) = f(x) \sum_{\substack{y \in U \\ \sigma(y) = \sigma(x)}} (g^*h)(y)$$

= $f(x)g^*(x)h(x) = (fg^*h)(x).$

If $x \notin \operatorname{supp}(f)$ then $(f\alpha(L(g^*h)))(x) = 0 = (fg^*h)(x)$. Therefore $f\alpha(L(g^*h)) = fg^*h$. Then $\tilde{f} \, \tilde{g}^*\tilde{h} = (f\alpha(L(g^*h))) = fg^*h = fg^*\tilde{h}$ for every $h \in C_c(U)$, from where $\tilde{f} \, \tilde{g}^*m = fg^*m$ for all $m \in M$. It follows that $(fg^*, \tilde{f} \, \tilde{g}^*)$ is a redundancy. Since $fg^* \in C_0(U) \subseteq \ker(\varphi)^{\perp}$ we have that $fg^* = \tilde{f} \, \tilde{g}^*$ in $\mathcal{O}(X, \alpha, L)$.

- b) It is enough to show that $C_c(U) \subseteq K(M)$. Let $f \in C_c(U)$, choose a cover V_1, \dots, V_n of supp (f) such that $\sigma_{|_{V_i}}$ is a homeomorphism. Let ξ_i'' be a partition of unity relative to this cover. Define $\xi_i = f\sqrt{\xi_i''}$ and $\xi_i' = \sqrt{\xi_i''}$. Then $f = \sum_{i=1}^n \xi_i \xi_i'^*$. By a), $(\xi_i \xi_i'^*, \xi_i \widetilde{\xi_i'}^*)$ is a redundancy from where (f, k) is a redundancy where $k = \sum_{i=1}^n \widetilde{\xi_i} \widetilde{\xi_i'}^* \in \widehat{K_1}$. In this way fm = km for all $m \in M$ and so $\varphi(f)(m) = fm = km = S(k)(m)$ for every $m \in M$, where S is the *-isomorphism of 1.9. It follows that $\varphi(f) = S(k)$ and so $f \in \varphi^{-1}(K(M))$. Therefore $C_c(U) \subseteq \varphi^{-1}(K(M))$.
- c) Follows by b) and by the fact that $C_0(U) \subseteq \ker(\varphi)^{\perp}$.
- d) Given $f \in C_c(U)$, by b) it follows that (f, k) is a redundancy for some $k \in \widehat{K_1}$. Since $f \in C_0(U) \subseteq I_0$ it follows that $f = q(k) \in K_1$. So $C_c(U) \subseteq K_1$ from where $C_0(U) \subseteq K_1$.

The following lemma will be used several times in this work.

Lemma 2.4. If $(k_0, k_1, \ldots, k_n) \in C(X) \times K_1 \times \cdots \times K_n$ such that

$$g\sum_{i=0}^{n}k_{i}=0$$

for each $g \in C_0(U)$ then:

- a) $k_{0|_{\partial(U)}} = 0, k_0 = f_1 + f_2$ where $f_1 \in C_0(U)$ and $f_2 \in C_0(X \setminus \overline{U})$.
- b) $\sum_{i=0}^{n} k_i = f_2$.

Proof. Let $\varepsilon > 0$ be fixed. For every $i \ge 1$ choose

$$k'_{i} = \sum_{j=1}^{N_{i}} m^{i}_{j,1} \cdots m^{i}_{j,i} (l^{i}_{j,1})^{*} \cdots (l^{i}_{j,i})^{*} \in K_{i}$$

such that $m_{j,k}^i = \widetilde{f_{j,k}^i}$ with $f_{j,k}^i \in C_c(U)$ and $||k_i - k_i'|| \le \frac{\varepsilon}{n}$. Define

$$k_{\varepsilon} = k'_1 + \dots + k'_n$$
 and $K_{\varepsilon} = \bigcup_{i,j,k} \operatorname{supp} \left(f^i_{j,k} \right) \subseteq U$

which is compact. Given $x \in U \setminus K_{\varepsilon}$ take $f \in C_0(U)$ such that $f(x) = 1, 0 \le f \le 1$ and $f_{|K_{\varepsilon}|} = 0$. Then $fk_{\varepsilon} = 0$ by the choice of f and $fk_0 = -f \sum_{i=1}^n k_i$ by hypothesis. It follows that

$$\|fk_0\| = \left\|-f\sum_{i=1}^n k_i + f_x k_\varepsilon\right\| = \left\|f\left(-\sum_{i=1}^n k_i + k_\varepsilon\right)\right\| = \left\|f\sum_{i=1}^n \left(k'_i - k_i\right)\right\| \le \varepsilon$$

from where $|k_0(x)| \leq \varepsilon$. In this way we have showed that $|k_0(x)| \leq \varepsilon$ for all $x \in U \setminus K_{\varepsilon}$. Given $y \in \partial(U)$, take a net $(x_l)_l \subseteq U$ such that $x_l \to y$. Since $y \notin K_{\varepsilon}$ and $U \setminus K_{\varepsilon}$ is open we may suppose $(x_l)_l \subseteq U \setminus K_{\varepsilon}$ from where $|k_0(x_l)| \leq \varepsilon$ for each *l*. By continuity of k_0 , $|k_0(y)| \leq \varepsilon$. This shows (taking ε sufficiently small) that $k_{0|\partial(U)} = 0$. Defining $f_1 = k_0 1_U$ and $f_2 = k_0 1_{U^c}$, we obtain a).

We will show b). For each $\varepsilon > 0$ choose $g_{\varepsilon} \in C_0(U)$ such that $0 \le g \le 1$ and $g_{|_{K_{\varepsilon}}} = 1$. Define $h_{\varepsilon} = g_{\varepsilon}k_0$. So we obtain a set of functions $(h_{\varepsilon})_{\varepsilon} \subseteq C_0(U)$.

Claim. $\lim_{\varepsilon \to 0} h_{\varepsilon} = f_1$.

For each ε , given $x \in X$,

$$|(h_{\varepsilon} - f_1)(x)| = |(g_{\varepsilon} - 1_U)(x)k_0(x)| = \begin{cases} |g_{\varepsilon}(x) - 1| |k_0(x)| & \text{if } x \in U \setminus K_{\varepsilon} \\ 0 & x \in K_{\varepsilon} \cup U^c \end{cases}$$

For $x \in U \setminus K_{\varepsilon}$ it holds that $|k_0(x)| \leq \varepsilon$ and so for such elements

$$|g_{\varepsilon}(x) - 1| |k_0(x)| \le 2\varepsilon.$$

So $||h_{\varepsilon} - f_1|| \le 2\varepsilon$. This shows the claim.

Notice that $g_{\varepsilon}k_{\varepsilon} = k_{\varepsilon}$ and $h_{\varepsilon} = g_{\varepsilon}k_0 = -g_{\varepsilon}(k_1 + \cdots + k_n)$ because $g_{\varepsilon} \in C_0(U)$. Then

$$h_{\varepsilon} + (k_1 + \dots + k_n) = h_{\varepsilon} + k_{\varepsilon} - k_{\varepsilon} + (k_1 + \dots + k_n)$$

= $-g_{\varepsilon}(k_1 + \dots + k_n) + k_{\varepsilon} - k_{\varepsilon} + (k_1 + \dots + k_n)$
= $-g_{\varepsilon}(k_1 + \dots + k_n - k_{\varepsilon}) - k_{\varepsilon} + (k_1 + \dots + k_n),$

and so

$$\begin{aligned} \|h_{\varepsilon} + (k_1 + \dots + k_n)\| &= \|g_{\varepsilon}(-(k_1 + \dots + k_n) + k_{\varepsilon}) + ((k_1 + \dots + k_n) - k_{\varepsilon})\| \\ &\leq \|g_{\varepsilon}(-(k_1 + \dots + k_n) + k_{\varepsilon})\| + \|(k_1 + \dots + k_n) - k_{\varepsilon}\| \\ &\leq 2\varepsilon. \end{aligned}$$

This shows that $\lim_{\varepsilon \to 0} h_{\varepsilon} = -(k_1 + \cdots + k_n)$. By the claim $\lim_{\varepsilon \to 0} h_{\varepsilon} = f_1$, and so $f_1 = -(k_1 + \cdots + k_n)$. Then

$$\sum_{i=0}^{n} k_i = f_1 + f_2 + k_1 + \dots + k_n = f_2,$$

proving b).

Corollary 2.5. $K_1 \cap C(X) = C_0(U)$

Proof. Let $r \in K_1 \cap C(X)$. Then r = f = k where $f \in C(X)$ and $k \in K_1$. Then f - k = 0 and so g(f - k) = 0 for all $g \in C_0(U)$, and so by 2.4, $f = f_1 + f_2$ with $f_1 \in C_0(U)$, $f_2 \in C_0(X \setminus \overline{U})$ and $f - k = f_2$. How f - k = 0it follows that $f_2 = 0$. Therefore $f = f_1$, which means that $r = f_1 \in C_0(U)$. In this way $K_1 \cap C(X) \subseteq C_0(U)$. The other inclusion is the lema 2.3 d).

In the construction of $\mathcal{O}(X, \alpha, L)$ we have considered the ideal $I_0 = \varphi^{-1}(K(M)) \cap \ker(\varphi)^{\perp}$. The previous corollary allows us to identify this ideal.

Corollary 2.6. $I_0 = C_0(U)$

Proof. Given $f \in I_0$ then $\varphi(f) = k \in K(M)$. Choose $k' \in \widehat{K_1}$ such that S(k') = k where *S* is the *-isomorphism of 1.9. Then $fm = \varphi(f)(m) = k(m) = S(k')(m) = k'm$ for all $m \in M$. Therefore (f, k') is a redundancy. Since $f \in I_0$ it follows that $f = q(k') \in K_1$ in $\mathcal{O}(X, \alpha, L)$. By the previous corollary we have that $f \in C_0(U)$. So $I_0 \subseteq C_0(U)$. The reverse inclusion follows by 2.3 c).

Recall that K is the fixed point algebra of the gauge action and that

$$K = \bigcup_{n \in \mathbb{N}} L_n$$

where $L_n = C(X) + K_1 + \dots + K_n$ for $n \ge 1$ and $L_0 = C(X)$.

Proposition 2.7. Every ideal of $\mathcal{O}(X, \alpha, L)$ which has nonzero intersection with *K* has nonzero intersection with C(X).

Proof. Let *I* be an ideal of $\mathcal{O}(X, \alpha, L)$ such that $I \cap K \neq 0$. By [2, III.4.1] there exists $n \in \mathbb{N}$ such that $I \cap L_n \neq 0$. Let $n_0 = \min\{n \in \mathbb{N} : I \cap L_n \neq 0\}$ and choose $0 \neq k \in I \cap L_{n_0}$. Suppose $n_0 \neq 0$. Supposing $m^*kk^*l = 0$ for all $m, l \in M$ we have that $m^*k = 0$ for all $m \in M$. So $K_1k = 0$ and by the fact that $C_0(U) \subseteq K_1$ it follows that fk = 0 for all $f \in C_0(U)$. By 2.4, $k \in C(X) = L_0$, which is a contradiction because we are supposing $n_0 \neq 0$. So there exists $m, l \in M$ such that $m^*kk^*l \neq 0$. Notice that $m^*kk^*l \in I \cap L_{n_0-1}$ which again is an absurd because $n_0 = \min\{n \in \mathbb{N} : I \cap L_n \neq 0\}$. Therefore $n_0 = 0$, that is, $k \in L_0 = C(X)$.

By this proposition and by 1.12 follows the corollary:

Corollary 2.8. If $0 \neq I$ is a gauge-invariant ideal of $\mathcal{O}(X, \alpha, L)$ then $I \cap C(X) \neq 0$.

2.3 The Cuntz-Krieger algebra for infinite matrices

We show that that the Cuntz-Krieger algebra for infinite matrices, introduced in [4], is an example of crossed product by partial endomorphism. We begin by presenting a short summary of the construction of this algebra.

Ler *G* be a set and $A = A(i, j)_{i,j\in G}$ a matrix where each $A(i, j) \in \{0, 1\}$. Define the universal *C**-algebra \widehat{O}_A generated by a set of partial isometries $\{S_x\}_{x\in G}$ with the following relations:

- 1. $S_i^* S_i$ and $S_i^* S_j$ commute,
- 2. $S_i^* S_j = 0$ for all $i \neq j$,
- 3. $S_i^* S_i S_j = A(i, j) S_j$,
- 4. $\prod_{x \in X} S_x^* S_x \prod_{y \in Y} (1 S_y^* S_y) = \sum_{j \in G} A(X, Y, j) S_j S_j^*$, whenever X, Y are finite subsets of G such that

$$A(X, Y, j) := \prod_{x \in X} A(x, j)(1 - \prod_{y \in Y} A(y, j)) \neq 0$$

only for finitely many $j \in G$.

The Cuntz-Krieger algebra for infinite matrices was defined in [4] as the subalgebra O_A of \widetilde{O}_A generated by the S_x .

Let \mathbb{F} be the free group generated by *G* and let $\{0, 1\}^{\mathbb{F}}$ be the topological space (with the product topology), which can also be seen as the set of the subsets of \mathbb{F} . In $\{0, 1\}^{\mathbb{F}}$ consider the set $\Omega_e = \{\xi \subseteq \mathbb{F}; e \in \xi\}$, which is compact. For each $t \in \mathbb{F}$ define $\Delta'_t = \{\xi \in \Omega_e; t \in \xi\}$, which is an clopen subset. Denoting by 1_t the characteristic function of Δ'_t consider the set $R_A \subseteq C(\Omega_e)$ formed by the following functions:

- 1. $1_x 1_y$ for all $x \neq y, x, y \in G$,
- 2. $1_{x^{-1}}1_y A(x, y)1_y$ for all $x, y \in G$,
- 3. $1_{ts}1_t 1_{ts}$ for $t, s \in \mathbb{F}$ such that |ts| = |t| + |s|, (where |s| is the number of generators of the reduced form of *s*),
- 4. $\prod_{x \in X} 1_{x^{-1}} \prod_{y \in Y} (1 1_{y^{-1}}) \sum_{j \in G} A(X, Y, j) 1_j \text{ where } X, Y \text{ are finite subsets of } G \text{ such that } A(X, Y, j) \neq 0 \text{ only for finitely many } j \in G.$

In Ω_e consider the closed set $\widetilde{\Omega_A} = \{\xi \in \Omega_e; f(t^{-1}\xi) = 0 \forall t \in \xi, f \in R_A\}$. In [4, 7.3] it was showed that $\widetilde{\Omega_A}$ is the closure in $\Omega_A^{\mathcal{T}}$ of the set of the elements which have an infinite stem (see [4, 5.5]), where

$$\Omega_A^{\mathcal{T}} = \left\{ \begin{array}{ll} \xi \in \Omega_e : & e \in \xi, \xi \text{ is convex} \\ & \text{if } t \in \xi \text{ there is at most one } x \in G \text{ such that } tx \in \xi \\ & \text{if } t \in \xi, y \in G \text{ and } ty \in \xi \text{ then } tx^{-1} \in \xi \Leftrightarrow A(x, y) = 1 \end{array} \right\}$$

The homeomorphisms $h_t: \Delta'_{t^{-1}} \to \Delta'_t$ given by $h_t(\xi) = t\xi$ induces a partial action $(\{D_t\}_{t\in\mathbb{F}}, \{\theta_t\})$ (see [5] and [9]) of \mathbb{F} in $C(\widetilde{\Omega}_A)$ where $D_t = C(\Delta_t)$, $\Delta_t = \Delta'_t \cap \widetilde{\Omega}_A$ and $\theta_t: D_{t^{-1}} \to D_t$ is given by $\theta(f) = f \circ h_{t^{-1}}$ and so we may consider the partial crossed product $C(\widetilde{\Omega}_A) \rtimes_{\theta} \mathbb{F}$ (see [5] and [9]).

It was showed in [4, 7.10] that there exists a *-isomorphism $\Phi: \widetilde{O}_A \to C(\widetilde{\Omega}_A) \rtimes_{\theta} \mathbb{F}$ such that $\Phi(S_x) = 1_x \delta_x$.

Based on these informations we will show that \widetilde{O}_A is an example of crossed product by a partial endomorphism.

Let

$$U \subseteq \widetilde{\Omega_A}, \ U = \bigcup_{x \in G} \Delta_x.$$

By the fact that each Δ_x is open it follows that U is open. Moreover, U is dense in $\widetilde{\Omega}_A$, because U contains all the elements of Ω_A^T which have an infinite stem, and these elements form a dense set in $\widetilde{\Omega}_A$. Since each $\xi \in U$ contains a

unique $x \in G$, we may define the continuous function $\sigma: U \to \widetilde{\Omega}_A$ given by $\sigma(\xi) = x^{-1}\xi$ where x is the unique element of G which lies in ξ . This function is a local homeomorphism (in fact, $\sigma_{|\Delta_x}: \Delta_x \to \Delta_{x^{-1}}$ is a homeomorphism). Defining

$$\alpha \colon C(\widetilde{\Omega_A}) \to C^b(U) \quad \text{by} \quad \alpha(f) = f \circ \sigma$$

and

$$L: C_c(U) \to C(\widetilde{\Omega_A})$$
 by $L(f)(\xi) = \sum_{\substack{\eta \in U \\ \sigma(\eta) = \xi}} f(\eta)$

we have that $(C(\widetilde{\Omega}_A), \alpha, L)$ is a C^* -dynamical system, and so we obtain the algebra $\mathcal{O}(\widetilde{\Omega}_A, \alpha, L)$ (see section 2.1).

The next step is to show that the algebras $\mathcal{O}(\widetilde{\Omega_A}, \alpha, L)$ and $\widetilde{\mathcal{O}_A}$ are isomorphic.

Lemma 2.9.

- a) $L(1_x) = 1_{x^{-1}}$ for each $x \in G$.
- b) $f 1_x \alpha L(1_x g) = 1_x fg$ for each $x \in G$ and $f, g \in C(\widetilde{\Omega}_A)$.

Proof. Both a) and b) follow by direct calculation. To prove the first part notice that $\sigma^{-1}(\xi) = \{x\xi : x^{-1} \in \xi\}.$

Proposition 2.10. There exists an unitary *-homomorphism

$$\psi\colon \widetilde{O}_A \to \mathcal{O}(\widetilde{\Omega}_A, \alpha, L)$$

such that $\psi(S_x) = \widetilde{1}_x$.

Proof. We will show that ψ preserves the relations 1-4 which defines \widetilde{O}_A . The first relation follows by the fact that $\psi(S_x)^*\psi(S_x) = \widetilde{1}_x^*\widetilde{1}_x \in C(\widetilde{\Omega}_A)$. To verify the second relation note that $1_x 1_y = 0$ for $x, y \in G$ and $x \neq y$, from where $\psi(S_x)^*\psi(S_y) = \widetilde{1}_x^*\widetilde{1}_y = L(1_x 1_y) = 0$. The third relation follows by 2.9 a) and by the fact that $1_{x^{-1}}1_y = A(x, y)1_y$ in $\widetilde{\Omega}_A$. In fact,

$$\psi(S_x)^*\psi(S_x)\psi(S_y) = \widetilde{1_x}^*\widetilde{1_x}\widetilde{1_y} = L(1_x)\widetilde{1_y} = 1_{x^{-1}}\widetilde{1_y}$$
$$= \widetilde{1_{x^{-1}}}\widetilde{1_y} = A(x, y)\widetilde{1_y} = A(x, y)\psi(S_y).$$

Let us verify the fourth relation. By 2.3 a) $1_x = \tilde{1}_x \tilde{1}_x^*$ in $\mathcal{O}(\tilde{\Omega}_A, \alpha, L)$. Therefore, also

$$\sum_{i=1}^{n} 1_{x_i} = \sum_{i=1}^{n} \widetilde{1_{x_i}} \widetilde{1_{x_i}}^* \quad \text{in} \quad \mathcal{O}(\widetilde{\Omega_A}, \alpha, L).$$

Bull Braz Math Soc, Vol. 38, N. 2, 2007

Let $X, Y \subseteq G$ finite such that $A(X, Y, x_i) \neq 0$ only for $i = 1, \dots, n$. Then

$$\prod_{x \in X} 1_x^{-1} \prod_{y \in Y} (1 - 1_y^{-1}) = \sum_{i=1}^n 1_{x_i} \text{ in } \widetilde{\Omega}_A$$

and so

$$\prod_{x \in X} \psi(S_x)^* \psi(S_x) \prod_{y \in Y} (1 - \psi(S_y)^* \psi(S_y)) = \prod_{x \in X} 1_x^{-1} \prod_{y \in Y} (1 - 1_y^{-1})$$
$$= \sum_{i=1}^n 1_{j_i} = \sum_{i=1}^n \widetilde{1_{x_i}} \widetilde{1_{x_i}}^* = \sum_{i=1}^n \psi(S_{x_i}) \psi(S_{x_i})^*$$
$$= \sum_{x \in G} A(X, Y, x) \psi(S_x) \psi(S_x)^*.$$

We will show that the *-homomorphism defined in this proposition is a *-isomorphism. The following lemma will be useful to show that this *-homo-morphism is surjective.

Lemma 2.11. The C^* -algebra B generated by $\widetilde{1}_x : x \in G$ in $\mathcal{O}(\widetilde{\Omega}_A, \alpha, L)$ contains all the elements of $C(\Omega_e)$ of the form $1_r : e \neq r \in \mathbb{F}$ and moreover B coincides with the C^* -algebra generated by M.

Proof. By 2.9 a), $\tilde{1}_x * \tilde{1}_x = 1_{x^{-1}}$. Given $\beta = x_1^{-1} \cdots x_n^{-1} \in \mathbb{F}$ with $x_i \in G$, by induction

$$\widetilde{\mathbf{1}_{x_n}}^* \cdots \widetilde{\mathbf{1}_{x_1}}^* \widetilde{\mathbf{1}_{x_1}} \cdots \widetilde{\mathbf{1}_{x_n}} = \widetilde{\mathbf{1}_{x_n}}^* \mathbf{1}_{x_{n-1}}^{-1} \cdots x_1^{-1} \widetilde{\mathbf{1}_{x_n}} = L(\mathbf{1}_{x_n} \mathbf{1}_{x_{n-1}}^{-1} \cdots x_1^{-1}) = \mathbf{1}_{x_n}^{-1} \cdots x_1^{-1}.$$

If $b = yr^{-1}$ with $r = x_1 \cdots x_n$ and $x_i, y \in G$ then

$$\widetilde{\mathbf{1}}_{y} \, \widetilde{\mathbf{1}}_{x_{n}}^{*} \cdots \widetilde{\mathbf{1}}_{x_{1}}^{*} \, \widetilde{\mathbf{1}}_{x_{1}}^{*} \cdots \widetilde{\mathbf{1}}_{x_{n}}^{*} \, \widetilde{\mathbf{1}}_{y}^{*} = \widetilde{\mathbf{1}}_{y} \, \mathbf{1}_{r^{-1}} \, \widetilde{\mathbf{1}}_{y}^{*} = (\mathbf{1}_{y} \alpha(\mathbf{1}_{r^{-1}}))^{\sim} \, \widetilde{\mathbf{1}}_{y}^{*}.$$

By 2.3 a) $(1_y \alpha(1_{r^{-1}})) \widetilde{1_y}^* = 1_y \alpha(1_{r^{-1}})$, and by direct calculation $1_y \alpha(1_{r^{-1}}) = 1_{yr^{-1}}$. Therefore $1_{yr^{-1}} \in B$ for all $y \in G$, $r = x_1 \cdots x_n$ with $x_i \in G$. The general case, $\beta = sr^{-1}$, with $s = x_1 \cdots x_n$, $r = y_1 \cdots y_m$ and x_i , $y_i \in G$ follows by induction. If $t \in \mathbb{F}$ and t is not of the form $\beta = sr^{-1}$ like above, then $1_t = 0$ em $\widetilde{\Omega_A}$ by [4, 5.8]. Therefore $1_t \in B$ for all $e \neq t \in \mathbb{F}$. We will show that B is the algebra generated by M. For each $x \in G$, span $\{1_x \prod_s 1_s\}$ is dense in D_x and by 2.2 b), since $\sigma_{|\Delta_x}$ is a homeomorphism, it follows that span $\{(1_x \prod_s 1_s)\}$ is dense in $\widetilde{D_x}$. Since $(1_x \prod_s 1_s) = 1_x \prod_s 1_s 1_x \in B$ we have that $\widetilde{D_x} \subseteq B$,

because *B* is closed. So $C_c(U) \subseteq B$ and since *B* is closed it follows that $M \subseteq B$. This shows that *B* contains the algebra generated by *M*. On the other hand, since $\widetilde{1}_x \in M$ for each $x \in G$, it is clear that the algebra generated by *M* contains *B*, and this concludes the proof.

Proposition 2.12. There exists a *-homomorphism

$$\phi\colon \mathcal{O}(\widetilde{\Omega_A}\,,\alpha,L)\to C(\widetilde{\Omega}_A)\rtimes_{\theta}\mathbb{F}$$

such that $\phi(f) = f \delta_e$ for all $f \in C(X)$ and $\phi(\tilde{f}_x) = f_x \delta_x$ for all $f \in D_x$ and $x \in G$.

Proof. Let us define initially a homomorphism from the Toeplitz algebra $\mathcal{T}(\widetilde{\Omega}_A, \alpha, L)$ to $C(\widetilde{\Omega}_A) \rtimes \mathbb{F}$. Define

$$\phi': C(\widetilde{\Omega_A}) \to C(\widetilde{\Omega_A}) \rtimes_{\theta} \mathbb{F} \quad \text{by} \quad \phi'(f) = f \delta_e$$

and

$$\phi'': \widetilde{C_c(U)} \to C(\widetilde{\Omega_A}) \rtimes_{\theta} \mathbb{F} \text{ by } \phi''(\widetilde{f_x}) = f_x \delta_x$$

for $f_x \in D_x$. Clearly ϕ' is a *-homomorphism. By 2.2 a) ϕ'' is well defined. Moreover ϕ'' is linear and given $g = \sum g_x$ and $f = \sum f_x$ in $C_c(U)$, where $f_x, g_x \in D_x$, we have that

$$\phi''(\widetilde{g}\,)^*\phi''(\widetilde{f}\,) = \left(\sum g_x \delta_x\right)^* \left(\sum f_y \delta_y\right) = \left(\sum \theta_{x^{-1}}(g_x^*)\delta_{x^{-1}}\right) \left(\sum f_y \delta_y\right)$$
$$= \sum_{x,y} \theta_{x^{-1}}(g_x^*)\delta_{x^{-1}}f_y\delta_y = \sum_{x,y} \theta_{x^{-1}}(g_x^*f_y)\delta_{x^{-1}y}$$
$$= \sum_x \theta_{x^{-1}}(g_x^*f_x)\delta_e.$$

Claim. $L(g^*f) = \sum \theta_{x^{-1}}(g_x^*f_x).$

It is enough to show that $L(g_x^* f_x) = \theta_x^{-1}(g_x^* f_x)$ because $g_x^* f_y = 0$ for $x \neq y$. For this notice that if $x^{-1} \notin \xi$ then $L(g_x^* f_x)(\xi) = 0 = \theta_x^{-1}(g_x^* f_x)(\xi)$. Moreover, if $x^{-1} \in \xi$ then we have

$$L(g_x^* f_x)(\xi) = (g_x^* f_x)(x\xi) = (g_x^* f_x)(h_x(\xi)) = \theta^{-1}(g_x^* f_x)(\xi).$$

So the claim is proved.

Bull Braz Math Soc, Vol. 38, N. 2, 2007

Then $\sum_{x} \theta_{x^{-1}}(g_x^* f_x) \delta_e = L(g^* f) \delta_e = \phi'(\langle \widetilde{g}, \widetilde{f} \rangle)$, and so, $\phi''(\widetilde{g})^* \phi''(\widetilde{f}) = \phi'(\langle \widetilde{g}, \widetilde{f} \rangle)$. Therefore

$$\|\phi''(\widetilde{f})\|^2 = \|\phi''(\widetilde{f})^*\phi''(\widetilde{f})\| = \|\phi'(\langle \widetilde{f}, \widetilde{f} \rangle)\| \le \|\langle \widetilde{f}, \widetilde{f} \rangle\| = \|\widetilde{f}\|_M^2$$

from where we may extend ϕ'' to *M*. In this way we obtain a function

$$\phi\colon C(\widetilde{\Omega_A})\cup M\to C(\widetilde{\Omega}_A)\rtimes_{\theta}\mathbb{F}$$

defined by $\phi(f) = \phi'(f)$ if $f \in C(\widetilde{\Omega_A})$ and $\phi(m) = \phi''(m)$ for $m \in M$.

Claim. ϕ satisfies the relations which defines $\mathcal{T}(\widetilde{\Omega_A}, \alpha, L)$.

By density of $C_c(U)$ in M it suffices to verify if ϕ satisfies the relations for elements of the form $\tilde{f} = \sum \tilde{f}_x$, $\tilde{g} = \sum \tilde{g}_y \in \widetilde{C_c(U)}$, where $f_x, g_x \in D_x$, and $h \in C(\widetilde{\Omega}_A)$. We already know that ϕ preserves the relations of $C(\widetilde{\Omega}_A)$, of Mand that $\phi(\tilde{f})^*\phi(\tilde{g}) = \phi(\langle \tilde{f}, \tilde{g} \rangle)$. Moreover,

$$\phi(h)\phi(\widetilde{f}) = h\delta_e \sum f_x \delta_x = \sum hf_x \delta_x = \phi(\widetilde{hf}) = \phi(h\widetilde{f})$$

and

$$\phi(\widetilde{f})\phi(h) = \left(\sum f_x \delta_x\right) h \delta_e = \sum \theta_x (\theta_x^{-1}(f_x)h) \delta_x = \sum f_x \alpha(h) \delta_x$$
$$= \phi(\widetilde{f\alpha(h)}) = \phi(\widetilde{f}h).$$

This proves the claim.

So we may extend ϕ to $\mathcal{T}(\widetilde{\Omega_A}, \alpha, L)$. We will show that if (a, k) is a redundancy then $\phi(a) = \phi(k)$. For each

$$f_x \in D_x, \ \phi(\widetilde{f}_x \widetilde{1}_x^*) = f_x \delta_x 1_{x^{-1}} \delta_{x^{-1}} = f_x \delta_e = \phi(f_x)$$

and so if $f = \sum_{x} f_{x}$ with $f_{x} \in D_{x}$ then $\phi(f) = \sum_{x} \phi(\tilde{f}_{x} \tilde{1}_{x}^{*})$. Given a redundancy (f, k) with $f \in I_{0}$, and so $f \in C_{0}(U)$ by 2.6, choose $(f_{n})_{n} \subseteq C_{c}(U)$ such that $f_{n} \to f$, and $(k_{n})_{n} \subseteq \widehat{K_{1}}$ such that

$$k_n \rightarrow k$$
 and $k_n = \sum_{i=1}^{t_n} m_{i,n} r_{i,n}^*$ with $m_{i,n}, r_{i,n} \in M$.

Since $f_n \in C_c(U)$ for each *n*, we have that $f_n = \sum_{i=1}^{l_n} f_{x_{i,n}}$ and so $\phi(f_n) = \sum_{i=1}^{l_n} \phi(\widetilde{f_{x_{i,n}}}^*)$. Then

$$\begin{split} \phi(f-k)\phi(f-k)^* &= \lim_n \phi(f-k)(\phi(f_n)^* - \phi(k_n^*)) \\ &= \lim_n \phi(f-k) \left(\phi\left(\sum \widetilde{1_{x_{i,n}}} \, \widetilde{f_{x_{i,n}}}^*\right) - \phi\left(\sum_{i=1}^{n_i} r_{i,n} m_{i,n}^*\right) \right) \\ &= \lim_n \phi\left((f-k) \left(\sum \widetilde{1_{x_i}} \, \widetilde{f_{x_i}}^* - \sum_{i=1}^{n_i} r_{i,n} m_{i,n}^*\right) \right) = 0. \end{split}$$

The last equality follows by the fact that (f - k)m = 0 for each $m \in M$, because (f, k) is a redundancy. This shows that $\phi(f) = \phi(k)$.

Proposition 2.13. The *-homomorphism $\psi : \widetilde{O}_A \to \mathcal{O}(\widetilde{\Omega}_A, \alpha, L)$ defined in 2.10 is a *-isomorphism.

Proof. To prove that ψ is surjective it is anough to prove that $M \cup C(\widetilde{\Omega}_A) \subseteq \operatorname{Im}(\psi)$. By the lemma 2.11, $M \subseteq \operatorname{Im}(\psi)$. By the same lemma, the elements of the form $1_r : e \neq r \in \mathbb{F}$ are in the range of ψ and moreover, $\psi(1) = 1 = 1_e$. The algebra generated by the elements $\{1_r : r \in F\}$ is self-adjoint, contains the constant functions and separate points, and so is dense in $C(\widetilde{\Omega}_A)$. It follows that $C(\widetilde{\Omega}_A) \subseteq \operatorname{Im}(\psi)$. In order to see that ψ is injective, note that $\Phi^{-1}\phi\psi = Id_{\widetilde{O}_A}$ where ϕ is the *-homomorphism of 2.12 and Φ is the *-isomorphism between \widetilde{O}_A and $C(\widetilde{\Omega}_A) \rtimes_{\theta} \mathbb{F}$ such that $\Phi(S_x) = 1_x \delta_x$.

By this proposition and by 2.11 it follows that the Cuntz-Krieger algebra for infinite matrices O_A is isomorphic to the algebra B, generated by M. Note that the algebra generated by M coincides with the ideal $\langle M \rangle$ of $\mathcal{O}(\Omega_A, \alpha, L)$.

3 Relationship between the gauge-invariant ideals of $\mathcal{O}(X, \alpha, L)$ and open sets of X

We show in this section a bijection between the gauge-invariant ideals of $\mathcal{O}(X, \alpha, L)$ and the σ, σ^{-1} -invariant subsets of X. In particular, we prove that every gauge-invariant ideal of $\mathcal{O}(X, \alpha, L)$ is generated by the set $C_0(V)$ for some $V \subseteq X$ which is σ, σ^{-1} -invariant.

Definition 3.1.

a) A set $V \subseteq X$ is σ -invariant if $\sigma(V \cap U) \subseteq V$.

- b) A set $V \subseteq X$ is σ^{-1} -invariant if $\sigma^{-1}(V) \subseteq V$.
- c) A set $V \subseteq X$ is σ, σ^{-1} -invariant if it is σ -invariant and σ^{-1} -invariant.

Let $V \subseteq X$ be an open set. We say that $C_0(V)$ is *L*-invariant if $L(C_0(V) \cap C_c(U)) \subseteq C_0(V)$.

Proposition 3.2.

- a) An open set $V \subseteq X$ is σ -invariant if and oly if $C_0(V)$ is L-invariant.
- b) An open set $V \subseteq X$ is σ^{-1} -invariant if and only if $f\alpha(g) \in C_0(V)$ for all $f \in C_c(U)$ and $g \in C_0(V)$.

Proof.

- a) Suppose $V \sigma$ -invariant. Given $f \in C_0(V) \cap C_c(U)$, choose $x \notin V$. Supposing $y \in \sigma^{-1}(x) \cap V$, we have $x = \sigma(y) \in V$ because V is σ -invariant. So there does not exists a such y, and therefore L(f)(x) = 0. This shows that $L(f) \in C_0(V)$. On the other hand, suppose $C_0(V)$ *L*-invariant. Suppose $x \in U \cap V$ and choose $f_x \in C_c(U) \cap C_0(V)$ such that $f_x(x) \neq 0$. Then $L(f_x^* f_x) \in C_0(V)$ and $L(f_x^* f_x)(\sigma(x)) \neq 0$, which shows that $\sigma(x) \in V$.
- b) Suppose $V \sigma^{-1}$ -invariant. Let $f \in C_c(U)$, $g \in C_0(V)$ and $x \notin V$. If $x \notin U$, then f(x) = 0 and so $(f\alpha(g))(x) = 0$. If $x \in U$, since V is σ^{-1} -invariant then $\sigma(x) \notin V$ and therefore $f\alpha(g)(x) = f(x)g(\sigma(x)) = 0$. So $f\alpha(g) \in C_0(V)$. On the other hand, let $x \in \sigma^{-1}(y)$, $y \in V$. Choose $g \in C_0(V)$ such that $g(y) \neq 0$ and $f \in C_c(U)$ such that $f(x) \neq 0$. Then, since $f\alpha(g) \in C_0(V)$ and $(f\alpha(g))(x) = f(x)g(y) \neq 0$ it follows that $x \in V$. So V is σ^{-1} -invariant.

If $V \subseteq X$ is an open σ , σ^{-1} -invariant set then $X' = X \setminus V$ is a compact σ , σ^{-1} -invariant set. Define $U' = U \cap X' (= U \setminus V)$ and consider $\sigma' := \sigma_{|_U'} : U' \to X'$ which is a local homeomorphism. Consider the *C**-dynamical system (X', α', L') where α' and L' are defined as α and L in the section 2.1. Denote by M' the Hilbert module generated by $C_c(U')$, by $\langle C_0(V) \rangle$ the ideal generated by $C_0(V)$ in $\mathcal{O}(X, \alpha, L)$ and by \overline{b} the image of the elements $b \in \mathcal{O}(X, \alpha, L)$ by the quotient map of $\mathcal{O}(X, \alpha, L)$ on $\mathcal{O}(X, \alpha, L)/\langle C_0(V) \rangle$.

Theorem 3.3. There exists a *-isomorphism $\Psi: \mathcal{O}(X, \alpha, L)/\langle C_0(V) \rangle \rightarrow \mathcal{O}(X', \alpha', L')$ such that $\Psi(\overline{f}) = f_{|x'}$ for each $f \in C(X)$.

Proof. Define $\Psi_1: C(X) \to C(X')$ by $\Psi_1(f) = f_{|_{X'}}$ which is a *-homomorphism and is surjective, by Tietze's theorem. Moreover, for every $\tilde{f} \in C_c(U) \subseteq M$ define $\Psi_2(\tilde{f}) = \tilde{f}_{|_{X'}}$, which is a linear and contractive map of $C_c(U) \subseteq M$ to M' and so we may extend it to M. So we may define in an obvious manner $\Psi_3: C(X) \cup M \to \mathcal{T}(X', \alpha', L')$. It is easy to verify that Ψ_3 satisfies the relations that defines $\mathcal{T}(X, \alpha, L)$ and so Ψ_3 has an extension to $\mathcal{T}(X, \alpha, L)$, which will be denoted by Ψ_3 . We will show that Ψ_3 is surjective. Given $h \in C_c(U')$, choose $g \in C_c(U)$ such that $g_{|_{\operatorname{supp}(h)}} = 1$ and $f \in C(X)$ such that $\Psi_3(f) = h$. Then $fg \in C_c(U)$ and $\Psi_3(f)\Psi_3(\tilde{g}) = h\widetilde{g}_{|_{X'}} = h\widetilde{g}_{|_{X'}} = \tilde{h}$. This shows that Ψ_3 is surjective.

Claim. If (f, k) is a redundancy of $\mathcal{T}(X, \alpha, L)$ and $f \in I_0$ then $(\Psi_3(f), \Psi_3(k))$ is a redundancy of $\mathcal{T}(X', \alpha', L')$ and $\Psi_3(f) \in I'_0$.

Let (f, k) be a redundancy of $\mathcal{T}(X, \alpha, L)$ and $f \in I_0$. Then fm = km, from where $\Psi_3(f)\Psi_3(m) = \Psi_3(k)\Psi_3(m)$. Since $\Psi_3(f) \in C(X')$ and $\Psi_3(k) \in \widehat{K_1'}$ and moreover $\Psi_3(M)$ is dense in M' it follows that $(\Psi_3(f), \Psi_3(k))$ is a redundancy. Since $f \in I_0$, and $I_0 = C_0(U)$ by 2.6, it follows that $f \in C_0(U)$ and therefore $\Psi_3(f) = f_{|_{Y'}} \in C_0(U') = I'_0$.

If q is the quotient map of $\mathcal{T}(X', \alpha', L')$ on $\mathcal{O}(X', \alpha', L')$ then the composition $q \circ \Psi_3$ is a *-homomorphism of $\mathcal{T}(X, \alpha, L)$ on $\mathcal{O}(X', \alpha', L')$ which by the claim above vanishes on the elements (a - k) for all redundancies (a, k) such that $a \in I_0$. By passage to the quotient we obtain a *-homomorphism of $\mathcal{O}(X, \alpha, L)$ to $\mathcal{O}(X', \alpha', L')$ which will be denoted by Ψ_0 . Moreover, given $f \in C_0(V)$ note that $\Psi_0(f) = f_{|_{X'}} = 0$, and again passing to the quotient we obtain an other *-homomorphism of $\mathcal{O}(X, \alpha, L)/\langle C_0(V)\rangle$ to $\mathcal{O}(X', \alpha', L')$, which will be called Ψ . It remains to show that Ψ is injective. Note that $\langle C_0(V)\rangle$ is gauge-invariant. Consider the gauge action on $\mathcal{O}(X, \alpha, L)/\langle C_0(V)\rangle$ whose fixed point algebra is

$$\overline{\overline{K}} = \bigcup_{n \in \mathbb{N}} \overline{\overline{L_n}}$$

(see paragraph following 1.11) and the gauge action on $\mathcal{O}(X', \alpha', L')$. Since Ψ is covariant by these actions, by [5, 2.9] it is enough to show that Ψ restricted to

 $\overline{\overline{K}}$ is injective. For this we will show that Ψ restricted to $\overline{\overline{L_n}}$ is injective for all $n \in \mathbb{N}$.

Claim 1. Let $\overline{\overline{k_0}} + \overline{\overline{k_1}} + \cdots + \overline{\overline{k_n}} \in \overline{\overline{L_n}}$. If $\phi(\overline{\overline{k_0}} + \overline{\overline{k_1}} + \cdots + \overline{\overline{k_n}}) = 0$ then $\overline{\overline{k_0}} \in \overline{\overline{K_1}}$.

Let $k'_i = \Psi(\overline{k_i})$ and notice that $k'_0 \in C(X')$ and $k'_i \in K'_i$ for $i \ge 1$. Then $k'_0 + k'_1 + \cdots + k'_n = 0$ and so $g(k'_0 + k'_1 \cdots + k'_n) = 0$ for all $g \in C_0(U')$. By 2.4 it follows that $k'_0 = f_1 + f_2$ where $f_1 \in C_0(U')$ and $k'_0 + k'_1 \cdots + k'_n = f_2$ from where $f_2 = 0$. Then $k'_0 \in C_0(U')$ and so $k_0 \in C_0(U \cup V)$ from where

$$\overline{\overline{k_0}} \in \overline{\overline{C_0(U \cup V)}} = \overline{\overline{C_0(U)}} + \overline{\overline{C_0(V)}} \subseteq \overline{\overline{K_1}}.$$

Claim 2. Ψ restricted to $\overline{\overline{C(X)}}$ is faithful, and also Ψ restricted to $\overline{\overline{K_n}}$ is faithful.

If $f \in C(X)$ and $\Psi(\overline{f}) = 0$ then $f \in C_0(V)$ and so $\overline{f} = 0$. This shows the first part. To prove the second assertion let $\overline{\overline{k_n}} \in \overline{\overline{K_n}}$ and suppose that $\Psi(\overline{\overline{k_n}}) = 0$. Then $\Psi(\overline{\overline{M}}^{*n} \overline{\overline{k_n}} \overline{\overline{M}}^n) = 0$ and how $\overline{\overline{M}}^{*n} \overline{\overline{k_n}} \overline{\overline{M}}^n \subseteq \overline{\overline{C(X)}}$ and Ψ restricted to $\overline{\overline{C(X)}}$ is faithful it follows that $\overline{\overline{M}}^{*n} \overline{\overline{k_n}} \overline{\overline{M}}^n = 0$ from where $\overline{\overline{K_n}} \overline{\overline{k_n}} \overline{\overline{K_n}} = 0$ and so $\overline{\overline{k_n}} = 0$.

We will prove now the following claim which will conclude the proof of the theorem.

Claim 3. For all $n \in \mathbb{N}$, Ψ restricted to $\overline{\overline{L_n}}$ is faithful

By claim 2 Ψ restricted to $\overline{\overline{L_0}}$ is faithful. By induction, suppose that Ψ restricted to $\overline{\overline{L_n}}$ is faithful, take $\overline{\overline{k_0}} + \overline{\overline{k_1}} + \cdots + \overline{\overline{k_{n+1}}} \in \overline{\overline{L_{n+1}}}$ and suppose that $\Psi(\overline{\overline{k_0}} + \overline{\overline{k_1}} + \cdots + \overline{\overline{k_{n+1}}}) = 0$. Then

$$\Psi(\overline{\overline{M}}^*(\overline{\overline{k_0}} + \overline{\overline{k_1}} + \dots + \overline{\overline{k_{n+1}}})^*(\overline{\overline{k_0}} + \overline{\overline{k_1}} + \dots + \overline{\overline{k_{n+1}}})\overline{\overline{M}}) = 0$$

and by the induction hypothesis,

$$\overline{\overline{M}}^* (\overline{\overline{k_0}} + \overline{\overline{k_1}} + \dots + \overline{\overline{k_{n+1}}})^* (\overline{\overline{k_0}} + \overline{\overline{k_1}} + \dots + \overline{\overline{k_{n+1}}}) \overline{\overline{M}} = 0,$$

from where $(\overline{\overline{k_0}} + \overline{\overline{k_1}} + \dots + \overline{\overline{k_{n+1}}})$ $\overline{\overline{M}} = 0$ and so

$$(\overline{\overline{k_0}} + \overline{\overline{k_1}} + \dots + \overline{\overline{k_{n+1}}})(\overline{\overline{K_1}} + \dots + \overline{\overline{K_{n+1}}}) = 0.$$

By claim $\underline{1}, \overline{\overline{k_0}} \in \overline{\overline{K_1}}$, from where $\overline{\overline{k_0}} + \overline{\overline{k_1}} + \dots + \overline{\overline{k_{n+1}}} \in (\overline{\overline{K_1}} + \dots + \overline{\overline{K_{n+1}}})$ and therefore $\overline{\overline{k_0}} + \overline{\overline{k_1}} + \dots + \overline{\overline{k_{n+1}}} = 0$.

Bull Braz Math Soc, Vol. 38, N. 2, 2007

Given an ideal *I* in $\mathcal{O}(X, \alpha, L)$, the set $I \cap C(X)$ is an ideal of C(X) and so it is of the form $C_0(V)$ for some open set $V \subseteq X$. The following proposition shows a feature of these open sets.

Proposition 3.4. Let $I \leq \mathcal{O}(X, \alpha, L)$ and $V \subseteq X$ the open set such that $I \cap C(X) = C_0(V)$. Then V is a σ, σ^{-1} -invariant set.

Proof. Given $f \in C_c(U) \cap C_0(V)$, take $g \in C_c(U)$ such that $g_{|_{supp}(f)} = 1$. Then $f\widetilde{g} = \widetilde{f} \in I$ and so $L(f) = \widetilde{g}^* \widetilde{f} \in I \cap C(X) = C_0(V)$. By 3.1 a) it follows that V is σ -invariant. We will show that V is a σ^{-1} -invariant set. Let x be an element of V and $y \in \sigma^{-1}(x)$. Choose $f_x \in C_0(V)$ such that $f_x(x) = 1$ and $f_y \in C_c(U)$ such that $f_y(y) = 1$ and $\sigma_{|_{supp}(f_y)}$ is a homeomorphism. Then $(f_y\alpha(f_x))^{\widetilde{}} = \widetilde{f}_y f_x \in I \cap M$ and therefore $(f_y\alpha(f))^{\widetilde{}} \widetilde{f}_y^* \in I$. By 2.3 a), $f_y\alpha(f_x)f_y^* = (f_y\alpha(f_x))^{\widetilde{}} \widetilde{f}_y^*$ and so $f_y\alpha(f_x)f_y^* \in I \cap C(X) = C_0(V)$. Note that

$$(f_y \alpha(f_x) f_y^*)(y) = |f_y|^2(y) f_x(\sigma(y)) = |f_y(y)|^2 f_x(x) = 1,$$

which shows that $y \in V$.

This proposition shows that there exists a map

 $\Phi: \{ \text{ideals of } \mathcal{O}(X, \alpha, L) \} \to \{ \text{open } \sigma, \sigma^{-1} \text{-invariant sets of } X \}$

given by $\Phi(I) = V$ where *V* is the open set of *X* such that $I \cap C(X) = C_0(V)$. The following proposition shows that Φ is surjective. To prove this proposition we need some lemmas.

Lemma 3.5. Let V a σ -invariant set and $f_1, \dots, f_n, g_1, \dots, g_n \in C_c(U)$ such that $f_i \in C_0(V)$ or $g_i \in C_0(V)$ for some i. Then $\widetilde{f_n}^* \cdots \widetilde{f_1}^* \widetilde{g_1} \cdots \widetilde{g_n} \in C_0(V)$.

Proof. Suppose $f_i \in C_0(V)$ and define $h_j = \tilde{f_j}^* \cdots \tilde{f_1}^* \tilde{g_1} \cdots \tilde{g_j}$ for $j \ge 1$ and $h_0 = 1$. Since $h_j \in C(X)$ for each j it follows that $f_i^* h_{i-1}g_i \in C_0(V)$. By 3.2 $C_0(V)$ is L-invariant, and so $h_i = \tilde{f_i}^* h_{i-1}\tilde{g_i} = L(f_i^* h_{i-1}g_i) \in C_0(V)$. By induction it may be showed that $h_n \in C_0(V)$. If $g_i \in C_0(V)$ the proof is analogous.

To show that the map Φ is surjective we will show that if *V* is an open σ , σ^{-1} -invariant set then $\langle C_0(V) \rangle \cap C(X) = C_0(V)$. The following arguments are a preparation to prove this fact. Given $f \in \langle C_0(V) \rangle \cap C(X)$ and $\varepsilon > 0$ then there are $a_i, b_i \in \mathcal{O}(X, \alpha, L), h_i \in C_0(V)$ such that

$$\left\|f-\sum_{i=1}^N a_i h_i b_i\right\| \leq \varepsilon$$

where each a_i is of the form $a_i = m_1 \cdots m_{r_i} n_1^* \cdots n_{s_i}^*$ or $a_i \in C(X)$ and each b_i is of the form $b_i = p_1 \cdots p_{t_i} q_1^* \cdots q_{l_i}^*$ or $b_i \in C(X)$. Moreover we may suppose that $m_j = \tilde{z_j}$, $n_j = \tilde{w_j}$, $p_j = \tilde{u_j}$, $q_j = \tilde{v_j}$ for each m_j , n_j , p_j , and q_j . Considering the conditional expectation *E* induced by the gauge action and that

$$\left\|f-\sum_{i=1}^{N}E(a_{i}h_{i}b_{i})\right\|=\left\|E\left(f-\sum_{i=1}^{N}a_{i}h_{i}b_{i}\right)\right\|\leq\varepsilon,$$

we may suppose that $r_i + t_i = s_i + l_i$, because

$$E(a_i h_i b_i) = \begin{cases} a_i h_i b_i & \text{if } r_i + t_i = s_i + l_i \\ 0 & \text{otherwise} \end{cases}$$

Lemma 3.6. Let V be an open σ , σ^{-1} -invariant set. Then for each i we have that $a_ih_ib_i \in C_0(V)$ or $a_ih_ib_i = \widetilde{f_1} \cdots \widetilde{f_n} \, \widetilde{g_n}^* \cdots \widetilde{g_1}^*$ where $f_j \in C_0(V)$ for some j or $g_j \in C_0(V)$ for some j.

Proof. Recall that $a_i = \widetilde{z_1} \cdots \widetilde{z_{r_i}} \widetilde{w_1}^* \cdots \widetilde{w_{s_i}}^*$ or $a_i \in C(X)$, $b_i = \widetilde{u_1} \cdots \widetilde{u_{t_i}} \widetilde{v_1}^* \cdots \widetilde{v_{l_i}}^*$ or $b_i \in C(X)$ and $r_i + t_i = s_i + l_i$.

Suppose $s_i \leq t_i$. By 3.5 $w = \widetilde{w_1}^* \cdots \widetilde{w_{s_i}}^* h_i \widetilde{u_1} \cdots \widetilde{u_{s_i}} \in C_0(V)$ (if $s_i = 0$ then $w = h_i$). If $t_i \neq s_i$ then write $a_i h_i b_i = \widetilde{z_1} \cdots \widetilde{z_{r_i}} \widetilde{wu_{s_i+1}} \cdots \widetilde{u_{t_i}} \widetilde{v_1}^* \cdots \widetilde{v_{l_i}}^*$, and note that $wu_{s_i+1} \in C_0(V)$ and therefore $a_i h_i b_i$ is in the desired form. If $t_i = s_i$ then $r_i = l_i$. If $r_i = 0$ (and so $l_i = 0$) then $a_i h_i b_i = w \in C_0(V)$. If $r_i \neq 0$ write $a_i h_i b_i = \widetilde{z_1} \cdots \widetilde{z_{r_i}} \alpha(w) \widetilde{u_{s_i+1}} \cdots \widetilde{u_{t_i}} \widetilde{v_1}^* \cdots \widetilde{v_{l_i}}^*$, and in this case $z_{r_i} \alpha(w) \in C_0(V)$ by the fact that V is σ^{-1} -invariant, and so $a_i h_i b_i$ is in the desired form.

Supposing $s_i > t_i$ consider the element $(a_i h_i b_i)^*$, which is in the desired form of the lemma by the proof above, and therefore $a_i h_i b_i$ is also in the desired form.

The following lemma is only a summary from 3.5 to 3.6.

Lemma 3.7. If V is an open σ , σ^{-1} -invariant set then given $f \in \langle C_0(V) \rangle \cap C(X)$ and $\varepsilon > 0$, there exists $d_0 \in C_0(V)$ and $d_i = \widetilde{f_1^i} \cdots \widetilde{f_{n_i}^i} \widetilde{g_{n_i}^i}^* \cdots \widetilde{g_1^i}^*$, with $f_j^i \in C_0(V)$ or $g_j^i \in C_0(V)$ for some $j, i = 1, \dots, N$, such that

$$\left\|f - \left(d_0 + \sum_{i=1}^N d_i\right)\right\| \le \varepsilon.$$

Now we prove the proposition which shows that the map Φ is surjective.

Proposition 3.8. If $V \subseteq X$ is σ , σ^{-1} -invariant then $\langle C_0(V) \rangle \cap C(X) = C_0(V)$.

Proof. It is clear that $C_0(V) \subseteq \langle C_0(V) \rangle \cap C(X)$. To show that $\langle C_0(V) \rangle \cap C(X) \subseteq C_0(V)$ we will show that given $f \in \langle C_0(V) \rangle \cap C(X)$, for every $\varepsilon > 0$ it holds that $|f(x)| \le \varepsilon$ for each $x \notin V$.

Given $f \in \langle C_0(V) \rangle \cap C(X)$ and $\varepsilon > 0$, by 3.7 we may consider $||f - (d_0 + \sum_{i=1}^N d_i)|| \le \varepsilon$ with $d_0 \in C_0(V)$, $d_i = \widetilde{f_1^i} \cdots \widetilde{f_{n_i}^i} \widetilde{g_{n_i}^i}^* \cdots \widetilde{g_1^i}^*$ where $f_j^i \in C_0(V)$ for some j or $g_i^i \in C_0(V)$ for some j. Define

$$K = \bigcup_{i=1}^{N} \bigcup_{j=1}^{n_i} \left(\operatorname{supp}\left(f_j^i\right) \cup \operatorname{supp}\left(g_j^i\right) \right)$$

which is a compact subset of U.

Claim 1. If $x \notin V$ and $x \notin U$ then $|f(x)| \leq \varepsilon$

If $x \notin U$, choose $h \in C(X)$, $0 \le h \le 1$, such that h(x) = 1 e $h_{|_K} = 0$. Then $hd_i = 0$ for $i \ge 1$ and so $||h(f - d_0)|| = ||h(f - d_0 + \sum_{i=1}^N d_i)|| \le \varepsilon$ from where $|f(x) - d_0(x)| = |(h(f - d_0))(x)| \le \varepsilon$. Since $x \notin V$ it follows that $d_0(x) = 0$ and therefore $|f(x)| \le \varepsilon$.

Now we study the case $x \notin V$ and $x \in U$. Let $N_0 = \max\{n_1, \ldots, n_N\}$. Supposing $N_0 = 0$, that is, $d_i = 0$ fore each $i \ge 1$, we have that $|f(x)| = |f(x) - d_0(x)| \le \varepsilon$. Suppose therefore that $N_0 \ge 1$. Let us analyse the case $\sigma^{N_0-1}(x) \in U$. Define $x_j = \sigma^j(x)$ for $j \in \{0, \ldots, N_0\}$. For each $j \in \{0, \ldots, N_0 - 1\}$ take $h_j \in C_c(U)$ such that $h_j(x_j) = 1$, $0 \le h_j \le 1$ and $\sigma_{\text{supp}(h_j)}$ is a homeomorphism.

Claim 2. For each $i \in \{0, \dots, N\}$, $h'_i = \widetilde{h_{N_0-1}}^* \cdots \widetilde{h_0}^* d_i \widetilde{h_0} \cdots \widetilde{h_{N_0-1}} \in C_0(V)$.

For $i \ge 1$, since $f_i^i \in C_0(V)$ or $g_i^i \in C_0(V)$ for some *j*, by 3.5 we have that

$$u = \widetilde{h_{n_i-1}}^* \cdots \widetilde{h_0}^* \widetilde{f_1^i} \cdots \widetilde{f_{n_i}^i} \in C_0(V) \quad \text{or}$$
$$v = \widetilde{g_{n_i}^i}^* \cdots \widetilde{g_1^i}^* \widetilde{h_0} \cdots \widetilde{h_{n_i-1}} \in C_0(V).$$

Then $uv \in C_0(V)$ and again by 3.5 it follows that

$$\begin{aligned} h'_{i} &= \widetilde{h_{N_{0}-1}}^{*} \cdots \widetilde{h_{0}}^{*} d_{i} \widetilde{h_{0}} \cdots \widetilde{h_{N_{0}-1}} \\ &= \widetilde{h_{N_{0}-1}}^{*} \cdots \widetilde{h_{n_{i}}}^{*} \widetilde{uvh_{n_{i}}} \widetilde{h_{n_{i}+1}} \cdots \widetilde{h_{N_{0}-1}} \in C_{0}(V). \end{aligned}$$

For i = 0, since $d_0h_0 \in C_0(V)$, again by 3.5 $h'_0 = \widetilde{h_{N_0-1}}^* \cdots \widetilde{h_0}^* d_0 \widetilde{h_0} \cdots$ $\widetilde{h_{N_0-1}} \in C_0(V)$. This shows the claim.

Define $f' = \widetilde{h_{N_0-1}}^* \cdots \widetilde{h_0}^* f \widetilde{h_0} \cdots \widetilde{h_{N_0-1}}$. By the fact that $\sigma_{|_{\text{supp}(h_j)}}$ is a homeomorphism it follows that $f(x_{N_0}) = f(x)$. Moreover, since $x_{N_0} \notin V$, by the fact that V is σ^{-1} -invariant and $x \notin V$, it follows that $h'_i(x_{N_0}) = 0$ for each *i*. Since $f', h'_i \in C(X)$ we have that

$$\left\| f' - \left(h'_0 + \sum_{i=1}^n h'_i \right) \right\|_{\infty} = \left\| \widetilde{h_{N_0 - 1}}^* \cdots \widetilde{h_0}^* \left(f - \left(d_0 + \sum_{i=1}^N d_i \right) \right) \widetilde{h_0} \cdots \widetilde{h_{N_0 - 1}} \right\|$$
$$\leq \left\| f - \left(d_0 + \sum_{i=1}^N d_i \right) \right\| < \varepsilon,$$

from where $|f(x)| = |(f' - (h'_0 + \sum_{i=1}^n h'_i))(x_{N_0})| < \varepsilon$.

It remains to analyze the case $x \notin V$, $x \in U$ but $\sigma^n(x) \notin U$ for some $n \leq N_0 - 1$. For $i \in \{0, \dots, n-2\}$ define h_j as above, that is, $h_j \in C_c(U)$ such that $h_j(x_1) = 1$, $0 \leq h_j \leq 1$ and $\sigma_{|_{\text{supp}(h_j)}}$ is a homeomorphism. For x_{n-1} choose $h_{n-1} \in C_c(U)$ such that $0 \leq h_{n-1} \leq 1$, $h_{n-1}(x_{n-1}) = 1$, $\sigma_{|_{\text{supp}(h_{n-1})}}$ is a homeomorphism and $\sigma(\text{supp}(h_{n-1})) \subseteq X \setminus K$. It is possible to choose such h_{n-1} because $\sigma(x_{n-1}) = \sigma^n(x) \in X \setminus U \subseteq X \setminus K$.

Claim 3. For $n_i \ge n+1$, $\widetilde{h_{n-1}}^* \cdots \widetilde{h_0}^* d_i \widetilde{h_0} \cdots \widetilde{h_{n-1}} = 0$.

Denote by *u* the element $\widetilde{h_{n-2}}^* \cdots \widetilde{h_0}^* \widetilde{f_1^i} \cdots \widetilde{f_{n-1}^i}$ which is an element of C(X). Then

$$\widetilde{h_{n-1}}^* \cdots \widetilde{h_0}^* \widetilde{f_1^i} \cdots \widetilde{f_{n+1}^i} = \widetilde{h_{n-1}}^* \widetilde{uf_n^i} \widetilde{f_{n+1}^i} = (L(h_{n-1}^* uf_n^i) f_{n+1}^i)^{\widetilde{}}$$

We will show that $L(h_{n-1}^*uf_n^i)f_{n+1}^i = 0$. If $x \notin \operatorname{supp}(f_{n+1}^i)$ or if $\sigma^{-1}(x) = \emptyset$ then $(L(h_{n-1}^*uf_n^i)f_{n+1}^i)(x) = 0$. Suppose therefore $x \in \operatorname{supp}(f_{n+1})$ and $y \in \sigma^{-1}(x)$. Supposing that $y \in \sigma^{-1}(x) \cap \operatorname{supp}(h_{n-1})$ we have that $x = \sigma(y) \in \sigma(\operatorname{supp}(h_{n-1})) \subseteq X \setminus K$, which is an absurd because $x \in K$. Therefore if $y \in \sigma^{-1}(x)$ then $y \notin \operatorname{supp}(h_{n-1})$, and by this way $L(h_{n-1}^*uf_n^i)(x) = \sum_{y \in \sigma^{-1}(x)} (h_{n-1}^*uf_n^i)(y) = 0$. So $L(h_{n-1}^*uf_n^i)f_{n+1}^i = 0$ and the claim is proved.

Bull Braz Math Soc, Vol. 38, N. 2, 2007

Claim 4. For
$$n_i \leq n$$
, $h'_i = \widetilde{h_{n-1}}^* \cdots \widetilde{h_0}^* d_i \widetilde{h_0} \cdots \widetilde{h_{n-1}} \in C_0(V)$.

The proof of this claim is analogous to the proof of claim 2.

Again $\widetilde{h_{n-1}}^* \cdots \widetilde{h_0}^* f \widetilde{h_0} \cdots \widetilde{h_{n-1}} = f' \operatorname{com} f'(x_n) = f(x)$. Moreover, by the fact that $x_n \notin V$ it follows that $h'_i(x_n) = 0$ for each *i*. Then

$$\left\|f'-h'_0-\sum_{n_i\leq n}h'_i\right\|=\left\|\widetilde{h_{n-1}}^*\cdots\widetilde{h_0}^*\left(f-(d_0+\sum_{i=1}^Nd_i)\right)\widetilde{h_0}\cdots\widetilde{h_{n-1}}\right\|<\varepsilon$$

from where $|f(x)| = |(f' - h'_0 - \sum_{n_i \le n} h'_i)(x_n)| < \varepsilon$.

In this way, given $\varepsilon > 0$, for all $x \notin V$, we have that $|f(x)| \leq \varepsilon$. Therefore $f \in C_0(V)$.

The following theorem is the main result of this section.

Theorem 3.9. There exists a bijection between the gauge-invariant ideals of $\mathcal{O}(X, \alpha, L)$ and the open σ, σ^{-1} -invariant subsets of X.

Proof. All what we have to do is to show that the map

 $\Phi: \{ \text{gauge invariant ideals of } \mathcal{O}(X, \alpha, L) \} \\ \to \{ \text{open } \sigma, \sigma^{-1} \text{-invariant subsets of } X \},\$

given by $\Phi(I) = V$ where *V* is the open subset of *X* such that $I \cap C(X) = C_0(V)$, is bijective. By the previous proposition Φ is surjective. It remains to show that Φ is injective. For this, given $I \leq \mathcal{O}(X, \alpha, L)$ gauge-invariant, let $V \subseteq X$ the open subset σ, σ^{-1} -invariant such that $I \cap C(X) = C_0(V)$. We will show that $\langle C_0(V) \rangle = I$. It is clear that $\langle C_0(V) \rangle \subseteq I$. By 3.3 there exists a *-isomorphism

$$\Psi \colon \frac{\mathcal{O}(X, \alpha, L)}{\langle C_0(V) \rangle} \to \mathcal{O}(X', \alpha', L')$$

where $X' = X \setminus V$. Let $\overline{\overline{I}}$ the image of I by the quotient map of $\mathcal{O}(X, \alpha, L)$ on $\mathcal{O}(X, \alpha, L)/\langle C_0(V) \rangle$. Since $\overline{\overline{I}}$ is gauge-invariant and Ψ is covariant by the gauge actions we have that $\Psi(\overline{\overline{I}})$ is gauge-invariant. Supposing $\overline{\overline{I}} \neq 0$, and so $\Psi(\overline{\overline{I}}) \neq 0$, it follows that $\Psi(\overline{\overline{I}}) \cap C(X') = C_0(V') \neq 0$ by 2.8. Let $0 \neq$ $g \in C_0(V')$. Then $g = \Psi(\overline{\overline{f}})$ for some $f \in C(X)$ and $g = \Psi(\overline{\overline{a}})$ with $a \in I$. Therefore $\Psi(\overline{\overline{f}}) = g = \Psi(\overline{\overline{a}})$ from where $\overline{\overline{f}} = \overline{\overline{a}}$. In this way, $f - a \in \langle C_0(V) \rangle \subseteq I$ and so $f \in I$. It follows that $f \in I \cap C(X) = C_0(V)$, that is, $g = \Psi(\overline{\overline{f}}) = 0$, which is an absurd. Therefore $\overline{\overline{I}} = 0$ and this shows that $I = \langle C_0(V) \rangle$.

Bull Braz Math Soc, Vol. 38, N. 2, 2007

Notice that we have showed that every gauge-invariant idel I of $\mathcal{O}(X, \alpha, L)$ is of the form $\langle C_0(V) \rangle$ where V is the σ , σ^{-1} -invariant open subset such that $I \cap C(X) = C_0(V)$. By this theorem we have the following non simplicity criteria of $\mathcal{O}(X, \alpha, L)$:

Corollary 3.10. If U is nonempty and $U \cup \sigma(U)$ is not dense in X then $\mathcal{O}(X, \alpha, L)$ has at least one gauge-invariant nontrivial ideal.

Proof. Note that $V = X \setminus \overline{U \cup \sigma(U)}$ is an open σ , σ^{-1} -invariant set. Since $U \cup \sigma(U)$ is not dense in X it follows that V is nonempty. Then $\langle C_0(V) \rangle$ is a nonzero gauge-invariant ideal of $\mathcal{O}(X, \alpha, L)$. By the previous theorem, supposing $\langle C_0(V) \rangle = \mathcal{O}(X, \alpha, L)$ we have that $C_0(V) = C(X)$, which is a contradiction, because $V \neq X$, by the fact that U is nonempty. \Box

4 Topologically free transformations

In this section we prove that under certain hypothesis about *X*, every ideal of $\mathcal{O}(X, \alpha, L)$ has nonzero intersection with C(X) and based on this fact we show a relationship between the ideals of $\mathcal{O}(X, \alpha, L)$ and the σ, σ^{-1} -invariant open subsets of *X*. Also we show a simplicity criteria for the Cuntz-Krieger algebras for infinite matrices.

4.1 The theorem of intersection of ideals of $\mathcal{O}(X, \alpha, L)$ with C(X)

Let us begin with the lemma:

Lemma 4.1.

- a) For each $f \in C_c(U)$, supp $(L(f)) \subseteq \sigma(\text{supp}(f))$.
- b) Let $h, f_1, \ldots, f_n, g_1, \ldots, g_n$ be elements of $C_c(U)$ such that $\sigma^{n-1}(\sup (h)) \subseteq U$. Then $\sup (\widetilde{f_k}^* \cdots \widetilde{f_1}^* h \widetilde{g_1} \cdots \widetilde{g_k}) \subseteq \sigma^k(\sup (h))$ for each $k \in \{0, \ldots, n\}$.

Proof.

a) The proof of this fact is similar to the proof given in [6, 8.7], although our context is a little different. Let x ∈ X with L(f)(x) ≠ 0. Suppose x ∉ σ(supp(f)). Choose g ∈ C(X) such that g(x) = 1 and g_{|σ(supp(f))} = 0. If

 $y \in \text{supp}(f)$ then $\alpha(g)(y) = g(\sigma(y)) = 0$ because $\sigma(y) \in \sigma(\text{supp}(f))$. This shows that $f\alpha(g) = 0$. So we have

$$0 \neq L(f)(x) = L(f)(x)g(x) = (L(f)g)(x) = L(f\alpha(g)) = 0,$$

which is an absurd. Therefore $x \in \sigma(\text{supp}(f))$.

b) By a) we have that

~ ...

$$\operatorname{supp}\left(\widetilde{f_1}^*h\widetilde{g_1}\right) = \operatorname{supp}\left(L(f_1^*hg_1)\right) \subseteq \sigma\left(\operatorname{supp}\left(f_1^*hg_1\right)\right),$$

and it is clear that $\sigma(\text{supp}(f_1^*hg_1)) \subseteq \sigma(\text{supp}(h))$. Suppose that

$$\operatorname{supp}(\widetilde{f_{k-1}}^*\cdots\widetilde{f_1}^*h\widetilde{g_1}\cdots\widetilde{g_{k-1}})\subseteq\sigma^{k-1}(\operatorname{supp}(h))\text{ for } 2\leq k\leq n.$$

Then, by placing $g = \widetilde{f_{k-1}}^* \cdots \widetilde{f_1}^* h \widetilde{g_1} \cdots \widetilde{g_{k-1}}$, by a) we have that

$$\operatorname{supp}\left(\widetilde{f}_k^* g \widetilde{g}_k\right) = \operatorname{supp}\left(L(f_k^* g g_k)\right) \subseteq \sigma\left(\operatorname{supp}\left(f_k^* g g_k\right)\right).$$

Since supp $(f_k^*gg_k) \subseteq$ supp (g), and by the induction hypothesis supp $(g) \subseteq \sigma^{k-1}(\text{supp }(h))$, it follows that supp $(f_k^*gg_k) \subseteq \sigma^{k-1}(\text{supp }(h))$. By hypothesis we have that $\sigma^{k-1}(\text{supp }(h)) \subseteq U$ and so $\sigma(\text{supp }(f_k^*gg_k)) \subseteq \sigma^k(\text{supp }(h))$. \Box

For each $i \neq j$ in \mathbb{N} define

$$V^{i,j} = \{ x \in X \colon \sigma^i(x) = \sigma^j(x) \}.$$

Note that for $x \in X$ to be an element of $V^{i,j}$ it is necessary that x lies in $dom(\sigma^i) \cap dom(\sigma^j)$.

Lemma 4.2. If $f_1, \dots, f_i, g_1, \dots, g_j \in C_c(U)$ with $i \neq j$ then for each $x \notin V^{i,j}$ there exists $h \in C(X)$ such that $0 \leq h \leq 1$, h(x) = 1, and $h \widetilde{f}_1 \cdots \widetilde{f}_i \widetilde{g}_j^* \ldots \widetilde{g}_1^* h = 0$.

Proof. By taking adjoints we may suppose that i > j, and so i > 0. Define the set

$$K = \left(\bigcup_{r=1}^{i} \operatorname{supp} (f_r)\right) \left(\bigcup_{s=1}^{j} \operatorname{supp} (g_s)\right)$$

which is a compact subset of U. If $x \notin U$, take $h \in C(X)$, $0 \le h \le 1$, h(x) = 1 and $h_{|_K} = 0$. Then $hf_1 = 0$, which proves the lemma in this case. So we may suppose that $x \in U$. We will consider two cases: the first when

 $x \notin \operatorname{dom}(\sigma^i)$ and the second when $x \in \operatorname{dom}(\sigma^i)$. Suppose $x \notin \operatorname{dom}(\sigma^i)$. Then there exists $1 \le k \le i - 1$ such that $\sigma^k(x) \notin U$ (note that $i \ge 2$ because $x \in U = \operatorname{dom}(\sigma)$). So $\sigma^k(x) \notin K$. Take $V_0 \subseteq X$ an open subset with $\sigma^k(x) \in V_0$ and $V_0 \cap K = \emptyset$. Then $V = \sigma^{-k}(V_0) \ni x$ is an open subset in U. Choose $h \in C_c(U)$ with supp $(h) \subseteq V$, $0 \le h \le 1$ and h(x) = 1. Then, since $\sigma^{k-1}(\operatorname{supp}(h^2)) \subseteq \sigma^{k-1}(V) \subseteq U$, by 4.1 b),

$$\operatorname{supp}\left(\widetilde{f}_{k}^{*}\cdots\widetilde{f}_{1}^{*}h^{2}\widetilde{f}_{1}\cdots\widetilde{f}_{k}\right)\subseteq\sigma^{k}(\operatorname{supp}\left(h^{2}\right))\subseteq\sigma^{k}(V)\subseteq V_{0}.$$

Since $V_0 \cap K = \emptyset$ and supp $(f_{k+1}) \subseteq K$ we have that

$$(\widetilde{f_k}^*\cdots\widetilde{f_1}^*h^2\widetilde{f_1}\cdots\widetilde{f_k})\widetilde{f_{k+1}}=0$$

from where $h \widetilde{f}_1 \cdots \widetilde{f}_{k+1} \cdots \widetilde{f}_i = 0$. Therefore $h \widetilde{f}_1 \cdots \widetilde{f}_i \widetilde{g}_j^* \cdots \widetilde{g}_1^* h = 0$. It remains to show the case $x \in \text{dom}(\sigma^i)$. By the fact that i > j it follows that $x \in \text{dom}(\sigma^j)$. Therefore, since $x \notin V^{i,j}$ we have that $\sigma^i(x) \neq \sigma^j(x)$. Let $V_i \ni \sigma^i(x)$ and $V_j \ni \sigma^j(x)$ open subsets such that $V_i \cap V_j = \emptyset$. Let $V = \sigma^{-i}(V_i) \cap \sigma^{-j}(V_j)$ and note that V is an open subset which contains x. Take $h \in C_c(U)$ with $0 \le h \le 1$, h(x) = 1 and $\text{supp}(h) \subseteq V$. Then, since $\sigma^{i-1}(V) \subseteq U$ and $\sigma^{j-1}(V) \subseteq U$, by 4.1 b) we have that

$$\operatorname{supp}(\widetilde{f}_i^* \cdots \widetilde{f}_1^* h^2 \widetilde{f}_1 \cdots \widetilde{f}_i) \subseteq \sigma^i(\operatorname{supp}(h^2)) \subseteq V_i$$

and

$$\operatorname{supp}\left(\widetilde{g_{j}}^{*}\cdots\widetilde{g_{1}}^{*}h^{2}\widetilde{g_{1}}\cdots\widetilde{g_{j}}\right)\subseteq\sigma^{j}(\operatorname{supp}(h^{2}))\subseteq V_{j}.$$

Since V_i and V_j are disjoints it follows that

 $(\widetilde{f_i}^*\cdots\widetilde{f_1}^*h^2\widetilde{f_1}\cdots\widetilde{f_i})(\widetilde{g_j}^*\cdots\widetilde{g_1}^*h^2\widetilde{g_1}\cdots\widetilde{g_j})=0,$

from where $h \widetilde{f}_1 \cdots \widetilde{f}_i \widetilde{g}_j^* \cdots \widetilde{g}_1^* h = 0$.

Definition 4.3. We say that the pair (X, σ) is topologically free if for each $V^{i,j}$, the closure $V^{i,j}$ in X has empty interior.

By the Baire's theorem, X is topologically free if $\bigcup_{i,j\in\mathbb{N}} \overline{V^{i,j}}$ has empty interior. In this way, $Y = X \setminus \bigcup_{i,j\in\mathbb{N}} \overline{V^{i,j}}$ is dense in X.

Let *S* be the set of positive linear functionals of $O(X, \alpha, L)$ given by

 $S = \{\varphi : \varphi \text{ is a positive linear functional and } \varphi_{|_{C(X)}} = \delta_y \text{ for some } y \in Y\}$

where $\delta_y(f) = f(y)$ for each $f \in C(X)$. We don't know the characteristic of these functionals, nevertheless for $a \in O(X, \alpha, L)$ and $f \in C(X)$ it holds the following relation:

Lemma 4.4. If φ is a positive linear functional of $\mathcal{O}(X, \alpha, L)$ such that $\varphi_{|_{C(X)}} = \delta_x$ for some $x \in X$ then for each $f \in C(X)$ and $a \in \mathcal{O}(X, \alpha, L)$ we have that $\varphi(fa) = \varphi(f)\varphi(a)$ and $\varphi(af) = \varphi(a)\varphi(f)$.

Proof. By taking adjoints it suffices to prove the case $\varphi(af) = \varphi(a)\varphi(f)$. For each $b \in \mathcal{O}(X, \alpha, L)$ we have that $(b - \varphi(b))^*(b - \varphi(b)) \ge 0$. Therefore if φ is a positive functional then $\varphi(b^*b) - \varphi(b^*)\varphi(b) = \varphi((b - \varphi(b))^*(b - \varphi(b))) \ge$ 0, from where $\varphi(b)^*\varphi(b) \le \varphi(b^*b)$. Since $f^*a^*af \le f^*f ||a||^2$ it follows that $\varphi(f^*a^*af) \le \varphi(f^*f) ||a||^2$. Put b = af, and so $0 \le \varphi(af)^*\varphi(af) \le$ $\varphi(f^*a^*af) \le \varphi(f^*f) ||a||^2 = ||a||^2 |f(x)|^2$, where x is such that $\varphi_{|_{C(X)}} = \delta_x$. This shows that if f(x) = 0 then $\varphi(af) = 0$. Define g = f - f(x). Then g(x) = 0 and so $\varphi(ag) = 0$. By this way

$$\varphi(af) - \varphi(a)\varphi(f) = \varphi(af) - \varphi(a)f(x) = \varphi(af) - \varphi(af(x))$$
$$= \varphi(a(f - f(x))) = \varphi(ag) = 0$$

and the lemma is proved.

For each $a \in \mathcal{O}(X, \alpha, L)$ define

$$|||a||| = \sup\{|\varphi(a)| \colon \varphi \in S\}$$

which is a seminorm for $\mathcal{O}(X, \alpha, L)$.

We are not able to show that ||| ||| is nondegenerated in $\mathcal{O}(X, \alpha, L)$, but in L_n ||| ||| has the property, given by the following lemma, that $|||r||| \neq 0$ for every positive nonzero element of L_n , remembering that $L_n = C(X) + K_1 + \cdots + K_n$ for each $n \ge 1$ and $L_0 = C(X)$.

Lemma 4.5. Let (X, σ) be topologically free. For each $r \in L_n$ with $r \ge 0$ and $r \ne 0$ it holds that $|||r||| \ne 0$.

Proof.

Claim 1. If $0 \neq r \in L_n$, r positive and $r \notin C(X)$ then there exists $g \in C_c(U)$ with $\sigma_{|_{supp}(g)}$ a homeomorphism and $\tilde{g}^*r\tilde{g} \neq 0$.

Since $r \ge 0$ we may write $r = b^*b$ with $b \in L_n$. Suppose that for each $g \in C_c(U)$ with $\sigma_{|_{\text{supp}}(g)}$ homeomorphism, it holds that $\tilde{g}^*r\tilde{g} = 0$, and so

 $\tilde{g}^*b^* = 0$. Then (making use of partition of unity we may write each $f \in C_c(U)$ as a sum of g as above) we have that $\tilde{f}^*b^* = 0$ for each $f \in C_c(U)$ and so $M^*b^* = 0$. It follows that $K_1b^* = 0$, and since $C_0(U) \subseteq K_1$ by 2.3 b) we have that $C_0(U)b^* = 0$ and by 2.4 b) it follows that $b^* \in C(X)$. In this way $r = b^*b \in C(X)$, which contradicts the hypothesis and the claim is proved.

Claim 2. If $0 \neq r \in L_n$, $r \geq 0$ and $r \notin C(X)$ then there exists $g_1, \ldots, g_i \in C_c(U)$ such that $\sigma_{|_{supp(g_j)}}$ is a homeomorphism for each j and $0 \neq \widetilde{g_i}^* \cdots \widetilde{g_1}^* r \widetilde{g_1} \cdots \widetilde{g_i} \in C(X)$.

By Claim 1 there exists $g_1 \in C_c(U)$ such that $\sigma_{|_{supp(g_1)}}$ is homeomorphism and $0 \neq \widetilde{g_1} * r \widetilde{g_1}$. Note that $\widetilde{g_1} * r \widetilde{g_1} \in L_{n-1}$. By induction suppose $0 \neq \widetilde{g_l} * \cdots \widetilde{g_1} * r \widetilde{g_1} \cdots \widetilde{g_l} \in L_1$ where $g_j \in C_c(U)$ and $\sigma_{|_{supp(g_j)}}$ is a homeomorphism for each *j*. Then, by Claim 1, or $\widetilde{g_l} * \cdots \widetilde{g_1} * r \widetilde{g_1} \cdots \widetilde{g_l} \in C(X)$ or there exists $g_{l+1} \in C_c(U)$ with $\sigma_{|_{supp(g_{l+1})}}$ homeomorphims and $0 \neq \widetilde{g_{l+1}} * \widetilde{g_l} * \cdots \widetilde{g_1} * r \widetilde{g_1} \cdots \widetilde{g_l}$ $\widetilde{g_l} \widetilde{g_{l+1}}$. Since $\widetilde{g_{l+1}} \widetilde{g_l} * \cdots \widetilde{g_1} * r \widetilde{g_1} \cdots \widetilde{g_l} \widetilde{g_{l+1}} \in C(X)$ the claim is proved.

We will now show the lemma. Let $r \in L_n$, r positive and no null. It is enough to show that there exists $\varphi \in S$ such that $\varphi(r) \neq 0$. Since (X, σ) is topologically free then

$$Y = \left(X \setminus \bigcup_{i,j} \overline{V^{i,j}}\right)$$

is dense in X. So, if $r \in C(X)$ then there exists $y \in Y$ such that r(y) > 0. Take φ which extends δ_y , and therefore $\varphi(r) \neq 0$. Suppose $r \notin C(X)$. Choose $f_{x_1}, \dots, f_{x_i} \in C_c(U)$ as in Claim 2. Then $0 \neq h = \widetilde{f_{x_i}}^* \cdots \widetilde{f_{x_1}}^* \widetilde{f_{x_1}} \cdots \widetilde{f_{x_i}} \in C(X)$. So

$$h^*hh^* = \widetilde{f_{x_i}}^* \cdots \widetilde{f_{x_1}}^* r \widetilde{f_{x_1}} \cdots \widetilde{f_{x_i}} h \widetilde{f_{x_i}}^* \cdots \widetilde{f_{x_1}}^* r \widetilde{f_{x_1}} \cdots \widetilde{f_{x_i}} \neq 0$$

from where $g = \widetilde{f_{x_1}} \cdots \widetilde{f_{x_i}} h \widetilde{f_{x_i}}^* \cdots \widetilde{f_{x_1}}^* \neq 0$. How $\sigma_{|_{\text{supp}(f_{x_i})}}$ is homeomorphism it follows by 2.3 a) that $\widetilde{f_{x_i}} h \widetilde{f_{x_i}}^* \in C(X)$. Applying these arguments successively it may be proved that $g = \widetilde{f_{x_1}} \cdots \widetilde{f_{x_i}} h \widetilde{f_{x_i}}^* \cdots \widetilde{f_{x_1}}^* \in C(X)$. By the the same argments it follows that $u = \widetilde{f_{x_1}} \cdots \widetilde{f_{x_i}} \widetilde{f_{x_i}}^* \cdots \widetilde{f_{x_1}}^* \in C(X)$. Since $g \neq 0$ there exists $y \in Y$ such that $g(y) \neq 0$. Take $\varphi \in S$ which extends δ_y . Then we have that $\varphi(g) = g(y) \neq 0$. By 4.4, since g = uru, $\varphi(g) = \varphi(uru) = \varphi(u)\varphi(r)\varphi(u)$ and therefore $\varphi(r) \neq 0$.

Now we are able to prove the main result of this section.

Bull Braz Math Soc, Vol. 38, N. 2, 2007

Theorem 4.6. If (X, σ) is topologically free then each nonzero ideal of $\mathcal{O}(X, \alpha, L)$ has nonzero intersection with C(X).

Proof. By 2.7 it suffices to prove that every nonzero ideal of $\mathcal{O}(X, \alpha, L)$ has nonzero intersection with *K*. Let $0 \neq I \leq \mathcal{O}(X, \alpha, L)$. Suppose $I \cap K = 0$. Then the quotient *-homomorphism $\pi : \mathcal{O}(X, \alpha, L) \rightarrow \mathcal{O}(X, \alpha, L)/I$ is such that $\pi_{|_K}$ is an isometry.

Claim. For each $b \in \mathcal{O}(X, \alpha, L)$ it holds that $|||E(b)||| \le ||\pi(b)||$ where E is the conditional expectation defined in section 1.2.

Let *a* be of the form

$$a = \sum_{\substack{0 \le i \le n \\ 0 \le j \le m}} a_{i,j}$$

with $a_{0,0} \in C(X)$ and $a_{i,j} \in M^i M^{j*}$ for $i \neq 0$ or $j \neq 0$, $a_{i,j} = \sum_{1 \le k \le n_{i,j}} a_{i,j}^k$, $a_{i,j}^k = \widetilde{f_{i,j,1}^k} \cdots \widetilde{f_{i,j,i}^k} g_{i,j,1}^k \cdots g_{i,j,j}^k$ where $f_{i,j,l}^k, g_{i,j,t}^k \in C_c(U)$ for each i, j, k, l and t. Given $\varepsilon > 0$ there exists $\varphi \in S$ which extends δ_y for some $y \in Y$ such that $|||E(a)||| - \varepsilon \le |\varphi(E(a))||$. Note that $y \notin V^{i,j}$ for $i \neq j$. Then, for every $a_{i,j}^k$ with $i \neq j$, by 4.2 there exists $h_{i,j}^k \in C(X)$, $0 \le h_{i,j}^k \le 1$, such that $h_{i,j}^k(y) = 1$ and $ha_{i,j}^k h = 0$. Define

$$h = \prod_{\substack{0 \leq i \leq n \ 0 \leq j \leq m}} \prod_{\substack{1 \leq k \leq n_{i,j}}} h_{i,j}^k \, .$$

Then $ha_{i,j}h = 0$ for each $i \neq j$ from where hah = hE(a)h, and moreover h(y) = 1. By 4.4 $\varphi(hE(a)h) = \varphi(h)\varphi(E(a))\varphi(h) = h(y)\varphi(E(a))h(y) = \varphi(E(a))$, and so $\varphi(E(a)) = \varphi(hE(a)h) = \varphi(hah)$. Since $hah = hE(a)h \in K$ e $\pi_{|_K}$ is an isometry it follows that $||hah|| = ||\pi(aha)||$. Then

$$|||E(a)||| - \varepsilon \le |\varphi(E(a))| = |\varphi(hah)| \le ||hah|| = ||\pi(hah)|| \le ||\pi(a)||.$$

Since ε is arbitrary it follows that $|||E(a)||| \le ||\pi(a)||$ for *a* in this form. Given $b \in \mathcal{O}(X, \alpha, L)$, for each $\varepsilon > 0$ choose $a \in \mathcal{O}(X, \alpha, L)$ as above such that $||a - b|| \le \varepsilon$. Then

$$|||E(b)||| \le |||E(b-a)||| + |||E(a)||| \le |||E(a)||| + \varepsilon \le ||\pi(a)|| + \varepsilon$$
$$\le ||\pi(a-b)|| + ||\pi(b)|| + \varepsilon \le ||\pi(b)|| + 2\varepsilon.$$

Again, since ε is arbitrary it follows that $|||E(b)||| \le ||\pi(b)||$, and the claim is proved.

Observe that $\overline{E(I)}$ is a closed ideal of K. Also, $\overline{E(I)}$ is nonzero, because $0 \neq I$ and E is faithful. Then $\overline{E(I)} \cap L_n \neq 0$ for some n (see [2, III.4.1]). Let $0 \neq c \in \overline{E(I)} \cap L_n$. Then, since $c^*c \in L_n$ and c^*c is positive and nonzero it follows by 4.5 that $|||c^*c||| \neq 0$. We shall prove that $|||c^*c||| = 0$, and this will be an absurd. For each $a = E(b) \in E(I)$ with $b \in I$ we have that

$$|||a^*a||| = |||E(b^*)E(b)||| = |||E(b^*E(b))||| \le ||\pi(b^*E(b))||.$$

By the fact that $b^*E(b) \in I$ it follows that $\pi(b^*(E(b))) = 0$ and so $|||a^*a||| = 0$. This shows that $|||a^*a||| = 0$ for each $a \in E(I)$. Given $\varepsilon > 0$, take $a \in E(I)$ such that $||a^*a - c^*c|| \le \varepsilon$. Then

$$|||c^*c||| \le |||c^*c - a^*a||| + |||a^*a||| = |||c^*c - a^*a||| \le ||c^*c - a^*a|| \le \varepsilon.$$

So $|||c^*c||| \le \varepsilon$ for each $\varepsilon > 0$ from where $|||c^*c||| = 0$, and that is an absurd. Therefore $I \cap K \ne 0$, and the theorem is proved.

4.2 Relationship between the ideals of $\mathcal{O}(X, \alpha, L)$ and the σ, σ^{-1} -invariant open subsets of X

We obtain here a relationship between the ideals of $\mathcal{O}(X, \alpha, L)$ and the σ, σ^{-1} -invariant open subsets of X under an additional hypothesis about (X, σ) , which is that for every closed σ, σ^{-1} -invariant subset X' of X, $(X', \sigma_{|_{X'}})$ is topologically free.

Proposition 4.7. Let I be an ideal of $\mathcal{O}(X, \alpha, L)$ and $V \subseteq X$ the open subset such that $I \cap C(X) = C_0(V)$. If $(X', \sigma_{|_{X'}})$ is topologically free (where $X' = X \setminus V$) then $I = \langle C_0(V) \rangle$.

Proof. By 3.4 *V* is σ , σ^{-1} -invariant, from where *X'* is also σ , σ^{-1} -invariant. By 3.3 there exists a *-isomorphism

$$\Psi \colon \frac{\mathcal{O}(X, \alpha, L)}{\langle C_0(V) \rangle} \to \mathcal{O}(X', \alpha', L') \,.$$

Obviously $\langle C_0(V) \rangle \subseteq I$. Suppose $I \neq \langle C_0(V) \rangle$. Then $\overline{\overline{I}} \neq 0$ and so $\Psi(\overline{\overline{I}}) \neq 0$. By 4.6, $\Psi(\overline{\overline{I}}) \cap C(X') \neq 0$. Let $0 \neq g \in \Psi(\overline{\overline{I}}) \cap C(X')$. Then $g = \Psi(\overline{\overline{a}})$ for some $a \in I$ and also $g = \Psi(\overline{\overline{f}})$, because $\Psi(\overline{C(X)}) = C(X')$. Therefore $\Psi(\overline{\overline{a}}) = \Psi(\overline{\overline{f}})$ from where $\overline{\overline{a}} = \overline{\overline{f}}$ and so $f - a \in \langle C_0(V) \rangle \subseteq I$, in other words, $\underline{f} \in I$. In this way $f \in I \cap C(X) = C_0(V)$ and so $\overline{\overline{f}} = 0$ from where $g = \Psi(\overline{\overline{f}}) = 0$, which is a absurd. So we conclude that $I = \langle C_0(V) \rangle$. **Theorem 4.8.** If (X, σ) is such that $(X', \sigma_{|_{X'}})$ is topologically free for every closed subset σ , σ^{-1} -invariant X' of X then every ideal of $\mathcal{O}(X, \alpha, L)$ is of the form $\langle C_0(V) \rangle$ for some open subset $V \subseteq X$. Moreover, the map $V \longrightarrow \langle C_0(V) \rangle$ is a bijection between the open σ , σ^{-1} -invariante subsets of X and the ideals of $\mathcal{O}(X, \alpha, L)$.

Proof. Let $I \leq \mathcal{O}(X, \alpha, L)$, and $C_0(V) = I \cap C(X)$. By 3.4 *V* is σ, σ^{-1} -invariant, from where $X' = X \setminus V$ is also σ, σ^{-1} -invariant. By hypothesis $(X', \sigma_{|X'})$ is topologically free. By 4.7, $I = \langle C_0(V) \rangle$. In particular, note that every ideal of $\mathcal{O}(X, \alpha, L)$ is gauge-invariant. So, by 3.9 the map a $V \longrightarrow \langle C_0(C) \rangle$ is a bijection.

4.3 A simplicity criteria for the Cuntz-Krieger algebras for infinite matrices

Recall that $G_R(A)$ is the oriented graph whose vertex are the elements of G such that given $x, y \in G$ there exists an oriented edge from x to y if A(x, y) = 1. An path from x to y is a finite sequence $x_1 \cdots x_n$ such that $x_1 = x, x_n = y$ and $A(x_i, x_{i+1}) = 1$ for each i. We will say that $G_R(A)$ é transitive if for each $x, y \in G$ there exists a path from x to y.

The main result of this section is that if Gr(A) is transitive then the Cuntz-Krieger algebra O_A is simple. This result is essentially Theorem [4, 14.1].

The following proposition singles out the σ, σ^{-1} -invariant open subsets of $\widetilde{\Omega_A}$.

Proposition 4.9. If $G_R(A)$ is transitive, the unique σ -invariants nonempty open subsets of $\widetilde{\Omega}_A$ are $\widetilde{\Omega}_A \setminus \emptyset$ and $\widetilde{\Omega}_A$.

Proof. Let *V* be a σ -invariant open subset of $\widetilde{\Omega}_A$. Let $\xi \in V$ an element whose stem is infinite. (such elements form a dense subset in $\widetilde{\Omega}_A$). Choose V_n neighbourhood of ξ in *V*,

$$V_n = \{ \nu \in \widetilde{\Omega_A}; w(\nu)_{|_n} = w(\xi)_{|_n} \}$$

where w(v) is the stem of v. Let $\mu \in \widetilde{\Omega_A}$ such that $|w(\mu)| \ge 1$ and let $x \in G$, with $x \in \mu$. Since $G_R(A)$ is transitive there exists a path $x_1 \cdots x_m$ from $w(\xi)_n$ to x, and by this way $w(\xi)_{|_n} x_2 \cdots x_{m-1} \mu \in V_n \subseteq V$. Since V is σ -invariant it follows that $\mu \in V$ because $\mu = \sigma^{n+m-2}(w(\xi)_{|_n} x_2 \cdots x_{m-1} \mu)$. So $U \subseteq V$. If $\emptyset \neq \xi \in \widetilde{\Omega_A} \setminus U$ then there exists $x \in G$ such that $x^{-1} \in \xi$. Since $x\xi \in U \subseteq V$ and $\sigma(x\xi) = \xi$ it follows that $\xi \in V$. This shows that $\widetilde{\Omega_A} \setminus \emptyset \subseteq V$, from where the result follows. Since $\widetilde{\Omega}_A$ and $\widetilde{\Omega}_A \setminus \emptyset$ are σ^{-1} -invariant it follows by the previous proposition that the unique σ, σ^{-1} -invariant open nonempty subsets of $\widetilde{\Omega}_A$ are $\widetilde{\Omega}_A$ and $\widetilde{\Omega}_A \setminus \emptyset$.

Given $\xi \in \text{dom}(\sigma^i)$ with $w(\xi) = x_1 x_2 \cdots$ we have that $w(\sigma^i(\xi)) = x_{i+1} x_{i+2} \cdots$ This shows that if $\xi \in V^{i,j}$ then $w(\xi)$ is infinite, because if we suppose that $|w(\xi)| = n$, then we have that $n - i = |w(\sigma^i(\xi))| = |w(\sigma^j(\xi))| = n - j$ from where i = j, which is an absurd.

The following proposition shows a relationship between Gr(A) and $\widetilde{\Omega_A}$.

Proposition 4.10. If Gr(A) is transitive then $\widetilde{\Omega}_A$ is topologically free.

Proof. Suppose i > j, i = j + k and that $\overline{V^{i,j}}$ has nonempty interior. Let ν be an interior point of $\overline{V^{i,j}}$ and $V_{\nu} \subseteq \overline{V^{i,j}}$ an open subset which contains ν . Then there exists an element $\xi \in V_{\nu} \cap V^{i,j}$. Since $\sigma^{i}(\xi) = \sigma^{j}(\xi)$ we have that

$$x_{i+1}x_{i+2}\cdots = w(\sigma^{i}(\xi)) = w(\sigma^{j}(\xi)) = x_{j+1}x_{j+2}\cdots,$$

from where $x_{i+r} = x_{j+r}$ for $r \ge 1$. Since i = j + k it follows that $x_{i+k} = x_{j+k} = x_i$, and also that $x_{i+(k+r)} = x_{j+(k+r)} = x_{(j+k)+r} = x_{i+r}$ for each $r \ge 1$. Applying the last equality repeatedly it follows that $x_{i+nk+r} = x_{i+r}$ for each $n \in \mathbb{N}$ and $r \ge 1$. This shows that $w(\xi) = x_1 \cdots x_{i-1} sss \cdots$, where $s = x_i x_{i+1} \cdots x_{i+(k-1)}$. Since $w(\xi)$ is infinite, there exists $n \ge i$ such that $V_n = \{\eta \in \widetilde{\Omega}_A : w(\eta)|_n = x_1 \cdots x_n = w(\xi)|_n\} \subseteq V_{\nu}$.

Claim. $V_n = \{\xi\}.$

Supposing $\eta \in V_n \cap V^{i,j}$, with the same arguments as above it may be proved that $w(\eta) = x_1 x_2 \cdots x_{i-1} sss \cdots$, from where $w(\eta) = w(\xi)$, and since η, ξ have infinite stems it follows that $\eta = \xi$. Let $v \in V_n$. Then, since $V_n \subseteq V^{i,j}$ there exists a net $(v_l)_l \subseteq V^{i,j}$ such that $v_l \to v$. Since $v \in V_n$ and V_n is open we may suppose that $(v_l)_l \subseteq V_n$. Therefore $v_l = \xi$ for each l and so $v = \xi$. This proves the claim.

Let $y \in G \setminus \{x_i, x_{i+1}, \dots, x_{i+(k-1)}\}$. By the fact that Gr(A) is transitive there exists a path $y_1 \dots y_r$ where $y_1 = x_{n+1}$ and $y_r = y$ and an other path $z_1 \dots z_t$ such that $z_1 = y \in z_t = x_1$. In this way we may consider the infinite admissible word $x_1 \dots x_n y_1 \dots y_r z_2 \dots z_{t-1} w(\xi)$ which is the stem of some element $\mu \in \widetilde{\Omega}_A$. Notice that $\mu \in V_n$ by the definition of V_n and that $\mu \neq \xi$, because its stems are distinct. This contradicts the claim. Therefore, $V^{i,j}$ has empty interior, and so $\widetilde{\Omega}_A$ is topologically free.

We will prove now the main result of this section.

Proposition 4.11. If Gr(A) is transitive the unique ideals of \widetilde{O}_A are the null ideal, O_A and \widetilde{O}_A .

Proof. By 4.9 the unique closed σ , σ^{-1} -invariants subsets of $\widetilde{\Omega}_A$ are $\widetilde{\Omega}_A$, the set $\{\emptyset\}$ (if $\emptyset \in \widetilde{\Omega}_A$, that is, if $O_A \neq \widetilde{O}_A$ by [4, 8.5]) and the empty set. Since these subsets are topologically free, by 4.8 the ideals of $\mathcal{O}(\widetilde{\Omega}_A, \alpha, L)$ are precisely 0, $\langle C_0(\widetilde{\Omega}_A \setminus \emptyset) \rangle$ and $\mathcal{O}(\widetilde{\Omega}_A, \alpha, L)$. Therefore if $\emptyset \notin \widetilde{\Omega}_A$ (that is, if $O_A = \widetilde{O}_A$) then $\mathcal{O}(\widetilde{\Omega}_A, \alpha, L)$ has no nontrivial ideals and the proposition is proved in this case. If $\emptyset \in \widetilde{\Omega}_A$ then by 4.8 $\mathcal{O}(\widetilde{\Omega}_A, \alpha, L)$ has exactly one nontrivial ideal, which is $\langle C_0(\widetilde{\Omega}_A \setminus \emptyset) \rangle$. Therefore \widetilde{O}_A has also exactly one nontrivial ideal. By [4, 8.5] $O_A \neq \widetilde{O}_A$ and since $0 \neq O_A \leq \widetilde{O}_A$ it follows that O_A is a nontrivial ideal of \widetilde{O}_A , and so is unique.

A direct consequence of this proposition is that if $G_R(A)$ is transitive then O_A is simple.

References

- [1] J. Cuntz. *The internal structure of simple C*-algebras*. Operator algebras and applications. Proc. Symp. Pure Math., **38** (1982), 85–115.
- [2] K.R. Davidson. C*-Algebras by Example. Fields Institute Monographs, 1996.
- [3] R. Exel. *A New Look at The Crossed-Product of a C*-algebra by an Endomorphism*. Ergodic Theory Dynam. Systems, to appear.
- [4] R. Exel and M. Laca. *Cuntz-Krieger Algebras for Infinite Matrices*. J. reine angew. Math., **521** (1999), 119–172.
- [5] R. Exel. Circle actions on C*-algebras, partial automorphisms and a generalized *Pimsner-Voiculescu exact sequence*. J. Funct. Anal., **122** (1994), 361–401.
- [6] R. Exel and A. Vershik. *C*-algebras of Irreversible Dynamical Systems*. Canadian Mathematical Journal, **58** (2006), 39–63.
- [7] T. Katsura. A construction of C*-algebras from C*-correspondences. Advances in Quantum Dynamics, 173–182, Contemp. Math, 335, Amer. Math. Soc., Providence, RI, 2003.
- [8] B.K. Kwasniewski. *Covariance algebra of a partial dynamical system*. Central European Journal of Mathematics, (2005), 718–765.
- K. McClanahan. *K-theory for partial actions by discrete groups*. J. Funct. Anal., 130 (1995), 77–117.
- [10] G.J. Murphy. Crossed products of C*-algebras by endomorphisms. Integral Equations Oper. Theory, 24 (1996), 298–319.
- [11] W.L. Pascke. *The crossed product of a C*-algebra by an Endomorphism*. Proc. Amer. Math. Soc., **80** (1980), 113–118.

- [12] G.K. Pedersen. C*-algebras and Their Automorphism Groups. Academic Press, 1979.
- [13] M.V. Pimsner. A class of C*-Algebras generalizing both Cuntz-Krieger Algebras and crossed products by Z. In Free probability theory (Waterloo, ON, 1995), volume 12 of Fields Inst. Commun., pages 189–212. Amer. Math. Soc., Providence, RI, 1997.
- [14] J. Renault. *Cuntz-like algebras*. Operator theoretical methods (Timi\c soara, 1998), 371–386, Theta Found., Bucharest, 2000.
- [15] P.J. Stacey. Crossed products of C*-algebras by *-endomorphisms. J. Aust. Math. Soc., Ser A 54 (1993), 204–212.

Ruy Exel and Danilo Royer

Departamento de Matemática Universidade Federal de Santa Catarina 88040-900 Florianópolis, SC BRAZIL

E-mails: exel@mtm.ufsc.br and royer@mtm.ufsc.br