
“main” — 2007/6/12 — 15:41 — page 301 — #1

Bull Braz Math Soc, New Series 38(2), 301-333
© 2007, Sociedade Brasileira de Matemática

On the dynamics of mechanical systems with
homogeneous polynomial potentials of degree 4
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Abstract. In this work we study mechanical systems defined by homogeneous polyno-
mial potentials of degree 4 on the plane, when the potential has a definite or semi-definite
sign and the energy is non-negative. We get a global description of the flow for the non-
negative potential case. Some partial results are obtained for the more complicated case
of non-positive potentials. In contrast with the non-negative case, we prove that the
flow is complete and we find special periodic solutions, whose stability is analyzed.
By using results from Ziglin theory following Morales-Ruiz and Ramis we check the
non-integrability of the Hamiltonian systems in terms of the potential parameters.
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1 Introduction

The homogeneous polynomial Hamiltonian systems are a recurrent research
topic, since they are fundamental in order to understand the behavior of poly-
nomial or analytical Hamiltonian systems. Indeed, in the search for more com-
plete characterizations of integrable Hamiltonian systems one is often lead to
the study of homogeneous systems, see for example, the papers by Yoshida
([20]) and Morales-Ruiz and Ramis ([17]), on necessary conditions for integra-
bility of mechanical systems with homogeneous potentials. More recently, the
work by Maciejewski and Przybylska ([16]) gives a complete characterization
of meromorphically integrable homogeneous Hamiltonian systems of degree 3.
Homogeneous potentials appear also in the modelling of natural phenomena
or processes. Along this line we may mention Caranicolas et al. [1], [2] and
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Contopoulos [3] who have considered third or fourth degree homogeneous per-
turbations of homogeneous quadratic polynomials as models in the dynamics of
galaxies. As it is commonplace in this area of research, they have applied numer-
ical methods in order to explain interesting features of the concerned dynamical
systems.

We studied in [7] some general properties of the flow of mechanical systems
with polynomial potentials of degree lesser or equal than 4 in two variables.
The main tool was the application of a McGehee blow up at infinity, which was
systematically studied in [11]. From this blow up we get a two dimensional
infinity manifold which allows us to study the flow in a neighborhood of infinity
in the configuration space. In the negative energy case it is verified that the flow is
gradient-like, so that any solution of the mechanical system has to be asymptotic
to one of the equilibrium solutions on the collision manifold. Later on, in [8], it
was analyzed the global flow for the case of homogeneous potentials of degree
3 and negative energy. This time, the flow extends the energy level to a compact
3-manifold whose boundary is the infinity manifold, which is invariant under
the extended flow. Transversality properties of the flow were used in order to
describe the global flow when the potential is separable, and the general case of
negative energy was studied in [9], including a description of the global flow for
the more complicated case of positive energy.

In this work we study the dynamics of planar mechanical systems whose asso-
ciated potentialV is a homogeneous polynomial of degree 4. The classification
of the dynamics is a hard problem due the fact that the potential depends on
5 parameters. However, we obtain a very general description of the dynamics
by restriction tosemidefinitepotentials. We will analyze the dynamics in the
non-negative energyh levels, since we proved in [7] that whenh < 0 the flow is
gradient-like and every solution tends to an equilibrium on the infinity manifold.

The problem is stated in Section 2, where we describe the canonical form of a
planar homogenous potential of degree 4. Then, in Section 3 we study the sign of
the potentials in terms of their coefficients. Some particular solutions which are
calledhomotheticare studied in Section 4. The flow of the mechanical system
when the potential is positive definite or semidefinite is studied in Section 5.
We prove that, generically, non-equilibrium solutions escape to infinity, and in
particular, there are no periodic solutions. We also show that escape directions
correspond to homothetic orbits. The negative definite and semidefinite poten-
tial case is studied in Section 6, proving the completeness of the flow and the
boundedness of all solutions. The stability of certain periodic orbits is analyzed
in terms of the parameters of the potential. Some examples are given in Sec-
tion 7. Finally, in Section 8 we study non-integrability conditions of degree 4
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homogeneous potentials as a function of the parameters.

2 Statement of the problem

We consider a planar mechanical system defined by

q̈ = ∇V(q), q = (x, y) ∈ R2, (2.1)

where the associated potentialV is a homogeneous polynomial of degree 4. The
energy of this system is the Hamiltonian

H =
1

2

(
ẋ2 + ẏ2

)
− V(x, y). (2.2)

We denote byp = (p1, p2) the velocity vector(ẋ, ẏ), so that the corresponding
Hamiltonian system equivalent to (2.1) is given by

ẋ = p1, ṗ1 =
∂V

∂x
(q)

ẏ = p2, ṗ2 =
∂V

∂y
(q).

(2.3)

We will always consider in this paper that the energy levelh is non negative.
Recall that the Hill regionR is the subset of the plane given by

R = {q = (x, y) | V(x, y) + h ≥ 0},

whose boundary is the zero velocity curve

Z = {(x, y) | V(x, y) + h = 0}.

Notice that if there is a pointq∗ ∈ R such thatV(q∗) > 0, then because of the
homogeneity of the potentialV , all the points in the line generated byq∗ belong
to the Hill region. Consequently, the Hill region is unbounded.

Without loss of generality, in any homogeneous potential of degree 4 in two
variables

V(x, y) = ax4 + bx3y + cx2y2 + dxy3 + ey4, (2.4)

we can takeb = 0. This is stated in the following theorem

Theorem 1. Any mechanical system

ẋ = p1, ẏ = p2,

ṗ1 =
∂V

∂x
, ṗ2 =

∂V

∂y
,

(2.5)
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whereV(x, y) is a potential as(2.4), becomes through a symplectic change of
variables a mechanical system with potential

V(x, y) = ax4 + cx2y2 + dxy3 + ey4. (2.6)

Indeed, it is enough to consider the symplectic transformationT given by

x = −sX + rY, y = r X + sY,

p1 = −
1

r 2 + s2
(s P1 − r P2), p2 = −

1

r 2 + s2
(−r P1 − s P2) .

We will assume from now on, that the mechanical system is given by (2.5), where
the potentialV is homogeneous of degree 4 and it has the normal form (2.6).
Hence, the second order system of differential equations we have to study is

ẍ = 4ax3 + 2cxy2 + dy3

ÿ = 2cx2y + 3dxy2 + 4ey3 = y [2cx2 + 3dxy+ 4ey2] .

(2.7)

We remark thatV is invariant under the symmetry:(x, y) → (−x, −y).

3 On the characterization of definite and semidefinite potentials

In this section we analyze how the sign of homogeneous potentials is related to
the values of the coefficientsa, c, d, e. We define

Definition 1. A real homogeneous functionV, is positive (negative) definite
if V(x, y) > 0 (V(x, y) < 0), for any (x, y) 6= 0. V is positive (negative)
semidefinite ifV(x, y) ≥ 0 (V(x, y) ≤ 0) and it is indefinite if it changes
signs. We writeV > 0 (V < 0) whenV is positive (negative) definite, and
V ≥ 0 (V ≤ 0) whenV is positive (negative) definite or semidefinite.Let Q be
the quadratic form generated by the matrix

A =




a c/2 0

c/2 e d/2
0 d/2 0



 , (3.1)

that is,
Q(z1, z2, z3) = z1(az1 + cz2) + z2(dz3 + ez2). (3.2)

We consider the functionf : R2 → R3, given by

f (x, y) = (x2, y2, xy). (3.3)

Bull Braz Math Soc, Vol. 38, N. 2, 2007
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It is easy to see thatV(x, y) = (Q ◦ f )(x, y). Hence,V > 0 is equivalent to
Q greater than zero on the image off . So,V is definite if the image off does
not intersect the set of zeroes ofQ, which is given by the equation

z1(az1 + cz2) + z2(dz3 + ez2) = 0. (3.4)

This is the projective equation for the parabola

P1 : 9 = aX2 + cX + dY + e = 0, (3.5)

whereX = z1/z2 andY = z3/z2. If z1 = x2, z2 = y2 andz3 = xy, the image
of f in the variablesX, Y becomes the parabola

P0 : Y2 = X. (3.6)

It is clear that a necessary condition forV to be definite is thata ande have
the same sign. Therefore, whend = 0, a > 0 ande > 0, the fact thatV > 0
depends only onc. In particular,c > 0 impliesV > 0. Equation (3.5) becomes
aX2 + cX + e = 0, whose roots are

X1 =
−c −

√
1

2a
, X2 =

−c +
√

1

2a
, (3.7)

where1 = c2 − 4ae. We have three cases, whenc < 0: 1) if 1 < 0, then
9 > 0, for all X henceV > 0; 2) if 1 = 0, then there is only one positive
root, so that9, annihilates inX1 and it is positive forX 6= X1. Consequently,
V ≥ 0 and it becomes zero in the lines determined byX1y2 = x2. Finally, 3)
if 1 > 0, both roots are positive and the four points(X1, ±

√
X1), (X2, ±

√
X2)

belong toP1; therefore9 ≤ 0 in the intervalJ : X1 ≤ X ≤ X2. From this it
follows thatV ≤ 0 in all the planar region determined by the intervalJ and it
is positive in its complement.

Proposition 1. Let V(x, y) = ax4 + cx2y2 + ey4 with a, e > 0 and letX1 and
X2 be given by(3.7). Then

(1) V > 0 if and only ifc ≥ 0 or c < 0 and c2 − 4ae< 0,

(2) If c < 0 and c2 − 4ae = 0, thenV ≥ 0 and it vanishes on the lines
defined byX1 y2 = x2,

(3) If c < 0 and c2 − 4ae > 0, thenV is indefinite; it changes sign in the
planar regions bounded by the linesX1 y2 = x2 and X2 y2 = x2.
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If d 6= 0, we may assume thatd = 1, dividingV by d; From now on, we will
take

V(x, y) = ax4 + cx2y2 + xy3 + ey4.

It is not hard to see that the sign of9 and the shape ofP1 depend on the
parametersa, c, as we show in Figure 1. Notice that ifP1 ∩ P0 = ∅, the sign of
V is opposite to the sign of9 in the region bounded byP1.

( a )

(a) (b)

( c ) ( d )

(c) (d)

Figure 1: If P1 ∩ P0 = ∅, thenV is positive in the cases (a) and (b) and it
is negative in the cases (c) and (d). (a)a > 0, c > 0. (b) a > 0, c < 0.
(c) a < 0, c < 0. (d)a < 0, c > 0.

The complete classification of potentials according to their sign is a compli-
cated task in the general case. Now, we give an algorithmic procedure to decide
the sign ofV . We introduce the notationV[a, c, e] to take into account the
dependence of the potentialV whit respect to the parametersa, c ande, since
we are takingd = 1. The parabolaP1 corresponding toV[a, c, e], has a parallel
tangent line to the one of the parabolaP0, at each pointX∗ > 0 which is a root
of the equation

16a2X3 + 16acX2 + 4c2X − 1 = 0. (3.8)

It is easy to verify that 27a8 + 8a7c3 is a positive multiple of the discriminant
of the cubic. Then, 27a8 + 8a7c3 > 0 is a necessary and sufficient condition
for a unique real root of the above equation. In this case, the root is positive and
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it is given by

X∗ =
−c

3a
+

c2

3 2
1
3

(
27a4 + 4a3 c3 + 3

√
3

√
27a8 + 8a7 c3

) 1
3

+

(
27a4 + 4a3 c3 + 3

√
3

√
27a8 + 8a7 c3

) 1
3

6 2
2
3 a2.

(3.9)

Let Y∗
1 = −aX∗2 − cX∗ − e andY∗

0
± = ±

√
X∗. We have the following result.

Theorem 2. Assumed = 1 and27a8 + 8a7c3 > 0.

(a) If a > 0, then V[a, c, e] > 0 if and only if Y∗
1 < Y∗

0
−,

(b) If a < 0, then V[a, c, e] < 0 if and only if Y∗
1 > Y∗

0
+.

In Figure 2, the relationship between the positions of parabolasP0 andP1 and
the sign ofV are shown. If the term 27a8 + 8a7c3 considered in the Theorem 2
is negative, the Equation (3.8) has more than one root and in this case, similar
but more complicated conditions to determine the sign, can be found.

-2 -1 1 2

-2

-1

1

-2 -1 1 2

-1

1

2

( c )(a) (b) (c)

Figure 2: a) Indefinite Potential. (b) Positive Potential. (c) Negative Potential.
In this figure,d 6= 0.

4 Homothetic solutions

In this section we study those solutions of the System (2.7), whose projections
into the configuration space are straight lines.

Bull Braz Math Soc, Vol. 38, N. 2, 2007
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Definition 2. We say that a solution of the system(2.7) is homothetic if there
is a differentiable real functionλ(t) (non constant) and an initial positionq0,
such thatq(t) = λ(t) q0 is a solution of System(2.7).

In [18] these solutions are called gradient curves.
In order to characterize the homothetic solutions we may assume without loss

of generality that the initial positionq0 = (x0, y0) is a unit vector. We see that
q(t) = λ(t) q0 is a solution of (2.7) if and only if,

λ̈ q0 = λ4 ∇V(q0).

From the homogeneity ofV and the fact thatx2
0 + y2

0 = 1, we get

λ̈ = 4V(q0) λ4,

and from the energy relation (2.2) we have

1

2
λ̇2 − V(q0) λ4 = h.

From this it follows that

Proposition 2. q(t) = λ(t) q0 is a homothetic solution of(2.7) if and only if

∇V(q0) = 4V(q0) q0,
1

2
λ̇2 − V(q0) λ4 = h. (4.1)

Now, we characterize the solutions of (4.1). We will begin by studying the
solutionλ of the above differential equation. Let us denote

μ = V(q0). (4.2)

To computeλ(t) we have to distinguish 3 cases:μ > 0, μ = 0 andμ < 0,

for each sign of the energyh.

(1) For h = 0, there is no homothetic solution ifμ ≤ 0 and forμ > 0 we
have λ(t) = − 1√

2μ(t+k)
, k constant, an unbounded solution since it is not

defined for anyt .

(2) For h > 0 we rewrite the differential equation (4.1) as

1
√

2h
λ̇ = ±

√

1 +
μ

h
λ4, (4.3)

whose solution is analyzed below. Forμ = 0 andμ < 0 we give explicit
formulas for the solution. Forμ > 0 we only show that the solution is not
defined for anyt .

Bull Braz Math Soc, Vol. 38, N. 2, 2007
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(2.a) If μ = 0 the solution is given by

λ(t) = ±
√

2h t + B. (4.4)

We see that it is defined for anyt and it is an escape solution.

(2.b) By integration of the energy relation (4.3) we obtain forμ < 0

λ(t) =
(

h

|μ|

)1/4

cn

(
2 (|μ|h)1/4 t,

1
√

2

)

= λ0 cn

(
2 (|μ|h)1/4 t,

1
√

2

)
,

(4.5)

wherecn is the elliptic function of the first kind (see [13], p. 85 exercise (6),
by takingk = k′ = 1√

2
). It is known thatcn is periodic, so thatλ(t) is periodic

with period

Tλ =
2

(|μ|h)1/4
cn−1

(
0,

1
√

2

)
=

2

(|μ|h)1/4
κ

=
1

(|μ|h)1/4
cn−1

(
−1,

1
√

2

)
,

(4.6)

whereκ := cn−1
(
0, 1√

2

)
. By using the result from page 89, exercise 29 in [13]

we have

κ =
[0(1/4)]2

4
√

π
∼ 1.854207. . . (4.7)

Hence, the bounded functionλ(t) is defined for anyt ∈ R whenμ < 0.

(2.c) Whenμ > 0 it is not easy to integrate the relation(4.3), but we get an
estimate which follows from the energy relation. Indeed,

arctan

((μ

h

)1/4
λ(t)

)
≤

√
2

(μh)1/4
t ≤

√
2 arctan

((μ

h

)1/4
λ(t)

)
. (4.8)

In this way we see thatλ(t) is not defined for anyt > 0 and it is unbounded.
Regarding the existence of the initial conditionq0 = (x0, y0) associated to

the homothetic orbit, we need to solve the first equation in (4.1), which is equiv-
alent to

Vx(x0, y0) = 4ax3
0 + 2cx0y2

0 + dy3
0 = 4V(x0, y0) x0

Vy(x0, y0) = 2cx2
0 y0 + 3dx0y2

0 + 4ey3
0 = 4V(x0, y0) y0.

(4.9)

Bull Braz Math Soc, Vol. 38, N. 2, 2007
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We analyze the three possible cases:

1. We have that(x0, 0) with x0 6= 0 is a solution of (4.9), if and only if,
x0 = ±1. Hereμ = a.

2. We have that(0, y0) with y0 6= 0 is a solution of (4.9), if and only if,d = 0
andy0 = ±1. Hereμ = e.

3. Consider the case(x0, y0) with x0y0 6= 0. We verify that the normalized
initial condition(x0, y0) is given by

p(t) = dt3 + 2(c − 2e)t2 − 3dt + 2(2a − c) = 0,

x2
0 + y2

0 = 1, t =
y0

x0
.

(4.10)

The homothetic solutions are important for the description of escape motions in
mechanical systems (see the following section).

5 The mechanical problem withV ≥ 0

In this section we assume that the potentialV is positive definite or semidefi-
nite, and we analyze the asymptotic behavior and the escape directions for the
solutions of the system (2.7). We recall that the energy level is non-negative.

We remark first that if there isq∗ 6= (0, 0) such that∇V(q∗) = (0, 0), because
of the homogeneity ofV we have thatV(q∗) = 0. Hence,V is not positive
definite. Again, from the homogeneity ofV we have∇V(λq∗) = (0, 0) for any
λ ∈ R. Therefore, the one dimensional set of pointsλ(q∗, 0, 0) consists of zero
energy equilibrium points of the system.

Under the above conditions (∇V(q∗) = (0, 0), with q∗ 6= (0, 0)) it follows
that if a zero energy solution is bounded, non periodic and is defined for all times,
its α andω limits must be equilibrium points.

5.1 Description of the flow

It is known that if a solutionq(t) of (2.7) is not defined for all times, it is
unbounded.

For the following theorem we need a preparation lemma whose proof is found
in the appendix.

Lemma 1. All the solutions ofẍ = 4ax3, escape to infinity in finite time if
a > 0.

Bull Braz Math Soc, Vol. 38, N. 2, 2007



“main” — 2007/6/12 — 15:41 — page 311 — #11

HOMOGENEOUS POTENTIAL OF DEGREE 4 311

-4 -2 0 2 4

-30

-20

-10

0

10

20

30

Figure 3: The phase portrait ofẍ = 4ax3.

In Figure 3 we show the phase portrait of the differential equationẍ = 4ax3

with a > 0.

Theorem 3. Letq(t) = (x(t), y(t)) be a non equilibrium solution of(2.7) with
h ≥ 0, then

1. If V is positive definite or semidefinite thenq(t) is unbounded.

2. If V is positive definite thenq(t) is not defined for all times.

Proof. To prove (1) we assume thatq(t) is defined for all times and we will
consider several cases. Consider first the caseh > 0 andV positive semidefinite.
For a fixed solutionq(t) = (x(t), y(t)) of the mechanical system (2.7), we define
the function

g(t) = x2(t) + y2(t).

Differentiating twice respect tot and using the energy relation we get

g̈(t) = 2[2h + 6V(x(t), y(t))] ≥ 4h. (5.1)

By integration of this inequality we obtain

g(t) ≥ 2h(t − t0)
2 + 2q(t0) ∙ q(t0) t + g(t0),

for anyt > t0. The conclusion follows by lettingt → +∞.
Consider now the caseV positive semidefinite andh = 0. By convenience,

we denoteq(t) ∙ q̇(t) by f (t). It is clear that

ġ(t) = 2 f (t), ḟ (t) = 12V(q(t)),

Bull Braz Math Soc, Vol. 38, N. 2, 2007
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so that f is an increasing function. By taking into account our comments at
the beginning of the section we conclude thatq(t) is unbounded, since it is not
an equilibrium solution.

For the positive definite case, we introduce polar coordinates in the plane, i.e.
q = (x, y) = (r cosθ, r sinθ). Then the System (2.7) takes the form

r̈ = r θ̇2 + 4r 3V(θ)

(r 2θ̇ )∙ = −Vxr sinθ + Vyr cosθ
(5.2)

whereV(θ) = V(cosθ, sinθ). SinceV > 0, there isδ > 0 such thatV(θ) ≥ δ.
Hence, from the first equation in (5.2) we get

r̈ ≥ 4δr 3.

From Lemma 1 we conclude that forV > 0 andh = 0, the solutionq(t) is
unbounded. This proves item (2) also. So, the theorem is proved. �

Remark 1. From the proof of the above theorem it follows that

• If h = 0 and f (t0) = q(t0) ∙ q̇(t0) > 0, the solutionq(t) escapes to infinity.

• The system (2.5) does not have periodic solutions whenV is positive
definite or semidefinite.

• In the particular case wherec = −2a = −2e = −1, d = 0, the potential
V ≥ 0 takes the form 1/2(x2 − y2)2 and the corresponding system has
the particular solutionx(t) = y(t) = αt + β defined for anyt ∈ R
and its energy is given byh = α2. Hence, ifα 6= 0 the solution escape
to infinity as stated in the above theorem. Moreover, in this example
f (t) = 2α(αt + β) takes positive and negative values.

• Suppose thatq(t) is a zero energy solution of (2.7). Iff (t) = 0 for
any t theng(t) = constantfor any t , i.e., x2(t) + y2(t) = constant.
From (5.1) we haveV(q(t)) = 0 and from the energy relation it follows
that ẋ(t) = ẏ(t) = 0 for any t , and we have an equilibrium solution.
Hence, if a solutionq(t) = (x(t), y(t)) of (2.7) with zero energy satisfies
x(t)ẋ(t)+ y(t)ẏ(t) = 0 for anyt with V positive definite or semidefinite,
then it is an equilibrium solution.

• Whenh = 0, V(θ(t)) does not converge to 0 in finite time. Indeed, as-
suming that there existst∗ ∈ R such thatV(θ(t)) → 0 whent → t∗, we

Bull Braz Math Soc, Vol. 38, N. 2, 2007
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get from the energy relation 0= 1
2(ṙ

2 + r 2θ̇2) − r 4V(θ) that ṙ (t) → 0,
θ̇ (t) → 0 whent → t∗, so that the solutionq(t) tends to the equilibrium
(0, 0), in finite time, which is a contradiction.

• It is easy to verify that the only potential of degree four such thatV(θ) =
constant is the potentialV = α(x2 + y2)2 with α constant.

• From the above items we verify that there is no solution of the form
q(t) = r (cosθ(t), sinθ(t)) with r a positive constant for the caseV pos-
itive definite or semidefinite and with energyh ≥ 0.

5.2 Escape directions

To determine the escape directions we use a McGehee type blow up at the infinity
which was analyzed by Lacomba and Ibort [11], for two degrees of freedom
Hamiltonian systems of the form

H (x, y, p1, p2) =
1

2

(
p2

1 + p2
2

)
− V (x, y) ,

whereV is a homogeneous function of degreeα > 0. To apply a blow up at the
infinity, we transform the configuration space coordinates to polar coordinates,
but where the radial coordinate is replaced by its reciprocal. The new position
coordinatesρ, θ , satisfy

ρ =
1

√
x2 + y2

; x =
1

ρ
cosθ; y =

1

ρ
sinθ.

In the new coordinates the behavior at infinity is determined by the so called
Infinity surface, defined by

N∞ =
{

(ρ, θ, v, u) | ρ = 0,
1

2

(
u2 + v2

)
= V (θ)

}
,

which is independent ofh and invariant under the extended flow. Any solution
escaping to infinity must tend to a hyperbolic equilibrium point of the flow on
the infinity surface (see details in [8] and [9] ).

Theθ coordinate at an equilibrium point inN∞ satisfies V ′(θ) = 0. In our
case, we have

V ′(θ) = sin(θ) [−4a cos3(θ) − 2ccos(θ) sin2(θ) + 2ccos3(θ)

− d sin3(θ) + 3d cos2(θ) sin(θ) + 4esin2(θ) cos(θ)].
(5.3)
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To compute the number of roots ofV ′(θ) = 0 we separate into two cases:d 6= 0
andd = 0. For the first case we haveV ′(π/2) = −d 6= 0, so that

V ′(θ) = sin(θ) cos3(θ)[−dt3+(−2c+4e)t2+3dt+(−4a+2c)], t = tan(θ).

Remark 2. Notice that the cubic polynomial between brackets is minus the
polynomial defined by equation (4.10) in Section 4. Hence, the homothetic
solutions run along the escape directions.

From this remark we see that ford 6= 0, there are at most 3 real roots for the
cubic polynomial. Hence, for any roott∗ we have tan(θ∗) = t∗. Consequently,
there are at most six values ofθ (between 0 and 2π ).

Whend = 0 andθ 6= π/2 we have

V ′(θ) = 2 sin(θ) cos3(θ) [(c − 2a) + (2e− c)t2], t = tan(θ).

Summarizing

Proposition 3. Let V ≥ 0, then there are at most 8 escape directions. Ifd 6= 0,
two of them correspond toθ = 0 and θ = π (x axis). If d = 0 four of them
correspond toθ = 0, θ = π (x axis),θ = π/2 andθ = 3π/2 (y axis).

6 The mechanical problem forV ≤ 0

In this section we will assume that the potentialV is negative definite or semidefi-
nite, which implies thata ≤ 0 ande ≤ 0. If V < 0 the level surfaces are compact
manifolds for eachh ≥ 0, since they are given by

H =
1

2
‖q̇‖ − V(q) = h.

So, we get the following result

Proposition 4. If V < 0 andh ≥ 0, then the solutionsq(t) of the system(2.7)

are defined for anyt ∈ R and they are bounded.

This is in contrast with the positive semidefinite case, (see Theorem 3). If
V(x, y) = 0 for some(x, y) 6= (0, 0) andV is negative semidefinite, the Hill
region is unbounded. Indeed, ifV = 0 along the liney = kx, the cylinder
{1/2(ẋ2 + ẏ2) = h, y = kx} is contained in theh energy level. Whenh = 0 we
get a line which can be considered as a degenerate cylinder.
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6.1 The periodic solutiony = ẏ = 0

The system (2.7) always admits the periodic solution

y = ẏ = 0,

which we denote by0, and it satisfies

ẍ = 4ax3,

and from the energy relation we have

1

2
ẋ2 − ax4 = h.

We see that the initial positionx0, determines from the energy relation the initial
velocity (except by the sign) which is given by

v0 = ẋ0 = ±
√

2h + ax4
0. (6.1)

We remark that the subset{x = ẋ = 0} is invariant under the system (2.7), if
and only ifd = 0.

Replacingλ by x andμ by a as in Section 4, we have

x(t) =
(

h

|a|

)1/4

cn

(
2 (|a|h)1/4 t,

1
√

2

)

= x0 cn

(
2 (|a|h)1/4 t,

1
√

2

)
,

(6.2)

ẋ(t) = −2 (|a|h)1/4 x0 sn

(
2 (|a|h)1/4 t,

1
√

2

)
dn

(
2 (|a|h)1/4 t,

1
√

2

)
,

ẋ(0) = 0,

(6.3)

for the initial condition

x0 =
[

h

|a|

]1/4

> 0, v0 = ẋ0 = 0. (6.4)

The period is given by

Tx =
2

(|a|h)1/4
κ, (6.5)

with κ as in (4.7). Notice that
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• Tx is increasing if and only ifh is decreasing. In particular,Tx → +∞ if
and only ifh → 0.

• x(t) = 0, if and only if, t = 1
4(1 + 2k) Tx, k ∈ Z. Therefore, the first

positive time wherex(t) = 0 is t1 = Tx
4 .

• Since the functiondn(, ) > 0, it follows thatẋ(t) = 0, if and only if,

sn

(√
2 (|a|h)1/4 t,

1
√

2

)
= 0 .

This happens when

t =
1

2
(1 + k)Tx, k ∈ Z.

Hence the first positive time wherėx(t) = 0 is t3 = Tx
2 .

6.1.1 Stability of0

To study the stability of anyT-periodic solutionγ (t) = (x(t), y(t), ẋ(t), ẏ(t))
we use Floquet theory. To apply this we write the variational equations for (2.7)
associated to the solutionγ ; that is

Ẋ = A(t)X, X = (u1, u2, v1, v2), (6.6)

where

A(t) =






0 0 1 0
0 0 0 1

12ax2(t) + 2cy2(t) [4cx(t) + 3dy(t)]y(t) 0 0

[4cx(t) + 3dy(t)]y(t) 2cx2(t) + 12ey2(t) + 6dx(t)y(t) 0 0




 , (6.7)

with A(t + T) = A(t).

The (linear) stability ofγ is equivalent to the stability of the zero solution of
system (6.6). We recall some important properties for Hill’s equations (see for
example, [10]).

Consider the Hill equation

ü + p(t) u = 0, u, t ∈ R,

wherep(t + T) = p(t) is of classC0 in R, which can be rewritten as

u̇ = v, v̇ = −p(t)u. (6.8)

So, we have the following remark.
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Remark 3.

(1) Any solution of (6.8) is defined for allt ∈ R.

(2) If p(−t) = p(t) then the solution of (6.8) with initial conditionsu(0) = 1
andu̇(0) = 0 is even, and it is odd if the initial conditions areu(0) = 0
andu̇(0) = 1.

(3) If u(t) is a solution of (6.8) theñu(t) = u(t)k(t) with k(t) =
∫ t

0 1/u2(s) ds
is also a solution of (6.8) which is linearly independent withu. Hence,
{u, ũ} is a basis of the space of solutions for (6.8).

(4) If theT-periodic functionp(t) is non positive but it is not identically zero,
then the zero solution of the Hill equation(6.8) is unstable.

(5) Under the conditions of the last item, we see that a characteristic multiplier
has module greater than one and the other multiplier has module lesser
than one.

The matrixA corresponding to the variational equations for our periodic so-
lution 0 in Subsection 6.1, is

A(t) =







0 0 1 0
0 0 0 1

12ax2(t) 0 0 0
0 2cx2(t) 0 0





 . (6.9)

Equation (6.6) becomes

ü1 − 12ax2(t)u1 = 0, (6.10)

and
ü2 − 2cx2(t)u2 = 0, (6.11)

i.e., it corresponds to a pair of Hill equations. From point 4 in Remark 6.1.1
(by taking p(t) = −2cx2(t) andc > 0) we get

Proposition 5. If c > 0 then the zero solution of(6.11) is unstable.

Since the variational equations associated to the periodic solution(x(t), 0,

ẋ(t), 0) are uncoupled, from this proposition and item 5 in Remark 6.1.1 we get

Theorem 4. If c > 0, a < 0, e < 0, d ∈ R, the periodic solution0 :
(x(t), 0, ẋ(t), 0) of system(2.7) is Liapunov unstable.
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We consider now the casec ≤ 0. We first see that

p1(t) = 12|a|x2(t) = 12|a|
(

h

|a|

)1/2

cn2

(
2 (|a|h)1/4 t,

1
√

2

)
≥ 0

wherep1(t) is a T = Tx
2 -periodic function. We now verify that the Hill equa-

tion (6.10) is the variational equation for the periodic solution(x(t), ẋ(t)) of
the Hamiltonian system

ẋ = y, ẏ = 4ax3,

with Hamiltonian function

H =
1

2
y2 − ax4.

Since the system is time-independent with a first integral it is known that the
characteristic multiplier 1 of the monodromy matrixX(T) for the system (6.10),
has multiplicity 2. From Floquet theory the system (6.10) has at least oneT-
periodic solution which we denote byu1(t). The proof of the following result
is contained in the appendix.

Lemma 2. Assume that the Hill equation̈u + p(t)u = 0 (p(t + T) = p(t),
of classC1 in R) has the characteristic multiplier 1 with multiplicity 2, then the
monodromy matrix is not diagonalizable.

From this lemma, we see that solutionu2(t) is unbounded, so that the zero
solution of Hill equation is unstable. This proves the following

Theorem 5. The periodic solution(x(t), 0, ẋ(t), 0) of system(2.7) is linearly
unstable for anya < 0, c ≤ 0, e < 0 andd ∈ R.

Remark 4. Recall that whenc > 0 anda < 0, e < 0, d ∈ R the periodic so-
lution (x(t), 0, ẋ(t), 0) is Liapunov unstable according to Theorem 4. However,
for the casec ≤ 0 we have only proved in Theorem 5 the linear instability.

7 Some particular cases

The caseV < 0 is complicated due to the great variety of dynamical behavior,
as shown by the following examples.
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7.1 The caseV negative definite withd = 0

In this case the equations of motion (2.7) take the form

ẍ = 2x [2ax2 + cy2]

ÿ = 2y [cx2 + 2ey2].
(7.1)

The invariance of the potentialV under the reflections with respect to the coor-
dinate axes implies the same for the system (7.1) as well as the symmetry of the
Hill region R with respect to the same axes. Hence, it is enough to study the Hill
region in the first quadrant. In this case the Hill region is compact and we will
compute the curvature of its zero velocity curve which is defined by

V(x, y) = ax4 + cx2y2 + ey4 = −h. (7.2)

If x = 0, this relation implies (fore 6= 0) that y = ±(−h/e)1/4. Hence the
tangent vector to the zero velocity curve at the point(0, (−h/e)1/4) is parallel to
thex axis. In the same way, the tangent vector is parallel to they axis at a point
of the form((−h/e)1/4, 0).

The oriented curvature for a curve defined byy = y(x) is given by

C =
y′′

[1 + y′2]3/2
, where ′ =

d

dx
.

By implicit differentiation on (7.2) we get

C =
−V2

x Vyy − V2
y Vxx + 2VxVyVxy

[V2
x + V2

y ]3/2

= x4 V(x, y)
[−2ec t4 + (c2 − 12ae) t2 − 2ac]

[4 (4a2x6 + 4e2y6 + {(c2 + 4ce)y2 + (c2 + 4ae)x2}x2y2)]3/2
,

t =
y

x
.

(7.3)

The sign of the curvature depends on the zeroes of the polynomial

q(u) = 2ec u2 − (c2 − 12ae) u + 2ac u = t2,

which are given by

u± =
1

2ec

[
(c2 − 12ae) ±

√
(c2 − 12ae)2 − 16aec2

]
,
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but only positive roots are admissible. Then we get

Proposition 6. If the concavity of the zero velocity curveV = −h changes,
then[c2 − 12ae]2 ≥ 16aec2 ≥ 0 andc2 − 12ae > 0. The inflection points are
given byy = t±x, with t± = ±

√
u±.

On the other hand, if we assume thata < 0, c < 0 ande < 0 the expressions

2ax2 + cy2, cx2 + 2ey2

are negative definite, so that

sgn(ẍ) = −sgn(x) and sgn(ÿ) = − sgn(y). (7.4)

We now state some properties and introduce some notation for system (7.1),
whena < 0, c < 0 ande < 0.

1. Since any solution of (7.1) is analytic and it is defined for allt ∈ R, is not
true thatx(t) or y(t) have a fixed sign for allt ∈ R. In fact, we see that if
x(t) > 0 for everyt ∈ R, then from (7.1),̈x(t) < 0 holds for everyt ∈ R,
which is a contradiction. The same argument works in any case.

2. From the above item it follows that there exist first positive timest1 ∈ R+

andt2 ∈ R+ such thatx(t1) = 0 andy(t2) = 0.

3. From relations (7.4) we have thatẍ(t1) = 0 and ÿ(t2) = 0. This means
thatx andy change concavity at timest1 andt2, respectively .

4. It is not possible thaṫx(t) > 0 (resp. ẏ(t) > 0) for eacht ∈ R. Indeed,
if ẋ(t) > 0 for t ∈ R, then x(t) is a strictly increasing function and
thereforex(t) > x(t1). Let us fixt∗ > t1 such thatx(t∗) = δ > 0. Then
2ax2(t) + cy2(t) < 2aδ2 < 0. Hence, 2x(t) [2ax2(t) + cy2(t)] < 4aδ3.
So,

ẍ(t) < 4aδ3, ∀t > t∗.

By integrating twice betweent∗ andt we get

x(t) < x(t∗) + ẋ(t∗)(t − t∗) + 2aδ3(t − t∗)2.

Letting t → +∞ we obtain

x(t) → −∞,

sincea < 0, which is a contradiction. The proof fory(t) is similar.
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5. From the above item, there are positive timest3 andt4 such thaṫx(t3) = 0
and ẏ(t4) = 0.

In the following propositionst1, t2, t3 andt4 are as defined above.

Proposition 7. Let (x(t), y(t)) be a solution of(7.1), with initial condition
(x(0), y(0)) = (x0, 0), (ẋ(0), ẏ(0)) = (0, v0) andx0, v0 are greater than zero,
such thatt1 = t2. Then,(x(t), y(t)) is T = 4t1-periodic and its orbit is sym-
metrical with respect to the coordinate axes.

Proof. Since system (7.1) is invariant under reflections(x, y) → (−x, y) and
(x, y) → (x, −y), and the orbit of(x(t), y(t)) is perpendicular to thex axis in
t = 0, it will be enough to trace a quarter of orbit. Due tox(t1) = y(t1) = 0, we
only need to prove that att = t1 the orbit is not tangent to they axis. We have
that ẋ(t) will be decreasing in the interval(0, t1), sincex(t) > 0 for t ∈ (0, t1).
Hence

ẋ(t) < ẋ(t∗) := λ < ẋ(0) = 0,

wheret∗ ∈ (0, t1) is a fixed but arbitrary time. By continuity we have

ẋ(t1) ≤ λ < 0,

which concludes the proof. �

Figure 4: Symmetrical periodic solution passing through the(0, 0).

Proposition 8. Let (x(t), y(t)) be a solution of(7.1), with initial condition
(x(0), y(0)) = (x0, 0), (ẋ(0), ẏ(0)) = (0, v0), wherex0, v0 are greater than
zero, such thatt3 = t4. Then(x(t), y(t)) is T = 4t3 periodic and its orbit is
symmetrical with respect to thex axis.

Proof. We see that the orbit ofx(t), y(t)) touches the zero velocity curve since
ẋ(t3) = ẏ(t3) = 0; its periodicity and symmetry with respect to thex axis
follows from the initial condition. �
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Figure 5: A periodic solution touching the zero velocity curve.

In this case (d = 0), we have two particular periodic solutions, one of them
is of the form(x(t), 0, ẋ(t), 0) wherex(t) is given by (6.2) whose stability is
described by Theorems 4-5. The other one is given byx = ẋ = 0, which is
written in terms of an elliptic function

y(t) = 4

√
h

|e|
cn

(
2 4

√
|e|h t,

1
√

2

)

= y0 cn

(
2 4

√
|e|h t,

1
√

2

)
, y0 = 4

√
h

|e|
,

(7.5)

whose period is

Ty =
2

(|e|h)1/4
κ. (7.6)

We summarize some properties of this solution.

• y(t) = 0, if and only if,t = 1+2k
4 Ty, k ∈ Z.

• ẏ(t) = 0, if and only if, sn(
√

4|e| y0t,
√

2/2) = 0. This holds when
t = 1

2(1 + k)Ty, k ∈ Z.

• It is possible to construct a periodic solution satisfyingỹ(0) = 0 and
˙̃y > 0. Indeed, we define

ỹ(t) = y(t +
3

4
Ty). (7.7)

We see that

ỹ(0) = y

(
3

4
Ty

)
= 0, ˙̃y(0) =

√
4|e|y2

0 dn

(
3

4
Ty

√
4|e|y0,

√
2/2

)
> 0.

• Notice that the first positive time such thatỹ(t) = 0 is given byt2 = 1
2Ty.

• The first positive time such that˙̃y(t) = 0 is t4 = Ty

4 .
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The analysis of the stability of the periodic solution(0, y(t), 0, ẏ(t)) of system
(7.1) is similar to the one for the solution(x(t), 0, ẋ(t), 0) in 6.1.1, replacinga
by e. In this case, the matrixA in (6.7), reduces to

A(t) =







0 0 1 0
0 0 0 1

2cy2(t) 3dy2(t) 0 0
3dy2(t) 12ey2(t) 0 0





 . (7.8)

Hence the corresponding variational equation (6.6) is

ü1 − 2cy2(t)u1 = 0, ü2 − 12ey2(t)u2 = 0. (7.9)

As a corollary to Theorems 4-5 applied to the cased = 0, we have

Theorem 6. If a < 0, c > 0, e < 0 and d = 0 then the periodic solution
(0, y(t), 0, ẏ(t)) of system(7.1) is Liapunov unstable.

If a < 0, c ≤ 0, e < 0, d = 0 then the periodic solution(0, y(t), 0, ẏ(t)) of
system(7.1) is linearly unstable.

7.1.1 The particular caseV = −x4 − 2αx2y2 − y4 < 0, α ≥ 0

In this casea = −1, c = −2α, d = 0 ande = −1. According to Theorem 5,
we know that the periodic solution(x(t), 0, ẋ(t), 0) is linearly unstable. The
stability analysis of this periodic solution was made in [1] forα close to 3. In
the integrable caseα = 3 the variational equation (6.6) has two equal blocks,
which means that the associated Hill equations (6.10) and (6.11) coincide. Using
the Krein-Lynbarskii Theorem (see [19]) one can prove that for values ofα of
the formα = 3 + ε with ε in one of the following intervals 0< ε < δ or
−δ < ε < 0, (δ is a small positive number) the characteristic multipliers of the
second block in the monodromy matrix are outside the unit circle. Then, the
corresponding periodic solution(x(t), 0, ẋ(t), 0) for thatα is Liapunov unstable
since at least one characteristic multiplier has module greater than 1. We remark
that this argument can not be applied to potentials in Subsection 7.1, since the
periodic solutionx(t) there, does depend ona.

Consider nowα = 1, that is,V = −(x2 + y2)2. From the energy relation we
have

h =
1

2
(p2

1 + p2
2) + (x2 + y2)2.

The equations of motion (2.7) take the form

ẍ = −4x (x2 + y2),

ÿ = −4y (x2 + y2).
(7.10)
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In this case
∇V(x, y) = −4(x2 + y2) (x, y),

i.e., ∇V(x, y) is parallel to(x, y). Notice that system (7.10) is integrable; the
first integrals are the energy and the angular momentumC = q × q̇. We see
that the linesy = mx (m ∈ R), are invariant for the system (7.10), which are
the homothetic solutions. These solutions can be found explicitly by solving
the system

ẍ = −4(1 + m2) x3,

ẋ2

2
=

h

1 + m2
− (1 + m2)x4.

(7.11)

Integrating the energy relation as we did in previous sections we see that the
solutions of the system (7.11) are periodic and can be written as

x(t) = x0 cn(
√

4 (1 + m2) x0 t,
√

2/2) (7.12)

with initial condition

x0 =
(

h

1 + m2

)1/4

,

and period

T =
2

h1/4(1 + m2)1/4
κ.

Since we havea = −1, e = −1, c = −2, d = 0 in system (7.10), we can apply
Theorem 5. Hence, this periodic solution is linearly unstable.

7.1.2 The particular caseV(x, y) = ax4 + ey4 < 0

We now consider thata < 0 ande < 0. The equations of motion (2.7) become
the uncoupled system

ẍ = 4ax3, ÿ = 4ey3. (7.13)

The energy of the system is the Hamiltonian function

H =
1

2
(ẋ2 + ẏ2) − ax4 − ey4. (7.14)

We split any fixed energy level as

H = h = h1 + h2 > 0,
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where

h1 =
1

2
ẋ2 − ax4, (7.15)

and

h2 =
1

2
ẏ2 − ey4. (7.16)

Hence, the System (7.13) is integrable. Notice thath1, h2 must be non negative,
and generically the corresponding invariant submanifold is a torus.

By integration, we can express the solution by elliptic functions of the first
kind

x(t) = x0 cn(2
√

|a| x0t,
√

2/2), x(0) = x0 =
(

h1

|a|

)1/4

> 0,

and

y(t) = y0 cn(2
√

|e| y0t,
√

2/2), y(0) = y0 =
(

h2

|e|

)1/4

> 0.

The following properties hold forx(t) andy(t),

1. x(t) is T1 periodic, whereT1 = 2
[h1|a|]1/4 κ = 2κ√

h1
x0 = 2κ√

|a|
1
x0

.

2. y(t) is T2 periodic, whereT2 = 2
[h2|e|]1/4 κ = 2κ√

h2
y0 = 2κ√

|e|
1
y0

.

3. ẋ(t) = −2
√

|a| x2
0 sn(

√
4|a| x0t,

√
2/2) dn(2

√
|a| x0t,

√
2/2),

ẋ(0) = 0.

4. ẏ(t) = −
√

4|e| y2
0 sn(

√
4|e| y0t,

√
2/2) dn(

√
4|e| y0t,

√
2/2),

ẏ(0) = 0.

Then the solution(x(t), y(t), ẋ(t), ẏ(t)) is periodic, if and only if,

T1

T2
=

[h2|e|]1/4

[h1|a|]1/4
∈ Q. (7.17)

Equation (6.6) gives rise to the uncoupled system

ü1 − 12ax2(t)u1 = 0, ü2 − 12ex2(t)u2 = 0. (7.18)

Since the System (7.13) is uncoupled, its stability depends on the one of any of
the components of the solution, say(x(t), ẋ(t)). From the above properties 1,
2, we get the following result.

Theorem 7. The solutions of(7.13) are orbitally stable, although they are
Liapunov linearly unstable.
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Proof. Liapunov instability follows as in Theorem 4, because of the uncou-
pling of the variational system. �

8 Non integrability conditions

In this section we apply some results on non integrability of Hamiltonian poly-
nomial systems proved in [17]. According to this, we solve first the equation

∇V(q) = −q,

whereV is given by (2.6). We get the system

x(4ax2 + 2cy2) + dy3 = −x

y(2cx2 + 3dxy+ 4ey2) = −y.

We have to consider 3 cases:

(1) If x = 0 andd 6= 0, then we get the trivial solutiony = 0.

(2) If x = 0 andd = 0, theny = ± 1
2
√

−e
with e < 0, obtaining the solutions

p1 =
(
0, ± 1

2
√

−e

)
, wheree < 0 andd = 0.

(3) If y = 0 andx 6= 0, we getx = ± 1
2
√

−a
with a < 0, giving the solutions

p2 =
(
± 1

2
√

−a
, 0

)
, wherea < 0.

The Hessian Matrix of−V(x, y) is in general

Hess(−V) =
(

−(12ax2 + 2cy2) −(4cxy+ 3dy2)

−(4cxy+ 3dy2) −(2cx2 + 6dxy+ 12ey2)

)
.

Replacing the above solution points we get for the case (2)

A(p1) =
( c

2e 0
0 3

)
,

with e < 0 andd = 0, whose eigenvalues areλ1 = c
2e andλ2 = 3.

For case (3) we have

A(p2) =
(

3 0
0 c

2a

)
,
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with a < 0. In this case, the eigenvalues areλ1 = 3, andλ2 = c
2a .

For these non trivial cases and using Theorem 3 in [17], we see that a
necessary condition for a Hamiltonian system with homogeneous potential of
degree 4 to be completely integrable is that the eigenvaluesλi of Hess(−V) can
be written as

(i) p(2p − 1);

(ii) −
1

8
+

1

8

(
4

3
+ 4p

)2

;

(iii)
1

2

[
3

4
+ 4p(p + 1)

]
, wherep ∈ Z.

The common eigenvalue 3 satisfies condition (i). Then, the non integrability
depends on whether the remaining eigenvalue does not satisfy any of the above
conditions.

Proposition 9. For the solutionsp2 =
(
± 1

2
√

−a
, 0

)
in case(3), we see that the

Hamiltonian system(2.2) with V given by(2.6), is not integrable if any of the
following relations is satisfied

(1) α =
c

4a
≤

−1

16
,

(2) α is not a solution of any of the following equations

(p − 1/4)2 = α + 1/16, (p + 1/3)2 = α + 1/16,

(p + 1/2)2 = α + 1/16,
(8.1)

for p ∈ Z. A similar result holds for the solutionsp1 =
(
0, ± 1

2
√

−e

)
in

case(2) with e < 0 andd = 0, replacing a by e in(1) and(2).

Proof. By equating the eigenvalue 2α with the above expressions (i)-(iii), we
get equations (8.1). Since the left hand side of these equations is a non negative
number,α must be greater than−1/16. On the other hand, (8.1) does not have
an integer solution whenα = −1/16. �
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-3 -2 -1 1 2 3

2

4

6

8

p

Figure 6: Theα coordinate of the intersections points of the linep = n, n ∈ Z
with the parabolas are values for which integrability is undecidable (see (8.1)).

The Figure 6 describes how to get the values ofα, for which integrability is
undecidable. Notice that case (2) withc = 0 is integrable.

The analysis of solutions wherex 6= 0 andy 6= 0 is harder. Whend = 0,
we get

− 4ax2 − 2cy2 = 1

− 2cx2 − 4cy2 = 1,
(8.2)

where we obtain the additional cases

(4) If in additionc = 0, we get an integrable system since it is separable.

(5) If a = 0 andc 6= 0, we obtainy2 = − 1
2c , x2 = − 1

2c + e
c2 .

(6) If e = 0 andc 6= 0, we havex2 = − 1
2c , y2 = − 1

2c + a
c2 .

We analyze now case (6) which is similar to (5). We must havec < 0 and
since 0≤ y2 = 2a−c

2c2 it is necessary thata ≥ c
2 holds. This gives the solution

points

p3 =
(
δ1/

√
−2c, δ2

√
2a − c/

√
2|c|

)
,

whereδ j = ±1. The characteristic polynomial for the Hessian matrix at these
points is

λ2 + (1 + 1)λ + 3(1 − 2) = 0,

where1 = 1 + 4c/a. Its roots are

λ1 = 1 − 2 = −1 + 4c/a := β, λ2 = 3.
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From necessary conditions (i-ii-iii) for integrability we have

(p − 1/4)2 = β/2 + 1/16, (p + 1/3)2 = β/2 + 1/16,

(p + 1/2)2 = β/2 + 1/16,
(8.3)

where p ∈ Z. Replacingα by β/2 in the above figure, we get the values of
β for which the integrability is undecidable. Even for the case whered = 0
it is hard to obtain generic results since the solutions of System (8.2) corre-
spond to the intersection of two conic curves, which depends on the parameters
a, c ande.

Acknowledgement. This work was partially supported by CONACYT
(México) grant 47768.

9 Appendix

Lemma 1. If a > 0, all the solutions of̈x = 4ax3, escape to infinity in finite
time.

Proof. The energy relation is given by

h =
1

2
ẋ2 − ax4.

Hence,
dx

√
h + ax4

= ±
√

2dt.

On the other hand,
√

1 + ax4 ≤ 1 +
√

a x2 ≤
√

2
√

1 + ax4,

if h = 1. Then,

dx

1 +
√

ax2
≤ ±

√
2dt ≤

√
2

dx

1 +
√

ax2
,

and upon integration

1

a1/4
tan(±a1/4 t + arctan(a1/4x0)) ≤ x(t)

≤
1

a1/4
tan(±

√
2a1/4 t + arctan(a1/4x0)),
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for eacht where the solutionx(t) is defined.

Whenh = 0 by direct integration we get

x(t) =
x0

∓x0

√
2at + 1

.

For h < 0, and due tox > a−1/4 we obtain

(a1/4x − 1)3/2 <
√

−1 + ax4 < 1 +
√

ax2,

takingh = −1. Therefore,

dx

1 +
√

ax2
≤ ±

√
2dt ≤

dx

(a1/4x − 1)3/2
,

and by integrating again

1
4
√

a








1 +
1

(
∓

√
2

2
4
√

a t + 1√
4√ax0−1

)2








≤ x(t)

≤
1

4
√

a
tan(± 4

√
a
√

2t + arctan( 4
√

ax0)),

from where the proof follows. �

Lemma 2. Assume that Hill equation̈u + p(t)u = 0, wherep(t + T) = p(t)
is of classC1 in R has 1 as a characteristic multiplier of multiplicity two, then
the monodromy matrix is not diagonalizable.

Proof. Let u1(t) be theT-periodic solution of Hill equation with initial con-
ditionsu1(0) = u0

1 andu̇1(0) = u̇0
1. From property (3) in Subsection 6.1.1 we

know that a solution linearly independent withu1(t) is u2(t) = u1(t)k(t) where
k(t) =

∫ t
0 1/u2

1(s) ds. Hence, the monodromy matrix becomes

X(T) =
(

u1(T) u2(T)

u̇1(T) u̇2(T)

)
.

Sinceλ = 1 is an eigenvalue of multiplicity two, the following relation

λ2 − 2λ + 1 = λ2 − Tr(X(T)) λ + det(X(T))
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holds. Therefore,

(i) u1(T) + u̇2(T) = 2,

(ii) u1(T)u̇2(T) − u2(T)u̇1(T) = 1.
(9.1)

We have two cases: (1)u0
1 6= 0, and (2)u0

1 = 0.

In the first case we assume without loss of generality thatu0
1 = 1, so that

u1(T) = 1. This fact together with definition ofu2, implies thatu2(T) =
k(T) > 0. From equation (i) we obtaiṅu2(T) = 1. By replacing the values of
u1(T) andu̇2(T) in equation (ii), we conclude thatu̇1(T) = 0. Then we have

X(T) =
(

1 k(T)

0 1

)
.

In the second case, we assume without loss of generality thatu̇1(0) = 1 and then
u̇1(T) = 1. Sinceu1(T) = u0

1 = 0, it follows from (i) thatu̇2(T) = 2 and from
(ii) we obtainu2(T) = −1. Therefore, we get

X(T) =
(

0 −1
1 2

)
.

Summarizing, the monodromy matrixX(T) in both cases is not diagonal-
izable. �
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