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Abstract. Inthis work we study mechanical systems defined by homogeneous polyno-
mial potentials of degree 4 on the plane, when the potential has a definite or semi-definite
sign and the energy is non-negative. We get a global description of the flow for the non-
negative potential case. Some partial results are obtained for the more complicated case
of non-positive potentials. In contrast with the non-negative case, we prove that the
flow is complete and we find special periodic solutions, whose stability is analyzed.
By using results from Ziglin theory following Morales-Ruiz and Ramis we check the
non-integrability of the Hamiltonian systems in terms of the potential parameters.
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1 Introduction

The homogeneous polynomial Hamiltonian systems are a recurrent research
topic, since they are fundamental in order to understand the behavior of poly-
nomial or analytical Hamiltonian systems. Indeed, in the search for more com-
plete characterizations of integrable Hamiltonian systems one is often lead to
the study of homogeneous systems, see for example, the papers by Yoshida
([20]) and Morales-Ruiz and Ramis ([17]), on necessary conditions for integra-
bility of mechanical systems with homogeneous potentials. More recently, the
work by Maciejewski and Przybylska ([16]) gives a complete characterization
of meromorphically integrable homogeneous Hamiltonian systems of degree 3.
Homogeneous potentials appear also in the modelling of natural phenomena
or processes. Along this line we may mention Caranicolas et al. [1], [2] and

Received 17 February 2006.



302 M. FALCONI, E.A. LACOMBA and C. VIDAL

Contopoulos [3] who have considered third or fourth degree homogeneous per-
turbations of homogeneous quadratic polynomials as models in the dynamics of
galaxies. Asitis commonplace in this area of research, they have applied numer-
ical methods in order to explain interesting features of the concerned dynamical
systems.

We studied in [7] some general properties of the flow of mechanical systems
with polynomial potentials of degree lesser or equal than 4 in two variables.
The main tool was the application of a McGehee blow up at infinity, which was
systematically studied in [11]. From this blow up we get a two dimensional
infinity manifold which allows us to study the flow in a neighborhood of infinity
in the configuration space. Inthe negative energy case itis verified that the flow is
gradient-like, so that any solution of the mechanical system has to be asymptotic
to one of the equilibrium solutions on the collision manifold. Later on, in [8], it
was analyzed the global flow for the case of homogeneous potentials of degree
3 and negative energy. This time, the flow extends the energy level to a compact
3-manifold whose boundary is the infinity manifold, which is invariant under
the extended flow. Transversality properties of the flow were used in order to
describe the global flow when the potential is separable, and the general case of
negative energy was studied in [9], including a description of the global flow for
the more complicated case of positive energy.

In this work we study the dynamics of planar mechanical systems whose asso-
ciated potentiaV is a homogeneous polynomial of degree 4. The classification
of the dynamics is a hard problem due the fact that the potential depends on
5 parameters. However, we obtain a very general description of the dynamics
by restriction tosemidefinitgpotentials. We will analyze the dynamics in the
non-negative energylevels, since we proved in [7] that whén< 0 the flow is
gradient-like and every solution tends to an equilibrium on the infinity manifold.

The problem is stated in Section 2, where we describe the canonical form of a
planar homogenous potential of degree 4. Then, in Section 3 we study the sign of
the potentials in terms of their coefficients. Some particular solutions which are
calledhomotheticare studied in Section 4. The flow of the mechanical system
when the potential is positive definite or semidefinite is studied in Section 5.
We prove that, generically, non-equilibrium solutions escape to infinity, and in
particular, there are no periodic solutions. We also show that escape directions
correspond to homothetic orbits. The negative definite and semidefinite poten-
tial case is studied in Section 6, proving the completeness of the flow and the
boundedness of all solutions. The stability of certain periodic orbits is analyzed
in terms of the parameters of the potential. Some examples are given in Sec-
tion 7. Finally, in Section 8 we study non-integrability conditions of degree 4

Bull Braz Math Soc, Vol. 38, N. 2, 2007



HOMOGENEOUS POTENTIAL OF DEGREE 4 303

homogeneous potentials as a function of the parameters.

2 Statement of the problem
We consider a planar mechanical system defined by
4=VV(@, g=(xy) €R? (2.1)

where the associated potentials a homogeneous polynomial of degree 4. The
energy of this system is the Hamiltonian

H= % (X2 +y%) = V(X, ). (2.2)

We denote by = (p1, p2) the velocity vectorx, y), so that the corresponding
Hamiltonian system equivalent to (2.1) is given by

. . LAY
X = P1, p1 = W(Q)

(2.3)
- . _8V()
Yy = P2, pz——ayQ-

We will always consider in this paper that the energy ldvéd non negative.
Recall that the Hill regiorR is the subset of the plane given by

R={g=Xy) |V(X,y)+h=0}
whose boundary is the zero velocity curve
Z={(X,y) VX, y)+h=0}.

Notice that if there is a poij* € R such thatv (g*) > 0, then because of the
homogeneity of the potential, all the points in the line generated §y belong
to the Hill region. Consequently, the Hill region is unbounded.
Without loss of generality, in any homogeneous potential of degree 4 in two
variables
V(x,y) = ax* + bx3y + cx?y? 4+ dxy® + ey, (2.4)

we can takéo = 0. This is stated in the following theorem

Theorem 1. Any mechanical system

X = Py, y = p2,
v AV (2:5)
pl_ 8X’ p2_ ay7
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whereV (X, y) is a potential ag2.4), becomes through a symplectic change of
variables a mechanical system with potential

V(x,y) = ax* + cx®y? + dxy? + ey’ (2.6)
Indeed, it is enough to consider the symplectic transformatigiven by
X=-—-sX+rY, y=rX+4S5sY,

pL=— (SPL—rP), p2=-— (—rP1—sh).

r2 +s 2 r2_|_ 2
We will assume from now on, that the mechanical system is given by (2.5), where
the potentialV is homogeneous of degree 4 and it has the normal form (2.6).

Hence, the second order system of differential equations we have to study is

X = 4axd+2cxy? +dy?
2.7)
¥ = 2cx?y 4+ 3dxy? + 4dey® = y [2cx? 4 3dxy+ dey?].

We remark thaV¥ is invariant under the symmetryx, y) — (—x, —Y).

3 Onthe characterization of definite and semidefinite potentials

In this section we analyze how the sign of homogeneous potentials is related to
the values of the coefficients c, d, e. We define

Definition 1. A real homogeneous functiow, is positive (negative) definite
if V(X,y) > 0(V(X,y) < 0), for any (x,y) # 0. V is positive (negative)
semidefinite iV(x,y) > 0 (V(x,y) < 0) and it is indefinite if it changes
signs. We writeV > 0 (V < 0) whenV is positive (negative) definite, and
V > 0(V < 0)whenV is positive (negative) definite or semidefiniteet Q be
the quadratic form generated by the matrix

a c¢2 0
A=|c/2 e dn2 |, (3.1)
0 d2 o0
that is,
Q(z1, 22, 23) = z1(azy + C2) + 2p(d 23 + €2). (3.2)

We consider the functiori : R? — R3, given by
fx, y) = 3, 2, xy). (3-3)
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It is easy to see thaf (x, y) = (Q o f)(X,y). Hence,V > 0 is equivalent to
Q greater than zero on the image ©f So,V is definite if the image off does
not intersect the set of zeroes@f which is given by the equation

z1(az1 +C») + 2(dzz +ez) = 0. (3.4)
This is the projective equation for the parabola
Po:W=aX?+cX+dY+e=0, (3.5)

whereX = z1/z, andY = z3/2,. If zy = X?, z, = y? andzz = Xy, the image
of f inthe variablesX, Y becomes the parabola

Po: Y%= X. (3.6)

It is clear that a necessary condition fgrto be definite is thah ande have
the same sign. Therefore, whdn= 0, a > 0 ande > 0, the fact thaly > 0
depends only oug. In particularc > 0 impliesV > 0. Equation (3.5) becomes
aX?+cX 4 e =0, whose roots are

—C— VA —C A
xlz—\/_, XZ:;—a\/_,

74 (3.7)

where A = c¢?> — 4ae. We have three cases, when< 0: 1) if A < 0, then
¥ > 0, forall X henceV > 0; 2) if A = 0, then there is only one positive
root, so thatl, annihilates inX; and it is positive forX # X;. Consequently,
V > 0 and it becomes zero in the lines determineday? = x2. Finally, 3)

if A > 0, both roots are positive and the four poitk§, ++/X1), (X2, £4/X5)
belong toP;; therefored < 0 in the intervald : X; < X < X,. From this it
follows thatV < 0 in all the planar region determined by the interdaand it
is positive in its complement.

Proposition 1. LetV (x, y) = ax* + cx?y? + ey* with a, e > 0 and letX; and
X, be given by3.7). Then

(1) V > 0ifandonlyifc>0orc < 0and & — 4ae < 0,

(2) If c < 0 andc? — 4ae = 0, thenV > 0 and it vanishes on the lines
defined byX; y? = x2,

(3) If c < 0andc? — 4ae > 0, thenV is indefinite; it changes sign in the
planar regions bounded by the lingg y? = x? and X, y? = x2.
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If d # 0, we may assume thdt= 1, dividingV by d; From now on, we will
take
V(x,y) = ax* + cx®y? + xy® + eyt

It is not hard to see that the sign @f and the shape oP; depend on the
parameters, ¢, as we show in Figure 1. Notice thatRf N Py = ¢, the sign of
V is opposite to the sign of in the region bounded bk;.

PP =0

(a) (b)

€= O = O

(©) (d)

Figure 1. If P, N Py = @, thenV is positive in the cases (a) and (b) and it
is negative in the cases (c) and (d). &) 0,c > 0. (b)a > 0,c < O.
(c)a<0,c<0.(da<0,c>0.

The complete classification of potentials according to their sign is a compli-
cated task in the general case. Now, we give an algorithmic procedure to decide
the sign ofV. We introduce the notatiol[a, c, €] to take into account the
dependence of the potentil whit respect to the parametexsc ande, since
we are takingl = 1. The parabol#; corresponding t& [a, c, €], has a parallel
tangent line to the one of the parabdg at each poinK* > 0 which is a root
of the equation

16a%X3 4 16acX? + 4c*X — 1 = 0. (3.8)

It is easy to verify that 238 + 8a’c? is a positive multiple of the discriminant
of the cubic. Then, 22 + 8a’c® > 0 is a necessary and sufficient condition
for a unique real root of the above equation. In this case, the root is positive and
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it is given by
—C c?

— ¥
3a
32} (27a4 +4a3c3 +3/3V27a8 + 8a7 c3)

*

Wl

(3.9)

1
(27a4 +4a3¢c® +33/27a8 +8a’ c3)3
+

625 a2.
LetY; = —aX*2 — cX* — eandY;* = £4/X*. We have the following result.
Theorem 2. Assumal = 1 and27a® 4 8a’c® > 0.

(@) If a> 0, thenV]a,c,e] > 0 ifand only if Y < Y5,

(b) If a <0, thenVJa,c,e] <0 ifand only if Y; > Y57 .

In Figure 2, the relationship between the positions of paraliéjand P, and
the sign ofV are shown. If the term 2 4 8a’c® considered in the Theorem 2
is negative, the Equation (3.8) has more than one root and in this case, similar
but more complicated conditions to determine the sign, can be found.

-05 0.5 1 15 2

05

(@) (b) (©)

Figure 2: a) Indefinite Potential. (b) Positive Potential. (c) Negative Potential.
In this figure,d # 0.

4 Homothetic solutions

In this section we study those solutions of the System (2.7), whose projections
into the configuration space are straight lines.
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Definition 2. We say that a solution of the systéi7) is homothetic if there
is a differentiable real functioi.(t) (non constant) and an initial positiogo,
such thatg(t) = A(t) qo is a solution of Systerf®.7).

In [18] these solutions are called gradient curves.

In order to characterize the homothetic solutions we may assume without loss
of generality that the initial positiogg = (Xp, Yo) iS a unit vector. We see that
g(t) = A(t) qo is a solution of (2.7) if and only if,

% go = 1% VV (qo).
From the homogeneity of and the fact thax3 + y3 = 1, we get
% =4V (qo) A,

and from the energy relation (2.2) we have

1.
EAZ—V(qo) A4 =h.

From this it follows that

Proposition 2. q(t) = A(t) qo is a homothetic solution gR.7) if and only if

1.
VV(do) =4V (@) o, 3 A% —V(qo) A* = h. (4.)

Now, we characterize the solutions of (4.1). We will begin by studying the
solutionA of the above differential equation. Let us denote
w =V (Qo). 4.2)

To computer(t) we have to distinguish 3 caseg: > 0, u = 0 andu < 0,
for each sign of the enerdy.

(1) Forh = 0, there is no homothetic solution if < 0 and foru > 0 we
hav_ek(t) = — 7w k constant, an unbounded solution since it is not
defined for anyt.

(2) Forh > 0 we rewrite the differential equation (4.1) as
1 . m
—— A==4 /14 =24 4.3
o H (4.3)

whose solution is analyzed below. Far= 0 andu < O we give explicit
formulas for the solution. For > 0 we only show that the solution is not
defined for anyt.
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(2.a) If u = 0 the solution is given by
A(t) = £v/2h t + B. (4.4)

We see that it is defined for amyand it is an escape solution.

(2.b) By integration of the energy relation (4.3) we obtain fox 0

At) = <1)1/4 cn (2(| |h)¥/4t i)
~ Unl SV

1
= xcn(2 h”“t,—),
0 ( (|elb) 73

wherecn is the elliptic function of the first kind (see [13], p. 85 exercise (6),
by takingk = k' = %). It is known thatcn is periodic, so thai(t) is periodic
with period

(4.5)

B 2 1 i B 2
T = e & (0’ ﬁ) = Qa7 “
(4.6)

S B (—1 i)
© (lulhyy4 "V2)’

wherex :=cnt (O, i). By using the result from page 89, exercise 29 in [13]

V2
we have
= [T(1/41?

=

Hence, the bounded functiart) is defined for any € R whenu < 0.

~ 1.854207.. . (4.7)

(2.c) Whenpu > 0 itis not easy to integrate the relation(4.3), but we get an
estimate which follows from the energy relation. Indeed,

arctan((%)l/4 A(t)) =< (Mh—\/)élmt <2 arctar-((%)l/4 A(t)) . (4.8)

In this way we see that(t) is not defined for any > 0 and it is unbounded.

Regarding the existence of the initial conditigp = (X0, Yo) associated to
the homothetic orbit, we need to solve the first equation in (4.1), which is equiv-
alentto

Vi(Xo, Yo) = 4axd + 2cx0y2 + dyg = 4V (Xo, Yo) Xo
(4.9)
Vy(Xo, Yo) = 2CX3Yo + 3dXoY2 + 4eys = 4V (Xo, Yo) Yo
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We analyze the three possible cases:

1. We have thatxg, 0) with Xy # 0 is a solution of (4.9), if and only if,
Xo = £1. Hereu = a.

2. We have thatO, yp) with yg # 0 is a solution of (4.9), ifand only ifj = 0
andyy = +1. Hereu = e.

3. Consider the casgo, Yo) with Xoyo # 0. We verify that the normalized
initial condition (o, Yo) is given by

p(t) = dt® + 2(c — 2e)t> — 3dt + 2(2a — ¢) = 0,
4.10
X5+ Y5 =1, t=, (4.10)
Xo
The homothetic solutions are important for the description of escape motions in
mechanical systems (see the following section).

5 The mechanical problem withV > 0

In this section we assume that the potentials positive definite or semidefi-
nite, and we analyze the asymptotic behavior and the escape directions for the
solutions of the system (2.7). We recall that the energy level is non-negative.
We remark first that if there ig* £ (0, 0) such thavV (g*) = (0, 0), because
of the homogeneity o/ we have that/ (q*) = 0. Hence,V is not positive
definite. Again, from the homogeneity ¥fwe haveVV (Lq*) = (0, 0) for any
A € R. Therefore, the one dimensional set of poiktg*, 0, 0) consists of zero
energy equilibrium points of the system.
Under the above condition& ¥ (q*) = (0, 0), with g* # (0, 0)) it follows
that if a zero energy solution is bounded, non periodic and is defined for all times,
its « andw limits must be equilibrium points.

5.1 Description of the flow

It is known that if a solutionqg(t) of (2.7) is not defined for all times, it is
unbounded.

For the following theorem we need a preparation lemma whose proof is found
in the appendix.

Lemma 1. All the solutions ofk = 4ax3, escape to infinity in finite time if
a>0.

Bull Braz Math Soc, Vol. 38, N. 2, 2007



HOMOGENEOUS POTENTIAL OF DEGREE 4 311

- N§§J

]

1

/
==\

-4 o 2

o

o

Figure 3: The phase portrait gif= 4ax.

In Figure 3 we show the phase portrait of the differential equatien4ax®
with a > 0.

Theorem 3. Letq(t) = (x(t), y(t)) be a non equilibrium solution a®.7) with
h > 0, then

1. If V is positive definite or semidefinite thag(t) is unbounded.

2. If V is positive definite theq(t) is not defined for all times.
Proof. To prove (1) we assume thgtt) is defined for all times and we will
consider several cases. Consider first the hasé) andV positive semidefinite.
For afixed solutiom|(t) = (X(t), y(t)) of the mechanical system (2.7), we define

the function
g(t) = x2(t) + y*(t).

Differentiating twice respect tband using the energy relation we get
g(t) = 2[2h + 6V (x(1), y(t))] > 4h. (5.1)
By integration of this inequality we obtain
g(t) = 2h(t —to)* + 2q(to) - q(to) t + g(to),

for anyt > tg. The conclusion follows by letting— +oc0.
Consider now the casé positive semidefinite and = 0. By convenience,
we denote(t) - q(t) by f(t). Itis clear that

gt) = 2ft), ft) =12vV(qQ)),

Bull Braz Math Soc, Vol. 38, N. 2, 2007
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so that f is an increasing function. By taking into account our comments at
the beginning of the section we conclude thét) is unbounded, since it is not
an equilibrium solution.

For the positive definite case, we introduce polar coordinates in the plane, i.e.
g = (X,Yy) = (r cosd, r sind). Then the System (2.7) takes the form

P =r6%+4r3V(9)

. 5.2
(r?0)" = —Vyr siné + Vyr cosh (52)

whereV (9) = V (cos9, sind). SinceV > 0, there is$$ > 0 such thav (9) > §.
Hence, from the first equation in (5.2) we get

P> 45r3.

From Lemma 1 we conclude that fof > 0 andh = 0, the solutionq(t) is
unbounded. This proves item (2) also. So, the theorem is proved. O

Remark 1. From the proof of the above theorem it follows that
* If h = 0andf (tp) = q(tp) -q(to) > 0, the solutiorg(t) escapes to infinity.

» The system (2.5) does not have periodic solutions wieis positive
definite or semidefinite.

* In the particular case where= —2a = —2e = —1, d = 0, the potential
V > 0 takes the form A2(x? — y?)? and the corresponding system has
the particular solutiox(t) = y(t) = ot + B defined for anyt € R
and its energy is given bly = «?. Hence, ifa # 0 the solution escape
to infinity as stated in the above theorem. Moreover, in this example
f(t) = 2x(at + B) takes positive and negative values.

» Suppose thatj(t) is a zero energy solution of (2.7). If(t) = 0O for
anyt theng(t) = constantfor anyt, i.e., x?(t) + y?(t) = constant
From (5.1) we hav&/ (q(t)) = 0 and from the energy relation it follows
thatx(t) = y(t) = 0 for anyt, and we have an equilibrium solution.
Hence, if a solutiom(t) = (x(t), y(t)) of (2.7) with zero energy satisfies
X)X () + y)y() = 0 for anyt with V positive definite or semidefinite,
then it is an equilibrium solution.

* Whenh = 0, V(6(t)) does not converge to 0 in finite time. Indeed, as-
suming that there exist$ € R such thatv (6(t)) — 0 whent — t*, we
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get from the energy relation & 1(/2 4 r292) — r4V (9) thatr (t) — 0,
6(t) — 0 whent — t*, so that the solution(t) tends to the equilibrium
(0, 0), in finite time, which is a contradiction.

* Itis easy to verify that the only potential of degree four such Yhat) =
constant is the potentid = «(x2 + y?)? with o constant.

» From the above items we verify that there is no solution of the form
q(t) =r(cosh(t), sind(t)) with r a positive constant for the casepos-
itive definite or semidefinite and with energy> 0.

5.2 Escape directions

To determine the escape directions we use a McGehee type blow up at the infinity
which was analyzed by Lacomba and Ibort [11], for two degrees of freedom
Hamiltonian systems of the form

1
H (X, Y, p1, P2) = §(p§+ p3) =V (X, Y),

whereV is a homogeneous function of degeee- 0. To apply a blow up at the
infinity, we transform the configuration space coordinates to polar coordinates,
but where the radial coordinate is replaced by its reciprocal. The new position
coordinate, 0, satisfy

1 1 1 .
—————; X = —C0s0; y=—siné.
VX2 4+ y2 P P

In the new coordinates the behavior at infinity is determined by the so called
Infinity surface defined by

NOO:{(,O,Q,U,U)|p:0,}(u2+v2)=V(0)},

2
which is independent di and invariant under the extended flow. Any solution
escaping to infinity must tend to a hyperbolic equilibrium point of the flow on
the infinity surface (see details in [8] and [9] ).

The# coordinate at an equilibrium point iN,, satisfiesV'(8) = 0. In our
case, we have

V'(0) = sin(®) [—4acos(9) — 2ccog8) sin?(9) + 2ccos(6)

5.3
— dsin®(0) + 3d cog(0) sin(d) + 4esin’(9) cogH)]. ®3)

Bull Braz Math Soc, Vol. 38, N. 2, 2007
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To compute the number of roots ¥f(9) = 0 we separate into two casab 0
andd = 0. For the first case we ha¥g(r/2) = —d # 0, so that

V'(0) = sin(9) cos(0)[—dt3+(—2c+4e)t?>+3dt+(—4a+2c)], t = tan®).

Remark 2. Notice that the cubic polynomial between brackets is minus the
polynomial defined by equation (4.10) in Section 4. Hence, the homothetic
solutions run along the escape directions.

From this remark we see that fdr# 0, there are at most 3 real roots for the
cubic polynomial. Hence, for any robt we have ta*) = t*. Consequently,
there are at most six values ®f{between 0 and:2).

Whend = 0 andd # n/2 we have

V'(9) = 2sin0) cos(9) [(c — 2a) + (2e — O)t?], t = tan®).
Summarizing

Proposition 3. LetV > 0, then there are at most 8 escape directiongl $ 0,
two of them correspond t = 0 and6é = n (x axis). Ifd = O four of them
correspond t@ = 0, 6 = 7 (x axis),f = n/2andé = 3 /2 (y axis).

6 The mechanical problem forV <0

In this section we will assume that the potentiak negative definite or semidefi-
nite, which implies thaa < Oande < 0. If V < Othe level surfaces are compact
manifolds for eaclin > 0, since they are given by

1.
H = EIIQII - V(@ =h.
So, we get the following result
Proposition 4. If V < 0andh > 0, then the solutiong(t) of the systen(2.7)

are defined for any € R and they are bounded.

This is in contrast with the positive semidefinite case, (see Theorem 3). If
V (X, y) = 0 for some(x, y) # (0,0) andV is negative semidefinite, the Hill
region is unbounded. Indeed,¥ = 0 along the liney = kx, the cylinder
{1/2(x2 4+ y?) = h, y = kx} is contained in thé energy level. Wheh = 0 we
get a line which can be considered as a degenerate cylinder.
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6.1 The periodic solutiony =y =0
The system (2.7) always admits the periodic solution
y=y=0,
which we denote by, and it satisfies
X = 4ax®,
and from the energy relation we have
%)’(2 —ax*=h.

We see that the initial positioxy, determines from the energy relation the initial
velocity (except by the sign) which is given by

vo = %o = +,/2h + axt. (6.1)

We remark that the subsgt = x = 0} is invariant under the system (2.7), if
and only ifd = 0.
Replacing. by x andu by a as in Section 4, we have

X(t) = h ¥ n{2(ah)*t 1
()_(H> C((|a|) 72)

(6.2)
1
= xocn|2 ah1/4t,—>,
0 ( (lafh) NG
x(t) = —2 (jah)¥* xq sn<2(|a|h)1/4t,i) dn<2(|a|h)1/4t,i>,
V2 V2] (6.3)
X(0) = 0,
for the initial condition
h 74
Xo=|— > 0, Vg = Xo =0. (64)
El
The period is given by
2 (6.5)

Ty=—
= Jama ©

with « as in (4.7). Notice that
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» Ty isincreasing if and only if is decreasing. In particulaf, — oo if
and only ifh — 0.

e X(t) = 0, if and only if,t = %(1+ 2k) Ty, k € Z. Therefore, the first
positive time wherex(t) = 0ist; = .

* Since the functiorn(, ) > 0, it follows thatx(t) = 0, if and only if,

sn(ﬁ (Jajh)y¥4 t, %2) =0.

This happens when
1

Hence the first positive time whergt) = 0 ist; = T—,;

6.1.1 Stability of I

To study the stability of anyf -periodic solutiony (t) = (x(t), y(t), X(t), y(t))
we use Floquet theory. To apply this we write the variational equations for (2.7)
associated to the solutign that is

X=AMDX, X= (U, Uz v1,v2), (6.6)
where
0 0 1
0 0 0 1
AlD) = 12ax2(t) 4 2cy2(t) [4cx(t) + 3dy(H)1y() o o] €0
[4cx(t) + 3dy(t)]y(t) 2cx2(t) + 12ey2(t) +6dxt)yt) 0 O

with At + T) = Ab).

The (linear) stability ofy is equivalent to the stability of the zero solution of
system (6.6). We recall some important properties for Hill's equations (see for
example, [10]).

Consider the Hill equation

i+ pt)u=0, uteR,
wherep(t + T) = p(t) is of classC? in R, which can be rewritten as
U=v, v=-—ptu. (6.8)

So, we have the following remark.
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Remark 3.
(1) Any solution of (6.8) is defined for all € R.

(2) If p(—t) = p(t) then the solution of (6.8) with initial conditiong0) = 1
andu(0) = 0 is even, and it is odd if the initial conditions ané0) = 0
andu(0) = 1.

(3) Ifu(t)isasolutionof (6.8) thedi(t) = u(t)k(t) withk(t) = fg 1/u?(s)ds
is also a solution of (6.8) which is linearly independent withHence,
{u, 0} is a basis of the space of solutions for (6.8).

(4) Ifthe T-periodic functionp(t) is non positive but it is not identically zero,
then the zero solution of the Hill equation(6.8) is unstable.

(5) Underthe conditions of the lastitem, we see that a characteristic multiplier
has module greater than one and the other multiplier has module lesser
than one.

The matrix A corresponding to the variational equations for our periodic so-
lution I" in Subsection 6.1, is

0 0 1
0 0 01
A = 12ax2(t)y 0 0 of" (6.9)
0 2x3(t) 0 0
Equation (6.6) becomes
liy — 12ax?(t)u; = 0, (6.10)
and
ti, — 2cx?(t)up = 0, (6.11)

i.e., it corresponds to a pair of Hill equations. From point 4 in Remark 6.1.1
(by taking p(t) = —2cx?(t) andc > 0) we get

Proposition 5. If ¢ > 0then the zero solution @b.11) is unstable.

Since the variational equations associated to the periodic solian O,
X(t), 0) are uncoupled, from this proposition and item 5 in RematklBwve get

Theorem 4. If ¢ > 0,a < 0, e < 0, d € R, the periodic solution" :
(X(1), 0, x(t), 0) of system(2.7) is Liapunov unstable.
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We consider now the case< 0. We first see that
2 h 12 2 1/4 1
t) = 12ja|x°(t) = 12]a] | — cn“{2(alh)y”*t,—) >0
p1(t) la|x(t) ||(|a|) ((II) ﬁ)

wherepy(t) isaT = T—zx -periodic function. We now verify that the Hill equa-
tion (6.10) is the variational equation for the periodic solut{aut), x(t)) of
the Hamiltonian system

X=y, y=4ax

with Hamiltonian function
1
H=-y*—ax’
2y

Since the system is time-independent with a first integral it is known that the
characteristic multiplier 1 of the monodromy matXxT) for the system (6.10),
has multiplicity 2. From Floquet theory the system (6.10) has at leasTene
periodic solution which we denote l (t). The proof of the following result

is contained in the appendix.

Lemma 2. Assume that the Hill equatiorii + p(t)u = 0 (p(t + T) = p(t),
of classC? in R) has the characteristic multiplier 1 with multiplicity 2, then the
monodromy matrix is not diagonalizable.

From this lemma, we see that solutiag(t) is unbounded, so that the zero
solution of Hill equation is unstable. This proves the following

Theorem 5. The periodic solution(x(t), 0, X(t), 0) of system(2.7) is linearly
unstable forany < 0,c < 0,e < 0andd € R.

Remark 4. Recall that whert > 0 anda < 0, e < 0,d € R the periodic so-
lution (x(t), O, x(t), 0) is Liapunov unstable according to Theorem 4. However,
for the casee < 0 we have only proved in Theorem 5 the linear instability.

7 Some particular cases

The caseV < 0 is complicated due to the great variety of dynamical behavior,
as shown by the following examples.
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7.1 The case/ negative definite withd = 0

In this case the equations of motion (2.7) take the form

X = 2x[2ax?+ cy?]
(7.1)
= 2y[cx?+ 2ey].

The invariance of the potenti® under the reflections with respect to the coor-
dinate axes implies the same for the system (7.1) as well as the symmetry of the
Hill region R with respect to the same axes. Hence, itis enough to study the Hill
region in the first quadrant. In this case the Hill region is compact and we will
compute the curvature of its zero velocity curve which is defined by

V(x,y) = ax* + cx?y? + ey = —h. (7.2)

If x = 0, this relation implies (foe # 0) thaty = +(—h/e)¥4. Hence the
tangent vector to the zero velocity curve at the padai—h/e)'/4) is parallel to
thex axis. In the same way, the tangent vector is parallel toythgis at a point
of the form((—h/e)¥/4, 0).

The oriented curvature for a curve definedyoy: y(x) is given by

/

. y// . d
C= Ty where = dx

By implicit differentiation on (7.2) we get

—V2Vyy — V@V + 2Vx Vy Vy

c =
[VZ + V713/2

[—2ec t* + (¢% — 12ae) t2 — 2ac] (7.3)

4
= X" V(X, )
Y (4a2x6 + 4e2y6 + {(c? + 4ce)y? + (c? + 4ae)x?}x2y?)]3/2

t=2

X

The sign of the curvature depends on the zeroes of the polynomial
q(u) = 2ec ¥ — (c> —12ae) u+2ac u=t>,

which are given by

— i 2 2 2
U = 5 [(c — 12ae) + /(c2 — 12ae)2 — 16aec2],

Bull Braz Math Soc, Vol. 38, N. 2, 2007



320 M. FALCONI, E.A. LACOMBA and C. VIDAL

but only positive roots are admissible. Then we get

Proposition 6. If the concavity of the zero velocity curve = —h changes,
then[c® — 12ae]® > 16aec > 0 andc? — 12ae > 0. The inflection points are

given byy = t.x, witht, = £+, /Uz.
On the other hand, if we assume that 0, c < 0 ande < 0 the expressions

2ax’ +cy?, cx?+2ey’
are negative definite, so that

sgnX) = —sgnx) and sgiy) = — sgny). (7.4)

We now state some properties and introduce some notation for system (7.1),
whena < 0,c < 0 ande < 0.

1. Since any solution of (7.1) is analytic and it is defined fot &lR, is not
true thatx(t) or y(t) have a fixed sign for atl € R. In fact, we see that if
x(t) > Ofor everyt € R, then from (7.1)X(t) < O holds for every € R,
which is a contradiction. The same argument works in any case.

2. From the above item it follows that there exist first positive tilges R+
andt, € R* such tha(t;) = 0 andy(ty) = 0.

3. From relations (7.4) we have thétt;) = 0 andy(t;) = 0. This means
thatx andy change concavity at timeg andt,, respectively .

4. Itis not possible that(t) > 0 (resp.y(t) > 0) for eacht € R. Indeed,
if X(t) > 0 fort € R, thenx(t) is a strictly increasing function and
thereforex(t) > x(t;). Let us fixt* > t; such thax(t*) = § > 0. Then
2ax?(t) + cy?(t) < 2a8? < 0. Hence, 2(t) [2ax?(t) 4 cy?(t)] < 4as®.
So,

X(t) < 4as®, vt > t*.

By integrating twice betweett andt we get
X(1) < X(t%) 4+ X(t*)(t — t*) + 2a83(t — t*)2.
Lettingt — +oo we obtain
X(t) »> —o0,
sincea < 0, which is a contradiction. The proof fg«t) is similar.
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5. From the above item, there are positive tiheandt, such thaik(t3) = 0
andy(ty) = 0.

In the following propositions;, t,, t3 andt, are as defined above.

Proposition 7. Let (x(t), y(t)) be a solution of(7.1), with initial condition
(X(0), y(0)) = (X, 0), (X(0), y(0)) = (0, vg) and Xy, vg are greater than zero,
such thatt; = t,. Then,(x(t), y(t)) is T = 4t;-periodic and its orbit is sym-
metrical with respect to the coordinate axes.

Proof. Since system (7.1) is invariant under reflectigrsy) — (—X, y) and
(X, ¥) = (X, —Yy), and the orbit o{x(t), y(t)) is perpendicular to the axis in
t = 0, it will be enough to trace a quarter of orbit. Duextd;) = y(t;) = 0, we
only need to prove that at= t; the orbit is not tangent to thg axis. We have
thatx(t) will be decreasing in the interva0, t,), sincex(t) > 0 fort € (0, t;).
Hence

X(t) < X(t,) := A < x(0) =0,

wheret, € (0, t;) is a fixed but arbitrary time. By continuity we have
X(tl) <A<0,

which concludes the proof. O

Figure 4: Symmetrical periodic solution passing through(th®).

Proposition 8. Let (x(t), y(t)) be a solution of(7.1), with initial condition
(X(0), y(0)) = (X0, 0), (X(0), y(0)) = (0, vg), Wherexg, vo are greater than
zero, such thats = t4. Then(x(t), y(t)) is T = 4tz periodic and its orbit is
symmetrical with respect to theaxis.

Proof. We see that the orbit of(t), y(t)) touches the zero velocity curve since
X(t3) = y(t3) = O; its periodicity and symmetry with respect to tkeaxis

follows from the initial condition. O
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T
D

Figure 5: A periodic solution touching the zero velocity curve.

In this cased = 0), we have two particular periodic solutions, one of them
is of the form(x(t), O, x(t), 0) wherex(t) is given by (6.2) whose stability is
described by Theorems 4-5. The other one is giverxby x = 0, which is
written in terms of an elliptic function

h . 1
yt) = \%%cn(z lelh t, E)

. - (7.5)
= VpCNn 24eht,—), = 9—
Yo ( €l NG Yo o
whose period is
2
Ty = W K. (76)

We summarize some properties of this solution.
* y(t) =0, ifand only if,t = HXT, k € Z.

e y(t) = 0, if and only if, sn(/4|€e| Yot, ﬁ/Z) = 0. This holds when
t=31+KTy, keZ

* It is possible to construct a periodic solution satisfyj@) = 0 and
¥y > 0. Indeed, we define

. 3
yit) =yt + ZTy). (7.7)
We see that

- 3 - 3
yO0) =y (ZTy> =0, y(0) = w/4|e|y§dn (4_1 Tyv/4l€elYo, x/§/2) > 0.

* Notice that the first positive time such that) = O is given byt, = %Ty.
« The first positive time such thgit) = O ist, = %.
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The analysis of the stability of the periodic soluti@® y(t), O, y(t)) of system
(7.1) is similar to the one for the solutigr(t), 0, x(t), 0) in 6.1.1, replacing
by e. In this case, the matriA in (6.7), reduces to

0 0 1

0 0 01
2cy?(t) 3dy*t) 0 Of°
3dy?(t) 12ey?(t) 0 O

Hence the corresponding variational equation (6.6) is
iy — 2cy?(HhHuy = 0,  lip — 12ey?(t)u, = O. (7.9)

As a corollary to Theorems 4-5 applied to the cdse 0, we have

At) = (7.8)

Theorem 6. If a < 0,¢c > 0, e < 0 andd = 0 then the periodic solution
(0, y(1), 0, y(1)) of system(7.1) is Liapunov unstable.

Ifa<0,¢c=<0,e<0,d= 0then the periodic solutioK0, y(t), 0, y(t)) of
system(7.1) is linearly unstable.

7.1.1 The particular caseV = —x* — 2ax?y?> —y* < 0,0 > 0

In this casea = —1,¢c = —2«, d = 0 ande = —1. According to Theorem 5,
we know that the periodic solutiofx(t), 0, X(t), 0) is linearly unstable. The
stability analysis of this periodic solution was made in [1] foclose to 3. In
the integrable case = 3 the variational equation (6.6) has two equal blocks,
which means that the associated Hill equations (6.10) and (6.11) coincide. Using
the Krein-Lynbarskii Theorem (see [19]) one can prove that for valuesaif
the forma = 3 + ¢ with € in one of the following intervals O< ¢ < § or
-8 < € < 0, (8 is a small positive number) the characteristic multipliers of the
second block in the monodromy matrix are outside the unit circle. Then, the
corresponding periodic solutigr(t), 0, X(t), 0) for thata is Liapunov unstable
since at least one characteristic multiplier has module greater than 1. We remark
that this argument can not be applied to potentials in Subsection 7.1, since the
periodic solutionx(t) there, does depend @n
Consider nowr = 1, thatis,V = —(x? + y?)2. From the energy relation we
have 1
h= (P + P + (¢ +y9%

The equations of motion (2.7) take the form

o 2 2

X = —4x (Xc+y9), (7.10)

y = —4y 0C+yd.
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In this case
VV(X,y) = —4(x* + y?) (X, ),

i.e., VV (X, y) is parallel to(x, y). Notice that system (7.10) is integrable; the
first integrals are the energy and the angular momer@ue g x §. We see
that the linesy = mx (m e R), are invariant for the system (7.10), which are
the homothetic solutions. These solutions can be found explicitly by solving
the system

X = —41+m?) x5,

. 7.11)
X2 h (

= = — (1+m?)x4,

2 1+ m? (d+m3

Integrating the energy relation as we did in previous sections we see that the
solutions of the system (7.11) are periodic and can be written as

X(t) = Xo cN(v/4 (1 + m2) Xo t, v/2/2) (7.12)
with initial condition
h 1/4
Yo = (1 . m2> ,
and period
2

T= h1/4(1 + m2)L/4 .

Sincewe hava = —1,e= —1,¢c = —2,d = 0 in system (7.10), we can apply
Theorem 5. Hence, this periodic solution is linearly unstable.

7.1.2 The particular caseV (x,y) = ax* +ey* <0

We now consider that < 0 ande < 0. The equations of motion (2.7) become
the uncoupled system
X =4ax3, §=4ey. (7.13)

The energy of the system is the Hamiltonian function
1 -2 -2 4
H =5 +y) —ax — ey, (7.14)

We split any fixed energy level as

H=h=h;+hy>0,
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where 1

hy = Exz —ax*, (7.15)
and 1

h, = Ey2 —eyh. (7.16)
Hence, the System (7.13) is integrable. Notice thath, must be non negative,
and generically the corresponding invariant submanifold is a torus.

By integration, we can express the solution by elliptic functions of the first
kind

14
X(t) = Xo Cn(2y/|al Xot, v2/2),  x(0) = %0 = <E> -0

|al
and
h, 1/4
y(t) = yo cn(2y/|el yot. v2/2),  y(0) = yo = (H) > 0.
The following properties hold fox(t) andy(t),

1. x(t) is Ty periodic, wherel; = W K = j% Xo = j% X—lo

2. y(t) is T, periodic, whereT, = W K = j—f% Yo = j—‘%l yl

3. X(t) = —2y/a] X2 sn(v/4a] Xot, +/2/2) dn(2/Ta] Xot, +/2/2),
Xx(0) =0.

4. ygto)) x gm ¥§ Sn(/ATel Yot, v/2/2) dn(v/4el yot, v/2/2),
y(0) = 0.

Then the solutiorgx(t), y(t), X(t), y(t)) is periodic, if and only if,

T, [hole]]"*
- = . 7.17
T, = ihyfal < (747
Equation (6.6) gives rise to the uncoupled system
iy — 12ax2(t)u; = 0, Uip — 12eX3(t)u, = 0. (7.18)

Since the System (7.13) is uncoupled, its stability depends on the one of any of
the components of the solution, séy(t), x(t)). From the above properties 1,
2, we get the following result.

Theorem 7. The solutions 0{7.13) are orbitally stable, although they are
Liapunov linearly unstable.
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Proof. Liapunov instability follows as in Theorem 4, because of the uncou-
pling of the variational system. O

8 Non integrability conditions

In this section we apply some results on non integrability of Hamiltonian poly-
nomial systems proved in [17]. According to this, we solve first the equation

VV() = —q,
whereV is given by (2.6). We get the system
X(4ax® + 2cy?) + dy® = —x
y(2cx? 4 3dxy + 4ey?) = —y.

We have to consider 3 cases:
(1) If x=0andd # 0, then we get the trivial solutiop = 0.

(2) If x =0andd =0, theny = iz\%e with e < 0, obtaining the solutions

p1 = (0. £57), wheree < 0 andd = 0.

(3) If y=0andx # 0, we getx = ﬂ:ﬁja with a < 0, giving the solutions
pp=(=+ ﬁ?a 0), wherea < 0.

The Hessian Matrix of-V (X, y) is in general

—(12ax? + 2cy?) —(4cxy+ 3dy?) )

Hess-V) = (—(4cxynL 3dy?) —(2cx? + 6dxy+ 12ey?)

Replacing the above solution points we get for the case (2)

% 0
A(pl)=(% 3>,

with e < 0 andd = 0, whose eigenvalues akg = 2£e andi, = 3.

A= (5 ).

2a

For case (3) we have
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with a < 0. In this case, the eigenvalues afe= 3, andi, = %

For these non trivial cases and using Theorem 3 in [17], we see that a
necessary condition for a Hamiltonian system with homogeneous potential of
degree 4 to be completely integrable is that the eigenvaluesHesg—V) can
be written as

(i) p@2p-1);
1 1/4 2
(i) —§+§<§+4p>,

173
(i) > [Z + 4p(p + 1)], wherep € Z.
The common eigenvalue 3 satisfies condition (i). Then, the non integrability
depends on whether the remaining eigenvalue does not satisfy any of the above

conditions.

Proposition 9. For the solutionsp, = |n case(3), we see that the
Hamiltonian systeng2.2) with V given by(% |s not integrable if any of the
following relations is satisfied

c -1
1 = < _=
D) o= =71
(2) «is not a solution of any of the following equations

(p—1/?=a+1/16, (p+1/3)2=a+1/16,
(8.1)
(p+1/2%=a+1/16

for p € Z. A similar result holds for the solutiong, = (O, iz—\lﬁe) in
case(2) withe < 0 andd = 0, replacing a by e if{1) and(2).

Proof. By equating the eigenvaluex2vith the above expressions (i)-(iii), we

get equations (8.1). Since the left hand side of these equations is a non negative
number,a must be greater than1/16. On the other hand, (8.1) does not have

an integer solution whesw = —1/16. O
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/

-3 -2 -1 1 2 = P

Figure 6: Thex coordinate of the intersections points of the lipe=n, n € Z
with the parabolas are values for which integrability is undecidable (see (8.1)).

The Figure 6 describes how to get the values pfor which integrability is
undecidable. Notice that case (2) with= 0 is integrable.
The analysis of solutions where # 0 andy # 0 is harder. Wher = O,
we get
—dax? —2cy? =1
(8.2)
—2cx% — 4ey? =1,

where we obtain the additional cases
(4) Ifinadditionc = 0, we get an integrable system since it is separable.

: 1 1
(5) If a=0andc # 0, we obtainy? = X2=—z+35.

T2 c?
(6) Ife=0andc+#0,wehave® =—1L,y2=—1+3,
We analyze now case (6) which is similar to (5). We must have 0 and

since 0< y? = Zg—c‘f it is necessary tha > 3 holds. This gives the solution
points

P3 = (81/\/—20, 8o+/2a — c/«/§|c|) ,

where$; = +1. The characteristic polynomial for the Hessian matrix at these
points is
M+ (A+Dr+3(A—-2) =0,

whereA = 1+ 4c/a. Its roots are

M=A-2=—1+4c/a:=p, =3
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From necessary conditions (i-ii-iii) for integrability we have

(p—1/4%=B/2+1/16, (p+1/3)>=8/2+1/16, 63
(p+1/2)2 = B/2 + 1/16, '

wherep € Z. Replacinga by 8/2 in the above figure, we get the values of

B for which the integrability is undecidable. Even for the case witkee O

it is hard to obtain generic results since the solutions of System (8.2) corre-
spond to the intersection of two conic curves, which depends on the parameters
a, cande.

Acknowledgement. This work was partially supported by CONACYT
(México) grant 47768.

9 Appendix

Lemma 1. If a > 0, all the solutions ok = 4ax®, escape to infinity in finite
time.

Proof. The energy relation is given by

1
h=Z>x%—ax*
2

Hence,
dx

Wiy +4/2dt.

On the other hand,

V1+axt <1+ ax?<+/2y1+axt,

if h=1. Then,
< ++/2dt
1+f2— V2 <\/—1 ﬁZ’

and upon integration
1 1/4 1/4
v tan(+a”" t 4+ arctana™“xp)) < x(t)

1
< tan(++/2a%* t 4 arctana/*xo)),
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for eacht where the solutiox(t) is defined.

Whenh = 0 by direct integration we get

Xo
X)) = ———.
FXxov2at+ 1

Forh < 0, and due tx > a~/4 we obtain

@ - 1% < -1+ ax* < 1+ Jax?,

takingh = —1. Therefore,

dx dx
1+f 2 —:l:\/_dt— ( al/4x _1)3/2’

and by integrating again

1 1
1

= = X(t)
ve <:F“7§<‘/5t+

2

1
v Yax-1

[tamif av/2t 4 arctany/axo)),

from where the proof follows. 0

Lemma 2. Assume that Hill equatioii + p(t)u = O, wherep(t + T) = p(t)
is of classC! in R has 1 as a characteristic multiplier of multiplicity two, then
the monodromy matrix is not diagonalizable.

Proof. Letuy(t) be theT-periodic solution of Hill equation with initial con-
ditionsu;(0) = u® andu;(0) = 1?. From property (3) in Subsection 6.1.1 we
know that a solution linearly independent witkx(t) is u,(t) = u;(t)k(t) where
kt) = fé l/ui(s) ds. Hence, the monodromy matrix becomes

X(T) = (Ul(T) U2(T)> .

ui(T) ux(T)
Sincex = 1 is an eigenvalue of multiplicity two, the following relation
— 2L+ 1=A%—Tr(X(T)) » +det(X(T))
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holds. Therefore,

(i) u(T) +ux(T) =2,
©.1)
(i) u(MUA(T) —ux(T)Huy(T) = 1.

We have two cases: (1)? # 0, and (2)ud = 0.

In the first case we assume without loss of generality tijat 1, so that
ui(T) = 1. This fact together with definition afi,, implies thatuy(T) =
k(T) > 0. From equation (i) we obtaii(T) = 1. By replacing the values of
u1(T) andux(T) in equation (ii), we conclude that (T) = 0. Then we have

= (3 40,

In the second case, we assume without loss of generalityif@t= 1 and then
U1(T) = 1. Sinceuy(T) = u‘f = 0, it follows from (i) thatu,(T) = 2 and from
(i) we obtainu,(T) = —1. Therefore, we get

X(T) = (2 _21)

Summarizing, the monodromy matriX(T) in both cases is not diagonal-
izable. O
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