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Hyperbolic linear Weingarten surfacesks
Juan A. Aledo Sanchez and José M. Espinar

Abstract. A hyperbolic linear Weingarten surface R? is a surfaceVl whose mean

and Gaussian curvatures satisfy the relationshid 2 bK = cfor real numbers, b, ¢

such thag?+bc < 0. In this work we obtain a representation for such a surface in terms

of its Gauss map when, more generadlyb, c are functions orM. We also study the
completeness of such surfaces and describe a procedure to construct complete examples
from solutions of the sine-Gordon equation.
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1 Introduction

Lety : M — R3 be an immersion from an orientable surfddein R3. As is
well-known, v is said to be a linear Weingarten immersion if its mean curvature
H and Gaussian curvatut€ satisfy the relationship

2aH +bK =c¢ (1)

on M for real numbers, b, c.

Such a surface is said to be elliptic, hyperbolic or parabolic depending on
whether the discrimina@f+bcis positive, negative or zero. Those adjectives fit,
actually, with the character of the equation (1) (see [3]). For instance, surfaces of
constant mean curvature and surfaces of constant positive Gaussian curvature are
elliptic, while surfaces of constant negative Gaussian curvature are hyperbolic.

We devote this paper to the study of hyperbolic linear Weingarten surfaces,
in short, HLW-surfaces. Specifically, in Section 2 we obtain a representation
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for HLW-surfaces in terms of its Gauss map when, more geneglly,c are
functions onM (Theorems 1 and 2). There exists a representation for elliptic
linear Weingarten surfaces due to Galvez, Martinez and Milan (see [2]).

We dedicate Section 3 to the study of complete HLW-surfaces. Thus, we see
that a complete HLW-surfadd endowed with the Lorentzian metiad +bl | is
conformally diffeomorphic to the Lorentz-Minkowski plafig, and relate such
a surface with the sine-Gordon equation (Theorem 5). Actually, it is already
known the relationship between HLW-surfaces and the sine-Gordon equation
(see, for instance, [7]), although we establish that relation in terms of global
Tchebychev coordinates, which allows us to study the completeness of the sur-
face. Conversely, we describe a procedure to construct complete HLW-surface
from solutions of the sine-Gordon equation (Theorem 7) and give some examples
from solutions of the pendulum equation. We would like to point out that the
construction of complete HLW-surfaceslit? has been studied recently in sev-
eral works, as in [8] and [1] where some examples are obtained as an application
of Ribaucour transformations.

2 Avrepresentation in terms of the Gauss map

Let ¢ : M — R3 be an immersion satisfying (1) for functioasb, c on M
such thag? + bc < 0, and let us denote by its Gauss map, and dyand| | its
first and second fundamental forms. Let us consider the symmetric tensbr on

o(X,Y) = al(X,Y)+bll(X,Y)

= a(X,Y)—bdN(X),Y), X YeXM), @

where(, ) is the induced metric oM via v of the standard metric iR2. Since
a’ 4+ bc < 0, o becomes a lorentzian metric &. In fact, let us take a local
orthonormal framdgE,, E,} for the induced metrig, ) such that-dN(E;) =
A Ei, i =1, 2, whererq, A, are the principal curvatures associated\toThen

o(Ei, Ej) = (@+ bi)sj, b j=12
8ij being the Kronecker delta, and so
det(o) = (@+ br1)(@+ bry) = a2+ b(2aH + bK) =a? + bc < 0.

Sinceo is a Lorentzian metric oM, we can take (locally) isothermal coordi-
nates(u, v) such that
o = p(du? — dv?) 3)
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for a positive smooth functiop. Let us put

(dy, dy) = E d? + 2F dudv + G dv?,

4
({dy, —dN) = ed? + 2f dudv + g dv?, @)

where we are takind = (¥, A ¥,)/~EG — F2, A being the usual cross
product inR3. Hence

-1

NAY, = ——(Fy, — Ev),
I/IU m( 1/".1 1/f )
L (5)
NAY, = ————(Gyy — Fi).
Using again (4), one gets
1
-Ny = EG_E2 (€G- Ry + (—eF+ fE)Y,),
N, = ! (fG F)Yu+ (—fF +gE)
v EG _ F2 ( g WU g 1zﬁv) )
and so, after a straightforward computation, it follows that
NAN, = ! (fyu — eyry)
u — m u v/
L (6)
NAN, = —— — ).
m(gwu V)
On the other hand, observe that from (2), (3) and (4)
aE + be=p, aF +bf =0, aG+bg=—p
whence, using (1),
—p? = a®(EG— F?) +ab(eG—2fF + gE) + b?(eg— f?) -
= (EG — F?)(a% + bo).
Then, from (5) and (6) we have
a(N A yry) —b(N A Ny) = /[a2 + bely,, ®)

a(N A y) —b(N AN,) = v[a2+ bely.

Bull Braz Math Soc, Vol. 38, N. 2, 2007
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Now, if we calld = /|a? + bc|, we get from (8)

a b a b
N/\WUZN/\<6N/\wv_aN/\Nv)=_awu+an,

a b a b
N/\l[/U:N/\(aN/\l{/u—aN/\Nu):—awu_i-aNu’

which jointly with (8) allows us to obtain

a d

= ——N — N AN,
Yu c u+c
a d

Yy = — =N, +— N A N,.
c c

Therefore we have the following:

Theorem 1. Lety : M — R3 be an immersion satisfyingpH + bK = ¢
for functionsa, b, c on M such thata? 4+ bc < 0, with associated Gauss map
N. If we consider orM local isothermal coordinateéu, v) for the Lorentzian
metrico = al + bl I, thenyr can be recovered in terms &f as

a d a d
Qp‘uz—ENu"‘f_EN/\va Wu=_ENv+EN/\NU’ (9)

whered = ,/|a2 + bc|.

Conversely, we have the following:

Theorem 2. Let M be a simply connected Lorentz surfadé,: M — S?
a differentiable map ana, b,c : M — R functions of clasg’! such that
a’+bc < 0. Let(u, v) be isothermal coordinates favl and let us suppose that

—(%)UNU+(%>UNANU+2N/\NW

a d d
:-(—) Nv+(—> N ANy + =N A Ny,
c/u c/, c

whered = /|a2+bc|. Then (9) determines an immersign: M — R3
(possibly degenerated at some points) with Gauss Mapatisfying2aH-+
bK = ¢, and such that the structure given by= al + bl is the one oM.
Moreovery : M — R2 is unique up to similarity transformations 3.

(10)
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Proof. First, observe that from (9) we have thdl, v,) = (N, ¢,) = 0.
Note also that the condition (10) says that, = ¥4, which means thai is
integrable.

On the other hand, if we putandl | as in (4), we easily obtain that

aE+be=—-(@G+ hbg) =: p, aF 4+ bf =0,

and sar = p(du? — dv?), that is, the structure given layis the one oM.
Let us see, to finish, thabH + bK = c. Itis a straightforward computation
to see that

Eg—2Ff +Ge = =(—p(E—G) — 2a(EG — F?))

Tl

and 1
eg— f% = E(—p2+a,o(E—G)+a2(EG— F?)),

whence

a(Eg—2Ff + Ge) + b(eg— f?) = =(—p*—a*(EG-F?)). (11)

ol

Now, since detN, Ny, N,)2 + (Ny, N,)2 — (Ny, Nu)(N,, N,) = 0, one gets
d?(EG — F?) — p2 = d%(EG — F?) — (ayy — bNy, y)? = 0,

which jointly with (11) says that@H + bK = c as we wanted to show. [

Remark 3. In the case whera, b, c are constant, the condition (10) can be

written asN A (Ngy — N,,) = 0. Conversely, ifyy : M — R3 is a HLW

immersion satisfying (1) for constardasb, c, then the Gauss may is harmonic
for the Lorentzian metrie .

Remark 4. (9) determines, actually, an immersion (that is, without singular
points), if we askN to satisfy the additional condition

a’Ny A N, 4+ ad((N,, N,) — (Ng, Ny)N — d?det(N, Ny, N,)N £ 0

This is nothing but the conditioty, A v, # 0 written in terms of, b, candN.
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3 Complete HLW-surfaces

We devote this section to the study of complete HLW-surfaces and their relation-
ship with the sine-Gordon equation. For our study we will assumeathato,

so we exclude the case Kf-surfaces. This does not mean a problem because,
from Hilbert Theorem, there do not exist complete surfacéSiwith constant
negative Gaussian curvature. We will take, without loss of generality0.

We have the following:

Theorem 5. Let ¥ : M — R3 be a complete HLW immersion satisfying
a? 4+ bc < 0 for constantsa, b,c € R such thata > 0. Then(M, o) is
conformally diffeomorphic to the Lorentz-Minkowski pldcreand its first and
second fundamental forms can be written as

| = du?+ 2coswdudv + dv?,

a,, ,—acosw—+—a?—bcsinw a5 (12)
II Z—Bdu +2 b dudv—de,

where w(u, v) is a differentiable function oriL?. Moreover, the function
¢(U,v) = w(u,v) +wy is a solution of the equation

Puy =T Sing, (13)
wherer = |c/b| andwg € R is such thatwg € (—m, 0) and

2av/—a2 — bc

Sinwg = be

Proof. Lety : M — RS be as in the statement, and let us take coordenates
(X, y) such that = 6dxdyfor a functiond. First, let us check that the iden-
tity map Id: (M,o) — (M, I) is harmonic, which is equivalent to see that
(¥x, ¥x) is a function ofx and (v, ¥y) a function ofy (see [9]). In fact, since

the third fundamental form is given Ay I = —K| + 2H 11, we have that

<Nx, Nx) = _K<Wx, 1ﬁx) +2H (_Nx, 1;ﬁx>

On the other hand, we also have that

0 = o(¥x, ¥x) = a(Px, ¥x) + b(=Ny, ¥y)
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and so, since&2H + bK =c,
—b
(Ux, ¥x) = T (Nx, Nx)
which is a function ofk becauseN is harmonic foro (see Remark 3). We can
reason analogously to see thdt,, ) is a function ofy.
Now, sincey is complete, the Hilbert-Holmgren Theorem assures(tkiato )
is conformally diffeomorphic to the Lorentz-Minkowski plafié (see, for in-
stance, [9]). Therefore we can assert that there exist global Tchebychev coordi-
nates(u, v) on M = L2 such that

| = du?+ 2coswdudv + dv?,

o = —2¢/—K(l,0)sinodudv,

wherew (u, v) is a differentiable function of.? and
—p?
EG-— F2
is the extrinsic curvature of the pdir, o) (see [4]). Note that, using (7),
K(l,0) = a®+bc<0.

Moreover, it is easy to see that the intrinsic curvaturé of given by

K(,o) =

Wyy
sinw
But, since
1 a a —acosw — v/ —a? — besin a
[ =Ba—6| =—Bdu2+2 b wdudv—dez,

we also have that

2aZ + bc 2a —a2 —bc

K = K({,Il) = 2 2 cotanw,
whereK (I, 11) is the extrinsic curvature aof, and then
wyy = @ Sinw + B cosw (14)
for 2a2 + bc —2a/—a? — bc
a = 0 B = 0 . (15)

Observe that = \/a? + B2 andB # 0, so we can takey € (—x, 0) such
that cosvg = «/r and sinwg = B/r as we said in the statement of the Theorem.
Now, using (14) it is a simple computation to check théi, v) = w(u, v) + wq
satisfies the equation (13). O
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Remark 6. Note that (13) is, in essence, the sine-Gordon equation. In fact, if
we rewrite (13) with respect to the coordinaies: /r (U+v),y = 4/r (U—v),
one gets

Pxx — Pyy = sing. (16)

In addition, we would like to point out that equations (12) correspond essentially
to equations (2.9) and (2.13) in [7] up to a change of coordinates.
Conversely we have:

Theorem7. Letr > Obe a positive constang,(u, v) a solution of(13) defined
on the whole plan®? and let us suppose that there exists a real consignt
(—m, 0) such that for all(u, v) € R? ¢(u,v) € C C (wo, wg + ) for a
certain compacC. Leta, b, ¢ be real constantsa® + bc < 0, a > 0, such
that o, B given as in(15) satisfy thatr = /a2 + B2 andsinwg = B/r. Then
there exists a complete surfacelRd such thaaH + bK = ¢, whose first and
second fundamental forms are given(ia®) for global coordinategu, v) € R?,
wherew (U, v) = ¢(U, v) — wp.

Proof. Letr, ¢, wg, @, b, c andw as in the statement. Recall that given a
Riemannian metri¢ and a symmetric (2,0)-tensbl on a simply-connected 2-
dimensional manifoldM, if | andl | satisfy the Gauss and Codazzi equations of
the Euclidean spadg?®, then there exists a unique immersion (up to an isometry)
¥ : M—R3 such thatl and |1 are its first and second fundamental forms,
respectively.

In fact, it is easy to check thatand| | satisfy the Codazzi equation. On the
other hand, the Gauss equation holds becayse= « sinw + 8 cosw and so
the intrinsic curvature of andK (I, I1) coincide.

Now, it is a straightforward computation to see that2+ bK = c.

To finish, observe thakt is a complete metric because, sing@l, v) € C C
(wo, wo + 1), thenw (u, v) € C’ C (0, ) for a compactC’. O

After this result, it seems natural to ask oneself if there exist, actually, solutions
of the equation (13) verifying the suitable assumptions to construct complete
HLW-surfaces following the described procedure. Let us see that they do exist
by giving some easy examples.

Recall that the pendulum equation is given by

@' () = sing(t). 17)
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Note that the solutions of the sine-Gordon equation (16) depending on one vari-
able are solutions of the pendulum equation, and viceversa.

As is well-known, for each initial data(0) := ¢o € (—7/2,7/2), g # O,
there is a unique non zero solutigr(t) of the equation (17) defined dR.
Physically, ¢ is nothing but the angle of the pendulum with respect to the
vertical axes for the timé¢ = 0 and it is, in magnitude, the maximum angle
which attains the pendulum in its oscillatory motion.

Let us take constants b, c € R such tha@? + bc < 0,a > 0. Our aim is
to construct a complete HLW-surface such that2+ bK = c. Let us define
a andg as in (15). Since > 0 and so3 < 0, we can takevg € (—m, 0) such
that sinwg = B/r, wherer = \/a? + B2.

Now, let us take a constagy such that O< ¢y < min{|wg|, 7 + wo} and
let ¢ be a solution of the pendulum equation (17) with initial dat8) = ¢o.
Observe thaip(t) satisfies thatwg +¢ < ¢ < 7 +wg— ¢ fore > 0
small enough.

If we putx = t, theng(X, y) := ¢(X) is a solution of the equation (16). Thus,
by considering the parametars= (X +Y)/(2y/r), v = (X —Y)/(2/F), ¢(U, v)
is a solution of the equation (13) such that w < & — ¢, from which we can
construct a complete HLW-surface following the procedure described above.

Finally, we would like to point out that there exist infinitely many bounded
solutionsp (u, v) of (13) verifying the conditions required in Theorem 7; among
them, a wide family of doubly periodic ones (see, for instance, [5], [6]). These
solutions provide, thus, infinitely many complete HLW-surfaces.
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