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Jump of Milnor numbers

Arnaud Bodin

Abstract. In this note we study a problem of ACampo about the minimal non-zero
difference between the Milnor numbers of a germ of plane curve and one of its defor-
mation.
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1 Problem of the jump (A’Campo)

Let fg: (C", 0) — (C, 0) be an analytic germ of isolated singularity.dafor-
mationof fq is a family (fs)scjo0,1) Of germs of isolated singularities such that the
coefficients are analytic functions sfe [0, 1].

Thejump of the family fs) is

u(fo) —u(fs), 0<s<«1l,

whereu is the Milnor number at the origin. This number is well-defined because
w(fo) —u(fs)isindependent &if sis sufficiently small, moreover by the upper
semi-continuity ofu this number is a non-negative integer.

The most famous result about the Milnor number and the topology of the
family is L&é-Ramanujam’s theorem [6]:

Theorem 1. If n £ 3and if u(fp) = w(fs) for all s € [0, 1] then the topologi-
cal types offo‘l(O) and fs‘l(O) are equal.

In other words, if the jump of the familyfs) is O then fo‘l(O) and f;1(0)
have the same topological type for sufficiently sngllAnother motivation is
that the jump of a family is crucial in the theory of singularities of polynomial
maps at infinity.
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Thejumpi(fp) of fpis the minimum of the non-zero jumps of thé&,) over
all deformations offy. The problem, asked by N. ACampo, is to compuidy).
We will only deal with plane curve singularities, that is to say: 2.

As a corollary of our study we prove the following:

Theorem 2. If fy is an irreducible germ of plane curve and is Newton non-
degenerate then
A(fo) = 1.

A closely related question of V. Arnold [1] formulated with our definitions
is to find all singularities with.(fg) = 1. S. Gusein-Zade [4] proved that
there exist singularities with(fg) > 1 and as a corollary of a study of the
behaviour of the Milnor number in a deformation of a desingularization he
proved Theorem 2 for all irreducible plane curves.

This note is organized as follows, in paragraphs 2 to 5 we define and calcu-
late a weak form of the jump: the non-degenerate jump. In paragraph 6 we
prove Theorem 2 and in paragraph 7 we give estimations when the germ is not
irreducible. Finally in paragraph 8 we state some conjectures for the jump of
xP —y9 p,q € Nand end by questions.

2 KuSnirenko’s formula

We firstly recall some definitions (see [5]). Let

f(x,y) = Z a X'y’

(i,j)eN?

be an analytic germ of plane curve. Let supp= {(i, j) € N? | a ; # 0} and
I, (f) be the convex closure of

J@. ) +R3) where . ) e supp f)\ {(0.0)}.
(9D}
The Newton polygori™( f) is the union of the compact faces (called ghapes
of I',(f). We often identify a paifi, j) € N? with the monomiak'y!. Let f
be convenienif I"( ) intersects botlx-axis andy-axis.
For a facey of I'(f), let f, = 3" ., & ;x'y!. Thenf is (Newton) non-
degeneratdf for all facesy of I'( ) the system

of, _ o of, _
&(XaY)—Oy W(X»Y)—O
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has no solution ifC* x C*.

For a Newton polygo'( ), let Sbe the area bounded by the polygon and
(resp. b) the length of the intersection &f( f) with the x-axis (resp.y-axis).
We set

v(f)=2S—a—-b+ 1

For a convenient gernfi the local Milnor number verifies [5]:

Theorem 3.

o n(f) >v(f),
« if f is non-degenerate than(f) = v(f).

3 Non-degenerate jump for curve singularities

We will consider a weaker problem: Ldt be a plane curve singularity and
we suppose thatfs) is anon-degenerate deformatighat is to say for alk €

10, 1], fs is Newton non-degenerate. Tin@n-degenerate jump’( fg) of fg

is the minimum of the non-zero jumps over all non-degenerate deformations
of fo. The new problem is to computé( fp), in this note we explain how to
compute it.

Obviously we haver(fg) < A'(fp) but this inequality can be strict. For
example letfo(x,y) = x* — y“, then/(fo) = 3 which is obtained for the
family f/(x,y) = x* — y* + sx3. ButA(fo) < 2, by the degenerate family
fs(X, y) = x* — (y? + sx)? of jump 2.

4 Computation of the non-degenerate jump

For a convenient there exists a finite seZ of monomialsxPy? lying between
the axes (in a large sense) and the Newton polyMgofy) (in a strict sense).

Lemma 4. If fyis non-degenerate and convenient then
A (fo) = mln (M( fo) — u(fo + sxPy%)),
for a sufficiently smals # 0 (the minimum is over the non-zero values).
Proof. The proof is purely combinatoric and is inspired from [2]. For any
polygonT of N x N, we define as for a numberr(T) = 2S—a—b. Then

7 is additive: letTy, T, be polygons whose vertices areNinx N, and such that

Bull Braz Math Soc, Vol. 38, N. 3, 2007



392 ARNAUD BODIN

T1 N T, has null area then(T, U T,) = ©(T1) + t(T). By this additivity we can
argue on triangles only. Moreover for a polygdrthat does not contai(D, 0)
we haver (T) > 0.

Now the jump for a non-degenerate fam{l{s) corresponds ta (T) where
T is the polygon “betweenT"(fp) andI'(fs) (0 < s « 1). Minimizing this
jump is equivalent to minimizing (T). It is obtained for a polygoi for which
all vertices except one are In( fo) and the last vertex is ilv(fs). Then itis
sufficient to add only one monomial corresponding to the latter vertex to obtain
the required deformation. a

With this method we do not compute( fp), nor u( fo + sxPy®) but directly
the difference.

For a degenerate functioh we denote byf a non-degenerate function such
that f and f have the same Newton polygori:(f) = I'(fy). The non-
degenerate jump for a degenerate functfgrcan be computed with the easy
next lemma:

Lemma 5. Let fg be degenerate.
* ¥ (fo) = u(fo) — u(fo) if u(fo) — pu(fo) > O,
. elser’(fo) = A/(fo).

5 Anexample

For a given polynomiafy it is very fast to see who will be the good candidates
xPy9 and hence to find’'( fp) after a very few calculus: we use that fo) —
w(fo + sxPy®) = ¢(T) whereT is the zone between the Newton polygon of
fo and the one offg + sxPy9.

Y

xr

Figure 1: Examplefo(x, y) = x* — y&.

For example letfo(x,y) = x* — y%. We draw its Newton polygon (see
Figure 1). We easily see that the monomiellg9 that are candidates to minimize
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t for the zone between the Newton polygons stdthat will give a zone with
7(T) = 2) andxy? that will give a zone witht(T) = 1. In that case the
deformation will befs(x, y) = x* — y3 4+ sxy? and the jump offy is 1.

6 Irreducible case

In some cases we are able to give a formula for the computation of the jump.
For example iffo(Xx, y) = xP — y9, with gcd(p, q) = d then by Bézout theo-
rem there exists a paia, b) such thatx?y® is in M and such that the aréa
corresponding to the deformatidg(x, y) = xP — y9 4+ sx2y® is equal tod /2.

As an application we prove Theorem 2 cited in the introduction.

Theorem 6. If f is irreducible and non-degenerate theaf) = A'(f) = 1.

Proof. We recall some facts from the book of Brieskorn-Knérrer [3, p. 477].
For a germ of curve , the number of slopes of a Newton polygbnf ) is lower
or equal to the numberof irreducible components.

Moreover letR be the number of lattice points that belongdtof ) minus
1. Thenif f is non-degenerate we hat®R= r. The non-degenerate condition
is not explicit in [3] but it is stated with an equivalent condition (a face is non-
degenerate if and only if the corresponding polynongjabf [3, p. 478] has
only simple roots).

Then for an irreducible singular gerrih, I'(f) has only one slope andl is
convenient; moreover if is non-degenerate then the extremitied'of ), say
xP andy4, verify gcd(p, q) = 1. The non-degenerate jump bfis the same as
for fo = xP—y%andis equal to 1 by Bézout theorem. Théaf) = A'(fo) = 1,
asO0< A(f) < AV(f) =1itimpliesir(f) = 1. O

7 Nonirreducible case

More generally if f is convenient, non-degenerate, with one slopexfetyt
be the extremities of the Newton polygon &f Then f has the same non-
degenerate jump ag = xP — y9, we suppos® > g and we setl = gcd(p, q).
The formula for)’( fp) is given by:

1.Ifl1<d<g< pthen)(fg) = d which is reached by a family
fs(x, y) = xP — y9 4+ sx2y®, a, b given by Bézout theorem.

2. Ifgcd(p,q) = q,i.e. d = g thenA’'(fp) = q — 1 which is reached with
fs(X, y) = xP — y9 4+ sxP~1,
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We will give in paragraph 8 a conjectural value faix® — y9).

If there are several slopes withconvenient and non-degenerate then we can
estimate)/(f). Let f = H!‘Zl fi be the decomposition of according to the
slopes ofl"(f) (notice thatf; is not necessarily irreducible). Ifi is a smooth
germ then we set (by convention) f;) = 1. In fact f; is smooth if and only if
the corresponding slop@g with extremitiesA;, B; verifies|xg — Xa | = 1 or
lys, — Ya | = 1. Then the following can be proved:

Lemma 7. Let f be a convenient non-degenerate germ with several slopes, let
f= 1_[:‘:1 fi be the decomposition according to the slopes.

1. If all the f; are smooth then/'(f) = 1.
2. If none of thef; is smooth then

. / . < ’ < ’ l
min A'(fi) < A'(F) < maxa’(fi).

3. In the other cases we have

min ' (fi) < A'(f) < maxa/(fi) + 1.
i=1.k i=1.k

We give some examples:

1. The family fs(x,y) = (X + yYH(X + y2) (X2 + y) + sy* is of non-
degenerate jump 1.

2. The family fs(x, y) = (x& — y9)(x® — y?) + sxy givesA'(fp) = 2 with
A (x8—y®) =2andr(x3 —y?) =1.

3. The family fs(x,y) = (x® — y&)(x® — y)(x* — y*) + sx®y’ verifies
A (fo) = 2whilex’ (x8—y8) = 2andy’ (x3—y?) = Land\/ (x*—y*) = 3.

4. The family fs(x, y) = (X+y3)(x*+ y*) (x?+y) +s\P verifiesr'(fo) = 4
with the smooth germs + y3, x2 + y andA/(x* + y*) = 3.

8 Conjectures for the jump

We give a conjectural value far( fp) in the case thafy = xP — y9 with p > q.

1. Ifgcd(p, ) = 1 thena(fg) = A'(fp) = 1.
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2. If p=qandqis prime them/( fo) = g — 1, with the family fs(x, y) =
x9 4 y9 4+ sx9=1, And we conjecture that( fo) = q — 2 with the family
fs(X, y) = X9 +y9 +s(x + y)~%.

3. If p=kqg(k > 1) andq is prime, them’(fp) = q — 1, with the family
fs(x, y) = xP 4+ y9 + sxP~L, Itis conjectured that( fy) = A'( fp).

4. If g is not prime andp = kq, k € N* then letq = abwith a > 2 the
smallest prime divisor ofl. ThenA'( fo) = g — 1 = ab— 1 for the family
fs(x, y) = xP —y94+sxP~L, Itis conjectured thax( fo) = ab— b, which
jump is reached for the familys(x, y) = xP — (y2 + sx<@1)b,

5. If gcd(p,q) = dwithl <d < q < pthen)(fg) = d. Anditis
conjectured that( fo) = d too.

We make a remark for point (4), lgb(x, y) = xP/° — y9/® = xk& _ya Then
o Verifies the hypotheses of point (3) where we have conjectufég = a—1
for the deformatiorgs(x, y) = xk& — y2 — sxk@-1, Then we calculate

gs(X, )P = (xk& — yA — sxka-1yb

which is of course not a reduced polynomial. We develop and we have an
approximation ofgs(x, y)® if we set

fs(x’ y) — Xkab _ (ya + Sxka—l)b — Xp _ (ya + Sxka—l)b

with a jump equal tab — b.
Apart from the conjectures above we ask some questions. Even if it seems
hard to give a formula for the jump, maybe the following is easier:

Question 1.Find an algorithm that computes

Finally the problem of the jump can be seen as a weak form of the problem
of adjacency. For example the list of possible Milnor numbers arising from
deformations offa(x,y) = x* — y*is (9,7,6,5, 4, 3,2, 1,0). Then the gap
between the first term & u( fo) and the second term is the jumpfy) = 2.
Then the following question is a generalization of the problem of the jump.

Question 2. Give the list of all possible Milnor numbers arising from deforma-
tions of a germ.
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