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Large deviations bound for semiflows over
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Abstract. We obtain a exponential large deviation upper bound for continuous ob-
servables on suspension semiflows over a non-uniformly expanding base transformation
with non-flat singularities or criticalities, where the roof function defining the suspen-
sion behaves like the logarithm of the distance to the singular/critical set of the base
map. That is, given a continuous function we consider its space average with respect to
a physical measure and compare this with the time averages along orbits of the semiflow,
showing that the Lebesgue measure of the set of points whose time averages stay away
from the space average tends to zero exponentially fast as time goes to infinity.

The arguments need the base transformation to exhibit exponential slow recurrence to
the singular set which, in all known examples, implies exponential decay of correlations.
Suspension semiflows model the dynamics of flows admitting cross-sections, where the
dynamics of the base is given by the Poincaré return map and the roof function is the
return time to the cross-section. The results are applicable in particular to semiflows
modeling the geometric Lorenz attractors and the Lorenz flow, as well as other semiflows
with multidimensional non-uniformly expanding base with non-flat singularities and/or
criticalities under slow recurrence rate conditions to this singular/critical set. We are
also able to obtain exponentially fast escape rates from subsets without full measure.
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1 Introduction

The statistical viewpoint on Dynamical Systems provides some of the main tools
available for the global study of the asymptotic behavior of transformations or
flows. One of the main concepts introduced is the notiophyfsical(or Sinai-
Ruelle-Bowejmeasure for a flow or a transformation. An invariant probability
measurex for a flow X! on a compact manifold is a physical probability measure

if the pointsz satisfying for all continuous functiong

t
lim }/ ¥ (X5(2))ds = / v du,
t—>+oo t Jo

form a subset with positive volume (or positive Lebesgue measure) on the ambi-
ent space. These time averages are in principle physically observable if the flow
models a real world phenomenon admitting some measurable features.

For systems admitting such invariant probability measures it is natural to con-
sider the rate of convergence of the time averages to the space average, given
by the volume of the subset of points whose time averages stay away from the
space average by a prescribed amount up to some evolution time. This rate is
closely related to the so-called thermodynamical formalism first developed for
(uniformly) hyperbolic diffeomorphisms, borrowed from statistical mechanics
by Bowen, Ruelle and Sinai (among others, see e.g. [22, 23, 51, 52, 29, 21)]).
These authors systematically studied the construction and properties of phys-
ical measures for (uniformly) hyperbolic diffeomorphisms and flows. Such
measures for non-uniformly hyperbolic maps and flows where obtained more
recently [48, 25, 18, 19, 2].

The probabilistic properties of physical measures are an object of intense
study, see e.g. [23, 37, 58, 59, 20, 3, 4, 6, 32, 11, 7]. The main insight behind
these efforts is that the familyr o X'}, o should behave asymptotically in many
respects just like a i.i.d. random variable.

The study of suspension (or special) flows is motivated by modeling a flow
admitting a cross-section. Such flow is equivalent to a suspension semiflow over
the Poincaré return map to the cross-section with roof function given by the
return time function for the points in the cross-section. This is one of the main
technical tools in the ergodic theory of Axiom A (or uniformly hyperbolic) flows
developed by Bowen and Ruelle [23], enabling them to pass from this type of
flow to a suspension flow over a shift transformation with finitely many symbols
and bounded roof function. Then the properties of the base transformation are
used to deduce many results for the suspension flow, which are then passed to
the original flow.
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LARGE DEVIATIONS BOUND FOR SEMIFLOWS 337

Recently, based on the breakthrough of Dolgopyat [27], this kind of model-
ing provided results on the rate of decay of correlations for certain flows [13]
based on the rate of decay of correlations for suspension semiflows [15]. General
results on the existence and some statistical properties of physical measures for
singular-hyperbolic attractors for three-dimensional flows [10] as well as their
sensitive dependence on initial conditions were also obtained using this standard
technique. Moreover the classical Lorenz flow [43] was shown to be equivalent
to a geometric Lorenz flow by Tucker [54] and so it can be modeled by a suspen-
sion semiflow over a non-uniformly hyperbolic transformation with unbounded
roof function. Using these ideas it was recently obtained [44] that the physical
measure for the Lorenz attractor is mixing.

Here we extend part of the results on large deviation rates of Kifer [37] (see
also Waddington [57]) from the uniformly hyperbolic setting to semiflows over
non-uniformly expanding base dynamics and unbounded roof function. These
special flows model non-hyperbolic flows, like the Lorenz flow, exhibiting equi-
libria accumulated by regular orbits. We use the properties of non-uniformly
expanding transformations, especially the large deviation bound obtained in [7],
to deduce a large deviation bound for the suspension semiflow reducing the es-
timate of the volume of the deviation set to the volume of a certain deviation set
for the base transformation. More precisely, if weset 0 as an error margin
and consider

o=l [ v = [yl

then we are able to provide conditions under which the Lebesgue meadgjre of
decays to zero exponentially fast, i.e. weather there are con§&ahts 0 such
that

Leb(B) < Ce*' forall t=>O0.

The values ofC, & > 0 above depend of1 ¥ and on global invariants for the
base transformatiofi, such as the metric entropy and the pressure functidn of
with respect to the physical measuresfofind a certain observable constructed
from ¢ and X!, as detailed in the next section. Having this it is not difficult to
deduce exponential escape rates from subsets of the semiflow.

In order to be able to apply this bound to Lorenz flows, it is necessary to allow
the roof function of the suspension flows to be unbounded near the singularities
of the base dynamical system. This in turn imposes some restrictions on the
admissible base dynamics, expressed as a slow recurrence rate to the singular
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set and uniqueness of equilibrium states with respect to the logarithm of the
Jacobian of the map. However no cohomology condition on the roof function are
needed, while this is essential to obtain fast decay of correlations in [28, 45, 30].

We present several semiflows with non-uniformly expanding base transfor-
mations satisfying all our conditions, including one-dimensional piecewise ex-
panding maps witlh.orenz-likesingularities and quadratic maps but also multi-
dimensional examples. This demanded the detailed study of recurrence rates to
the singular set, the study of large deviation bounds for unbounded observables
over non-uniformly expanding transformations, and an entropy formula for non-
uniformly expanding maps with singularities (which might be of independent
interest). Now we give the precise statement of the results.

1.1 Statement of the results

Denote by - || a Riemannian norm on the compact boundaryless manifhld
by dist the induced distance and by Leb the corresponding Riemannian vol-
ume form, which we calLebesgue measum volume We assume Leb to be
normalized: LebM) = 1.

Given aC? local diffeomorphism (HoldeG? is enough, see below): M \
§ — M outside a volume zero non-flat singular set, ¢t M, — M, be a
semiflow with roof functiorr : M \ § — R over the base transformatidn as
follows. SetM; = {(X,y) € M x [0, 400): 0 <y < r(X)}. Forx = xp € M
denote byx, thenth iterate f "(xg) for n > 0. Denote

n-1

Sip(x0) = Sle(x) = ) _e(xj) for n=1

j=0

and for any given real functigpin what follows. Then foreach pairg, 5) € X'
andt > O there exists a unique > 1 such thatS;r (xg) < So+t < Sip1r (Xo)
and we define

X' (X0, S0) = (Xn, S0+t — Sir (X0)).

The non-flatness of the singular Seis an extension to arbitrary dimensions
of the notion of non-flat singular set from one-dimensional dynamics [26] and
means thatf behaves like a power of the distance to the singular $¢tre
precisely there are constar®s> 1 and O< 8 < 1 for which

IDf )]l

vl

1
(S1) g distx, 8)F < < Bdist(x, 8)*;
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LARGE DEVIATIONS BOUND FOR SEMIFLOWS 339

dist(x, y)
dist(x, $)#’

dist(x, y)
dist(x, 8)#’

for everyx,y € M\ 8 with dist(x, y) < dist(x, 8)/2 andv € TyM \ {0}. We
also assume an extra condition related to the geometty Biis ensures that the
Lebesgue measure of neighborho8ds comparable to a power of the distance
to §, that is there exist€,, x > 0 such that for all smalp > 0

(S2) |log|Df ()~ Y| —log|IDf(y)7*|I| < B

(S3) |log|detDf (x)™!| —log|detDf (y)™*|| < B

(S4) Lelx € M :dist(x, 8) < p} < C, - p~.

The singular sef contains those pointswheref is either not defined, is discon-
tinuous, not differentiable or eldef (x) is non-invertible (that i§$ contains the
setC of critical points of f). Note that condition (S4) is satisfied in the particular
case whers is a compact submanifold dfl, wherex = dim(M) — dim(s8). It
is also satisfied foM = S* and$ is a denumerable infinite subset with finitely
many accumulation points, with = 1. In particular this holds for a piecewise
expanding map over the interval or the circle with finitely many domains of
monotonicity.

We say thatf is non-uniformly expanding there existsc > 0 such that

lim sup%Sﬂ//(x) < —c where ¥ (x)=log|Df(x)*

N—+00

|, (1.1)

for Lebesgue almost every € M. This condition implies in particular that
all the lower Lyapunov exponents of the mépare strictly positive Lebesgue
almost everywhere.

Let As(x) = |logd;(x, 8)| be thesmooths-truncated logarithmic distance
fromx € M to 8, i.e. As(x) is non-negative and continuous away fr8mden-
tically zero 3-away froms, and equal te- log dist(x, 8§) when distx, 8) < 4.

We say thatf hasexponentially slow recurrence to the singular §ef for
everye > 0 there exists > 0 such that

1 1
lim sup— log Leb{x eM: E&Aa(x) > a} <0. (1.2)

Nn—+o00

Condition (1.2) implies tha§,As/n — 0 in measure, i.e. for every> 0 there
existss > 0 such that

lim sup%&Aa(x) <eg¢ (1.3)

n—oo
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for Lebesgue almost every € M. We say that a mag satisfying (1.3) has
slow recurrence t®.

These notions were presented in [5] and in [5, 1] the following result on
existence of finitely many absolutely continuous measures was obtained.

Theorem 1.1.Letf : M — M be aC? local diffeomorphism outside a singular
set8. Assume thaf is non-uniformly expanding with slow recurrence&o
Then there are finitely many ergodic absolutely continuous (in partiquiessi-
calor Sinai-Ruelle-Boweh f -invariant probability measuregs, . . ., ux whose
basins cover the manifold Lebesgue almost everywhere, thtuig) U --- U
B(ux) = M, Leb— mod Q Moreover the support of each measure contains
an open disk irM.

Here thebasinof an invariant probability measure is the subset of points
X € M such that lim_, », % Z?;ééfj(x) = u in the weak topology.

Large deviation bounds are usually related to measure theoretic entropy and
to equilibrium states. We denote B¢ the family of all invariant probability
measures with respect th. Let J = |detDf|. We say thatu € M;s is an
equilibrium statewith respect to the potential lagjif h, (f) = n(log J), that is
if u satisfies the Entropy FormuldVe denote byE the subset oM ; consisting
of all equilibrium states foff . Itis not difficult to see (Section 5 for more details)
that each physical measure provided by Theorem 1.1 belorigs to

Another standing assumption dnis thatthe setk is formed by a uniqué -
invariant absolutely continuous probability meas(gee Section 2 for sufficient
conditions for this to occur and for examples of application).

We denote by = u x Leb! the naturalX!-invariant extension oft to M,
and by the natural extension of Leb #d,, i.e. » = Lebx Lebt, where LeB
is one-dimensional Lebesgue measuréRorior any subseA C M,

r(x)
v(A) = i/du(x)/ dsya(x,s) and
wu(r) 0

1

MA) = Leb(r)

r(x)
/dLeb(x)f dsxa(x,s).
0

We say that a functiog : M \ 8 — R haslogarithmic growth neas if there
existsK = K (¢) > 0 such that

lolxes.s) < K - A for all small enougts > 0. (1.4)
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LARGE DEVIATIONS BOUND FOR SEMIFLOWS 341

We also say that is aregular mapif for E ¢ M such that LebE) = 0, then
Leb(f~%(E)) =0.

Theorem A. Let X! be a suspension semiflow over a non-uniformly expand-
ing transformationf on the baseM which exhibits exponentially slow recur-
rence to the singular set, where the roof functionM \ 8 — R has logarithmic
growth nearS. Assume thaf is a regular map and that the s&t of equilib-
rium states is formed by a single measureLety : M, — R be a continuous
function. Then

.
lim sup% log A {z eM : '%/O ¥ (X'(2)) dt —v(y)

T—o0

>g}<o.(La

1.2 Escape rates

Let K ¢ M, be a compact subset. Given> 0 we can find an open set
W D K contained iV, and a continuous bump functign: M; — R such that
Leb( W\ K) <eswithO<¢p <1,¢ | K=1andy | (M\W)=0. Thenwe
getforn > 1

T
xeK: X'x) eK,0<t<T}cC {xe M: %/O (p(Xt(x))dtzl} (1.6)

and so we deduce the following using the estimate from Theorem A.

Corollary B. Let X' be a suspension semiflow over a non-uniformly expand-
ing transformationf on the baseM in the same setting as in Theorem A. Let
K be a compact subset M, such thatv(K) < 1. Then

Iimsup% log ({x eK: X'x)eK,0<t< T}) <0.

T—+o00

1.3 Lorentz and Geometric Lorenz flows

The Lorenz equations
X=10y—x), y=28—-y—xz z=xy—=8z/3 (2.7)

were presented by Lorenz [43] in 1963 as a simplified model of convection of
the Earth’s atmosphere. It turned out that these equations became one of the
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main models showing the presence of chaotic dynamics in apparently simple
systems. More recently Tucker [54, 55] with a computer assisted proof showed
that equations (1.7) and similar equations with nearby parameters define a geo-
metric Lorenz flow, i.e. a three-dimensional flo®y in R? with a hyperbolic
singularity at the origin admitting a neighborhobld(a trapping region such
thatXt(U) c U forallt > 0 satisfying:

1. the attracting set = N;-oX'(U) contains the singularity at O;
2. A contains a dense orbit;

3. there exists a squa&= [—1, 1] x [—1, 1] x {1} which is a cross-section

for A \ {0}, that is for everyw € A \ {0} there existd > O such that
X'(w) € S;

. the Poincaré first return map ®given byR : S\ ¢ — Sis C? and

contracts distances exponentially on thelirection, wheref = {0} x

[—1, 1] x {1} is the singular line, so each segmeéhn {x = const is
contained in a stable manifold. Moreover in general this one-dimensional
and co-dimension one foliation of the cross-sectatefines a projection

P along leaves which i€ for somex > 0;

. the one-dimensional map: [—1, 1] \ {0} — [—1, 1] obtained fromR

quotienting out the stable manifolds is a piecewise expanding map with
singularities known akorenz-like mapwhich is in the setting of the class
of examples detailed in Subsection 2.2;

. the roof functionr (w) for w € Sis Lebesgue integrable ov&and has

logarithmic growth near the singular lirfe

Itis well known that the attractor of the geometric Lorenz flows (and the attractor
for the Lorenz equations after the results of Tucker already mentioned) supports
a unique ergodic physical measuyrgfor more details on this construction see
e.g. [56]). Figure 1 gives a visual idea of the geometric Lorenz flow. The reader
should consult [33, 34, 50] for proofs of the properties stated above and more
details on the construction of such flows.

Using r as a roof function over the base dynamics givenRbwe see that
the dynamics of a geometric Lorenz flow @his equivalent to a suspension
semiflow overR with roof functionz. In addition the uniform contraction along
the leaves of the foliatiofly = const together with the uniform expansion of
the one-dimensional map enables us to use Theorem A to deduce
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fx)

-1 0 1

Figure 1: The geometric Lorenz flow and the associated one-dimensional piece-
wise expanding map.

Corollary C. Let X' be a flow orR® exhibiting a Lorenz or a geometric Lorenz
attractor with trapping regiorJ . Denoting byLebthe normalized restriction of
the Lebesgue volume measuré&toy : U — R a bounded continuous function
and u the unique physical measure for the attractor, then for any givenO

.
lim sup% log Leb{z eU: ‘%/0 ¥ (X'(2) dt — u(y)

T—o0

> 8} < 0,
and consequently for any compd<tc U such thatu(K) < 1 we also have

Iimsup% IogLeb({xe K:X(x)eK,0<t < T}) <o

T—+o0

1.4 Comments and organization of the paper

We note that the smoothness assumption needed for our arguments@-only
for somex e (0, 1). Therefore th&€? condition onf in the statements of results
can be relaxed t€* throughout.

Kifer [37] together with Newhouse [38] obtain sharp large deviations bounds
both from above and from below for uniformly partially hyperbolic attractors
for flows and for Axiom A flows, through an estimate of the volume growth of
images of balls under the action of the flow near the attractor (“volume lemma”,
see also [23] and [22]). Moreover to obtain the lower bound an assumption of
uniqueness of equilibrium states is necessary and this assumption is also used
to prove that the upper bound is strictly negative (see also [58] for uniformly
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expanding transformations and for partially hyperbolic attractors for diffeomor-
phisms).

Hence the assumption thitis formed by a single measure is natural in this
setting. The author feels this assumption should not be needed to obtain an ex-
pression for the upper bound in terms of entropies, as in [37]. However the rele-
vant “volume lemmas” are presently not available in the setting of special flows
over non-uniformly expanding base, with singularities or criticalities. Moreover
the uniqueness of equilibrium states with respect to a large family of potentials
(or observables) is still unknown in general (see [47, 12, 11] for recent progress
in this direction). Therefore instead of following the approach of [37] we have
reduced the problem of estimating the deviations for the suspension flow, with
respect to a continuous observable, to the problem of estimating deviations for
the base transformation, with respect to an unbounded observable, and then rely
on previous work [7] for non-uniformly expanding transformations. To deal with
the dynamics near the singularities we impose conditions of very slow recurrence
to the singular sef for the base transformatiohtogether with a growth condi-
tion on the roof functiom near the singularities. In the end to conclude that the
upper bound is strictly negative we use uniqueness of the relevant equilibrium
state. Unfortunately this argument does not rule out superexponential decay
in (1.5).

Recently Melbourne and Nicol [46] obtained sharp large deviation bounds
(i.e. they showed that the limit (1.5) exists) for systems modeled on Markov
towers (also known as Young towers) without requiring uniqueness of equi-
librium states. In the same work upper large deviation bounds are obtained
for semiflows over Markov towerassuming that the roof function is bounded
However their method presents two disadvantages: the large deviation estimates
in [46] are proved only for Holder observables, and these estimates are obtained
for the invariant physical measure rather than the volume or Lebesgue measure,
which is more directly accessible.

Section 2 shows how the conditions éfand onr are satisfied by many
relevant examples. In particular in Subsection 2.4 it is explained how to obtain
a large deviation bound for geometric Lorenz flows using the statement of the
Main Theorem applied to suspensions semiflows over piecewise expanding maps
with singularities, which are treated in a preliminary fashion in Subsection 2.2
and at length in Section 6. The main result needed for the proof of the Main
Theorem is a large deviation bound for observables with logarithmic growth near
the singular set for a non-uniformly expanding map, which is proved in Section 3.
Then the statement of the Main Theorem about large deviations for a suspension
semiflow is reduced to a statement of large deviations for the dynamics of the
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base transformation in Section 4 concluding the proof of the Main Theorem.
Note that in contrast to the results on decay of correlations for Anosov flows
or Axiom A flows, here we do not need any coboundary conditions on the roof
function for the large deviation bound to hold.

In Section 5 we present a derivation of the Entropy Formula for non-uniformly
expanding maps with slow recurrence to the singular set, which is used to estab-
lish that some examples presented in Section 2 do satisfy our assumptions and
which might be interesting in itself.

2 Examples of application

Here we present some concrete examples where our results can be applied.

2.1 Suspension semiflows over multidimensional volume expanding and
guasi-expanding maps

Let f : M\ 8 — M be atransitive non-uniformly expanding map with exponen-
tially slow recurrence t68 satisfyingd = |detDf| > 1,v = log|[(Df)7% <0
andy = 0 at finitely many points only (guasi-expandingnap). We claim that

in this settingE is a singleton.

IndeedE is non-empty by Theorem 1.1 since every absolutely continuous
invariant probability measure is an equilibrium state (see e.g. Theorem 5.1 in
Section 5). Sincd | M \ 8 is a local diffeomorphism and the support of such
absolutely continuous invariant measures contains open sets, the transitivity to-
gether with regularity of the map ensure that there exists only one absolutely
continuous invariant measure. For otherwisedebe ergodic absolutely con-
tinuous f -invariant probability measures and IBt C supfui) be open sets
in the support = 1, 2; by transitivity and continuity there exists a non-empty
open subseB C B; and an iterate such thdt'(B) c B, and by smoothness
Leb-almost every point if "(B) is both au1-generic point and a,-generic
point, thusw; = w,. This shows that there exists a unique absolutely continuous
invariant probability measure fafr.

Note now that every equilibrium staie € E must be such thah,(f) =
v(logJ) > 0 and since) < 0 and has at most finitely many zeroes, then either
v(¥) < 0 and by Theorem 5.1 the measurenust be absolutely continuous, or
v(¥) = 0 and supp < v ~1({0}) is finite thush, (f) = 0, a contradiction.

Therefore by the uniqueness result abovaust coincide withu. We have
shown thatf = {u}, as claimed.
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Hence we can apply Theorem A for semiflows over non-uniformly expand-
ing maps with exponentially slow recurrence to the singular set which are also
transitive, volume expanding and expanding except at finitely many points, and
whose roof function grows with the logarithm of the distancé.to

For examples of multidimensional local diffeomorphisms in this setting see
[9]. In this caseS = ¥ and we can apply Theorem A for semiflows with this
type of base transformation plus a continuous (and thus bounded) roof function.

Clearly the same large deviation bound holds for a semiflow over a local
diffeomorphisms which is uniformly expanding together with any continuous
roof function.

2.2 Suspension semiflows over piecewise expanding maps with singu-
larities

Let M be the circleS! or the interval[0, 1] with {0, 1} ¢ $ andS ¢ M an at
most denumerable and non-flat singular sef sfuch that itslosureS has zero
Lebesgue measure: Leh = 0.

If we assume thatoco < v < —¢c < 0onM \ 8 for somec > 0 (so that
in particular there are no critical point® = @) and thatf is transitive with
slow recurrence t8, then the selE of equilibrium states with respect to 10§’
is formed by a single absolutely continuous invariant probability measure, as
shown in Subsection 2.1, sindeis automatically non-uniformly expanding,
guasi-expanding and volume expanding as well.

Observe that foC? maps in our conditions with finitely many smoothness
domains, or with derivative of bounded variation, it is well known that there
exists a unique ergodic absolutely continuous invariant probability measure
with bounded density [35, 53]. Since the function log gis®) is Leb-integ-
rable we also have that this functionsintegrable. Thus for akk > 0 there is
8 > 0 such that/ |logdist(x, 8)| duu(x) < e. By the ergodicity and absolute
continuity ofu this means that has slow recurrence &for a positive Lebesgue
measure subset dfl. Theorem 1.1 together with [5] ensure thiatis in fact
non-uniformly expanding with slow recurrence §0 Moreover by [36] the
same argument applies @+* piecewise expanding maps with finitely many
smoothness domains, for some= (0, 1).

To be able to apply the Main Theorem we need exponentially slow recurrence
to 8. We prove this in Section 6 assuming th&t| grows as the inverse of some
power of the distance t§’ = S N f(M), i.e. besides conditions (S1) through
(S4) we impose

(S5) | f/(x)| = B dist(x, 8)# forallx € M \ 8,
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whereS' is the (sub)set of singularities which matters for the asymptotic dynamics
of f.

Hencea semiflow over a piecewise expanding map with singularities satisfying
some technical conditions, and with a roof function having logarithmic growth
near the singularitieadmits a large deviation bound as in Theorem A.

2.3 Suspension semiflows over quadratic maps on Benedicks-Carleson
parameters

SetM = | = [—1, 1] and suppose the transformatidnis given by f4(X) =
a — x? for a € [ag, 2] in the positive Lebesgue measure subset constructed
by Benedicks and Carleson in [16, 17], whege~ 2. The properties of the
family f; have been thoroughly studied by a considerable number of people.
We just mention that Freitas in [31] showed that for these paramdieis
not only a non-uniformly expanding map with= € = {0} but also exhibits
exponentially slow approximation to the singular set. Actually in [31] only
subexponentiallglow approximation is stated but the same arguments yield an
exponential bound as well, as obtained in a much more delicate setting with
infinitely many critical points in [8].

Moreover Bruin and Keller [24] show that for this class of maps (specifically
for Collet-Eckman maps.e. such that

lim inf (£ @)Y > 1

without extra conditions of recurrence to the criticality) the unique absolutely
continuous invariant probability measure is also the unique equilibrium state
with respect to logf|.

Therefore for any given suspension semiflow over such quadratic fpapth
roof function having logarithmic growth near O we can apply Theorem A, and
obtain a large deviation bound for these special flows.

2.4 Lorenz and geometric Lorenz attractors

TheC** mapf: [—1, 1]\ {0} — [—1, 1] obtained as the quotient map of the
Poincaré first return map presented in Section 1.3 through projection along
the leaves of the stable foliation satisfies the following conditions, which define
alLorenz-like map

1. there are constants> 0 ando > 1 such that for everm > 1 and for all
X € [—1, 1] \ Uo<jn f {0} we have|(f")'(x)| > co™;
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2. f has a dense orbit;
3. f(0H)=-1,f(0)=1, f(1) € (0,1) and f(—1) € (-1, 0).

Note in particular that there are no critical points and that for skme1 the
mapg = f satisfies the conditions of Section 2.2. ¢lf> +/2 thenf is even
locally eventually onto, see e.g. [44], thus transitive.) For exponentially slow
recurrence to the singularities see Section 6. So we can obtain a large deviation
bound forg which easily gives a large deviation bound for

Indeed, assume without loss of generality th&p) = 0 and that for all small
e > 0 we have LebSl¢ > ne} < Ce ¢ for someC(e), ¢(¢) > 0 and every
n > 0. Itis enough to argue for a bounded and continupuss explained
in Section 3. Then fom > 0 we can writem = nk + p with n > 0 and
O0< p<k-—1andalso

1 1
mS = s (Shwe 1+ Sh)

= nk+p(5p(<ﬂof”")+2$<<pof)

pSUpIsDI
fl
nk+p k+p/nZ Sﬁ(wo )

A

p 131 ,
< —sup|<o|+—§ —S(po ).
m kizon

Givene > 0 takem so big thatp sup|¢|/m < &/2, note thaj(¢ o f') = 0 for
alli > 0and

{ESLgo > s} C U {lsg(goo fly > i}
m I 2k
This shows how to reduce the problem of large deviations for bounded observ-
ables to the same problem for a finite power of the transformation.

To deduce Corollary C, since the reduction to a large deviation bound for the
map f is the content of Section 4, all we need to do here is to explain how
we deduce a large deviation bound ferfrom a similar bound for the magp.

For this we strongly use the uniform contraction along the leaves of the stable
foliation on the global cross-sectidhto obtain the following relation. Denote
by P : S— [—1, 1] the projection(x, y, 1) — X.
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Lemma 2.1. Lete > 0 and a bounded continuous functigh. U — R be
given in a neighborhoot of the geometric Lorenz attractat. Definep: S\
¢ — Rbye(x,y, 1) = J(X’y’l) ¥ (X'(x, y, 1)) dt, wherer(x, y, 1) is the first
return time toS of the point(x, y, 1) € S. Assume without loss of generality
that u(p) = 0 whereu is a R-invariant probability measure such thatis
u-integrable.

Thenthere existintegefd, k > 1, asmalls > 0, a constany > 0dependent
onr and the flow only, and a continuous function[—1, 1]\Uik;§ f~1{0} - R
with logarithmic growth near the sék = Ur—3 f ~'{0} such that for alln > N

(sl -=) = o (G- S fRstl- ) e

This reduces the problem of estimating the Lebesgue measure of the left hand
side set in (2.1) to the estimation of the measure of the right hand side set,
transferring the problem to the dynamics@f= f¥, which is the subject of
Section 2.2 and Section 6.

Proof. According to the construction of geometric Lorenz flows, there are
C > 0 and O< A < 1 such that givex € [—1, 1] \ {0} and two distinct values

y1, Y2 € [-1,1]
dist(R“(x, y1, 1), R(X, y2, 1)) < CA¥ forall 1<k<n, (2.2)

wheren > 1 is the first time the orbit of the points hit the singular line, cor-
responding to the stable foliation of the singularity of the flow. Theitiing
timesdepend only on the orbit of under the mapf and correspond to times
n for which f"(x) = 0. But Xy = Unsof "({0}) is denumerable. Thus the
corresponding set of points i, given by the linegx} x [—1, 1] x {1} for
X € Xp, has zero area 08. Therefore for a full Lebesgue measure subse$ of
we have (2.2) for alk > 1.

Moreover sinceXx, y1, 1), (X, Y2, 1) belong to the same stable manifold, then
for all timest > 0 we have

dist(X'(x, y1, 1), X'(X, Y2, 1)) <« - [y1 — Yal, (2.3)

for a constank > 0 depending only on the angles between the surfaaad
the stable leaves of the flow through pointssfvhich is uniformly bounded by
the compactness @&). Note thaty is continuous or8\ ¢ and

lp(X, y, D] < 7(X,y,1) - sup|yr| < —Cq - log x| - sup|y| (2.4)
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for a constan€, > 0, sincer grows nea like the logarithm of the distance to
£. Thenitis clear that foy, w € [—1, 1] andn > 1

SN
>
|
[uN

1« , ,
=D (@RI Y, 1) — o(RI(x, w, )| <

J

Il
o
Il
o

where(x;, yj, 1) = Ri(x,y, 1) for j > 0,(x,y,1) € S, and

g0 = sup Jo(R(x,y, D) —¢(R (X, w, D).
y,we[—1,1]
Lete > 0 be given. Choose a smél 0 andp > 0 suchthat-Coxnlogs <
¢/3 andkn < sup|y|. Leté > O satisfy

dist((x,y,2), (X,y.,2)) <& = |[¥(X,y,2) —¥(X,y,Z)| <n. (2.5)

Then we may find by (2.2) § = jo(n) > 1 such thaty; — wj| < &/« for
j > joand any paily, w in the same vertical line. Thus we also get after (2.3),
(2.5) and the choices ef § andp

7j(¥) < —Cologlxjl-  sup  [¥(X'(xj.yj, D) — v (XX}, wj, D)
0<t<—Colog|xi| (2.6)

< —Colog|xj|-kn < Coxn - As(Xj) +¢&/2.
Take a continuouk: [—1, 1]\ {0} — R such that for some & a < ¢/3

1. minye—1y @ (RP(X, y, D)) —a < 1(X) < a+maxe—11 ¢(RP(X, y, 1);
and

2. u(l o P) = u(p).

Note thaty is u-integrable: this follows from the boundedness assumption on
Y and by theu-integrability of r after (2.4). Observe thatas above has loga-
rithmic growth neasy by definition.

To obtain such functioh disintegratex along the measurable partition 8f
given by the vertical linegx} x [—1, 1] x {1} and definéo(x) = [ ¢ dux. Then
approximatdg by a continuous functioh such that

/|IO—I1|oPdM<:8—3

(through e.g. a convolution). Now for somes/3 < a < ¢/3 the function
| =11 + a satisfies conditions 1-2 above.
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Now forn > 0 using (2.6),f o P = P o R and summing over orbits d®"
and fk

|S1(I © P) - S1¢|(Xv yv l)
|| oP— (P|(X’ Y, 1) + |S‘|—1(| oP— (P)|(X’ Y, 1)

IA

IA

n-1
" e
2suply|Colog|x| +a+ le (CoKnA,g(fJ (X)) + 3 + a)

(2.7)
2
< 2suply|Co(logs™ + As(x)) + % + Coxn - Si—1A5(F¥(x))
_1  2ne
< 25uply/|Cologd™ + == + Colkn + 2SUpIY]) - $1A5(X).
Observe that
1 1
(5%l -] < {lpsraom - -2
(2.8)

U {%|s§*k(l o P)| > e}.

From (2.7), settingn, = 2 sup|y|Cologs—t andy, = Co(kn + 2 sup|y|) we
obtain forn big enough

1 2¢
ﬁ(Squ(IOP)—Squ(p) 3+E+ %AOP<£—{—— S.]:A(;OP

wherey, < 3Cqsupl|y| by the choice of;. Hence

fk

[

and this together with (2.8) completes the proof of the lemma. a

3 Large deviations for observables with logarithmic growth near
singularities

The main bound on large deviations for suspension semiflows over a non-
uniformly expanding base will be obtained from the following large deviation
statement for non-uniformly expanding transformations.

Theorem 3.1. Let f: M — M be a regularC*** |ocal diffeomorphism on
M \ 8 wheres$ is a non-flat critical set and € (0, 1). Assume that is a non-
uniformly expanding map with exponentially slow recurrence to the singular set
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S and letg: M\ 8 — R be a continuous map which has logarithmic growth
nearS. Moreover assume that there exists a unique equilibrium giatath
respect tdog J which is absolutely continuous. Then for any giver 0

1 1
lim sup— log Leb{x eM: ‘—Sn(p(x) —u(p)| = a)} < 0.
n—+oo N n
Proof. Define
k if x>k
ok =& o whereg(x) =4 x if X<k, k>1
-k if x=<-k

Thengy: M — Ris continuous for ak > 1, ¢y (X) P p(x)forallx € M\$8
— 00

and|¢ — ¢kl < || (1> Moreover we clearly have for ati, k > 1
Sk — Sile — o] < 59 =S+ Sie — o) < S+ Sle — e, (3.1)

Observe that, since has logarithmic growth ned (see (1.4)), for any given
C, o > 0 we may choose;, §; > 0 such that the exponential slow recurrence
condition (1.2) is true an& - ¢; < g9. Then choos& > 1 very big so that
{lo| > k} € B(8, 81). From (3.1) we obtain the following inclusions

1 1 1
= ct € 1= “S|e - c
{n31<ﬂ> }_ nS1(Pk+n31|§0 o| > }

1 1
S 1Sk > c- Kel} U {ﬁshlw—(pkl > Kel} (3.2)

1 1
- ﬁSﬂﬂk > 0—80} U {E$Asl > 81},

where in (3.2) we use the assumption thas of logarithmic growth nea$ and
the choices of1, ;. Analogously we get with opposite inequalities

1 1 1
{ﬁSn¢<C} - ﬁS1<ﬂk—ﬁSl|(P_§0k|<C}

1 1
S S <c+ Kel}U{HS\|§0_(ﬂk| > Kel} (3.3)

1 1
- HS1<pk < C+80} U {ﬁSnA(;l > 81}.
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From (3.2) and (3.3) we see thiat get the bound for large deviations in the
statement of Theore®11 it suffices to obtain a large deviation bound for the
continuous functiorp, with respect to the same transformatiédnandto have
exponentially slow recurrence to the singular 8et

To obtain this large deviation bound, we use the following result already ob-
tained for continuous observables over non-uniformly expanding transformations
in our setting, see [7].

Theorem 3.2. Let f : M — M be a local diffeomorphism outside a non-flat
singular setS which is non-uniformly expanding and has slow recurrence to
8. For wp > 0 and a continuous functiopy : M — R there exists,§ > 0
arbitrarily close to0 such that, writing

A, = {x eM: %SnAg(X) < 8} and

i 1
B, = {X e M: inf {‘ﬁafpo(x) —n(wo)‘: n GE} > a)o}

we getimsup,_, ., = log Leb(A, N By) < 0.

Recall thafE is the set of all equilibrium states dfwith respect to the poten-
tial log J.
Note that exponentially slow recurrence implies

lim sup } Leb(M \ A, < O.
n—+oo N
Under this assumption Theorem 3.2 ensures thakfd) close enough t¢0, 0)
we get
lim sup 1 log Leh(B,) < O.
n—->4o0 N
To use this we also need tHatonsists only of the unique absolutely continuous
invariant probability measure.. Under this uniqueness assumption we have
E = {u} in Theorem 3.2 and take, ¢g > 0 small, choosd& > 1 as before,
setgg = gk andwg = w + go. In (3.2) setc = u(gy) — w and in (3.3) set
¢ = u(po) + w. Then we have the inclusion

1 1
HHSW —/x(w)’ > w} - {‘ﬁsnfﬂo—,u(ﬁﬂo)‘ > wo}
) (3.4)
U {ES‘lAﬁl > 81} .
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By Theorem 3.2 we may find, § > 0 small enough so that the exponentially
slow recurrence holds also for the péir §) and hence

lim supl log LebH%S\QDO — M((po)‘ > wo} < 0. (3.5
n—-+o00

Finally the choice of,, §; according to the condition on exponential slow recur-
rence toS ensures that the Lebesgue measure of the right hand subset in (3.4) is
also exponentially small whem — oo. This together with (3.5) concludes the
proof of Theorem 3.1. O

4 Large deviations and the dynamics on the base

Here we show how the large deviation bound for a semiflow over a non-uniformly
expanding base can be deduced from a large deviation bound for the base dy-
namics, under a logarithmic growth condition on the roof function.

4.1 Reduction to the base dynamics

Lety : M; — R be continuous and bounded. Fbr> 0 andz = (x, s) with
Xx € Mand 0< s < r(X) < oo we can write

T r(x)
/ ¥ (X'(2)dt :f ¥ (X'(x, 0)) dt
0 S
n—-1

r(fio) _
+ Z/O ¥ (X'(F1(x),0)) dt

=1

T+s—Sr(x)
+ / ¥ (X'(f"(x), 0)) dt,
0

wheren = n(x,s, T) € N is the “lap nhumber” such thar(x) < s+ T <
Sheal (%).

Settinge(x) = f3* ¥ (x, 0) dt we obtain

E/T X'z dt—lsn X 1/s X'(x, 0)) dt
Tolﬁ(()) —Tw()—TOW((,))

1 T4+s—Sr (x)
+ —/ ¥ (X'(f"(x), 0)) dt.
T Jo
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Clearly we can bound the suim= 1 (x, s, T) of the two integral terms on the
right hand side above by

I =1(x,8T)< (25 + Shal (X) — Sr(x))

T T Al (4.1)

where||v || = sup|y|. Observe that for a giveta > 0 and for 0< s < r(x)
andn =n(x,s, T)

(4.2)

{(x ) e M, : (—s1<p<x)+|(x s T)_ M@ a)}

( )
is contained in

{(xs)eMr ‘T&()_% %} {(xs)eMr I(xsT)>—} (4.3)

Note that ifyy = 0 then we need only consider the left hand subset of (4.3) in
what follows. Now we bound the-measure of each subset above assuming that
¥ is not identically zero.

4.2 Using the roof function as an observable over the base dynamics

We start with the right hand subset in (4.3). Tadke> 1 big enough so that
N|v || > 2 and note that for any giveh, @ > 0 using (4.1) anth = n(x, s, T)

-3

r(x)
/dLeb(x)/0 ds(x(w/g,j;oo) o I)(x,s, T)

T
= Leb{r g 2N||w||} (4.4)
[T/rol+1
T Saar — St Nyl -2 }
+ Leb{ )
NIV § T 7 2Ny ¢

where in the right hand summand we restrict to points M such that
2Ny lIr(x) <oT and Sr(x) <T < §4r(x)

for each possible lap numbere N. Note that since is bounded from below
r > ro > 0 we haveT > ron which gives an upper bound /ro] + 1 for
the possible lap numbers appearing in the summation above, \iheenotes
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maxk € Z : k < t}, the integer part of > 0. In (4.4) we have also used the
relations

2s w w o  Nly|-2

< == and — =
T T 7 Nyl 2 Nyl 2Nyl

On the one hand, sinaegrows as the logarithm of the distance&owe have
that the left hand summand in (4.4) is bounded by

oT
2Ny

whereC > 0 is a constant depending ononly, and we use condition (S4)
on the geometry 08. On the other hand, frofi > Sr(x) > rgi we get the
following upper bound for the summands in the right hand side of (4.4) for each
i=0,...,[T/ro]+1

Sqaf — St (NJw] -2 . Njyl -2
Leb{ i >( 2NV ”’)"”} (fetro = 2NV o)

< Leb{\%Sr —u)| > ‘”7”’} +Leb{)%s+1r )| > “’7”’} (4.6)

Leb{x € M : dist(x, 8) < exp(— )} < @ CHoTI/@NIVD | (4.5)

< 2Coe Pl

for some constant€y, 8 > 0, since we have a large deviation bound for the
observable with respect to the unique physical measuréor f. Recall (see
Section 3) that we took to be u-integrable, continuous oM \ § and with
logarithmic growth nea§, and f is a non-uniformly expanding map with ex-
ponentially slow recurrence t® Consequently we can bound the summation
in (4.4) as

[T/rol+1 oT

,ﬂ,
2N||z/f|| OZ —2N||w||

g FT/ro (4.7)

for a constaniC > 0 depending onf,r, w and . Altogether we see that
M1 > w/2} is bounded by twice the maximum of the summands in (4.4).

From this we obtain
. 1 w
“Tjol.ﬂp? IogA{I > E} <0, (4.8)

as long as we take > 0 small enough.
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4.3 Usingy as an observable over the base dynamics

Now for the left hand subset in (4.3), note first that ferand Leb-almost every
X € M and every 0< s < r(X)

S (X) - T+s - Sl (X) . n(x,s, T) 1 ‘ (4.9)
n n n T T—oo u(r)
We also have (recall that= n(x, s, T))
1 o)) n Se n n n(e)
‘?3190 - m = T n ?M((ﬂ)' + ‘?M(QO) - m
n Sﬂp n 1
=7 ‘T —M(w)‘ + ()| ‘? TGk
Hence the left hand subset in (4.3) is contained in
NS¢ 1)
{(X,S) € M : T T—,U«(QD) > Z}
(4.10)
U{(xs)eM~'E— 1 > @ }
’ AT wm| T A

Notice that ther-measure of the right hand subset of (4.10) is bounded from
above by

1
A{ﬂ— > 2 &rgT}+A{r>T}
T nm)|  Aul)l
[T/rol+1 i 1 ”
<T Lebix e M : — > 4.11
; j:XO,:]_ { ‘Sﬂf p(r) Iu(w)l} (4-11)
+ / r dLeb
r>T}

where we have used the relation (4.9), for small enaugh 0 and big enough
T andn. The first summand in (4.11) can be bounded using the large deviation
bound for the observabteas before: there are constafg 8 > 0 such that

‘ i1
RENTET0)

Leb{x eM

> } <Coe# for j=0,1,
[ (@)l
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and so for some consta@f > 0 depending only orf, r andw we get

[T/rol+1

! < CiTePT/mn,

T > > Leb

{X eM:
i=0 j=0,1

STTING)

}
>

The second summand in (4.11) is easily bounded using condition (S4) as follows:
for big enoughT > 0 such that > [T] implies (i + 1)e® < 1, where
o = —«logp/(2K) > 0, we have as in (4.5)

/{;>T}

rdLeb<Z/ rdleb< » (i +1Lebfr > i)

=T 4.12)

<C, Z (i + e < C, Z g% <C,.e %"

i>[T]

i>[T]

for a positive constan€, > 0 depending only orf .
Finally the left hand subset of (4.10) is contained in the following union

{xs M’I
(7)6 I‘-n

U{(x,s)eMr:IS"T w(p )‘

p(r)

w(r) }

B (4.13)
w(r) w} '
20

Again for smallo > 0 the A-measure of the left hand subset in (4.13) is ex-
ponentially small withT, using similar arguments to (4.11) and (4.12). For
the right hand subset in (4.13) we use the large deviation bound for the observ-
able ¢ with respect tof, since¢ has also logarithmic growth ne&r In fact

lp(0)] <

T w(x, 9)ldt < r(x) - [y for x € M\ 8 becausey : M; — R

is bounded We can estimate theneasure of the right hand subset in (4.13) as
in (4.11) through (4.12) (or asin (4.6) and (4.7)), obtaining cons@stg > 0
depending orf, r andw such that

S
{ . ()
From this we conclude
limsup—= IogA {
T

> @ . %} < CiTe ",
So— HO_ el _g 4.14

Putting (4.8) and (4.14) togethexs long as we have a result on large deviations
for continuous observables M \ § with logarithmic growth nea8, with respect
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to the dynamics of and the Lebesgue measpa@dthe volume of neighborhoods
of 8 is comparable to a power of the radiugzre are able to prove the Main
Theorem for the suspension flow over

We have obtained the large deviation bounds needed for the base dynamics in
Section 3, so the proof of Theorem A is complete.

5 The Entropy Formula for non-uniformly expanding maps

Here we obtain the Entropy Formula whéns a non-uniformly expanding map
with slow recurrence to the singular set. The singulaBsstformed by critical
points of f and points wherd is either not defined, is not continuous or is not
differentiable. Recall from the Introduction thét = log ||(Df)~|| and that

J = |detDf|.

Theorem 5.1.Let f : M — M be a non-uniformly expanding map with slow
recurrence to the non-flat singular sét Letu € M; be such thaj is f-
ergodic,h,(f) = u(logJ), —oo < u(y) < 0 and for every givem > 0 there
existss > 0so thatu(A;s) < e. Thenu <« Leband consequently € co(IF).

Reciprocally, lefu € M+ be such thap is absolutely continuous with respect
to Leband assume thak; is p-integrable. Ther, (f) = p(log J).

HerecdlF) is the weak closure of the convex hull of the finite SBbf ergodic
physical probability measures fdr. Clearly this is a particular case of the more
general Entropy Formula obtained by Ledrappier and Young [40, 41] applied to
maps with singularities and/or criticalities. Fof endomorphisms (i.e. smooth
maps with criticalities but no singularities) see Bahnmiuiller and Liu [42, 14] for a
general statement. A similar result for piecewise smooth one-dimensional maps
with finitely many branches was obtained by Ledrappier [39].

As an easy corollary we dedutieat cq[F) is isolated among the sitof all
equilibrium states off with respect toJ = log|detDf|, which might be of
independent interest for the ergodic theory of non-uniformly expanding trans-
formations.

Corollary 5.2. Let f : M — M be a non-uniformly expanding map with slow
recurrence to the non-flat singular s&t Then there exists a weakeighborhood
U of Co(IF) in M ¢ such thatl N E = To(IF).

Proof. Take anyweakneighborhood( of Co(IF) suchthatevery € U satisfies
w() < 0. Hence everyt € UNE satisfies the conditions of Theorem 5.1, thus
u € Co(IF). O
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Note that whenever the Entropy Formula and its reciprocal hold for measures
close toF then the argument proving Corollary 5.2 is applicable and we deduce
thatFF is isolated inE. The proof of Theorem 5.1 is longer and occupies the rest
of this section.

5.1 Hyperbolic times

Here we present some technical results for the study of non-uniformly expanding
maps whose proof can be found in [49, 5, 1].

We say that is a (o, 8, b)-hyperbolic time off for a pointx if there are
0 <o < 1andb,§ > 0such that

-1

=}

IDF(f10) | <o and ds(F"*x),8) = e
—k

L —;

]

holdforallk =0,...,n— 1.
We now outline the properties of these special times. For detailed proofs
see [5, Proposition 2.8] and [3, Proposition 2.6, Corollary 2.7, Proposition 5.2].

Proposition 5.3. There are constant€;, §; > 0 depending ono, 8, b) and
f only such that, in is (o, 8, b)-hyperbolic time off for x, then there are
hyperbolic pre-balld/ (x) which are neighborhoods df"*x),k=1,...,n
satisfying

1. X Vi(x) mapsVi(x) diffeomorphically to the ball of radiué, around
f1(x);

2. d(f"¥(y), " *(2) < o¥2.d(f"(y), f"(2)) foreveryl <k <nand
Yy, Z € Vk(X);

3. Ci* < |detDf"*(y)|/|detDf"*(z)| < C; fory, z € Vi(x).

The following ensures existence of infinitely many hyperbolic times for
wn-almost every point for non-uniformly expanding maps with respect to an er-
godic invariant probability measupe. A complete proof can be found in [5,
Section 5].

Theorem 5.4.Let f : M — M be aC*“ local diffeomorphism away from a
non-flat singular se§, for somex € (0, 1), non-uniformly expanding and with

Bull Braz Math Soc, Vol. 38, N. 3, 2007



LARGE DEVIATIONS BOUND FOR SEMIFLOWS 361

slow recurrence t@, with respect to an ergodic invariant probability measure
. That is there exists > 0 such that

_ 1
limsup—Sv < —c u — almost everywhere

n—+o00

and for every > 0 there exist$ > 0 such that

. 1

lim supﬁShA,;(x) <& u — almost everywhere
n—oo

Then there arex € (0, 1), §, b > 0 and there exist§ = 0(o, 8, b) > 0 such

that u-a.e. x € M has infinitely manyo, §, b)-hyperbolic times. Moreover if

we write0 < n; < ny; < np < ... for the hyperbolic times o then their

asymptotic frequency satisfies

6 for Leb -a.ex e M.

iminf = 1ime=Nb
N— o0 N

5.2 Existence of generating partition

Let u be anf -invariant ergodic probability measure in the conditions of the first
part of the statement of Theorem 5.1.

Observe first that since () < 0 andu is ergodic, thenf is non-uniformly
expanding. Moreover by the assumptions.ai\s) we see thaf has also slow
recurrence t@é with respect tqu. Hence by Theorem 5.4 there args, b > 0
such thafu-almost allx € M admits infinitely many(o, 8, b)-hyperbolic times
with positive frequency at infinity. Thus there exists a finite partitignof M
which is generating with respect ta

Indeed let¢ = {B(x,61/8),i = 1,...,1} be a finite open cover dfl by
81/8-balls whose boundary has zewomeasure. From this we define a finite
partition Pg of M as follows. Start by settind’, = B(Xy, §1/8) as the first
element of the partition. Then, assuming tRat. .., P, are already defined, set

01
Pk+1= B(Xk+1,§>\(P1U-HUPk) for k=1,...,1 —1

Note that if P, # @ then Pc has non-empty interior, diameter smaller than
81/4 and the boundary Py is a (finite) union of pieces of boundaries of balls

in a Riemannian manifold. Thu&P, has zero Lebesgue measure and zero
u-measure also. Defirig by the element® constructed above which are non-

empty. Note thap(dPg) = Leb(dPg) = 0 and by the existence of infinitely
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many (o, §, b)-hyperbolic times fogc-almost every it is not difficult to see that
n-1
i -]
diam J\_/O f TO(X) m 0.

Therefore, since satisfies the Entropy Formula, we can write
1 1
o [ S11093 4 = widog ) = (1) = h, (1,70 = “H.(P

1
= ﬁf—logm(?n(x)) du

where
n—-1

P, = \/ f-ipy for n> 1
j=0

Hence by Jensen’s Inequality we get, denotia(x) = ]'[rj‘;é J(fI(x)

0> /Iog[Jn(X)-u(iPn(X))]du(X) > Iog/Jn(X)-u(an(X)) du(x).
If we defineQ’, = {x € M : $J(x) - u(Pn(X)) > y} we obtain
w(Q)) <yt forall nx>1 (5.1)

Now choosey, > 0 such thad) ", y,;* < co. Then foru-almost everyx € M
there existay € N such that for alln > ng we havex ¢ Q7 , i.e. Jn(X) -
w(Pn(x)) < yn foralln > ng = no(x). Observe that by the definition and
properties of hyperbolic times, we have that there eXists- 0 such that

Cit-Leb(Po(f"(x))) < Leb(Pn(x)) - n(X) < Cy - Leb(Po(f"(x)))

whenevem is a hyperbolic time foix. This shows that the.-measure of the
atoms ofP,, can be bounded from above by the volume of the same atoms at big
enough hyperbolic times

1 (Pn(x)) < Coyn Leb(Pn(x)), (5.2)

whereCy = C1SUR .y Leb(iPo(x)). The hyperbolic times satisfying this con-
dition will be calledui-hyperbolic timesTo use this we need some way to cover
any set using atoms of the sequeli®g), at u-hyperbolic times.
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5.3 Coverings by hyperbolic times

Letu, f and(Pn)n=0 be asinthe previous subsection. Note that sihisregular
andu is f-invariant the boundary aj(P) still has zero Lebesgue measure and
zeropu-measure for every atol® € Py and every inverse brananof f", for
anyn > 1.

We can now state the following flexible covering lemma witthyperbolic
preballs. It will enable us to approximate themeasure of a given set through
the measure of families qf-hyperbolic preballs.

Lemmab5.5 (The Hyperbolic Covering Lemma).Leta measurable s& c M,

m > 1land¢ > 0be given withu(E) > 0. Leté > 0 be a lower bound for the
density ofu-hyperbolic times fop.-almost every point. Then there are integers
m<ng < --- < ngfork = k(¢) > 1 and families&; of subsets oM,

i =1,..., ksuchthat

1. E1U--- U & is afinite pairwise disjoint family of subsets Idf;

2. njisa(o/2, §/2)-u-hyperbolic time for every point iR, for every element
Peé&,i=1,...,k

3. everyP € & is the preimage of some elemédte P under an inverse
branchoff" i =1,...,k;

4. there is an open s&l; O E containing the elements 6f U - - - U &, with
uwU\ E) <¢;

5. n(EalU &) =(1-9)" <¢.

The proof is completely presented in [7, Lemma 3.5] and follows [47, Lemma
8.2] closely.

5.4 Absolute continuity

We are now ready to deduce that any meaglagin the statement of Theorem 5.1
is absolutely continuous. Indeed observe that, by (5.1) and the chdig@ ©f1,
for any giver > 0 we can findN = N(») € Nsuch thal", = Np=n(M\ QY
satisfiesu(T",)) > 1 — 1.

Let E C M be given withu(ENT,) > 0. Letm = N in the statement of the
CoveringLemma5.5and sgt> 0 small. Thenwe get((ENT,) AU, &) < ¢
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where all elements of; areu-preballs and atoms &F,, satisfying the bound
(5.2). In particular by the choice of we haveu; &; C I'), and so we may write

WE) = w(ENM\T,) +u(ENT,) <n+¢+u(ENUE)

(5.3)
< n+¢ + Coyn, LEb(E N Ui&),

whereny is the largesiu-hyperbolic time used in the cover given by the Hyper-
bolic Covering Lemma.

Hence if we start with a subsEtwith Leb(E) = 0 and assume that(E) > O,
then there existgy such thaju(ENT,) > Oforall 0 < n < no. Therefore given
¢ > 0 as above we obtain (5.3). But since ICBh = 0 we getu(Z) < n + ¢,
forall 0 < n < no, thatisu(Z) < ¢. This is a contradiction since we may take
¢ > 0 as small as we like.

We have shown that if Lale) = 0 thenu(E) = 0, i.e. © <« Leb. Then since
the basins of the physical measuresafoverM except for a volume zero sub-
set, then it follows easily by the Ergodic Theorem that ¥ | w(Bui)) - i,
that isu € co(F).

Reciprocally, let us now assume thais an f -invariant absolutely continuous
probability measure. Then as above we have co(F) and and thus for some
constantsy; > 0 such thad ; = 1 we have

k k
hu(f) =) aih, (f) =) aipi(logd) = u(log J).

i=1 i=1

This concludes the proof of Theorem 5.1.

6 Exponentially slow approximation to singularities

Here we apply the (by now standard) arguments of Benedicks and Carleson, first
presented in [16, 17], to show that Lorenz-like maps have exponentially slow
recurrence to singularities. This completes the presentation of the examples in
Section 2.2.

Let f: M — M be a one-dimension&*+* piecewise expanding map with
at most countably many smoothness domains for senee (0, 1) as in Sub-
section 2.2, that i$f’| > o > 1 and the non-degenerate singular$eguals
the boundaries of the smoothness domains and satisfies all the conditions (S1)
through (S5). TheB = {bn}, where we may assume that the sequence is strictly
monotonous (in counter-clockwise ordeMf = S1).

We consider the middle pointg = (b, + b,,1)/2 for all applicable indexes
n to define a Lebesgue modulo zero partitinof M as follows.
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6.1 Initial partition

Partition(b,, c,) into subintervals
M(2n, p) = (bn + dn€ P, by + done™ P7Y), (6.1)

whered,, = ¢, — b, and partition the intervalc,_1, by) into the following
subintervals

M (2n - 1, p) = (bn - d2n—1e_(p_1), bn - d2n—le_ p) (6-2)

whered,,_; = by — ¢y, for all p > 1. The sets defined above form a patrtition
of M Lebesgue modulo zero consisting of small intervals whose length is expo-
nentially small with respect to the distanceStoLet 8’ = S N f (M) be the set
of singular points off which matter for the asymptotic dynamics bf

To define the initial partition consider a threshplde N such that

2 00 2/po
e PP <1 and <1+ —) (1 + E) <é (6.3)
Lo

and letP, be formed by the collection of all intervald (n, p) for all n and every

p > potogetherwith the connected componentMO\f(Un; p=po M (N, p)U{cn}n),

which will be denoted by (n, po — 1) whenever they are adjacenttb(n, po).
For each element of Py denote byt the interval obtained by joining with

its two neighboring intervals iffg. From (6.1) and (6.2) we have the following

relations for allkk and everyp > pg — 1

Leb(M(k, p)) < 9Leb(M(k, p)) = 9d - e P(e—1). (6.4)

6.2 Refining the patrtition

The partition?g is dynamically refined so that any pairy of points in the
same atom of thath refinemenfP,, belong to the same element®j§ during the
first consecutiven iterates, i.e.Po(f'(x)) = Po(fi(y)) fori =0,...,n—1.
Moreover f" | w is a diffeomorphism for every interval € P,,.

The refinement is defined inductively. Assume tiatis already defined
and for eachw € P, there are set®R,(w) of splitting times andD,(w) of
corresponding splitting depths, to be defined below.

If f™(w) intersects three or fewer elements®y, then we setv € P4,
Rii1(w) = Ry(w) and Dpy1(w) = Dn(w). Otherwise consider the subsets
n' = (fM a))*l (n) of the intervake, for all elements; of Py which intersect
fn+l(w)_
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The family {'} obtained above is a partition af. Observe thaff "1(’) is
either equal to some € Pg or strictly contained in some € Pg. In the latter
case we redefine the partition joining some of the extreme intervdigjokvith
its neighbors so that the new partiti¢n} of w satisfies: for each there exists
n = M, p) € Posuchthaty € f"(¢) C n*.

Finally we set € Pni1, Rir1(8) = Ry(§) U{n+ 1} andDp1($) = Dn($)U
{(k, p)}, for each element of the partitidg} of w constructed above. For these
elements ofP,,1 we say than + 1 is asplitting timeand the pairgk, p) are
the correspondingplitting depths Repeat the procedure for eashe P,. This
completes the construction ®f,; from P, for all n > 0.

6.3 Bounded distortion

The uniform expansion of length durimgterates ensures that we have bounded
distortion of lengths on atoms of the partititn. .
Indeed letw € P, for somen > 1 and letx, y € w. Note thatf' | wis a

diffeomorphism fori = 1, ..., n, f expands distances at a minimum raterof
and f’ is «-Holder. Then there exist constaisD > O such that
n—-1

(£7Y(x)
RO

= > |log| f'(f' x| = log| f'(fI ()|

o

n-1 i ] a
_Pe fw-tigf 65
2 max [ (o0 T (F W)
n—1
< S i i) — | < .
o 0

whereD depends only oa and on the diameter dvl.

6.4 Measure of atoms ofP, and return depths

Here we show that we can estimate the measure of an elem@&qtusfing the
information stored irR, andD,,.
For any givem > 1 andw € P, we have

» asequence of timeR,(w) = {r, < --- < rg} withry > 1 andrg < n, and

» a sequence of intervalsy 2 w; 2 -+ 2 ws = w With corresponding
depthsDy (@) = {(ki, P1). ..., (Ks, Ps)}, Wherewy € Po andw; € Pr, N
N Pripa
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such that
M(ki, pi) € f'(wi_1) € M(ki, p)* (6.6)

foralli = 0,1,...,s—1withrp = 0 andsg = 0. These times are the
iterates where the images of the previous element of the partition was broken
into smaller intervals as in Subsection 6.2. Using the bounded distortion given
by (6.5) we get

Leb(w)  Leb(ws) Leb(w;) Leb fri(w))

<

Leb(wo)  Leb(ws 1)  Leb(wo) ~ fn (@i-1))’

Now using (6.6) and (S5) we bound the last expression from above by

li[ D Leb(M(ki, p)™*)
' 1 Bterrad, ” (e~ 1)~F Leb(M(ki_1. pi_1))

and using (6.4) this can be easily simplified yielding

s—1

s—1
Leb(w) < [[dee ™™ < exp (—ﬂ > (pi+ Qi)) (6.7)
i=0

i=0
where
g =[—logdg] with [z]=max{keZ:k<z].

We have useg > po and log9B D(e — 1)#)/po < B to compensate the con-
stants on the exponenp2 Recall also thatvy = M(kg, po). Note also that

if Ry(w) = @, then since there is no splitting but there is uniform expansion
together with distortion control, we get

Leb(f"(w)) =/ |(f™|dLeb> Do" Leb(w) so Lelw) < D™'o~". (6.8)

6.5 Distance toS and splitting depths

Let againn > 1 andw € P, be given and consider the sd®s(w) and D (w).
Consider the interval®y 2 w1 2 --- 2 ws = w as before. Note that for the
iterates between two consecutive times< r’ from R,,i.e. if r <i <r’then
there existaM(l;, gj) € Po such thatfi(w;) € M(l;, g)* by this choice of.
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Moreover by condition (S5) and by (6.1) and (6.2) we deduce

9d,(e— e ™ > Leb(f "+ (w)) > (Bdee ™) Leb(f" (@)
B r

= <eT1 Leb(f (a)r)))

e—1\’ r 1-8

= (T) Leb(f"(w)) .

Henced, e %~ > (9e(e — 1))71 Leb(f ™ («wy)) is the estimate for the min-
imum distance from8 to f"*(w). LetL; = Leb(f"*(w)) and D; =
dist(f"* (er), 8) fori =0,...,r" —r — 1. Then the reasoning above shows

that 5 5
e—1 _ %e(e—-1 _
Ly > <—B ) Lo? and Lij> <—( )) L,

B
Leb (" (w))

B

andalsaD; > L;/(9e(e—1))fori =1,...,r'—r —1. Itis now easy to see that

%(e—1)
B

:—(1—ﬁ—ﬂlog(w>/logLi)logLi

—logLiy; < —(1—p)logL; + Blog

B
= —ylogL,

where we may assume thate (0, 1) since it is no restriction to increase the
value of B if needed. Hence

r'—r—1 r'—r—1

— Z logdist(f"* (wr),8) < — Z <Iog L —Iog(9e(e—1))>
i1

i—1
—Const-logLo + (r' —r) log (%e(e — 1))

A

A

< —Const-log Ly,
since by uniform expansion and by definitionréfwe haves” "Ly < 1 and
alsor’ —r < —log(Lo)/logo. Sincer < r’ were two arbitrary consecutive
elements oRR,(w) for w € P,, we have shown that

s—1
> —logdist(f/(x),8) < —Const > log(de®)  (6.9)
j=0 (k. P)EDs (@)
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for all X € w, wheres < n is the last splitting time before (s = maxR,(w)).
However if m > n is the first integer such that ¢ P, butw € P, for

n < < m, then we can write the following disjoint unian = | J,, .5 o' N o.

Repeating the argument far € o’ N w for eachw’ € Py, intersectingw we

can obtain a relation like (6.9) witBs(w) replaced byD, (w) as the summation

range, whera is betweers andm. This shows thathe average of théog of

the distance to the singular set is bounded by the sum of the depths at splitting

times modulo a constant

6.6 Expected value of splitting depths

Now we estimate the expected value of the splitting depths for deep splitting
times up ton iterates of the map. Define for a co-countable set &f M the
function
Dy(x) = — > log(dce™®)
(K, P EDn(Pn(x)
where®,(x) is the unique atom dP, which containsx € M. Define also the
truncated sum: for any giveh> 0 set for the same pointse M as above

DI(x) = > —log(de™™). (6.10)

(K, P)eDn(Pn(x))
dee=P<$

By the arguments in Subsection 6.5 and by the definitions (6.1) and (6.2) we
obtain

n-1

> " —logdist; (/(x).8) < D} (x). (6.11)
j=0

Define thenumber of splittings up to theth iteratet,(x) = #Ry(Pn(w)) and
also thenumber of deep splittings among these
Upn(X) = #{(k, p) € Ry(Pn(w)): dke P < §}.

Givenx andn > 1weletO=r9 <ry < --- < ry witht = t,(x) be the
splitting times along the orbit of up to thenth iterate and < 51 < -+ < §,
be indexes corresponding to deep splittings, whete u,(X) in what follows.
Note that each quantity above is constant on the elemefits. define

AU,t

1o = {X €M th() =t, Uy(x) =n and

(Ks, Ps) = (ki, pi), | :l,...,u}
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the set of points which im iterates have splitting times andi deep splittings
among these, with the specified depths 01), ..., (ku, pu).

Lemma 6.1. Leb(AY () < (\)exp(=B {1 + pi)) where
n = [_Iogdxi]-

Proof. Using the estimate (6.7) we get the following bound for the Lebesgue

u,t
measure oAl . (N)

()exp( ﬁZ(n.+p.)-exp -8 Y, i+p

(kj, pj) st dee” Pi>s
j=1,...t—u

The binomial coefficient takes into account all the possible orderings of se-
guences ofi deep splitting times amonigsplitting times and the last exponential
bounds the contribution of all the possiltle- u non-deep splitting times, with

vj = [—logdy]. Butsincep > po was chosen as in (6.3) ang > 0 we
conclude that the last exponential is smaller than 1. So we obtain the bound in
the statement. O

Lemma 6.2. For anyz > g we have/ e dx < &ON whered (8) is such
that9(8) N\ Owhens N\, O.

Proof. By definition

/ en®Wdx = 3 @ . Lebw) < Y Leb(wo)

wePn wpePo
Do" Leb(wp)<1

+ Z Z eZD @ Leb Atj'(tl P1)seees (Ku»l)u)(n))

O<u<t<n (kj,pi)
i=1...u

(6.12)

where we are considering all possible combinations of splitting depths and of
deep splittings among all the splitting times, for all element®,0fn the sec-
ond sum.
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Consider the first term corresponding to the atom®3gpivhich were not split
during the firstn iterates. This sum can be separated as follows

> Llebwy) = > Llebwo) + Y  Lebwo)
woePo Do" Leb(wg)<1 Do" Leb(wp)<1
Do" Leb(wg)<1 deo"2<1 do™2>1
6.13
< Leb(B@S,07"?) + > er 613

p>log (D(e—l)a”/2)

< Ce—Cn

for some constangs, ¢ > 0, where we have used expression (6.4) for the length
of the atoms ofy in terms of(k, p) together with condition (S4) and the obvious
d« > 0 and)_, dk = 1. Note that if§ is finite then the conditionlo™? < 1
is always false for big enough So in this case we only have the right hand
side sum above.

Now we bound the second term (6.12). Considering Lemma 6.1 and taking
into accountD;, we obtain (withy; = [—logd,;])

Z Z () ~(B+2) X+ < Z Z ( )uL(h,u)e‘(ﬁ“)h

O<us<t<n (xj, p) O<u<t<n h>ul(s)

.....

whereh = > (ni + pi), £(8) is an integer such that every pak;, p) satisfying
die P < § also satisfiek + p > £(5), and

,,,,,

L(h, u) :#{((Uispi))i=1 eNg": > (mi + p) = hwith p; > ,00}-

i=1

Moreover the factou bounds the number of distind, with the same valug;
along then iterates of the orbit of the points. Observe that

2u
h+2u—-1
L(h,u)g#{(hi)eNgu: hi =h} :( )
; 2u—1

and by a standard application of Stirling’s Formula

h
ou—1 h (2u=1)/h
L(h,n) < (cl/“ <1+ uh )<l+2u 1) <& <l

where 0< ¢ < 1 is a constant independent of the other variables and the last
inequalities follow byh > pgu, by the choice ofg in (6.3) and by taking > 8.
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Collecting the bounds we have obtained we conclude that the second sum in
(6.12) can be bounded by the following expression

t n n—-1 efﬂue(‘s)/2
—Bh —BuL(8)/2
u e < n -ue —
Z(U)Z -Z(u) =
O<u<t<n h>u(8) u=0
n —BE(8)/2)\Y
n e
-3 (M
u l—e#
u=0

IA

C n
1 e pL©)/2
( + 1—ef

for some constant > 0 bounding{ue#4¢®/2},_4 (which can be taken inde-
pendently of¢(8)). Finally since£(8) grows without limit whens \, O, the
statement of the lemma follows just by increasing the valu€ ¢b take into
account the small bound of the first sum (6.13). O

6.7 Measure of the points with bad recurrence

We are now ready to deduce exponentially slow approximation to the singular
setS. Indeed we just have to use Tchebishev’s inequality, as follows: given
g, 8 > 0 we know there exists a constadit> 0 as in Subsection 6.5 such that

1N, D) e
{xeM:—ﬁglogdlstg(f (x),S)ze}g{x: . 36}

_ {X . ezD‘E](x) > ens/c}

hence

n-1
Leb{x eM: —%Zglogdist; (f'(x),8) > s}

< gne/C / &0 Leb = e"(e/c—0)

which can be made exponentially small by choosing 0 small enough so that

¢/C > 6(8). This proves that a piecewise expanding nfaim our settings has
exponentially slow recurrence to the singular set, completing the proof of the
statements in Subsection 2.2 and of Corollary C after the reduction procedure of
Subsection 2.4.
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