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Jump of Milnor numbers
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Abstract. In this note we study a problem of A’Campo about the minimal non-zero
difference between the Milnor numbers of a germ of plane curve and one of its defor-
mation.
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1 Problem of the jump (A’Campo)

Let f0 : (Cn, 0) −→ (C, 0) be an analytic germ of isolated singularity. Adefor-
mationof f0 is a family( fs)s∈[0,1] of germs of isolated singularities such that the
coefficients are analytic functions ofs ∈ [0, 1].

The jump of the family( fs) is

μ( f0) − μ( fs), 0 < s � 1,

whereμ is the Milnor number at the origin. This number is well-defined because
μ( f0)−μ( fs) is independent ofs if s is sufficiently small, moreover by the upper
semi-continuity ofμ this number is a non-negative integer.

The most famous result about the Milnor number and the topology of the
family is Lê-Ramanujam’s theorem [6]:

Theorem 1. If n 6= 3 and ifμ( f0) = μ( fs) for all s ∈ [0, 1] then the topologi-
cal types off −1

0 (0) and f −1
s (0) are equal.

In other words, if the jump of the family( fs) is 0 then f −1
0 (0) and f −1

s (0)

have the same topological type for sufficiently smalls. Another motivation is
that the jump of a family is crucial in the theory of singularities of polynomial
maps at infinity.
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The jumpλ( f0) of f0 is the minimum of the non-zero jumps of the( fs) over
all deformations off0. The problem, asked by N. A’Campo, is to computeλ( f0).
We will only deal with plane curve singularities, that is to sayn = 2.

As a corollary of our study we prove the following:

Theorem 2. If f0 is an irreducible germ of plane curve and is Newton non-
degenerate then

λ( f0) = 1.

A closely related question of V. Arnold [1] formulated with our definitions
is to find all singularities withλ( f0) = 1. S. Gusein-Zade [4] proved that
there exist singularities withλ( f0) > 1 and as a corollary of a study of the
behaviour of the Milnor number in a deformation of a desingularization he
proved Theorem 2 for all irreducible plane curves.

This note is organized as follows, in paragraphs 2 to 5 we define and calcu-
late a weak form of the jump: the non-degenerate jump. In paragraph 6 we
prove Theorem 2 and in paragraph 7 we give estimations when the germ is not
irreducible. Finally in paragraph 8 we state some conjectures for the jump of
xp − yq, p, q ∈ N and end by questions.

2 Kušnirenko’s formula

We firstly recall some definitions (see [5]). Let

f (x, y) =
∑

(i, j )∈N2

ai, j x
i y j

be an analytic germ of plane curve. Let supp( f ) = {(i, j ) ∈ N2 | ai, j 6= 0} and
0+( f ) be the convex closure of

⋃

(i, j )

((i, j ) + R2
+) where (i, j ) ∈ supp( f ) \ {(0, 0)}.

TheNewton polygon0( f ) is the union of the compact faces (called theslopes)
of 0+( f ). We often identify a pair(i, j ) ∈ N2 with the monomialxi y j . Let f
beconvenientif 0( f ) intersects bothx-axis andy-axis.

For a faceγ of 0( f ), let fγ =
∑

(i, j )∈γ ai, j xi y j . Then f is (Newton) non-
degenerateif for all facesγ of 0( f ) the system

∂ fγ
∂x

(x, y) = 0 ;
∂ fγ
∂y

(x, y) = 0
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has no solution inC∗ × C∗.
For a Newton polygon0( f ), let Sbe the area bounded by the polygon anda

(resp. b) the length of the intersection of0( f ) with the x-axis (resp.y-axis).
We set

ν( f ) = 2S− a − b + 1.

For a convenient germf the local Milnor number verifies [5]:

Theorem 3.

• μ( f ) > ν( f ),

• if f is non-degenerate thenμ( f ) = ν( f ).

3 Non-degenerate jump for curve singularities

We will consider a weaker problem: Letf0 be a plane curve singularity and
we suppose that( fs) is anon-degenerate deformationthat is to say for alls ∈
]0, 1], fs is Newton non-degenerate. Thenon-degenerate jumpλ′( f0) of f0

is the minimum of the non-zero jumps over all non-degenerate deformations
of f0. The new problem is to computeλ′( f0), in this note we explain how to
compute it.

Obviously we haveλ( f0) 6 λ′( f0) but this inequality can be strict. For
example let f0(x, y) = x4 − y4, thenλ′( f0) = 3 which is obtained for the
family f ′

s(x, y) = x4 − y4 + sx3. But λ( f0) 6 2, by the degenerate family
fs(x, y) = x4 − (y2 + sx)2 of jump 2.

4 Computation of the non-degenerate jump

For a convenientf0 there exists a finite setM of monomialsxpyq lying between
the axes (in a large sense) and the Newton polygon0( f0) (in a strict sense).

Lemma 4. If f0 is non-degenerate and convenient then

λ′( f0) = min
xpyq∈M

(
μ( f0) − μ( f0 + sxpyq)

)
,

for a sufficiently smalls 6= 0 (the minimum is over the non-zero values).

Proof. The proof is purely combinatoric and is inspired from [2]. For any
polygonT of N × N, we define as forν a numberτ(T) = 2S− a − b. Then
τ is additive: letT1, T2 be polygons whose vertices are inN× N, and such that
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T1 ∩ T2 has null area thenτ(T1 ∪ T2) = τ(T1)+ τ(T2). By this additivity we can
argue on triangles only. Moreover for a polygonT that does not contain(0, 0)

we haveτ(T) > 0.
Now the jump for a non-degenerate family( fs) corresponds toτ(T) where

T is the polygon “between”0( f0) and0( fs) (0 < s � 1). Minimizing this
jump is equivalent to minimizingτ(T). It is obtained for a polygonT for which
all vertices except one are in0( f0) and the last vertex is in0( fs). Then it is
sufficient to add only one monomial corresponding to the latter vertex to obtain
the required deformation. �

With this method we do not computeμ( f0), norμ( f0 + sxpyq) but directly
the difference.

For a degenerate functionf we denote byf̃ a non-degenerate function such
that f and f̃ have the same Newton polygon:0( f0) = 0( f̃0). The non-
degenerate jump for a degenerate functionf0 can be computed with the easy
next lemma:

Lemma 5. Let f0 be degenerate.

• λ′( f0) = μ( f0) − μ( f̃0) if μ( f0) − μ( f̃0) > 0,

• elseλ′( f0) = λ′( f̃0).

5 An example

For a given polynomialf0 it is very fast to see who will be the good candidates
xpyq and hence to findλ′( f0) after a very few calculus: we use thatμ( f0) −
μ( f0 + sxpyq) = τ(T) whereT is the zone between the Newton polygon of
f0 and the one off0 + sxpyq.

x

y

Figure 1: Examplef0(x, y) = x4 − y3.

For example letf0(x, y) = x4 − y3. We draw its Newton polygon (see
Figure 1). We easily see that the monomialsxpyq that are candidates to minimize
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τ for the zone between the Newton polygons arex3 (that will give a zone with
τ(T) = 2) andxy2 that will give a zone withτ(T) = 1. In that case the
deformation will befs(x, y) = x4 − y3 + sxy2 and the jump off0 is 1.

6 Irreducible case

In some cases we are able to give a formula for the computation of the jump.
For example if f0(x, y) = xp − yq, with gcd(p, q) = d then by Bézout theo-
rem there exists a pair(a, b) such thatxayb is in M and such that the areaT
corresponding to the deformationfs(x, y) = xp − yq + sxayb is equal tod/2.

As an application we prove Theorem 2 cited in the introduction.

Theorem 6. If f is irreducible and non-degenerate thenλ( f ) = λ′( f ) = 1.

Proof. We recall some facts from the book of Brieskorn-Knörrer [3, p. 477].
For a germ of curvef , the number of slopes of a Newton polygon0( f ) is lower
or equal to the numberr of irreducible components.

Moreover letR be the number of lattice points that belongs to0( f ) minus
1. Then if f is non-degenerate we haveR = r . The non-degenerate condition
is not explicit in [3] but it is stated with an equivalent condition (a face is non-
degenerate if and only if the corresponding polynomialgi of [3, p. 478] has
only simple roots).

Then for an irreducible singular germf , 0( f ) has only one slope andf is
convenient; moreover iff is non-degenerate then the extremities of0( f ), say
xp andyq, verify gcd(p, q) = 1. The non-degenerate jump off is the same as
for f0 = xp− yq and is equal to 1 by Bézout theorem. Thenλ′( f ) = λ′( f0) = 1,
as 0< λ( f ) 6 λ′( f ) = 1 it impliesλ( f ) = 1. �

7 Non irreducible case

More generally if f is convenient, non-degenerate, with one slope, letxp, yq

be the extremities of the Newton polygon off . Then f has the same non-
degenerate jump asf0 = xp − yq, we supposep > q and we setd = gcd(p, q).
The formula forλ′( f0) is given by:

1. If 1 6 d < q 6 p then λ′( f0) = d which is reached by a family
fs(x, y) = xp − yq + sxayb, a, b given by Bézout theorem.

2. If gcd(p, q) = q, i.e. d = q thenλ′( f0) = q − 1 which is reached with
fs(x, y) = xp − yq + sxp−1.

Bull Braz Math Soc, Vol. 38, N. 3, 2007



“main” — 2007/8/10 — 14:49 — page 394 — #6

394 ARNAUD BODIN

We will give in paragraph 8 a conjectural value forλ(xp − yq).

If there are several slopes withf convenient and non-degenerate then we can
estimateλ′( f ). Let f =

∏k
i =1 fi be the decomposition off according to the

slopes of0( f ) (notice that fi is not necessarily irreducible). Iffi is a smooth
germ then we set (by convention)λ′( fi ) = 1. In fact fi is smooth if and only if
the corresponding slope0i with extremitiesAi , Bi verifies|xBi − xAi | = 1 or
|yBi − yAi | = 1. Then the following can be proved:

Lemma 7. Let f be a convenient non-degenerate germ with several slopes, let
f =

∏k
i =1 fi be the decomposition according to the slopes.

1. If all the fi are smooth thenλ′( f ) = 1.

2. If none of thefi is smooth then

min
i =1..k

λ′( fi ) 6 λ′( f ) 6 max
i =1..k

λ′( fi ).

3. In the other cases we have

min
i =1..k

λ′( fi ) 6 λ′( f ) 6 max
i =1..k

λ′( fi ) + 1.

We give some examples:

1. The family fs(x, y) = (x + y4)(x + y2)(x2 + y) + sy4 is of non-
degenerate jump 1.

2. The family fs(x, y) = (x8 − y6)(x3 − y2) + sxy7 givesλ′( f0) = 2 with
λ′(x8 − y6) = 2 andλ′(x3 − y2) = 1.

3. The family fs(x, y) = (x8 − y6)(x3 − y2)(x4 − y4) + sx5y7 verifies
λ′( f0) = 2 whileλ′(x8−y6) = 2 andλ′(x3−y2) = 1 andλ′(x4−y4) = 3.

4. The family fs(x, y) = (x+ y3)(x4+ y4)(x2+ y)+sy5 verifiesλ′( f0) = 4
with the smooth germsx + y3, x2 + y andλ′(x4 + y4) = 3.

8 Conjectures for the jump

We give a conjectural value forλ( f0) in the case thatf0 = xp − yq with p > q.

1. If gcd(p, q) = 1 thenλ( f0) = λ′( f0) = 1.
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2. If p = q andq is prime thenλ′( f0) = q − 1, with the family fs(x, y) =
xq + yq + sxq−1. And we conjecture thatλ( f0) = q − 2 with the family
fs(x, y) = xq + yq + s(x + y)q−1.

3. If p = kq (k > 1) andq is prime, thenλ′( f0) = q − 1, with the family
fs(x, y) = xp + yq + sxp−1. It is conjectured thatλ( f0) = λ′( f0).

4. If q is not prime andp = kq, k ∈ N∗ then letq = ab with a > 2 the
smallest prime divisor ofq. Thenλ′( f0) = q − 1 = ab− 1 for the family
fs(x, y) = xp − yq +sxp−1. It is conjectured thatλ( f0) = ab−b, which
jump is reached for the familyfs(x, y) = xp − (ya + sxka−1)b.

5. If gcd(p, q) = d with 1 < d < q 6 p thenλ′( f0) = d. And it is
conjectured thatλ( f0) = d too.

We make a remark for point (4), letg0(x, y) = xp/b − yq/b = xka − ya. Then
g0 verifies the hypotheses of point (3) where we have conjecturedλ( f0) = a−1
for the deformationgs(x, y) = xka − ya − sxka−1. Then we calculate

gs(x, y)b = (xka − ya − sxka−1)b

which is of course not a reduced polynomial. We develop and we have an
approximation ofgs(x, y)b if we set

fs(x, y) = xkab − (ya + sxka−1)b = xp − (ya + sxka−1)b

with a jump equal toab− b.
Apart from the conjectures above we ask some questions. Even if it seems

hard to give a formula for the jump, maybe the following is easier:

Question 1.Find an algorithm that computesλ.

Finally the problem of the jump can be seen as a weak form of the problem
of adjacency. For example the list of possible Milnor numbers arising from
deformations off0(x, y) = x4 − y4 is (9, 7, 6, 5, 4, 3, 2, 1, 0). Then the gap
between the first term 9= μ( f0) and the second term is the jumpλ( f0) = 2.
Then the following question is a generalization of the problem of the jump.

Question 2.Give the list of all possible Milnor numbers arising from deforma-
tions of a germ.
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