
“main” — 2007/8/10 — 12:57 — page 335 — #1

Bull Braz Math Soc, New Series 38(3), 335-376
© 2007, Sociedade Brasileira de Matemática

Large deviations bound for semiflows over
a non-uniformly expanding base

Vítor Araújo*

Abstract. We obtain a exponential large deviation upper bound for continuous ob-
servables on suspension semiflows over a non-uniformly expanding base transformation
with non-flat singularities or criticalities, where the roof function defining the suspen-
sion behaves like the logarithm of the distance to the singular/critical set of the base
map. That is, given a continuous function we consider its space average with respect to
a physical measure and compare this with the time averages along orbits of the semiflow,
showing that the Lebesgue measure of the set of points whose time averages stay away
from the space average tends to zero exponentially fast as time goes to infinity.
The arguments need the base transformation to exhibit exponential slow recurrence to
the singular set which, in all known examples, implies exponential decay of correlations.
Suspension semiflows model the dynamics of flows admitting cross-sections, where the
dynamics of the base is given by the Poincaré return map and the roof function is the
return time to the cross-section. The results are applicable in particular to semiflows
modeling the geometric Lorenz attractors and the Lorenz flow, as well as other semiflows
with multidimensional non-uniformly expanding base with non-flat singularities and/or
criticalities under slow recurrence rate conditions to this singular/critical set. We are
also able to obtain exponentially fast escape rates from subsets without full measure.
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1 Introduction

The statistical viewpoint on Dynamical Systems provides some of the main tools
available for the global study of the asymptotic behavior of transformations or
flows. One of the main concepts introduced is the notion ofphysical(or Sinai-
Ruelle-Bowen) measure for a flow or a transformation. An invariant probability
measureμ for a flow Xt on a compact manifold is a physical probability measure
if the pointsz satisfying for all continuous functionsψ

lim
t→+∞

1

t

∫ t

0
ψ

(
Xs(z)

)
ds =

∫
ψ dμ,

form a subset with positive volume (or positive Lebesgue measure) on the ambi-
ent space. These time averages are in principle physically observable if the flow
models a real world phenomenon admitting some measurable features.

For systems admitting such invariant probability measures it is natural to con-
sider the rate of convergence of the time averages to the space average, given
by the volume of the subset of points whose time averages stay away from the
space average by a prescribed amount up to some evolution time. This rate is
closely related to the so-called thermodynamical formalism first developed for
(uniformly) hyperbolic diffeomorphisms, borrowed from statistical mechanics
by Bowen, Ruelle and Sinai (among others, see e.g. [22, 23, 51, 52, 29, 21]).
These authors systematically studied the construction and properties of phys-
ical measures for (uniformly) hyperbolic diffeomorphisms and flows. Such
measures for non-uniformly hyperbolic maps and flows where obtained more
recently [48, 25, 18, 19, 2].

The probabilistic properties of physical measures are an object of intense
study, see e.g. [23, 37, 58, 59, 20, 3, 4, 6, 32, 11, 7]. The main insight behind
these efforts is that the family{ψ ◦ Xt}t>0 should behave asymptotically in many
respects just like a i.i.d. random variable.

The study of suspension (or special) flows is motivated by modeling a flow
admitting a cross-section. Such flow is equivalent to a suspension semiflow over
the Poincaré return map to the cross-section with roof function given by the
return time function for the points in the cross-section. This is one of the main
technical tools in the ergodic theory of Axiom A (or uniformly hyperbolic) flows
developed by Bowen and Ruelle [23], enabling them to pass from this type of
flow to a suspension flow over a shift transformation with finitely many symbols
and bounded roof function. Then the properties of the base transformation are
used to deduce many results for the suspension flow, which are then passed to
the original flow.
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Recently, based on the breakthrough of Dolgopyat [27], this kind of model-
ing provided results on the rate of decay of correlations for certain flows [13]
based on the rate of decay of correlations for suspension semiflows [15]. General
results on the existence and some statistical properties of physical measures for
singular-hyperbolic attractors for three-dimensional flows [10] as well as their
sensitive dependence on initial conditions were also obtained using this standard
technique. Moreover the classical Lorenz flow [43] was shown to be equivalent
to a geometric Lorenz flow by Tucker [54] and so it can be modeled by a suspen-
sion semiflow over a non-uniformly hyperbolic transformation with unbounded
roof function. Using these ideas it was recently obtained [44] that the physical
measure for the Lorenz attractor is mixing.

Here we extend part of the results on large deviation rates of Kifer [37] (see
also Waddington [57]) from the uniformly hyperbolic setting to semiflows over
non-uniformly expanding base dynamics and unbounded roof function. These
special flows model non-hyperbolic flows, like the Lorenz flow, exhibiting equi-
libria accumulated by regular orbits. We use the properties of non-uniformly
expanding transformations, especially the large deviation bound obtained in [7],
to deduce a large deviation bound for the suspension semiflow reducing the es-
timate of the volume of the deviation set to the volume of a certain deviation set
for the base transformation. More precisely, if we setε > 0 as an error margin
and consider

Bt =
{

z:
∣
∣
∣
1

t

∫ t

0
ψ

(
Xt(z)

)
−

∫
ψ dμ

∣
∣
∣ > ε

}

then we are able to provide conditions under which the Lebesgue measure ofBt

decays to zero exponentially fast, i.e. weather there are constantsC, ξ > 0 such
that

Leb
(
Bt

)
≤ Ce−ξ t for all t > 0.

The values ofC, ξ > 0 above depend onε, ψ and on global invariants for the
base transformationf , such as the metric entropy and the pressure function off
with respect to the physical measures off and a certain observable constructed
from ψ andXt , as detailed in the next section. Having this it is not difficult to
deduce exponential escape rates from subsets of the semiflow.

In order to be able to apply this bound to Lorenz flows, it is necessary to allow
the roof function of the suspension flows to be unbounded near the singularities
of the base dynamical system. This in turn imposes some restrictions on the
admissible base dynamics, expressed as a slow recurrence rate to the singular
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set and uniqueness of equilibrium states with respect to the logarithm of the
Jacobian of the map. However no cohomology condition on the roof function are
needed, while this is essential to obtain fast decay of correlations in [28, 45, 30].

We present several semiflows with non-uniformly expanding base transfor-
mations satisfying all our conditions, including one-dimensional piecewise ex-
panding maps withLorenz-likesingularities and quadratic maps but also multi-
dimensional examples. This demanded the detailed study of recurrence rates to
the singular set, the study of large deviation bounds for unbounded observables
over non-uniformly expanding transformations, and an entropy formula for non-
uniformly expanding maps with singularities (which might be of independent
interest). Now we give the precise statement of the results.

1.1 Statement of the results

Denote by‖ ∙ ‖ a Riemannian norm on the compact boundaryless manifoldM ,
by dist the induced distance and by Leb the corresponding Riemannian vol-
ume form, which we callLebesgue measureor volume. We assume Leb to be
normalized: Leb(M) = 1.

Given aC2 local diffeomorphism (Hölder-C1 is enough, see below)f : M \
S → M outside a volume zero non-flat singular set, letXt : Mr → Mr be a
semiflow with roof functionr : M \ S→ R over the base transformationf , as
follows. SetMr = {(x, y) ∈ M × [0,+∞) : 0 ≤ y < r (x)}. For x = x0 ∈ M
denote byxn thenth iterate f n(x0) for n ≥ 0. Denote

Snϕ(x0) = Sf
n ϕ(x0) =

n−1∑

j =0

ϕ(xj ) for n ≥ 1

and for any given real functionϕ in what follows. Then for each pair(x0, s0) ∈ Xr

andt > 0 there exists a uniquen ≥ 1 such thatSnr (x0) ≤ s0 + t < Sn+1r (x0)

and we define

Xt(x0, s0) =
(
xn, s0 + t − Snr (x0)

)
.

The non-flatness of the singular setS is an extension to arbitrary dimensions
of the notion of non-flat singular set from one-dimensional dynamics [26] and
means thatf behaves like a power of the distance to the singular set. More
precisely there are constantsB > 1 and 0< β < 1 for which

(S1)
1

B
dist(x, S)β ≤

‖D f (x)v‖

‖v‖
≤ B dist(x, S)−β ;
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(S2)
∣
∣log‖D f (x)−1‖ − log‖D f (y)−1‖

∣
∣ ≤ B

dist(x, y)

dist(x, S)β
;

(S3)
∣
∣log | detD f (x)−1| − log | detD f (y)−1|

∣
∣ ≤ B

dist(x, y)

dist(x, S)β
;

for everyx, y ∈ M \ S with dist(x, y) < dist(x, S)/2 andv ∈ Tx M \ {0}. We
also assume an extra condition related to the geometry ofS. This ensures that the
Lebesgue measure of neighborhoodsS is comparable to a power of the distance
to S, that is there existsCκ , κ > 0 such that for all smallρ > 0

(S4) Leb{x ∈ M : dist(x, S) < ρ} ≤ Cκ ∙ ρκ.

The singular setS contains those pointsx where f is either not defined, is discon-
tinuous, not differentiable or elseD f (x) is non-invertible (that isS contains the
setC of critical points of f ). Note that condition (S4) is satisfied in the particular
case whenS is a compact submanifold ofM , whereκ = dim(M)− dim(S). It
is also satisfied forM = S1 andS is a denumerable infinite subset with finitely
many accumulation points, withκ = 1. In particular this holds for a piecewise
expanding map over the interval or the circle with finitely many domains of
monotonicity.

We say thatf is non-uniformly expandingif there existsc > 0 such that

lim sup
n→+∞

1

n
Snψ(x) ≤ −c where ψ(x) = log

∥
∥D f (x)−1

∥
∥, (1.1)

for Lebesgue almost everyx ∈ M . This condition implies in particular that
all the lower Lyapunov exponents of the mapf are strictly positive Lebesgue
almost everywhere.

Let 1δ(x) =
∣
∣ logdδ(x, S)

∣
∣ be thesmoothδ-truncated logarithmic distance

from x ∈ M to S, i.e.1δ(x) is non-negative and continuous away fromS, iden-
tically zero 2δ-away fromS, and equal to− log dist(x, S) when dist(x, S) ≤ δ.

We say thatf hasexponentially slow recurrence to the singular setS if for
everyε > 0 there existsδ > 0 such that

lim sup
n→+∞

1

n
log Leb

{
x ∈ M :

1

n
Sn1δ(x) > ε

}
< 0. (1.2)

Condition (1.2) implies thatSn1δ/n → 0 in measure, i.e. for everyε > 0 there
existsδ > 0 such that

lim sup
n→∞

1

n
Sn1δ(x) ≤ ε (1.3)

Bull Braz Math Soc, Vol. 38, N. 3, 2007



“main” — 2007/8/10 — 12:57 — page 340 — #6

340 VÍTOR ARAÚJO

for Lebesgue almost everyx ∈ M . We say that a mapf satisfying (1.3) has
slow recurrence toS.

These notions were presented in [5] and in [5, 1] the following result on
existence of finitely many absolutely continuous measures was obtained.

Theorem 1.1.Let f : M → M be aC2 local diffeomorphism outside a singular
setS. Assume thatf is non-uniformly expanding with slow recurrence toS.
Then there are finitely many ergodic absolutely continuous (in particularphysi-
calor Sinai-Ruelle-Bowen) f -invariant probability measuresμ1, . . . , μk whose
basins cover the manifold Lebesgue almost everywhere, that isB(μ1) ∪ ∙ ∙ ∙ ∪
B(μk) = M, Leb− mod 0. Moreover the support of each measure contains
an open disk inM .

Here thebasinof an invariant probability measureμ is the subset of points
x ∈ M such that limn→∞

1
n

∑n−1
j =0 δ f j (x) = μ in the weak∗ topology.

Large deviation bounds are usually related to measure theoretic entropy and
to equilibrium states. We denote byM f the family of all invariant probability
measures with respect tof . Let J = | detD f |. We say thatμ ∈ M f is an
equilibrium statewith respect to the potential logJ if hμ( f ) = μ(log J), that is
if μ satisfies the Entropy Formula. We denote byE the subset ofM f consisting
of all equilibrium states forf . It is not difficult to see (Section 5 for more details)
that each physical measure provided by Theorem 1.1 belongs toE.

Another standing assumption onf is thatthe setE is formed by a uniquef -
invariant absolutely continuous probability measure(see Section 2 for sufficient
conditions for this to occur and for examples of application).

We denote byν = μ n Leb1 the naturalXt -invariant extension ofμ to Mr

and byλ the natural extension of Leb toMr , i.e. λ = Lebn Leb1, where Leb1

is one-dimensional Lebesgue measure onR: for any subsetA ⊂ Mr

ν(A) =
1

μ(r )

∫
dμ(x)

∫ r (x)

0
dsχA(x, s) and

λ(A) =
1

Leb(r )

∫
d Leb(x)

∫ r (x)

0
dsχA(x, s).

We say that a functionϕ : M \ S→ R haslogarithmic growth nearS if there
existsK = K (ϕ) > 0 such that

|ϕ|χB(S,δ) ≤ K ∙1δ for all small enoughδ > 0. (1.4)
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We also say thatf is a regular mapif for E ⊂ M such that Leb(E) = 0, then
Leb

(
f −1(E)

)
= 0.

Theorem A. Let Xt be a suspension semiflow over a non-uniformly expand-
ing transformation f on the baseM which exhibits exponentially slow recur-
rence to the singular set, where the roof functionr : M \S→ R has logarithmic
growth nearS. Assume thatf is a regular map and that the setE of equilib-
rium states is formed by a single measureμ. Letψ : Mr → R be a continuous
function. Then

lim sup
T→∞

1

T
logλ

{
z ∈ Mr :

∣
∣
∣
∣
1

T

∫ T

0
ψ

(
Xt(z)

)
dt − ν(ψ)

∣
∣
∣
∣ > ε

}
< 0. (1.5)

1.2 Escape rates

Let K ⊂ Mr be a compact subset. Givenε > 0 we can find an open set
W ⊃ K contained inMr and a continuous bump functionϕ : Mr → R such that
Leb(W \ K ) < ε with 0 ≤ ϕ ≤ 1, ϕ | K ≡ 1 andϕ | (M \ W) ≡ 0. Then we
get forn ≥ 1

{
x ∈ K : Xt (x) ∈ K , 0< t < T

}
⊂

{
x ∈ M :

1

T

∫ T

0
ϕ
(
Xt (x)

)
dt ≥ 1

}
(1.6)

and so we deduce the following using the estimate from Theorem A.

Corollary B. Let Xt be a suspension semiflow over a non-uniformly expand-
ing transformationf on the baseM in the same setting as in Theorem A. Let
K be a compact subset ofMr such thatν(K ) < 1. Then

lim sup
T→+∞

1

T
logλ

({
x ∈ K : Xt(x) ∈ K , 0< t < T

})
< 0.

1.3 Lorentz and Geometric Lorenz flows

The Lorenz equations

ẋ = 10(y − x), ẏ = 28x − y − xz, ż = xy − 8z/3 (1.7)

were presented by Lorenz [43] in 1963 as a simplified model of convection of
the Earth’s atmosphere. It turned out that these equations became one of the
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main models showing the presence of chaotic dynamics in apparently simple
systems. More recently Tucker [54, 55] with a computer assisted proof showed
that equations (1.7) and similar equations with nearby parameters define a geo-
metric Lorenz flow, i.e. a three-dimensional flowXt in R3 with a hyperbolic
singularity at the origin admitting a neighborhoodU (a trapping region) such
that Xt(U ) ⊂ U for all t > 0 satisfying:

1. the attracting set3 = ∩t>0Xt(U ) contains the singularity at 0;

2. 3 contains a dense orbit;

3. there exists a squareS = [−1, 1] × [−1, 1] × {1} which is a cross-section
for 3 \ {0}, that is for everyw ∈ 3 \ {0} there existst > 0 such that
Xt(w) ∈ S;

4. the Poincaré first return map toS given by R : S \ ` → S is C2 and
contracts distances exponentially on they direction, wherè = {0} ×
[−1, 1] × {1} is the singular line, so each segmentS ∩ {x = const} is
contained in a stable manifold. Moreover in general this one-dimensional
and co-dimension one foliation of the cross-sectionSdefines a projection
P along leaves which isC1+α for someα > 0;

5. the one-dimensional mapf : [−1, 1] \ {0} → [−1, 1] obtained fromR
quotienting out the stable manifolds is a piecewise expanding map with
singularities known asLorenz-like map, which is in the setting of the class
of examples detailed in Subsection 2.2;

6. the roof functionτ(w) for w ∈ S is Lebesgue integrable overS and has
logarithmic growth near the singular linè.

It is well known that the attractor of the geometric Lorenz flows (and the attractor
for the Lorenz equations after the results of Tucker already mentioned) supports
a unique ergodic physical measureμ (for more details on this construction see
e.g. [56]). Figure 1 gives a visual idea of the geometric Lorenz flow. The reader
should consult [33, 34, 50] for proofs of the properties stated above and more
details on the construction of such flows.

Using τ as a roof function over the base dynamics given byR we see that
the dynamics of a geometric Lorenz flow onU is equivalent to a suspension
semiflow overR with roof functionτ . In addition the uniform contraction along
the leaves of the foliation{y = const} together with the uniform expansion of
the one-dimensional mapf enables us to use Theorem A to deduce
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`

f (x)

S 1

10−1
λ1λ2

λ3

Figure 1: The geometric Lorenz flow and the associated one-dimensional piece-
wise expanding map.

Corollary C. Let Xt be a flow onR3 exhibiting a Lorenz or a geometric Lorenz
attractor with trapping regionU . Denoting byLeb the normalized restriction of
the Lebesgue volume measure toU ,ψ : U → R a bounded continuous function
andμ the unique physical measure for the attractor, then for any givenε > 0

lim sup
T→∞

1

T
log Leb

{
z ∈ U :

∣
∣
∣
∣
1

T

∫ T

0
ψ

(
Xt(z)

)
dt − μ(ψ)

∣
∣
∣
∣ > ε

}
< 0,

and consequently for any compactK ⊂ U such thatμ(K ) < 1 we also have

lim sup
T→+∞

1

T
log Leb

( {
x ∈ K : Xt(x) ∈ K , 0< t < T

} )
< 0.

1.4 Comments and organization of the paper

We note that the smoothness assumption needed for our arguments is onlyC1+α

for someα ∈ (0, 1). Therefore theC2 condition onf in the statements of results
can be relaxed toC1+α throughout.

Kifer [37] together with Newhouse [38] obtain sharp large deviations bounds
both from above and from below for uniformly partially hyperbolic attractors
for flows and for Axiom A flows, through an estimate of the volume growth of
images of balls under the action of the flow near the attractor (“volume lemma”,
see also [23] and [22]). Moreover to obtain the lower bound an assumption of
uniqueness of equilibrium states is necessary and this assumption is also used
to prove that the upper bound is strictly negative (see also [58] for uniformly
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expanding transformations and for partially hyperbolic attractors for diffeomor-
phisms).

Hence the assumption thatE is formed by a single measure is natural in this
setting. The author feels this assumption should not be needed to obtain an ex-
pression for the upper bound in terms of entropies, as in [37]. However the rele-
vant “volume lemmas” are presently not available in the setting of special flows
over non-uniformly expanding base, with singularities or criticalities. Moreover
the uniqueness of equilibrium states with respect to a large family of potentials
(or observables) is still unknown in general (see [47, 12, 11] for recent progress
in this direction). Therefore instead of following the approach of [37] we have
reduced the problem of estimating the deviations for the suspension flow, with
respect to a continuous observable, to the problem of estimating deviations for
the base transformation, with respect to an unbounded observable, and then rely
on previous work [7] for non-uniformly expanding transformations. To deal with
the dynamics near the singularities we impose conditions of very slow recurrence
to the singular setS for the base transformationf together with a growth condi-
tion on the roof functionr near the singularities. In the end to conclude that the
upper bound is strictly negative we use uniqueness of the relevant equilibrium
state. Unfortunately this argument does not rule out superexponential decay
in (1.5).

Recently Melbourne and Nicol [46] obtained sharp large deviation bounds
(i.e. they showed that the limit (1.5) exists) for systems modeled on Markov
towers (also known as Young towers) without requiring uniqueness of equi-
librium states. In the same work upper large deviation bounds are obtained
for semiflows over Markov towersassuming that the roof function is bounded.
However their method presents two disadvantages: the large deviation estimates
in [46] are proved only for Hölder observables, and these estimates are obtained
for the invariant physical measure rather than the volume or Lebesgue measure,
which is more directly accessible.

Section 2 shows how the conditions off and onr are satisfied by many
relevant examples. In particular in Subsection 2.4 it is explained how to obtain
a large deviation bound for geometric Lorenz flows using the statement of the
Main Theorem applied to suspensions semiflows over piecewise expanding maps
with singularities, which are treated in a preliminary fashion in Subsection 2.2
and at length in Section 6. The main result needed for the proof of the Main
Theorem is a large deviation bound for observables with logarithmic growth near
the singular set for a non-uniformly expanding map, which is proved in Section 3.
Then the statement of the Main Theorem about large deviations for a suspension
semiflow is reduced to a statement of large deviations for the dynamics of the
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base transformation in Section 4 concluding the proof of the Main Theorem.
Note that in contrast to the results on decay of correlations for Anosov flows
or Axiom A flows, here we do not need any coboundary conditions on the roof
function for the large deviation bound to hold.

In Section 5 we present a derivation of the Entropy Formula for non-uniformly
expanding maps with slow recurrence to the singular set, which is used to estab-
lish that some examples presented in Section 2 do satisfy our assumptions and
which might be interesting in itself.

2 Examples of application

Here we present some concrete examples where our results can be applied.

2.1 Suspension semiflows over multidimensional volume expanding and
quasi-expanding maps

Let f : M \S→ M be a transitive non-uniformly expanding map with exponen-
tially slow recurrence toS satisfyingJ = | detD f | > 1,ψ = log‖(D f )−1‖ ≤ 0
andψ = 0 at finitely many points only (aquasi-expandingmap). We claim that
in this settingE is a singleton.

IndeedE is non-empty by Theorem 1.1 since every absolutely continuous
invariant probability measure is an equilibrium state (see e.g. Theorem 5.1 in
Section 5). Sincef | M \ S is a local diffeomorphism and the support of such
absolutely continuous invariant measures contains open sets, the transitivity to-
gether with regularity of the map ensure that there exists only one absolutely
continuous invariant measure. For otherwise letμi be ergodic absolutely con-
tinuous f -invariant probability measures and letBi ⊂ supp(μi ) be open sets
in the supporti = 1, 2; by transitivity and continuity there exists a non-empty
open subsetB ⊂ B1 and an iterate such thatf n(B) ⊂ B2 and by smoothness
Leb-almost every point inf n(B) is both aμ1-generic point and aμ2-generic
point, thusμ1 ≡ μ2. This shows that there exists a unique absolutely continuous
invariant probability measure forf .

Note now that every equilibrium stateν ∈ E must be such thathν( f ) =
ν(log J) > 0 and sinceψ ≤ 0 and has at most finitely many zeroes, then either
ν(ψ) < 0 and by Theorem 5.1 the measureν must be absolutely continuous, or
ν(ψ) = 0 and suppν ⊆ ψ−1({0}) is finite thushν( f ) = 0, a contradiction.

Therefore by the uniqueness result aboveν must coincide withμ. We have
shown thatE = {μ}, as claimed.
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Hence we can apply Theorem A for semiflows over non-uniformly expand-
ing maps with exponentially slow recurrence to the singular set which are also
transitive, volume expanding and expanding except at finitely many points, and
whose roof function grows with the logarithm of the distance toS.

For examples of multidimensional local diffeomorphisms in this setting see
[9]. In this caseS = ∅ and we can apply Theorem A for semiflows with this
type of base transformation plus a continuous (and thus bounded) roof function.

Clearly the same large deviation bound holds for a semiflow over a local
diffeomorphisms which is uniformly expanding together with any continuous
roof function.

2.2 Suspension semiflows over piecewise expanding maps with singu-
larities

Let M be the circleS1 or the interval[0, 1] with {0, 1} ⊂ S andS ⊂ M an at
most denumerable and non-flat singular set off such that itsclosureS has zero
Lebesgue measure: Leb(S) = 0.

If we assume that−∞ < ψ < −c < 0 on M \ S for somec > 0 (so that
in particular there are no critical points:C = ∅) and that f is transitive with
slow recurrence toS, then the setE of equilibrium states with respect to log| f ′|
is formed by a single absolutely continuous invariant probability measure, as
shown in Subsection 2.1, sincef is automatically non-uniformly expanding,
quasi-expanding and volume expanding as well.

Observe that forC2 maps in our conditions with finitely many smoothness
domains, or with derivative of bounded variation, it is well known that there
exists a unique ergodic absolutely continuous invariant probability measureμ

with bounded density [35, 53]. Since the function log dist(x, S) is Leb-integ-
rable we also have that this function isμ-integrable. Thus for allε > 0 there is
δ > 0 such that

∫ ∣
∣ log distδ(x, S)

∣
∣ dμ(x) < ε. By the ergodicity and absolute

continuity ofμ this means thatf has slow recurrence toS for a positive Lebesgue
measure subset ofM . Theorem 1.1 together with [5] ensure thatf is in fact
non-uniformly expanding with slow recurrence toS. Moreover by [36] the
same argument applies toC1+α piecewise expanding maps with finitely many
smoothness domains, for someα ∈ (0, 1).

To be able to apply the Main Theorem we need exponentially slow recurrence
to S. We prove this in Section 6 assuming that| f ′| grows as the inverse of some
power of the distance toS′ = S ∩ f (M), i.e. besides conditions (S1) through
(S4) we impose

(S5)
∣
∣ f ′(x)

∣
∣ ≥ B−1 dist(x, S′)−β for all x ∈ M \ S,
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whereS′ is the (sub)set of singularities which matters for the asymptotic dynamics
of f .

Hencea semiflow over a piecewise expanding map with singularities satisfying
some technical conditions, and with a roof function having logarithmic growth
near the singularitiesadmits a large deviation bound as in Theorem A.

2.3 Suspension semiflows over quadratic maps on Benedicks-Carleson
parameters

Set M = I = [−1, 1] and suppose the transformationf is given by fa(x) =
a − x2 for a ∈ [a0, 2] in the positive Lebesgue measure subset constructed
by Benedicks and Carleson in [16, 17], wherea0 ≈ 2. The properties of the
family fa have been thoroughly studied by a considerable number of people.
We just mention that Freitas in [31] showed that for these parametersfa is
not only a non-uniformly expanding map withS = C = {0} but also exhibits
exponentially slow approximation to the singular set. Actually in [31] only
subexponentiallyslow approximation is stated but the same arguments yield an
exponential bound as well, as obtained in a much more delicate setting with
infinitely many critical points in [8].

Moreover Bruin and Keller [24] show that for this class of maps (specifically
for Collet-Eckman maps, i.e. such that

lim inf
n→∞

∣
∣( f n

a )
′(a)

∣
∣1/n

> 1

without extra conditions of recurrence to the criticality) the unique absolutely
continuous invariant probability measure is also the unique equilibrium state
with respect to log| f ′

a|.
Therefore for any given suspension semiflow over such quadratic mapsfa with

roof function having logarithmic growth near 0 we can apply Theorem A, and
obtain a large deviation bound for these special flows.

2.4 Lorenz and geometric Lorenz attractors

TheC1+α map f : [−1, 1] \ {0} → [−1, 1] obtained as the quotient map of the
Poincaré first return mapR presented in Section 1.3 through projection along
the leaves of the stable foliation satisfies the following conditions, which define
aLorenz-like map:

1. there are constantsc > 0 andσ > 1 such that for everyn ≥ 1 and for all
x ∈ [−1, 1] \ ∪0≤ j<n f −n{0} we have

∣
∣( f n)′(x)

∣
∣ ≥ cσ n;
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2. f has a dense orbit;

3. f (0+) = −1, f (0−) = 1, f (1) ∈ (0, 1) and f (−1) ∈ (−1, 0).

Note in particular that there are no critical points and that for somek ≥ 1 the
mapg = f k satisfies the conditions of Section 2.2. (Ifσ >

√
2 then f is even

locally eventually onto, see e.g. [44], thus transitive.) For exponentially slow
recurrence to the singularities see Section 6. So we can obtain a large deviation
bound forg which easily gives a large deviation bound forf .

Indeed, assume without loss of generality thatμ(ϕ) = 0 and that for all small
ε > 0 we have Leb{Sg

nϕ > nε} < Ce−ζn for someC(ε), ζ(ε) > 0 and every
n > 0. It is enough to argue for a bounded and continuousϕ as explained
in Section 3. Then form > 0 we can writem = nk + p with n > 0 and
0 ≤ p < k − 1 and also

1

m
Sf

mϕ =
1

nk + p

(
Sf

p (ϕ ◦ f nk)+ Sf
nkϕ

)

=
1

nk + p

(
Sf

p (ϕ ◦ f nk)+
n−1∑

i =0

Sg
n(ϕ ◦ f i )

)

≤
p sup|ϕ|

nk + p
+

1

k + p/n

n−1∑

i =0

1

n
Sg

n(ϕ ◦ f i )

≤
p

m
sup|ϕ| +

1

k

n−1∑

i =0

1

n
Sg

n(ϕ ◦ f i ).

Givenε > 0 takem so big thatp sup|ϕ|/m< ε/2, note thatμ(ϕ ◦ f i ) = 0 for
all i ≥ 0 and

{
1

m
Sf

mϕ > ε

}
⊆

n−1⋃

i =0

{
1

n
Sg

n(ϕ ◦ f i ) >
ε

2k

}
.

This shows how to reduce the problem of large deviations for bounded observ-
ables to the same problem for a finite power of the transformation.

To deduce Corollary C, since the reduction to a large deviation bound for the
map f is the content of Section 4, all we need to do here is to explain how
we deduce a large deviation bound forR from a similar bound for the mapf .
For this we strongly use the uniform contraction along the leaves of the stable
foliation on the global cross-sectionS to obtain the following relation. Denote
by P : S → [−1, 1] the projection(x, y, 1) 7→ x.
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Lemma 2.1. Let ε > 0 and a bounded continuous functionψ : U → R be
given in a neighborhoodU of the geometric Lorenz attractor3. Defineϕ : S\
` → R byϕ(x, y, 1) =

∫ τ(x,y,1)
0 ψ

(
Xt(x, y, 1)

)
dt, whereτ(x, y, 1) is the first

return time toS of the point(x, y, 1) ∈ S. Assume without loss of generality
that μ(ϕ) = 0 whereμ is a R-invariant probability measure such thatτ is
μ-integrable.

Then there exist integersN, k > 1, a smallδ > 0, a constantγ > 0 dependent
onψ and the flow only, and a continuous functionl : [−1, 1]\∪k−1

i =0 f −i {0} → R
with logarithmic growth near the setSk = ∪k−1

i =0 f −i {0} such that for alln > N
{∣
∣
∣
1

n
SRk

n ϕ

∣
∣
∣ > 3ε

}
⊆ P−1

({
1

n
Sf k

n 1δ >
ε

γ

}
∪

{∣
∣
∣
1

n
Sf k

n l
∣
∣
∣ > ε

})
. (2.1)

This reduces the problem of estimating the Lebesgue measure of the left hand
side set in (2.1) to the estimation of the measure of the right hand side set,
transferring the problem to the dynamics ofg = f k, which is the subject of
Section 2.2 and Section 6.

Proof. According to the construction of geometric Lorenz flows, there are
C > 0 and 0< λ < 1 such that givenx ∈ [−1, 1] \ {0} and two distinct values
y1, y2 ∈ [−1, 1]

dist
(
Rk(x, y1, 1), Rk(x, y2, 1)

)
≤ Cλk for all 1 ≤ k ≤ n, (2.2)

wheren ≥ 1 is the first time the orbit of the points hit the singular line, cor-
responding to the stable foliation of the singularity of the flow. Thesehitting
timesdepend only on the orbit ofx under the mapf and correspond to times
n for which f n(x) = 0. But X0 = ∪n≥0 f −n({0}) is denumerable. Thus the
corresponding set of points inS, given by the lines{x} × [−1, 1] × {1} for
x ∈ X0, has zero area onS. Therefore for a full Lebesgue measure subset ofS
we have (2.2) for allk ≥ 1.

Moreover since(x, y1, 1), (x, y2, 1) belong to the same stable manifold, then
for all timest > 0 we have

dist
(
Xt(x, y1, 1), Xt(x, y2, 1)

)
≤ κ ∙ |y1 − y2|, (2.3)

for a constantκ > 0 depending only on the angles between the surfaceS and
the stable leaves of the flow through points ofS(which is uniformly bounded by
the compactness ofS). Note thatϕ is continuous onS\ ` and

|ϕ(x, y, 1)| ≤ τ(x, y, 1) ∙ sup|ψ | ≤ −C0 ∙ log |x| ∙ sup|ψ | (2.4)
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for a constantC0 > 0, sinceτ grows near̀ like the logarithm of the distance to
`. Then it is clear that fory, w ∈ [−1, 1] andn > 1

∣
∣
∣
∣
∣
∣

1

n

n−1∑

j =0

(
ϕ(Rj (x, y, 1))− ϕ(Rj (x, w, 1)

)
∣
∣
∣
∣
∣
∣
≤

1

n

n−1∑

j =0

ϕ j (x)

where(xj , yj , 1) = Rj (x, y, 1) for j ≥ 0, (x, y, 1) ∈ S, and

ϕ j (x) = sup
y,w∈[−1,1]

∣
∣ϕ

(
Rj (x, y, 1)

)
− ϕ

(
Rj (x, w, 1)

)∣∣.

Let ε > 0 be given. Choose a smallδ > 0 andη > 0 such that−C0κη logδ <
ε/3 andκη ≤ sup|ψ |. Let ξ > 0 satisfy

dist
(
(x, y, z), (x′, y′, z′)

)
< ξ =⇒ |ψ(x, y, z)− ψ(x′, y′, z′)| < η. (2.5)

Then we may find by (2.2) aj0 = j0(η) ≥ 1 such that|yj − w j | ≤ ξ/κ for
j > j0 and any pairy, w in the same vertical line. Thus we also get after (2.3),
(2.5) and the choices ofε, δ andη

ϕ j (x) ≤ −C0 log |xj | ∙ sup
0<t<−C0 log |x j |

∣
∣ψ

(
Xt (xj , yj , 1)

)
− ψ

(
Xt (xj , w j , 1)

)∣∣

≤ −C0 log |xj | ∙ κη ≤ C0κη ∙1δ(xj )+ ε/2.
(2.6)

Take a continuousl : [−1, 1] \ {0} → R such that for some 0< a < ε/3

1. miny∈[−1,1] ϕ
(
Rj0(x, y, 1)

)
−a ≤ l (x) ≤ a+maxy∈[−1,1] ϕ

(
Rj0(x, y, 1)

)
;

and

2. μ(l ◦ P) = μ(ϕ).

Note thatϕ is μ-integrable: this follows from the boundedness assumption on
ψ and by theμ-integrability ofτ after (2.4). Observe thatl as above has loga-
rithmic growth nearSk by definition.

To obtain such functionl disintegrateμ along the measurable partition ofS
given by the vertical lines{x}× [−1, 1]×{1} and definel0(x) =

∫
ϕ dμx. Then

approximatel0 by a continuous functionl1 such that
∫ ∣

∣l0 − l1
∣
∣ ◦ P dμ <

ε

3

(through e.g. a convolution). Now for some−ε/3 < a < ε/3 the function
l = l1 + a satisfies conditions 1-2 above.
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Now for n > 0 using (2.6),f ◦ P = P ◦ R and summing over orbits ofRk

and f k

|Sn(l ◦ P)− Snϕ|(x, y, 1)

≤ |l ◦ P − ϕ|(x, y, 1)+ |Sn−1(l ◦ P − ϕ)|(x, y, 1)

≤ 2 sup|ψ |C0 log |x| + a +
n−1∑

j =1

(
C0κη1δ( f jk(x))+

ε

3
+ a

)

≤ 2 sup|ψ |C0
(

logδ−1 +1δ(x)
)
+

2nε

3
+ C0κη ∙ Sn−11δ( f k(x))

≤ 2 sup|ψ |C0 logδ−1 +
2nε

3
+ C0(κη + 2 sup|ψ |) ∙ Sn1δ(x).

(2.7)

Observe that
{∣
∣
∣
1

n
SRk

n ϕ

∣
∣
∣ > 3ε

}
⊆

{∣
∣
∣
1

n

(
SRk

n (l ◦ P)− SRk

n ϕ
)∣∣
∣ > 2ε

}

∪
{

1

n

∣
∣SRk

n (l ◦ P)
∣
∣ > ε

}
.

(2.8)

From (2.7), settingγ1 = 2 sup|ψ |C0 logδ−1 andγ2 = C0(κη + 2 sup|ψ |) we
obtain forn big enough

1

n

(
SRk

n (l ◦ P)− SRk

n ϕ
)

≤
2ε

3
+
γ1

n
+
γ2

n
∙ Sf k

n 1δ ◦ P ≤ ε +
γ2

n
∙ Sf k

n 1δ ◦ P

whereγ2 ≤ 3C0 sup|ψ | by the choice ofη. Hence
{∣
∣
∣
1

n

(
SRk

n (l ◦ P)− SRk

n ϕ
) ∣

∣
∣ > 2ε

}
⊆ P−1

{
1

n
Sf k

n 1δ >
ε

3C0 sup|ψ |

}

and this together with (2.8) completes the proof of the lemma. �

3 Large deviations for observables with logarithmic growth near
singularities

The main bound on large deviations for suspension semiflows over a non-
uniformly expanding base will be obtained from the following large deviation
statement for non-uniformly expanding transformations.

Theorem 3.1. Let f : M → M be a regularC1+α local diffeomorphism on
M \ S whereS is a non-flat critical set andα ∈ (0, 1). Assume thatf is a non-
uniformly expanding map with exponentially slow recurrence to the singular set
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S and letϕ : M \ S → R be a continuous map which has logarithmic growth
near S. Moreover assume that there exists a unique equilibrium stateμ with
respect tolog J which is absolutely continuous. Then for any givenω > 0

lim sup
n→+∞

1

n
log Leb

{
x ∈ M :

∣
∣
∣
∣
1

n
Snϕ(x)− μ(ϕ)

∣
∣
∣
∣ ≥ ω

}
< 0.

Proof. Define

ϕk = ξk ◦ ϕ where ξk(x) =






k if x ≥ k
x if |x| < k
−k if x ≤ −k

, k ≥ 1.

Thenϕk : M → R is continuous for allk ≥ 1,ϕk(x) −−−→
k→∞

ϕ(x) for all x ∈ M\S

and|ϕ − ϕk| ≤
∣
∣ϕ

∣
∣χ{|ϕ|>k}. Moreover we clearly have for alln, k ≥ 1

Snϕk − Sn

∣
∣ϕ − ϕk

∣
∣ ≤ Snϕ = Snϕk + Sn(ϕ − ϕk) ≤ Snϕk + Sn

∣
∣ϕ − ϕk

∣
∣. (3.1)

Observe that, sinceϕ has logarithmic growth nearS (see (1.4)), for any given
c, ε0 > 0 we may chooseε1, δ1 > 0 such that the exponential slow recurrence
condition (1.2) is true andK ∙ ε1 ≤ ε0. Then choosek ≥ 1 very big so that
{|ϕ| > k} ⊆ B(S, δ1). From (3.1) we obtain the following inclusions

{
1

n
Snϕ > c

}
⊆

{
1

n
Snϕk +

1

n
Sn

∣
∣ϕ − ϕk

∣
∣ > c

}

⊆
{

1

n
Snϕk > c − K ε1

}
∪

{
1

n
Sn

∣
∣ϕ − ϕk

∣
∣ > K ε1

}

⊆
{

1

n
Snϕk > c − ε0

}
∪

{
1

n
Sn1δ1 ≥ ε1

}
,

(3.2)

where in (3.2) we use the assumption thatϕ is of logarithmic growth nearS and
the choices ofε1, δ1. Analogously we get with opposite inequalities

{
1

n
Snϕ < c

}
⊆

{
1

n
Snϕk −

1

n
Sn

∣
∣ϕ − ϕk

∣
∣ < c

}

⊆
{

1

n
Snϕk < c + K ε1

}
∪

{
1

n
Sn

∣
∣ϕ − ϕk

∣
∣ > K ε1

}

⊆
{

1

n
Snϕk < c + ε0

}
∪

{
1

n
Sn1δ1 ≥ ε1

}
.

(3.3)
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From (3.2) and (3.3) we see thatto get the bound for large deviations in the
statement of Theorem3.1 it suffices to obtain a large deviation bound for the
continuous functionϕk with respect to the same transformationf andto have
exponentially slow recurrence to the singular setS.

To obtain this large deviation bound, we use the following result already ob-
tained for continuous observables over non-uniformly expanding transformations
in our setting, see [7].

Theorem 3.2. Let f : M → M be a local diffeomorphism outside a non-flat
singular setS which is non-uniformly expanding and has slow recurrence to
S. For ω0 > 0 and a continuous functionϕ0 : M → R there existsε, δ > 0
arbitrarily close to0 such that, writing

An =
{

x ∈ M :
1

n
Sn1δ(x) ≤ ε

}
and

Bn =
{

x ∈ M : inf

{∣
∣
∣
1

n
Snϕ0(x)− η(ϕ0)

∣
∣
∣ : η ∈ E

}
> ω0

}

we getlim supn→+∞
1
n log Leb

(
An ∩ Bn

)
< 0.

Recall thatE is the set of all equilibrium states off with respect to the poten-
tial log J.

Note that exponentially slow recurrence implies

lim sup
n→+∞

1

n
Leb(M \ An) < 0.

Under this assumption Theorem 3.2 ensures that for(ε, δ) close enough to(0, 0)
we get

lim sup
n→+∞

1

n
log Leb(Bn) < 0.

To use this we also need thatE consists only of the unique absolutely continuous
invariant probability measureμ. Under this uniqueness assumption we have
E = {μ} in Theorem 3.2 and takeω, ε0 > 0 small, choosek ≥ 1 as before,
setϕ0 = ϕk andω0 = ω + ε0. In (3.2) setc = μ(ϕ0) − ω and in (3.3) set
c = μ(ϕ0)+ ω. Then we have the inclusion

{∣
∣
∣
1

n
Snϕ − μ(ϕ)

∣
∣
∣ > ω

}
⊆

{∣
∣
∣
1

n
Snϕ0 − μ(ϕ0)

∣
∣
∣ > ω0

}

∪
{

1

n
Sn1δ1 ≥ ε1

}
.

(3.4)
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By Theorem 3.2 we may findε, δ > 0 small enough so that the exponentially
slow recurrence holds also for the pair(ε, δ) and hence

lim sup
n→+∞

1

n
log Leb

{∣
∣
∣
1

n
Snϕ0 − μ(ϕ0)

∣
∣
∣ > ω0

}
< 0. (3.5)

Finally the choice ofε1, δ1 according to the condition on exponential slow recur-
rence toS ensures that the Lebesgue measure of the right hand subset in (3.4) is
also exponentially small whenn → ∞. This together with (3.5) concludes the
proof of Theorem 3.1. �

4 Large deviations and the dynamics on the base

Here we show how the large deviation bound for a semiflow over a non-uniformly
expanding base can be deduced from a large deviation bound for the base dy-
namics, under a logarithmic growth condition on the roof function.

4.1 Reduction to the base dynamics

Let ψ : Mr → R be continuous and bounded. ForT > 0 andz = (x, s) with
x ∈ M and 0≤ s< r (x) < ∞ we can write

∫ T

0
ψ

(
Xt(z)

)
dt =

∫ r (x)

s
ψ

(
Xt(x, 0)

)
dt

+
n−1∑

j =1

∫ r ( f j (x))

0
ψ

(
Xt( f j (x), 0)

)
dt

+
∫ T+s−Snr (x)

0
ψ

(
Xt( f n(x), 0)

)
dt,

wheren = n(x, s, T) ∈ N is the “lap number” such thatSnr (x) ≤ s + T <

Sn+1r (x).

Settingϕ(x) =
∫ r (x)

0 ψ(x, 0) dt we obtain

1

T

∫ T

0
ψ

(
Xt(z)

)
dt =

1

T
Snϕ(x)−

1

T

∫ s

0
ψ

(
Xt(x, 0)

)
dt

+
1

T

∫ T+s−Snr (x)

0
ψ

(
Xt( f n(x), 0)

)
dt.
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Clearly we can bound the sumI = I (x, s, T) of the two integral terms on the
right hand side above by

I = I (x, s, T) ≤
(

2
s

T
+

Sn+1r (x)− Snr (x)

T

)
∙ ‖ψ‖, (4.1)

where‖ψ‖ = sup|ψ |. Observe that for a givenω > 0 and for 0≤ s < r (x)
andn = n(x, s, T)

{
(x, s) ∈ Mr :

∣
∣
∣
1

T
Snϕ(x)+ I (x, s, T)−

μ(ϕ)

μ(r )

∣
∣
∣ > ω

}
(4.2)

is contained in
{
(x, s) ∈ Mr :

∣
∣
∣

1

T
Snϕ(x)−

μ(ϕ)

μ(r )

∣
∣
∣ >

ω

2

}
∪

{
(x, s) ∈ Mr : I (x, s, T) >

ω

2

}
. (4.3)

Note that ifψ ≡ 0 then we need only consider the left hand subset of (4.3) in
what follows. Now we bound theλ-measure of each subset above assuming that
ψ is not identically zero.

4.2 Using the roof function as an observable over the base dynamics

We start with the right hand subset in (4.3). TakeN ≥ 1 big enough so that
N‖ψ‖ > 2 and note that for any givenT, ω > 0 using (4.1) andn = n(x, s, T)

λ
{

I >
ω

2

}
=

∫
d Leb(x)

∫ r (x)

0
ds

(
χ(ω/2,+∞) ◦ I

)
(x, s, T)

≤ Leb

{
r >

ωT

2N‖ψ‖

}

+
ωT

2N‖ψ‖

[T/r0]+1∑

i =0

Leb

{
|Si +1r − Si r |

T
>

N‖ψ‖ − 2

2N‖ψ‖
ω

}
,

(4.4)

where in the right hand summand we restrict to pointsx ∈ M such that

2N‖ψ‖r (x) ≤ ωT and Si r (x) ≤ T < Si +1r (x)

for each possible lap numberi ∈ N. Note that sincer is bounded from below
r ≥ r0 > 0 we haveT ≥ r0n which gives an upper bound[T/r0] + 1 for
the possible lap numbers appearing in the summation above, where[t] denotes
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max{k ∈ Z : k ≤ t}, the integer part oft ≥ 0. In (4.4) we have also used the
relations

2s

T
<

2r

T
≤

ω

N‖ψ‖
and

ω

2
−

ω

N‖ψ‖
=

N‖ψ‖ − 2

2N‖ψ‖
∙ ω.

On the one hand, sincer grows as the logarithm of the distance toS, we have
that the left hand summand in (4.4) is bounded by

Leb

{
x ∈ M : dist

(
x, S

)
≤ exp

(
− C ∙

ωT

2N‖ψ‖

)
}

≤ e−C∙κ∙ωT‖/(2N‖ψ‖), (4.5)

whereC > 0 is a constant depending onr only, and we use condition (S4)
on the geometry ofS. On the other hand, fromT ≥ Si r (x) ≥ r0i we get the
following upper bound for the summands in the right hand side of (4.4) for each
i = 0, . . . , [T/r0] + 1

Leb

{
|Si +1r − Si r |

i
>

(
N‖ψ‖ − 2

2N‖ψ‖
r0

)
∙ ω

} (
let r ′

0 =
N‖ψ‖ − 2

2N‖ψ‖
r0

)

≤ Leb

{∣
∣
∣
1

i
Si r − μ(r )

∣
∣
∣ >

ωr ′
0

2

}
+ Leb

{∣
∣
∣
1

i
Si +1r − μ(r )

∣
∣
∣ >

ωr ′
0

2

}

≤ 2C0e−βi

(4.6)

for some constantsC0, β > 0, since we have a large deviation bound for the
observabler with respect to the unique physical measureμ for f . Recall (see
Section 3) that we tookr to beμ-integrable, continuous onM \ S and with
logarithmic growth nearS, and f is a non-uniformly expanding map with ex-
ponentially slow recurrence toS. Consequently we can bound the summation
in (4.4) as

ωT

2N‖ψ‖
∙ 2C0

[T/r0]+1∑

i =0

e−βi ≤
CωT

2N‖ψ‖
∙ e−βT/r0 (4.7)

for a constantC > 0 depending onf, r, ω andψ . Altogether we see that
λ{I > ω/2} is bounded by twice the maximum of the summands in (4.4).

From this we obtain

lim sup
T→∞

1

T
logλ

{
I >

ω

2

}
< 0, (4.8)

as long as we takeω > 0 small enough.
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4.3 Usingϕ as an observable over the base dynamics

Now for the left hand subset in (4.3), note first that forμ- and Leb-almost every
x ∈ M and every 0≤ s< r (x)

Snr (x)

n
≤

T + s

n
≤

Sn+1r (x)

n
so

n(x, s, T)

T
−−−→
T→∞

1

μ(r )
. (4.9)

We also have (recall thatn = n(x, s, T))
∣
∣
∣
∣
1

T
Snϕ −

μ(ϕ)

μ(r )

∣
∣
∣
∣ ≤

∣
∣
∣
∣
n

T
∙

Snϕ

n
−

n

T
μ(ϕ)

∣
∣
∣
∣ +

∣
∣
∣
∣
n

T
μ(ϕ)−

μ(ϕ)

μ(r )

∣
∣
∣
∣

≤
n

T

∣
∣
∣
∣
Snϕ

n
− μ(ϕ)

∣
∣
∣
∣ + |μ(ϕ)|

∣
∣
∣
∣
n

T
−

1

μ(r )

∣
∣
∣
∣ .

Hence the left hand subset in (4.3) is contained in
{
(x, s) ∈ Mr :

n

T

∣
∣
∣
∣
Snϕ

n
− μ(ϕ)

∣
∣
∣
∣ >

ω

4

}

∪
{
(x, s) ∈ Mr :

∣
∣
∣
∣
n

T
−

1

μ(r )

∣
∣
∣
∣ >

ω

4|μ(ϕ)|

}
.

(4.10)

Notice that theλ-measure of the right hand subset of (4.10) is bounded from
above by

λ

{∣
∣
∣
∣
n

T
−

1

μ(r )

∣
∣
∣
∣ >

ω

4|μ(ϕ)|
& r ≤ T

}
+ λ{r > T}

≤ T
[T/r0]+1∑

i =0

∑

j =0,1

Leb

{
x ∈ M :

∣
∣
∣
∣

i

Si + j r
−

1

μ(r )

∣
∣
∣
∣ >

ω

|μ(ϕ)|

}

+
∫

{r>T}
r d Leb

(4.11)

where we have used the relation (4.9), for small enoughω > 0 and big enough
T andn. The first summand in (4.11) can be bounded using the large deviation
bound for the observabler as before: there are constantsC0, β > 0 such that

Leb

{
x ∈ M :

∣
∣
∣
∣

i

Si + j r
−

1

μ(r )

∣
∣
∣
∣ >

ω

|μ(ϕ)|

}
≤ C0e−βi for j = 0, 1,
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and so for some constantC1 > 0 depending only onf, r andω we get

T
[T/r0]+1∑

i =0

∑

j =0,1

Leb

{
x ∈ M :

∣
∣
∣
∣

i

Si + j r
−

1

μ(r )

∣
∣
∣
∣ >

ω

|μ(ϕ)|

}
≤ C1T e−βT/r0.

The second summand in (4.11) is easily bounded using condition (S4) as follows:
for big enoughT > 0 such thati > [T] implies (i + 1)ec0i < 1, where
c0 = −κ logρ/(2K ) > 0, we have as in (4.5)

∫

{r>T}
r d Leb ≤

∑

i ≥[T]

∫ i +1

i
r d Leb ≤

∑

i ≥[T]

(i + 1) Leb{r > i }

≤ Cκ

∑

i ≥[T]

(i + 1)e−2c0i ≤ Cκ

∑

i ≥[T]

e−c0i ≤ C2 ∙ e−c0T

(4.12)

for a positive constantC2 > 0 depending only onf .
Finally the left hand subset of (4.10) is contained in the following union

{
(x, s) ∈ Mr :

∣
∣
∣
∣
T

n
− μ(r )

∣
∣
∣
∣ >

μ(r )

2
∙ ω

}

∪
{
(x, s) ∈ Mr :

∣
∣
∣
∣
Snϕ

n
− μ(ϕ)

∣
∣
∣
∣ >

μ(r )

2
∙
ω

4

}
.

(4.13)

Again for smallω > 0 theλ-measure of the left hand subset in (4.13) is ex-
ponentially small withT , using similar arguments to (4.11) and (4.12). For
the right hand subset in (4.13) we use the large deviation bound for the observ-
ableϕ with respect tof , sinceϕ has also logarithmic growth nearS. In fact∣
∣ϕ(x)

∣
∣ ≤

∫ r (x)
0 |ψ(x, s)| dt ≤ r (x) ∙ ‖ψ‖ for x ∈ M \ S becauseψ : Mr → R

is bounded. We can estimate theλ-measure of the right hand subset in (4.13) as
in (4.11) through (4.12) (or as in (4.6) and (4.7)), obtaining constantsC3, γ > 0
depending onf, r andω such that

λ

{∣
∣
∣
∣
Snϕ

n
− μ(ϕ)

∣
∣
∣
∣ >

μ(r )

2
∙
ω

4

}
≤ C3T e−γn.

From this we conclude

lim sup
T→∞

1

T
logλ

{∣
∣
∣
∣
1

T
Snϕ −

μ(ϕ)

μ(r )

∣
∣
∣
∣ >

ω

2

}
< 0. (4.14)

Putting (4.8) and (4.14) together,as long as we have a result on large deviations
for continuous observables inM \Swith logarithmic growth nearS, with respect
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to the dynamics off and the Lebesgue measure, andthe volume of neighborhoods
of S is comparable to a power of the radius, we are able to prove the Main
Theorem for the suspension flow overf .

We have obtained the large deviation bounds needed for the base dynamics in
Section 3, so the proof of Theorem A is complete.

5 The Entropy Formula for non-uniformly expanding maps

Here we obtain the Entropy Formula whenf is a non-uniformly expanding map
with slow recurrence to the singular set. The singular setS is formed by critical
points of f and points wheref is either not defined, is not continuous or is not
differentiable. Recall from the Introduction thatψ = log‖(D f )−1‖ and that
J = | detD f |.

Theorem 5.1. Let f : M → M be a non-uniformly expanding map with slow
recurrence to the non-flat singular setS. Let μ ∈ M f be such thatμ is f -
ergodic,hμ( f ) = μ(log J), −∞ < μ(ψ) < 0 and for every givenε > 0 there
existsδ > 0 so thatμ(1δ) < ε. Thenμ � Leband consequentlyμ ∈ co(F).

Reciprocally, letμ ∈M f be such thatμ is absolutely continuous with respect
to Leband assume that1δ isμ-integrable. Thenhμ( f ) = μ(log J).

Here co(F) is the weak∗ closure of the convex hull of the finite setF of ergodic
physical probability measures forf . Clearly this is a particular case of the more
general Entropy Formula obtained by Ledrappier and Young [40, 41] applied to
maps with singularities and/or criticalities. ForC2 endomorphisms (i.e. smooth
maps with criticalities but no singularities) see Bahnmüller and Liu [42, 14] for a
general statement. A similar result for piecewise smooth one-dimensional maps
with finitely many branches was obtained by Ledrappier [39].

As an easy corollary we deducethat co(F) is isolated among the setE of all
equilibrium states off with respect toJ = log

∣
∣ detD f

∣
∣, which might be of

independent interest for the ergodic theory of non-uniformly expanding trans-
formations.

Corollary 5.2. Let f : M → M be a non-uniformly expanding map with slow
recurrence to the non-flat singular setS. Then there exists a weak∗ neighborhood
U of co(F) inM f such thatU ∩ E = co(F).

Proof. Take any weak∗ neighborhoodUof co(F)such that everyμ ∈ Usatisfies
μ(ψ) < 0. Hence everyμ ∈ U∩E satisfies the conditions of Theorem 5.1, thus
μ ∈ co(F). �
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Note that whenever the Entropy Formula and its reciprocal hold for measures
close toF then the argument proving Corollary 5.2 is applicable and we deduce
thatF is isolated inE. The proof of Theorem 5.1 is longer and occupies the rest
of this section.

5.1 Hyperbolic times

Here we present some technical results for the study of non-uniformly expanding
maps whose proof can be found in [49, 5, 1].

We say thatn is a (σ, δ, b)-hyperbolic time off for a point x if there are
0< σ < 1 andb, δ > 0 such that

n−1∏

j =n−k

∥
∥D f

(
f j (x)

)−1∥∥ ≤ σ k and dδ
(

f n−k(x), S
)

≥ e−bk

hold for allk = 0, . . . , n − 1.
We now outline the properties of these special times. For detailed proofs

see [5, Proposition 2.8] and [3, Proposition 2.6, Corollary 2.7, Proposition 5.2].

Proposition 5.3. There are constantsC1, δ1 > 0 depending on(σ, δ, b) and
f only such that, ifn is (σ, δ, b)-hyperbolic time of f for x, then there are
hyperbolic pre-ballsVk(x) which are neighborhoods off n−k(x), k = 1, . . . , n,
satisfying

1. f k | Vk(x) mapsVk(x) diffeomorphically to the ball of radiusδ1 around
f n(x);

2. d
(

f n−k(y), f n−k(z)
)

≤ σ k/2 ∙ d
(

f n(y), f n(z)
)

for every1 ≤ k ≤ n and
y, z ∈ Vk(x);

3. C−1
1 ≤

∣
∣ detD f n−k(y)

∣
∣/

∣
∣ detD f n−k(z)

∣
∣ ≤ C1 for y, z ∈ Vk(x).

The following ensures existence of infinitely many hyperbolic times for
μ-almost every point for non-uniformly expanding maps with respect to an er-
godic invariant probability measureμ. A complete proof can be found in [5,
Section 5].

Theorem 5.4. Let f : M → M be aC1+α local diffeomorphism away from a
non-flat singular setS, for someα ∈ (0, 1), non-uniformly expanding and with
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slow recurrence toS, with respect to an ergodic invariant probability measure
μ. That is there existsc > 0 such that

lim sup
n→+∞

1

n
Snψ ≤ −c μ− almost everywhere

and for everyε > 0 there existsδ > 0 such that

lim sup
n→∞

1

n
Sn1δ(x) ≤ ε μ− almost everywhere.

Then there areσ ∈ (0, 1), δ, b > 0 and there existsθ = θ(σ, δ, b) > 0 such
thatμ-a.e. x ∈ M has infinitely many(σ, δ, b)-hyperbolic times. Moreover if
we write0 < n1 < n2 < n2 < . . . for the hyperbolic times ofx then their
asymptotic frequency satisfies

lim inf
N→∞

#{k ≥ 1 : nk ≤ N}

N
≥ θ for Leb -a.e.x ∈ M.

5.2 Existence of generating partition

Letμ be an f -invariant ergodic probability measure in the conditions of the first
part of the statement of Theorem 5.1.

Observe first that sinceμ(ψ) < 0 andμ is ergodic, thenf is non-uniformly
expanding. Moreover by the assumptions onμ(1δ) we see thatf has also slow
recurrence toS with respect toμ. Hence by Theorem 5.4 there areσ, δ, b > 0
such thatμ-almost allx ∈ M admits infinitely many(σ, δ, b)-hyperbolic times
with positive frequency at infinity. Thus there exists a finite partitionP0 of M
which is generating with respect toμ.

Indeed letE =
{
B(xi , δ1/8), i = 1, . . . , l

}
be a finite open cover ofM by

δ1/8-balls whose boundary has zeroμ measure. From this we define a finite
partition P0 of M as follows. Start by settingP1 = B(x1, δ1/8) as the first
element of the partition. Then, assuming thatP1, . . . , Pk are already defined, set

Pk+1 = B

(
xk+1,

δ1

8

)
\ (P1 ∪ ∙ ∙ ∙ ∪ Pk) for k = 1, . . . , l − 1.

Note that if Pk 6= ∅ then Pk has non-empty interior, diameter smaller than
δ1/4 and the boundary∂Pk is a (finite) union of pieces of boundaries of balls
in a Riemannian manifold. Thus∂Pk has zero Lebesgue measure and zero
μ-measure also. DefineP0 by the elementsPk constructed above which are non-
empty. Note thatμ(∂P0) = Leb(∂P0) = 0 and by the existence of infinitely
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many(σ, δ, b)-hyperbolic times forμ-almost everyx it is not difficult to see that

diam




n−1∨

j =0

f − jP0(x)



 −−−−→
n→+∞

0.

Therefore, sinceμ satisfies the Entropy Formula, we can write

1

n

∫
Sn log J dμ = μ(log J) = hμ( f ) = hμ( f,P0) ≤

1

n
Hμ(Pn)

=
1

n

∫
− logμ

(
Pn(x)

)
dμ

where

Pn =
n−1∨

j =0

f − jP0 for n ≥ 1.

Hence by Jensen’s Inequality we get, denotingJn(x) =
∏n−1

j =0 J
(

f j (x)
)

0 ≥
∫

log
[
Jn(x) ∙ μ

(
Pn(x)

)]
dμ(x) ≥ log

∫
Jn(x) ∙ μ

(
Pn(x)

)
dμ(x).

If we defineQn
γ = {x ∈ M : Sn J(x) ∙ μ

(
Pn(x)

)
> γ } we obtain

μ(Qn
γ ) ≤ γ−1 for all n ≥ 1. (5.1)

Now chooseγn > 0 such that
∑

n γ
−1
n < ∞. Then forμ-almost everyx ∈ M

there existsn0 ∈ N such that for alln ≥ n0 we havex 6∈ Qn
γn

, i.e. Jn(x) ∙
μ

(
Pn(x)

)
≤ γn for all n ≥ n0 = n0(x). Observe that by the definition and

properties of hyperbolic times, we have that there existsC1 > 0 such that

C−1
1 ∙ Leb

(
P0( f n(x))

)
≤ Leb

(
Pn(x)

)
∙ Jn(x) ≤ C1 ∙ Leb

(
P0( f n(x))

)

whenevern is a hyperbolic time forx. This shows that theμ-measure of the
atoms ofPn can be bounded from above by the volume of the same atoms at big
enough hyperbolic times

μ
(
Pn(x)

)
≤ C0γn Leb(Pn(x)), (5.2)

whereC0 = C1 supx∈M Leb
(
P0(x)

)
. The hyperbolic times satisfying this con-

dition will be calledμ-hyperbolic times. To use this we need some way to cover
any set using atoms of the sequence(Pn)n atμ-hyperbolic times.
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5.3 Coverings by hyperbolic times

Letμ, f and(Pn)n≥0 be as in the previous subsection. Note that sincef is regular
andμ is f -invariant the boundary ofg(P) still has zero Lebesgue measure and
zeroμ-measure for every atomP ∈ P0 and every inverse branchg of f n, for
anyn ≥ 1.

We can now state the following flexible covering lemma withμ-hyperbolic
preballs. It will enable us to approximate theμ-measure of a given set through
the measure of families ofμ-hyperbolic preballs.

Lemma 5.5 (The Hyperbolic Covering Lemma).Let a measurable setE ⊂ M ,
m ≥ 1 andζ > 0 be given withμ(E) > 0. Letθ > 0 be a lower bound for the
density ofμ-hyperbolic times forμ-almost every point. Then there are integers
m < n1 < ∙ ∙ ∙ < nk for k = k(ζ ) ≥ 1 and familiesEi of subsets ofM ,
i = 1, . . . , k such that

1. E1 ∪ ∙ ∙ ∙ ∪ Ek is a finite pairwise disjoint family of subsets ofM ;

2. ni is a(σ/2, δ/2)-μ-hyperbolic time for every point inP, for every element
P ∈ Ei , i = 1, . . . , k;

3. everyP ∈ Ei is the preimage of some elementQ ∈ P under an inverse
branch of f ni , i = 1, . . . , k;

4. there is an open setU1 ⊃ E containing the elements ofE1 ∪ ∙ ∙ ∙ ∪ Ek with
μ(U1 \ E) < ζ ;

5. μ
(

E4
⋃

i Ei

)
≤

(
1 − θ

4

)k
< ζ .

The proof is completely presented in [7, Lemma 3.5] and follows [47, Lemma
8.2] closely.

5.4 Absolute continuity

We are now ready to deduce that any measureμas in the statement of Theorem 5.1
is absolutely continuous. Indeed observe that, by (5.1) and the choice of(γn)n≥1,
for any givenη > 0 we can findN = N(η) ∈ N such that0η = ∩n≥N

(
M \ Qn

γn

)

satisfiesμ(0η) ≥ 1 − η.
Let E ⊂ M be given withμ(E ∩0η) > 0. Letm = N in the statement of the

Covering Lemma 5.5 and setζ > 0 small. Then we getμ
(
(E∩0η)4∪k

i =1Ei
)
< ζ
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where all elements ofEi areμ-preballs and atoms ofPni satisfying the bound
(5.2). In particular by the choice ofm we have∪iEi ⊂ 0η and so we may write

μ(E) = μ
(
E ∩ M \ 0η

)
+ μ

(
E ∩ 0η

)
≤ η + ζ + μ

(
E ∩ ∪iEi

)

≤ η + ζ + C0γnk Leb
(
E ∩ ∪iEi

)
,

(5.3)

wherenk is the largestμ-hyperbolic time used in the cover given by the Hyper-
bolic Covering Lemma.

Hence if we start with a subsetE with Leb(E) = 0 and assume thatμ(E) > 0,
then there existsη0 such thatμ(E∩0η) > 0 for all 0< η ≤ η0. Therefore given
ζ > 0 as above we obtain (5.3). But since Leb(E) = 0 we getμ(Z) ≤ η + ζ ,
for all 0< η ≤ η0, that isμ(Z) ≤ ζ . This is a contradiction since we may take
ζ > 0 as small as we like.

We have shown that if Leb(E) = 0 thenμ(E) = 0, i.e.μ � Leb. Then since
the basins of the physical measures off coverM except for a volume zero sub-
set, then it follows easily by the Ergodic Theorem thatμ =

∑k
i =1μ

(
B(μi )

)
∙μi ,

that isμ ∈ co(F).
Reciprocally, let us now assume thatμ is an f -invariant absolutely continuous

probability measure. Then as above we haveμ ∈ co(F) and and thus for some
constantsαi ≥ 0 such that

∑
i αi = 1 we have

hμ( f ) =
k∑

i =1

αi hμi ( f ) =
k∑

i =1

αiμi (log J) = μ(log J).

This concludes the proof of Theorem 5.1.

6 Exponentially slow approximation to singularities

Here we apply the (by now standard) arguments of Benedicks and Carleson, first
presented in [16, 17], to show that Lorenz-like maps have exponentially slow
recurrence to singularities. This completes the presentation of the examples in
Section 2.2.

Let f : M → M be a one-dimensionalC1+α piecewise expanding map with
at most countably many smoothness domains for someα ∈ (0, 1) as in Sub-
section 2.2, that is| f ′| ≥ σ > 1 and the non-degenerate singular setS equals
the boundaries of the smoothness domains and satisfies all the conditions (S1)
through (S5). ThenS = {bn}n where we may assume that the sequence is strictly
monotonous (in counter-clockwise order ifM = S1).

We consider the middle pointscn = (bn + bn+1)/2 for all applicable indexes
n to define a Lebesgue modulo zero partitionP0 of M as follows.

Bull Braz Math Soc, Vol. 38, N. 3, 2007



“main” — 2007/8/10 — 12:57 — page 365 — #31

LARGE DEVIATIONS BOUND FOR SEMIFLOWS 365

6.1 Initial partition

Partition(bn, cn) into subintervals

M(2n, p) =
(
bn + d2ne−p, bn + d2ne−(p−1)

)
, (6.1)

whered2n = cn − bn and partition the interval(cn−1, bn) into the following
subintervals

M(2n − 1, p) =
(
bn − d2n−1e

−(p−1), bn − d2n−1e
−p

)
(6.2)

whered2n−1 = bn − cn−1, for all p ≥ 1. The sets defined above form a partition
of M Lebesgue modulo zero consisting of small intervals whose length is expo-
nentially small with respect to the distance toS. Let S′ = S ∩ f (M) be the set
of singular points off which matter for the asymptotic dynamics off .

To define the initial partition consider a thresholdρ0 ∈ N such that

e−βρ0 < 1 and

(
1 +

2

ρ0

)(
1 +

ρ0

2

)2/ρ0

< eβ (6.3)

and letP0 be formed by the collection of all intervalsM(n, p) for all n and every
p ≥ ρ0 together with the connected components ofM\

(
∪n;p≥ρ0 M(n, p)∪{cn}n

)
,

which will be denoted byM(n, ρ0 − 1) whenever they are adjacent toM(n, ρ0).
For each elementη of P0 denote byη+ the interval obtained by joiningη with

its two neighboring intervals inP0. From (6.1) and (6.2) we have the following
relations for allk and everyp ≥ ρ0 − 1

Leb(M(k, p)+) ≤ 9 Leb(M(k, p)) = 9dk ∙ e−p(e− 1). (6.4)

6.2 Refining the partition

The partitionP0 is dynamically refined so that any pairx, y of points in the
same atom of thenth refinementPn belong to the same element ofP0 during the
first consecutiven iterates, i.e.P0( f i (x)) = P0( f i (y)) for i = 0, . . . , n − 1.
Moreover f n | ω is a diffeomorphism for every intervalω ∈ Pn.

The refinement is defined inductively. Assume thatPn is already defined
and for eachω ∈ Pn there are setsRn(ω) of splitting times andDn(ω) of
corresponding splitting depths, to be defined below.

If f n+1(ω) intersects three or fewer elements ofP0, then we setω ∈ Pn+1,
Rn+1(ω) = Rn(ω) and Dn+1(ω) = Dn(ω). Otherwise consider the subsets
η′ =

(
f n+1 | ω

)−1
(η) of the intervalω, for all elementsη of P0 which intersect

f n+1(ω).

Bull Braz Math Soc, Vol. 38, N. 3, 2007



“main” — 2007/8/10 — 12:57 — page 366 — #32

366 VÍTOR ARAÚJO

The family {η′} obtained above is a partition ofω. Observe thatf n+1(η′) is
either equal to someη ∈ P0 or strictly contained in someη ∈ P0. In the latter
case we redefine the partition joining some of the extreme intervals of{η′} with
its neighbors so that the new partition{ζ } of ω satisfies: for eachζ there exists
η = M(k, p) ∈ P0 such thatη ⊆ f n(ζ ) ⊆ η+.

Finally we setζ ∈ Pn+1, Rn+1(ζ ) = Rn(ζ )∪{n+1} andDn+1(ζ ) = Dn(ζ )∪
{(k, p)}, for each element of the partition{ζ } of ω constructed above. For these
elements ofPn+1 we say thatn + 1 is asplitting timeand the pairs(k, p) are
the correspondingsplitting depths. Repeat the procedure for eachω ∈ Pn. This
completes the construction ofPn+1 fromPn for all n ≥ 0.

6.3 Bounded distortion

The uniform expansion of length duringn iterates ensures that we have bounded
distortion of lengths on atoms of the partitionPn.

Indeed letω ∈ Pn for somen ≥ 1 and letx, y ∈ ω. Note that f i | ω is a
diffeomorphism fori = 1, . . . , n, f expands distances at a minimum rate ofσ

and f ′ is α-Hölder. Then there exist constantsC, D > 0 such that

log

∣
∣
∣
∣
( f n)′(x)

( f n)′(y)

∣
∣
∣
∣ =

n−1∑

i =0

∣
∣ log | f ′( f i (x))| − log | f ′( f j (y)|

∣
∣

≤
n−1∑

i =0

C ∙

∣
∣ f i (x)− f j (y)

∣
∣α

max{| f ′( f i (x))|, | f ′( f i (y))|}

≤
C

σ

n−1∑

i =0

σ i −n ∙
∣
∣ f n(x)− f n(y)

∣
∣α ≤ D,

(6.5)

whereD depends only onσ and on the diameter ofM .

6.4 Measure of atoms ofPn and return depths

Here we show that we can estimate the measure of an element ofPn using the
information stored inRn andDn.

For any givenn ≥ 1 andω ∈ Pn we have

• a sequence of timesRn(ω) = {r1 < ∙ ∙ ∙ < rs} with r1 ≥ 1 andrs ≤ n, and

• a sequence of intervalsω0 ) ω1 ) ∙ ∙ ∙ ) ωs = ω with corresponding
depthsDn(ω) =

{
(k1, p1), . . . , (ks, ps)

}
, whereω0 ∈ P0 andωi ∈ Pri ∩

∙ ∙ ∙ ∩ Pri +1−1
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such that

M(ki , pi ) ⊆ f ri (ωi −1) ⊆ M(ki , pi )
+ (6.6)

for all i = 0, 1, . . . , s − 1 with r0 = 0 ands0 = 0. These times are the
iterates where the images of the previous element of the partition was broken
into smaller intervals as in Subsection 6.2. Using the bounded distortion given
by (6.5) we get

Leb(ω)

Leb(ω0)
=

Leb(ws)

Leb(ωs−1)
∙ ∙ ∙

Leb(ω1)

Leb(ω0)
≤

s∏

i =1

D
Leb

(
f ri (ωi )

)

Leb
(

f ri (ωi −1)
) .

Now using (6.6) and (S5) we bound the last expression from above by

s∏

i =1

D Leb
(
M(ki , pi )

+
)

B−1eβpi −1d−β
ki −1
(e− 1)−β Leb

(
M(ki −1, pi −1)

)

and using (6.4) this can be easily simplified yielding

Leb(ω) ≤
s−1∏

i =0

dβki
e−2βpi ≤ exp

(

−β
s−1∑

i =0

(pi + qi )

)

(6.7)

where
qi =

[
− logdki

]
with

[
z
]

= max
{
k ∈ Z : k ≤ z

}
.

We have usedp ≥ ρ0 and log(9B D(e − 1)β)/ρ0 ≤ β to compensate the con-
stants on the exponent 2β. Recall also thatω0 = M(k0, p0). Note also that
if Rn(ω) = ∅, then since there is no splitting but there is uniform expansion
together with distortion control, we get

Leb
(

f n(ω)
)

=
∫

ω

∣
∣( f n)

∣
∣ d Leb ≥ Dσ n Leb(ω) so Leb(ω) ≤ D−1σ−n. (6.8)

6.5 Distance toS and splitting depths

Let againn ≥ 1 andω ∈ Pn be given and consider the setsRn(ω) andDn(ω).
Consider the intervalsω0 ) ω1 ) ∙ ∙ ∙ ) ωs = ω as before. Note that for the
iteratesi between two consecutive timesr < r ′ from Rn, i.e. if r < i < r ′ then
there existsM(l i ,qi ) ∈ P0 such thatf i (ωr ) ⊆ M(l i ,qi )

+ by this choice ofi .
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Moreover by condition (S5) and by (6.1) and (6.2) we deduce

9dl1(e− 1)e−q1 ≥ Leb
(

f r +1(ωr )
)

≥
(
Bdkr e

−pr
)−β

Leb
(

f r (ωr )
)

=
(

B

e− 1
Leb

(
f r (ωr )

)
)−β

Leb
(

f r (ωr )
)

=
(

e− 1

B

)β
Leb

(
f r (ωr )

)1−β
.

Hencedl1e
−q1−1 ≥

(
9e(e − 1)

)−1
Leb

(
f r +1(ωr )

)
is the estimate for the min-

imum distance fromS to f r +1(ωr ). Let Li = Leb
(

f r +i (ωr )
)

and Di =
dist

(
f r +i (ωr ), S

)
for i = 0, . . . , r ′ − r − 1. Then the reasoning above shows

that

L1 ≥
(

e− 1

B

)β
L1−β

0 and Li +1 ≥
(

9e(e− 1)

B

)β
L1−β

i ,

and alsoDi ≥ Li /
(
9e(e−1)

)
for i = 1, . . . , r ′ −r −1. It is now easy to see that

− log Li +1 ≤ −(1 − β) log Li + β log
9e(e− 1)

B

= −
(

1 − β − β log
(9e(e− 1)

B

)/
log Li

)
log Li

= −γ log Li

where we may assume thatγ ∈ (0, 1) since it is no restriction to increase the
value ofB if needed. Hence

−
r ′−r −1∑

i =1

log dist
(

f r +i (ωr ), S
)

≤ −
r ′−r −1∑

i =1

(
log Li − log

(
9e(e− 1)

))

≤ − Const∙ log L0 + (r ′ − r ) log
(
9e(e− 1)

)

≤ − Const∙ log L0,

since by uniform expansion and by definition ofr ′ we haveσ r ′−r L0 ≤ 1 and
alsor ′ − r ≤ − log(L0)/ logσ . Sincer < r ′ were two arbitrary consecutive
elements ofRn(ω) for ω ∈ Pn we have shown that

s−1∑

j =0

− log dist
(

f j (x), S
)

≤ − Const
∑

(k,p)∈Ds(ω)

log
(
dke−p

)
(6.9)
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for all x ∈ ω, wheres< n is the last splitting time beforen (s = maxRn(ω)).
However if m > n is the first integer such thatω 6∈ Pm but ω ∈ Pl for

n < l < m, then we can write the following disjoint unionω =
⋃
ω′∈Pm

ω′ ∩ ω.
Repeating the argument forx ∈ ω′ ∩ ω for eachω′ ∈ Pm intersectingω we
can obtain a relation like (6.9) withDs(ω) replaced byDn(ω) as the summation
range, wheren is betweens andm. This shows thatthe average of thelog of
the distance to the singular set is bounded by the sum of the depths at splitting
times modulo a constant.

6.6 Expected value of splitting depths

Now we estimate the expected value of the splitting depths for deep splitting
times up ton iterates of the map. Define for a co-countable set ofx ∈ M the
function

Dn(x) = −
∑

(k,p)∈Dn(Pn(x))

log(dke−p)

wherePn(x) is the unique atom ofPn which containsx ∈ M . Define also the
truncated sum: for any givenδ > 0 set for the same pointsx ∈ M as above

Dδn(x) =
∑

(k,p)∈Dn(Pn(x))
dke−p<δ

− log(dke−p). (6.10)

By the arguments in Subsection 6.5 and by the definitions (6.1) and (6.2) we
obtain

n−1∑

j =0

− log distδ
(

f j (x), S
)

≤ Dδn(x). (6.11)

Define thenumber of splittings up to thenth iterate tn(x) = #Rn

(
Pn(ω)

)
and

also thenumber of deep splittings among these

un(x) = #
{
(k, p) ∈ Rn

(
Pn(ω)

)
: dke−p < δ

}
.

Given x andn ≥ 1 we let 0= r0 < r1 < ∙ ∙ ∙ < rt with t = tn(x) be the
splitting times along the orbit ofx up to thenth iterate and 0≤ s1 < ∙ ∙ ∙ < su

be indexes corresponding to deep splittings, whereu = un(x) in what follows.
Note that each quantity above is constant on the elements ofPn. Define

Au,t
(κ1,ρ1),...,(κu,ρu)

(n) =
{
x ∈ M : tn(x) = t, un(x) = n and

(ksi , psi ) = (κi , ρi ), i = 1, . . . , u
}
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the set of points which inn iterates havet splitting times andu deep splittings
among these, with the specified depths(κ1, ρ1), . . . , (κu, ρu).

Lemma 6.1. Leb
(
Au,t
(κ1,ρ1),...,(κu,ρu)

(n)
)

≤
( t

u

)
exp

(
−β

∑u
i =1(ηi + ρi )

)
where

ηi = [− logdκi ].

Proof. Using the estimate (6.7) we get the following bound for the Lebesgue
measure ofAu,t

(κ1,ρ1),...,(κu,ρu)
(n)

(
t

u

)
exp

(

−β
u∑

i =1

(ηi + ρi )

)

∙ exp








−β
∑

(kj ,pj ) s.t. dke−pj ≥δ
j =1,...,t−u

(ν j + pj )







.

The binomial coefficient takes into account all the possible orderings of se-
quences ofu deep splitting times amongt splitting times and the last exponential
bounds the contribution of all the possiblet − u non-deep splitting times, with
ν j = [− logdkj ]. But sincep ≥ ρ0 was chosen as in (6.3) andν j ≥ 0 we
conclude that the last exponential is smaller than 1. So we obtain the bound in
the statement. �

Lemma 6.2. For any z > β we have
∫

ezDδn(x) dx ≤ eθ(δ)n whereθ(δ) is such
that θ(δ) ↘ 0 whenδ ↘ 0.

Proof. By definition
∫

ezDδn(x) dx =
∑

ω∈Pn

ezDδn(ω) ∙ Leb(ω) ≤
∑

ω0∈P0
Dσn Leb(ω0)≤1

Leb(ω0)

+
∑

0<u≤t<n

∑

(κi ,ρi )
i =1,...,u

ezDδn(ω) Leb
(
Au,t
(κ1,ρ1),...,(κu,ρu)

(n)
)

(6.12)

where we are considering all possible combinations of splitting depths and of
deep splittings among all the splitting times, for all elements ofPn in the sec-
ond sum.
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Consider the first term corresponding to the atoms ofP0 which were not split
during the firstn iterates. This sum can be separated as follows

∑

ω0∈P0
Dσn Leb(ω0)≤1

Leb(ω0) =
∑

Dσn Leb(ω0)≤1
dkσ

n/2<1

Leb(ω0) +
∑

Dσn Leb(ω0)≤1
dkσ

n/2≥1

Leb(ω0)

≤ Leb
(
B(S, σ−n/2)

)
+

∑

p>log
(

D(e−1)σn/2
)

e−p

≤ Ce−cn

(6.13)

for some constantsC, c > 0, where we have used expression (6.4) for the length
of the atoms ofP0 in terms of(k, p) together with condition (S4) and the obvious
dk > 0 and

∑
k dk = 1. Note that ifS is finite then the conditiondkσ

n/2 < 1
is always false for big enoughn. So in this case we only have the right hand
side sum above.

Now we bound the second term (6.12). Considering Lemma 6.1 and taking
into accountDδn we obtain (withη j = [− logdκ j ])

∑

0<u≤t<n

∑

(κi ,ρi )
i =1,...,u

(
t

u

)
e−(β+z)

∑
i (ηi +ρi ) ≤

∑

0<u≤t<n

∑

h>u`(δ)

(
t

u

)
uL(h, u)e−(β+z)h

whereh =
∑

i (ηi + ρi ), `(δ) is an integer such that every pair(k, p) satisfying
dke−p < δ also satisfiesk + p > `(δ), and

L(h, u) = #

{
(
(ηi , ρi )

)
i =1,...,u ∈ N2u

0 :
u∑

i =1

(ηi + ρi ) = h with ρi ≥ ρ0

}

.

Moreover the factoru bounds the number of distinctdki with the same valueηi

along then iterates of the orbit of the points. Observe that

L(h, u) ≤ #

{

(hi ) ∈ N2u
0 :

2u∑

i =0

hi = h

}

=
(

h + 2u − 1

2u − 1

)

and by a standard application of Stirling’s Formula

L(h, n) ≤

(

c1/h

(
1 +

2u − 1

h

)(
1 +

h

2u − 1

)(2u−1)/h
)h

≤ eβh ≤ ezh

where 0< c < 1 is a constant independent of the other variables and the last
inequalities follow byh ≥ ρ0u, by the choice ofρ0 in (6.3) and by takingz> β.
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Collecting the bounds we have obtained we conclude that the second sum in
(6.12) can be bounded by the following expression

∑

0<u≤t<n

(
t

u

)
u

∑

h>u`(δ)

e−βh ≤
n∑

u=0

n

(
n − 1

u

)
∙ ue−βu`(δ)/2 ∙

e−βu`(δ)/2

1 − e−β

≤
n∑

u=0

(
n

u

)
C

(
e−β`(δ)/2

)u

1 − e−β

≤
(

1 +
C

1 − e−β
e−β`(δ)/2

)n

for some constantC > 0 bounding{ue−βu`(δ)/2}u≥0 (which can be taken inde-
pendently of̀ (δ)). Finally since`(δ) grows without limit whenδ ↘ 0, the
statement of the lemma follows just by increasing the value ofC to take into
account the small bound of the first sum (6.13). �

6.7 Measure of the points with bad recurrence

We are now ready to deduce exponentially slow approximation to the singular
setS. Indeed we just have to use Tchebishev’s inequality, as follows: given
ε, δ > 0 we know there exists a constantC > 0 as in Subsection 6.5 such that

{

x ∈ M : −
1

n

n−1∑

i =0

log distδ
(

f i (x), S
)

≥ ε

}

⊆
{

x :
Dδn(x)

n
≥
ε

C

}

=
{

x : ezDδn(x) ≥ enε/C
}

hence

Leb
{

x ∈ M : −
1

n

n−1∑

i =0

log distδ
(

f i (x), S
)

≥ ε
}

≤ e−nε/C
∫

ezDδn d Leb = e−n
(
ε/C−θ(δ)

)

which can be made exponentially small by choosingδ > 0 small enough so that
ε/C > θ(δ). This proves that a piecewise expanding mapf in our settings has
exponentially slow recurrence to the singular set, completing the proof of the
statements in Subsection 2.2 and of Corollary C after the reduction procedure of
Subsection 2.4.
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