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1 Introduction

We provide here some explicit examples of nonsolvable weakly hyperbolic op-
erators with real coefficients. These are, withx, y) € R3,

L1 = 0t (0 + yox) + 9y,
Lo =82 — H(~y)lyl*82 + 3y, ke N*, H = Iz,

where the notationgl. stands for the characteristic function of theRegt Both
examples are weakly hyperbolic operators in two-space-dimensions. The op-
eratorL; has affine coefficients and the operator has coefficients €2,

Y.V. Egorov gave in [2] an example of a honsolvable weakly hyperbolic opera-
tor in one-space-dimension with a quite complicated expression. Although our
examples are 2-space-dimensional, we feel that their simple expression is worth
noticing.

Let us begin by recalling some results about solvability for pseudo-differential
operators with real principal symbols. Letbe a classical pseudo-differential
operator on an open s& of R" with a real principal symbo,,. The double
characteristic set is defined as

Ty = {(X, &) € T*(RQ) : an(x, &) =0, dean(x, &) =0},
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whereT*(Q) is the cotangent bundle minus the zero section.

— If the setX; is empty, the operatdt is of strong-real-principal-type and
local solvability with a loss of one derivative holds according to the theo-
rem 26.1.7 in [4].

— In the case where the operatohas a real principal symbal, such that
its subprincipal symbad, ; satisfies

am(X, ) =0, deam(x,8) = 0= Imay,_;(X, &) # 0, (1.0.2)

if (x,€) € T*(Q), N. Lerner has proved in the theorem 1.1 of [5] that
there is also local solvability with a loss of one derivative. For example,
this is the case of most of the operators of the type

AB+C,

where A, B, C are smooth real vector fields iR® such thatA, B and
[A, B] are linearly independent, for which F. Treves has shown in [8] that
they are locally solvable.

— If we now assume that the set

= {(x,£) € T*(Q): am(x, &) =0,
d:am(x, &) = 0, Imas,_,(x, &) = 0},

is non-empty, different situations can occur. For example, for the class
of operatorsAB + C studied by F. Treves in [8], the s&, can be non-
empty, but the special structure of the principal symbol which appears as
a productpg with {p, q} # 0 atp = g = 0, allows this author to obtain

a solvability result with a loss of derivatives. The 8&tcan also be non-
empty in the cases studied by G.A. Mendoza and G.A. Uhlmann in [7],
for which they introduced the additional assumption @b also with a
product structure (of involutive type) for the principal symbol.

Let us mention that there is a nice example in [1] of an operator verifying
(1.0.1), which is therefore locally solvable although a quasi-homogeneous ver-
sion of condition(¥) is violated in that case. For the operatarsandL,, the
setX, is non-empty. The nonsolvability in any neighbourhood of &irof the
operatoll, is a consequence of the result of nonsolvability proved by G.A. Men-
doza and G.A. Uhlmann in the theorem 1.2 of [7]. We verify in this case that the
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NONSOLVABLE WEAKLY HYPERBOLIC OPERATORS WITH REAL COEFFICIENTS 399

operatorL ; violates the condition Syl®) defined in [6] and [7]. To prove the
nonsolvability in any neighbourhood of 0 for the operator vttt ! coefficients
L., we prove by building a quasimode thrai a priori estimates of the following
type could hold

3C, > 0, INg € N, 3V, an open neighbourhood of 0 &° such that
Yu € Cy°(Vo), CollLsullk-3) > lIUll(=no),

where the notatiol-|| s, stands for thé4 5(R?) Sobolev norm. This fact induces
that there danot exist an integeNy, € N and an open neighbourho®g of O in
IR3 such that for allf € HNo(Vy), there existsl € H¥t3(R3) such that

L2U = f,

on Vy (let us notice that the quantity,u is well defined foru € H*+3(R?)).
Indeed if it was the case, we would have using similar arguments to the ones given
by L. Hormander in the proof of Lemma 26.4.5 in [4] that forak C§°(Vo),

|(f, V)L2vp | = [(L2U, V)| = (U, Lov)| < [Ull—k+3)lILovIIk-3-  (1.0.2)
Let us consider
T,: HY (V) — €
f = (f,v)y

for vin C5° (Vo). We deduce from the previous estimate that foffath HNo(\p),
there existal € H**3(R3) such that

sup| T, ()] < llull(—k+3) < 400,

veW

if W= {veCiMW), IL5v||k-3 < 1}. SinceT, is a bounded linear form for
v in W, we deduce from the uniform boundedness principle that there exists a
positive constan€, such that

sup|ITy|l = Co < +o00.
veW

It follows that for all f € HNo(Vp) andv € Cs° Vo), L3Vl k-3 < 1, we have
I(F, v)L20vp) | < Coll fll(Ngy s
which induces by homogeneity that for dlle H™Ne(Vp) andv € C$°(Vy),
|(f, V) 2wl < Coll Fllng LSV k-3), (1.0.3)
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if IL3v[lk-3 # 0. According to (1.0.2), we notice that this estimate (1.0.3) is
also fulfilled if [[L3v|| k-3 = 0. Using now thal|T,|| = [[v]l(~ny for all v in
Cg5°(Vo), we obtain from (1.0.3) that the following estimate

Vv € Ci°(Mo), CollLSvllk=3) = llvll(=ng)

holds, which is not possible according to our result.

2 Nonsolvability of the operator L1

The operatol; is defined in standard quantization (and also in Weyl quantiza-
tion) by the symbol

p(t’ X,y T, ‘gv 77) = _T(T + yé) + [ n.

We first notice that its principal symboh, = —t(r + y£), is real and that the
doubly characteristic set

To(ly) = {t. X, y; 1.6, € T*R® : pp, =0, dp e, pp = 0O},

where T*(R3) stands for the cotangent bundle minus the zero section, is not
empty since

Zoly) = {txy;t,6m e T*RY) 1y =1 =0, (&, 1) # (0,0}
U, x y;t,6,m e TRt =£=0, n #0}.
Let us consider the two real-valued symbgls- —t ands = t + y&, we have

p. = gs. The setX,(L,) is a submanifold of codimension 2 near the point
Vo = (fg, X0, 0; 0, 1, 0) € X»(L1) if tg, Xo € R, which is involutive since

(T,22(Ly)” = {t,x,y;1.6,n) e RO : x=y=1=¢ =0}
C T2l ={t.x,y;7,&, ) eR®: y =1 =0},
for all v belonging to a neighbourhood of in X»(L,) if T,X,(L,) stands for

the tangent plane df,(L,) in v. We also notice that the Hamilton vector fields
Hq, Hs and the radial vector field, which are equal to

d
ot

H—a Sa r—$a+ !
) S_at 87]’ - n )

Hg = —
a 9 an
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NONSOLVABLE WEAKLY HYPERBOLIC OPERATORS WITH REAL COEFFICIENTS 401

at points inX,(L) nearyg, are independent and that the imaginary part of the
subprincipal symbolp; = in, changes sign at the first order in 0 along the
following bicharacteristic of the symbs|

{ y'(t) = Hs(y (1))
v(0) = vo,

since Imp3(vp) = 0 and

Gl B O]l = dm p(©): iy ©)]

= o(Hs(y 1), Him p2(¥ 1))],_,

= {sImpi} (r®)|_o=—-1#0.
Itfollows that the condition Sut®) defined by G.A. Mendoza and G.A. Uhimann
in [7] is violated and we deduce from Theorem 1.2 in [7] that the opelator

is not locally solvable atg € X,(L1), which induces that the operatby is
nonsolvable in any neighbourhood of OR.

3 Nonsolvability of the operator L,

The second operatdr, that we study, is defined in standard quantization (and
also in Weyl quantization) by the symbol

p=in+ (¥ — %) =i(n+i(* - 6k(y)§?),
wheregdy is theC*~1(R, R) function defined fok € N* by
Ok(y) = (—D*Y*H(=y) if H = Iz,

where the notationylstands for characteristic function of the setWe notice
that its principal symbolp, = 6c(y)&2 — 72, is a realC¥~! symbol and that the
doubly characteristic set

Tala) = [t X y;7,6m) € TXRY): pp=0, deg,p2 = 0}
= {txy;r.&neT ®):1=0, yeR,}
u{t, x,y; 7. &) e T"®RY: 1 =& =0},
is not empty. This set contains some poiritsx, 0; 0, +1, 0) € 3,(L,), where
the imaginary part of the subprincipal symbol vanishes,= in. Then, we
notice that since the functiop — 12 — 6¢(y)£2 changes sign from- to +

wheneverté # 0 if y increases, the symbdl violates a quasi-homogeneous
version of the conditioiy).

Bull Braz Math Soc, Vol. 38, N. 3, 2007



402 KAREL PRAVDA-STAROV

3.1 Construction of a quasimode

Let us consideNy € N,
Y1 € CF(R?% R), suppys C [1,4)%, ¥ =1on[2 3P, (3.1.1)
xo € C°(R, R), suppxo C [-1, 1], xo=1o0n[-1/2,1/2], (3.1.2)
some positive parametexsand . such that

1 2 2 1
PR and E<M<a+R, (3.1.3)

wherek is the integer appearing in the definition of the operatarWe set for
alla > 1, .
Yo (T, ) = A2 Yy (AT, A1), (3.1.4)

Let us note suppo(A*(- + (rsfl)rl)é)) for the support of the function
y = xo(A(y + (t5 ).
Since using (3.1.2), we have for &, £) € [1, 4] andx > 1,

suppxo(A (- + (&1 H6)  {y e R ly + (rg 2 Hk| < a7}
C {y eR:—-1"H— 4%)FI% <y<ATH-— 4_%)\_%},

it follows from (3.1.3), 2k < u, that we can find a constakg > 1 and some
positive constants;, ¢, such that; > ¢, and for all(z, &) € [1, 4]%, » > Aq,

suppxo(A* (- + (rg‘lk‘l)g)) c{yeR: ok <y< —czk‘%}. (3.1.5)
Let us notice that since
Ly = —dy + 6(y)DZ — DZ, 6k(y) = (=D y*H(~y), H=1z,, (3.1.6)
with Dy = i 713y, Dy = i 718, and since the functiop — 72— 6 (y)£2 changes
sign from—to + aty = —(z&"HZKif (r,6) € R: x R%, we can find a

non-negative phase functiaby, which satisfies the equation

(— 3y + O(y)E* — %) (e 15 Y) (3.1.7)
= (0y®a(r.£.Y) + Ok(Y)E* — T2)e M5V =,
y
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NONSOLVABLE WEAKLY HYPERBOLIC OPERATORS WITH REAL COEFFICIENTS 403

defined for ally € R* and(z, ) € R* x R% by

y

D4(1, &, Y) =/ , (% — 6(9)E?)ds. (3.1.8)

—(tg7hHk
Indeed, since from (3.1.6) and (3.1.8),
32D,

G2 (EY = k(—y)* &% > 0,

if y e R* and(z, &) € RY x R%, the functiony — ®;(z, &, y) is convex on
R* and we deduce from the fact

1,2\ _ g %1 12 =
@1 (7.6 —(x& HE) =0, e (r.& ~eHE) =0 (3.1.9)
and from the Taylor formula that
CD]_('L',S, y)

1 _ (3.1.10)
= (y+ @) [ - o Hia-o) - oy) oo,
0
if y e R* and(z, §) € R x R*. The property of non-negativity of the function
®; onR* xR% xR* is clear on the formula (3.1.10). We also set foryat R*,
(r,£) € R x R* andx > 1,

(1,8, y) = O1(A%7, AN, y)

y
- / , (A% — 0()272*£%)ds, (3.1.11)

(ts~Ia bk

which is also a hon-negative function. A direct computation shows from (3.1.6)
and (3.1.11) that for ay € R*, (r, &) € R x R} andi > 1,

k
¢)L(T’ %‘a y) = kzarzy + —)\.20[_%‘[2—"_%5_%

k+1

(3.1.12)

+ (_1)k+1)\‘2+2a€_-2yk+1

k+1 )

We can now define for all > Aq the functionu, defined by
U)L(t, X, y)
_ 3.1.13
= / dOEHD Y, (2, ) o (M (y + (1671 ) )e eV d e G119
(27)? JRr2

Bull Braz Math Soc, Vol. 38, N. 3, 2007



404 KAREL PRAVDA-STAROV

If we noteF;  the Fourier transform in the variables, it follows from (3.1.13)
that

Ui(t, &, y) = (Fixn) (T, €, Y) 6110
= YT, E) xo(M (Y + (tE~Hf))e ey -

and we can notice from (3.1.1), (3.1.4), (3.1.5) and the change of variables
(1,8) = (A1, A~1¢) that for all (, £) € suppy, andx > Ao,
suppU,.(z,&, ) CR*. (3.1.15)

In view of (3.1.10), (3.1.14) and (3.1.15), it follows that the famity, ),
belongs to the spac@™(Ry, S(R?,)) (because (3.1.1) and (3.1.4) imply that
the functiony,, has a compact supportlti, x R* ) and has its support included
in the seﬂREx x (Ry)_. We deduce from this fact and (3.1.6) that

Lsu, € C®(R?, ,)3 (3.1.16)
and a direct computation using (3.1.6), (3.1.7) and (3.1.14) gives that

Fix(L3u) = —ayUi(r, &, y) + (V&2 — T2)Us(1, £, y)

L / _1.2 — D1 (1,E,Y) (3117)
= — MY Oxo(M (Y + (zEHI))e P,

3.2 Upper bound for || L3uy [l ng)

From (3.1.17) and Parseval’s formula, we notice that to obtain an upper bound
for the quantityl| L5u; |l(ny), it is enough to get an upper bound for the quantities

o o,
Av s ja) = [AIED D Gy + (zg7H i)

o T (3.2.1)
T2g by, (2, £)0)4 (€5 || L2(ga).

where(j1, j2, j3. ja) € N* are some integers such that+ j» + js + ja = No.
Using a change of variables, (3.1.4) and (3.1.11), we obtain that

o 2 4 2u(j1+D+2aj2+2j3(1+a)
A11,12713’J4(}‘) = A

D 1,12 2
/RB [ (M + e Hh) (3.2.2)
x T2egZiy (r, )2|oj (€7 4) [*]dydrd.
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NONSOLVABLE WEAKLY HYPERBOLIC OPERATORS WITH REAL COEFFICIENTS 405

Let us stress the fact that from (3.1.1), (3.1.5), (3.1.10) and (3.1.1¢x),§) <
suppy; andi > Aq, the function®, (z, &, -) isC* on

suppy Y (M4 + (6B HE)) C R

Thus, the expression (3.2.2) is well-defined. We need now the following lemma.

Lemma3.2.1. Forall v € N3, there exist some functioag | =0, ..., [v|(k+
1), which are polynomial irR* and some constanfs, | = 0, ..., [v|(k + 1)
verifying

B < 2|v[(a + 1),

such that for ally € R*, (7,§) € R} x R% andi > 1,

[vI(k+1)

Op () =e® a (ch, o f g e7h) yak, (3.2.3)

Proof. We prove this lemma by induction dm|. If |v| = 0, the expression
(3.2.3) holds withag = 1 andpy = 0. Let us assume now that fore N3, there
exist some functiona;, | =0, ..., |v|(k + 1), which are polynomial ilR* and
some constantg;, | = 0,..., |v|(k+ 1) verifying 8 < 2|v|(a + 1) such that
forally e R, (r,&) e R% x R%, A > 1, the expression (3.2.3) holds. Since
from (3.1.12), we have for alf € R*, (1, &) € R x R} andi > 1,

aquA(T, g, y) — )\'20{_[2 + (_1)k+l)\‘2+2a§.2yk, (324)
9, ®, (1, &, y) = 2.7y + 22— Rg ko Ik, (3.2.5)
agq))h(l,, Ev y) — m |:_k2a—%r2+%§—%—l + (_1)k+1A2+2aEyk+li| ) (326)

We have also for aly € R*, (7, &) € R% x R} andi > 1,

[v](k+1) L - L
y <e% > a(rw,rw,snw)y'kﬁ')

=0 (3.2.7)
[v|(k+1)

—e® ) a4(rF,r_%,S%,é_%)[—(8y<l>k)y'+|y'_1])\’3‘,
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[v](k+1) L L
( _q>)~ Z a|<'L'k Tk, k’g_k)yl)\‘ﬂl)
|v\(k+1)

— g™ Z AP y|

1=0

1

- @ena (b ohel e t) (29

and

|U|(k+l) 1 1 1 1
Og (e_QI)A aI(TR,T_R,SE7§ k)ykﬂ'>

[v](k+1) . .
— e7<1>)h Z kﬂl |: (35‘:13,\)31 (TR,T K %‘E sf ) (329)

=0

+ 0 (84 (r%, r‘&,éﬁ,é_&))]-
We deduce from (3.2.4), (3.2.5), (3.2.6), (3.2.7), (3.2.8) and (3.2.9) that if
vefv+(1,00),v+(0,1,0),v+ (0,0, 1)},

there exist some furjctioris, | =0,...,|p|(k+1), whicrj are polynomial ifR*
and some constan, | =0, ..., [V|(k + 1) verifying 8 < 2|V|(e + 1) such
that forally e R*, (7,§) € R} x R andx > 1,

|D](k+1) )
ey(e™) =™ > a(ch ok et 1)yl (3.2.10)
1=0

Indeed, let us consider for example the case whetev + (0, 0, 1). We obtain
from (3.2.3), (3.2.4) and (3.2.7) the expression

[DI(k+1)—(k+2) L

ey (€)= e Y an (rk,z*%,g%,g*%) (I + Dy afe
=0

[V](k+1D)—(k+1)

2k
—e Y a(cheheh gk () yuee

=0

[D](k+1)—1

Z & —k (t%v Tk EX, 5_%> (=1t (g%)ZK y P22

Bull Braz Math Soc, Vol. 38, N. 3, 2007



NONSOLVABLE WEAKLY HYPERBOLIC OPERATORS WITH REAL COEFFICIENTS 407

which can be written in the form (3.2.10). Since the powex &f less or equal
than 2+ 2« in every term of the right-hand-side of (3.2.5) and (3.2.6), and that
these terms are polynomial functions in the variables

1 1 1 1
Tk, 7k, &k, &7k and vy

with a degree iry lower thank + 1, we have only to use (3.2.5), (3.2.6), (3.2.8),
(3.2.9) and the fact that the quantities

o (a (chrbet e t)) = Dot (cF) @) (chehgh e )

k
— () G (sh e h g 6

==

are some polynomial functions in the variabtes 7k, S% andé‘%, to obtain
(3.2.10) when

v=v+(1,0,00 or v=v+(0,1,0).

This proves the induction property at the rdgnk+ 1 and ends the proof of the
lemma 3.2.1. O

We deduce from (3.1.5) and the lemma 3.2.1 that there exists a positive constant
Cj, such that for al(z, £) € [1, 4]?, A > Ao and

2
y € Suppxo <k“ ( + (Flé‘lf)ﬁ)) :
|0)¢ (e %5Y)| < Cjp2latHgm PrmEY), (3.2.11)

Moreover, we obtain from (3.1.2) and (3.1.5) that for @l &) < [1, 4]°> and
A = Ao,

suppyg™+ (A“ ( + (A‘ls‘lr)ﬁ» C Dre, (3.2.12)

if we note

Qe ={yeR : 270 < |y+ k| <1+, (3.2.13)
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Then, we deduce from (3.1.1), (3.2.2), (3.2.11), (3.2.12) and (3.2.13) that
forall A > Aq,

2 2 4 2u(j1+D)+2joa+2j3(1 4ja(1 (j1+D
Ajl.iz,js,ja()‘) Cj4)\ w(j1+D+2j2a+2j3(1+a)+4a( +a)||XOJ1

IA

2
Lo R)

x f rzizs”swl(r,sf( / e‘”“ff*”dy)drds
RZ Q)uff
(3.2.14)

IA

c2 )LZ/L(j1+l)+2j20¢+213(1+ot)+4j4(l+a)7/L” (J’1+1)”2
ja Xo Loo(R)

x/ 222l (1, g)2< sup ezq’A(f»?y))drds.
R2

yer.r,E

We obtain from (3.1.10) that for ay € R* and(z, ) € R% x R%,

Ot y) = (y+ @) ke /O “@— (e —6) - oy) s
> (y+ (2 HE)ke? /O @ - ok s,

which induces that

Q4(7,&,y) > ﬁlsz(rsl)zé(y + (ré’l)%)z. (3.2.15)

It follows from (3.1.11) and (3.2.15) that for ajl € R*, (1, &) € [1, 4]? and
A>1,

K o .1 2-2 4 20+¢ —1p-1,2)2
Q,(r.6,y) = —k+1§ (& HRA TR (y + (za e THE) (3.2.16)

> 03A2“+'%(y+(r)»_1§_1)1%)2,

with ¢z = 41%‘2k/(k + 1) > 0. Thus, we obtain using (3.2.13) and (3.2.16) that
for all (z, &) € [1, 4] andX > Ao,
SRtk

Sup e—sz)»(‘rf,y) < @
YEQA.z,g

(3.2.17)

Getting back to (3.2.14), the next proposition follows from (3.1.1), (3.2.1),
(3.2.14), (3.2.17) and the fact that from (3.1.3),

L1
< —.
H k
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NONSOLVABLE WEAKLY HYPERBOLIC OPERATORS WITH REAL COEFFICIENTS 409

Proposition 3.2.1.We have

C: o 1—1
IL5U I (ng) = O (e-é”f( x ”) when A — +o0. (3.2.18)

3.3 Lower bound for the quantity ||u; || (—ng)

It follows from (3.1.4), (3.1.11), (3.1.14) and a change of variables that
Iy = f V(T 6
R3

) 2
| f W xo(M(y + (€0 F))e PV dy)
R

2)_N0dndfd$

X (L+n°+&+1 273

/ [y (z, €)1
R3

) 2
‘ / e—'y"XO(M(y+(rls—1r)%))e“"*(”f’”dy)
R

N dndrde
(2m)3

(3.3.1)

% (1+ 772 +A2+2a%-2 _+_)\‘2at2)7

By using the following estimates, for alt, £) e [1, 4] andx > i > 1,
1+ n2+)\‘2+2a52 +)L2a1'2 S C4)\,2+2a(1+ 772)’
(1+ ]72 +A2+2a§2 + )\‘ZatZ)—NO > C;NO)\._Z(H—Q)NO(].—F 772)_N07

wherec, = 33 and from (3.1.1), supp: C [1, 4] andy; = 1 on[2, 3]%, we
deduce from (3.3.1) that for all > Ao,

7N0

2 Cy —2(14a)N 2
||uk||(_NO) = W)\ 0 o ||gx,r,g||H,No(Ry)de§, (3.3.2)
if we note ,
Gre(Y) = Xo(M (Y + WD) k) e PHEY), (3.3.3)
Then, we use that
||g)~.r,§||2|_2(Ry) = 19 llimvowy) 19wt lH-No(ry) - (3.3.4)

The following lemma allows us to get an uniform lower bound, respectively to
get an uniform upper bound with respect to the variabte$) in [2, 3] for the

quantities|| gy . ¢ ll 2w,y and|| g - ¢l HNo(Ry)-
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Lemma 3.3.1. We can find some positive constacdsand ¢ such that for all
(t.€) € [2,3]>andA > Ao,

2+2a)No— 4 — Lo
19w Moy =< csp Het2No=3 and||g cellemy) = CrA~ 2. (3.3.5)

Proof. To obtain the first estimate, it is enough to get a boundifer 1q of
the new quantities

AjsinOh T.8) = I g™ (M (y 4+ G710 D) 0 (75 Lz, .
uniformly with respect to the variables, £) € [2, 3]> where(j1, j») € N?

are some integers verifyingg + j» = Ng. We obtain using (3.2.11) and the
non-negativity of the functior, that for all(z, £) € [2, 3] andi > Ao,

A ip(h, T, 67 = AZjl*‘/RXéjl)(/\“(er(A‘ls‘lr)ﬁ))2|a§'z(e—%<r,é,y))|2dy

IA

. . H _ _ 2 2
C122k211u+412(1+0{)/ Xéll)()»“(y—l-()» ls 1T)k)) dy
R
— C'22”X(()]l)|IEZ(R))\2j1H+4j2(1+a)_M-

We deduce from this last estimate that there exists a positive comgtanth
that for all(t, £) € [2, 3] andA > Aq,

_K
||gx,r,g||HNo(Ry) < CS)L(M+2+2a)No 4

El

which shows the first estimate of (3.3.5). We want now to get an uniform lower
bound for the quantityfg; . ¢l 2, With respect to the variables, §) € [2, 3)?
for A > Xo. Using (3.1.10), we obtain that for alle R* and(r, &) € RY xR?,

2 1 k—1
ey = (v+ee i) e [Ca-o (@ hia-o-oy) @
(3.3.6)

< k2 (y+ e HE) (e i)

We deduce from (3.1.11) and (3.3.6) that foryle R*, (r,£) € [2, 3]? and
A>1,

2 2 2, 2 -
@, (7, £, y) < Oka? (y+(rs—1r1)ﬁ) (3R2—P+|y|)k Y @37

Bull Braz Math Soc, Vol. 38, N. 3, 2007



NONSOLVABLE WEAKLY HYPERBOLIC OPERATORS WITH REAL COEFFICIENTS 411

We obtain using (3.3.7) and the change of variabless y + (t£-1A 1)k,
that for all(t, &) € [2, 3] andA > 1,

—®,(7.8,y) 2
le T (D2,

0
> / 1802 yrmte b2k ity

o0

(3.3.8)

%

2
— (&~ hHk 2 2 2
/ 1802yt hPEk2 kry) gy

o0

%

O gazrongalat 1,1 F et
/ g 1802 2u%@3 HU=@ETATHRDT g .
—00

Since we can find a positive constaasuch that for aly € R* , (t, £) € [2, 3]?
andi > 1,

k-1
e (2 F 4y - e ) = gy, (339)
it follows from (3.3.8) and (3.3.9),
0
le 5t (D)2, = / e A gy, (3.3.10)
. 0z

Then using some changes of variables, we deduce from (3.3.10) that for all
(r,€) € [2,3*andx > 1,

— o, (1,8, 2
le TN 1z ()2,

* 2+4-2a,2 k-1
_ o -
> / g AT Dy
0

P /+°o oLkl akeD) (3.3.11)
0
+oo 2 k-1
0
Next, if we note
Qpre ={y eR |y + )k = 270w, (3.3.12)
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using from (3.1.2) thago = 1 on[—1/2, 1/2] and (3.2.16), we obtain that for
all (r,&) € [2,3]?andx > 1,

I[2= %00 (v + 370 0) e e (1) (o,

2 —2 £,
||1_ XO”LOO(]R)/ e ®; (7.6 Y)dy

QA,{,%

oy 20+ 1122
11— xollf~ / g2 KOO R gy (3.3.13)

A

IA

Q1

IA

_673)\20#%72# 2 _ A2a+% 2 —lg—1 % 2
R

1 -4 1 3. 2a+k—m
1 2 _a_l %32t
7TZC32||1—X0||LOC(R))» ke 7 ,

IA

since ify € Q, ..¢, we have
2 A2a+% );1 -1 % 2 CBAZDH—%_Z”“ Azw—% )(1 -1 % 2
g 23 e L | e G Y+t k)

and since a change of variables gives that

200 2 —1e— 2 20 2 _1
/e_m TR lr)“)zdyzfe“’“ Yy = wic; 2ok
R R

In view of (3.1.5) and (3.3.3), the use of the triangular inequality fo¢alf) €
[2, 3]2 andX > Ao,
2 NT
19 rellizwy =[x (y + 07T D)0))e ™ e (W) o,
|e *HTEN 1. W2y

I[2 = xo(A*(y + (.72~ 10)f)) e P TEV 15 (y) | L2,

with the estimates (3.3.11) and (3.3.13), shows that there exists a positive con-
stantcg such that for allr, £) € [2, 3] andA > Ao,

_Lia
IO elllew,) = CeA™ 2,

because from (3.1.3),
1
o+ K u > 0.
This ends the proof of Lemma 3.3.1. d
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The previous lemma permits us to obtain from the estimate (3.3.4) that for
all (z, &) € [2, 3] andA > Ao,

21 —a—1+4%— 2+20)N
”g)»,r,S”H*NO(]Ry) = CGCS ATY 7tz 0.

Then using (3.3.2), we obtain the following proposition.

Proposition 3.3.1. There exists a positive constamgtsuch that for allx. > i,
ULl Ny = Con ™o~ 2~ (330N, (3.3.14)

We need now to cutoff in the variablesx to obtain a quasimode localized in an
arbitrary neighbourhood of 0 iR®.
3.4 Cutoff in variablest and x

We need first to make the result of the lemma 3.2.1 more precise when there is
no differentiation in the variablg.

Lemma 3.4.1. Forall p € N?, there exist some functioas | =0, ..., |p|(K+
1), which are polynomial irR* and some constang, | = 0, ..., |p|(K + 1)
verifying

1
B < 2|p|<a—E),

such that for ally € R*, (7,§) € R} x R} andi > 1,

lol(k+1) . - ) N
825(67%) =e Z a (IR, Tk, £k, S*R) (AR y) B (3.4.1)

=0

Proof. We prove again this lemma by induction . If |p| = 0, the expres-
sion (3.4.1) holds witlay = 1 andBy = 0. Let us assume now that fpre N2,
there exist some functiorsg, | =0, ..., |p|(k+ 1), which are polynomial ifR*
and some constang, | =0, ..., |p|(k + 1) verifying

1
B =< 2|p|<a—E)

yeR:, (r,§) e Ry xR}, A >1,

such that for all
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the expression (3.4.1) holds. Since we can write (3.2.5) and (3.2.6) in the fol-
lowing way,

0, ®,(1, £, y) = A2k (2r(Aky) + 26 k7 %), (3.4.2)
0., (1. £, y) = &ﬁ“%( — W 4+ (DGR (3.4.3)
and
lpl(k+l) 1 1 1 1 2
o (e Y ach it sh e hakyah)
1=0
lol(k+1)
3.4.4
= e ( Y [-@onach ot e (344
1=0
+ (@ ok gk eh)]afyas),
‘P‘(k“l‘l) 1 1 1 1 2
o (e Y ach o hsh e hakyan)
1=0
[pl(K+1)
3.4.5
= e ( Y [-@ovach bl e (349)
1=0

+ s (a ek, TR gR gmh) 0k y) ),
we obtain that

lol(k+1)

i (&= b a(ck, Tk gk gm0k y) )
lol(k+1)
——e % Y awkfak, ok ek g oy TLATED
=0
lol(k+1)
_ e Y o hEehRach b gb s haby e (340)
1=0
_o g 11y 111 1
+e® Y (F[rkeToRaan ek Tk gk TR
1=0

— R @a) ko gk gm0 |aky)af)
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and
Pkt
o (7™ Y aGk TR e ETOGky )
=0
® \pl(k+1) 1 2k+-2 1 k42 1 1 1 1
_ oo _ T (rk)HKF2g— ikt K, T k £k £k
e l;) 1 COTTET Ak Tk gk 57

()»% y)l 2B +2(a—1)

lol(k+1) 34.7
— e*q))\ g k_’z_1(_1)k+1(§%)kal(r%yT_%7$%7§_%) ( )

(A ky) L A2

|p|(k+1) 1 1 1 1 1 1
+ e > (2[exE o ak sk 670
- E L aga) ek, ok gk e Jakylaf).
Since from (3.1.3)p > 1/k, we deduce from (3.4.6) and (3.4.7) thafpife
{p+(1,0), p+(0, 1)}, there existsomefun;tioﬁal =0,...,|p|(k+1),which
are polynomial inR* and some constang, | = 0, ..., |5|(k + 1) verifying
B < 2|p|(x— 1/k) such thatforaly € R*, (r,§) € RY x R} andi > 1,

) 161(k+-1) Lo 1 N N
ey =en 3 a (el ) (y)f,
1=0

This proves the induction property at the ragk + 1 and ends the proof of
the lemma 3.4.1. O

We can now prove the following lemma.

Lemma 3.4.2. For all p € N?, there exists a positive constalt, such that
forall (z, &) € [1, 41%, A > Ao andy € suppxo(A“(- + (AL 11)K)),

|02, (e » V)| < M, a2elei0, (3.4.8)
Proof. We recall that the above notation supg(A* (- + ()rlgflr)%)) stands
for the support of the function

2
y = xo(M(y + D).
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It follows from the previous lemma that there exist some functiand =

0,...,|pl(k + 1), which are polynomial inR* and some constani§, | =
0,...,|pl(k+ 1) verifying
1
B < 2|p (a - E) : (3.4.9)
such thatforaly € R*, (7,&) € Ry x R} andi > 1,
lpl(k+1)

We(e™) =™ Y a(ch bt et) (/\%y)lxﬁ'. (3.4.10)
1=0

Using the non-negativity of the phase functidn (see (3.1.10) and (3.1.11)),
we deduce from (3.1.5) and (3.4.9) thatfee O, ..., |p|(k + 1), there exists a
positive constant;o; such that for al(z, £) € [1, 4], A > Ao and

y € suppxo(A(- + (A 1)6)),

e ®ay(tk, Tk, EK, ETOMI| < gyl (3.4.11)

since from (3.1.3)¢ > 1/k. Finally, in view of (3.1.5), (3.4.10) and (3.4.11),
we deduce that there exists a positive conskdnsuch that the estimate (3.4.8)
holds. This ends the proof of the lemma 3.4.2. d

Let us now consider the functian defined by
v (4 X, ) = xa (WL, AYX)U; (L, X, ), (3.4.12)
wherey is a parameter verifying
1 2
0<V<E and y+a<R. (3.4.13)

This choice is possible in view of (3.1.3). The functignis taken in the space
CS°(R?, R) such that

1
suppyi € B(0,1)andy; =1onB <O, §) , (3.4.14)
where the notatioB(0, r) stands for the closed Euclidean ball centered in O
with a radiusr. We start by getting a lower bound for the quantjiy, || (—n)-

To do this, we prove the following lemma.

Lemma 3.4.3.For all M € N, there exists a positive constaf, such that for
all » > Ao,

[(1 = a7t A7)t X, W Ly = Kma ™™, (3.4.15)
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Proof. Since from (3.1.4), (3.1.11), (3.1.13) and a change of variables

%Jroz
U)L(t, X, y) = TA_0
(2r)? (3.4.16)
X ei(XE)LlJra‘l’t‘[)na)wl(f’ g)XO(k/L(y + (‘[Sil)\’il)%))eﬁq))‘(r’s’y)dfdé,

R2
we deduce from (3.1.1), (3.1.5) and (3.4.14) that fonaH A,

[(1 =G A7 0)unt x. ) Ly

= ” (1 - x1(A't, )\VX))U;L(t, X,'y) ” L2R3) = 11— xall oo r2)
2

—02)\712
x (/ 2 [/ us (t, X, y)|2dtdx]dy) .
—c1A K {(t,x)eR2: t24x2>4-1)~2r})

Now, some integrations by parts on (3.4.16) show that foqadl N, (t, X) #
(0,0), y e RandA > A,

(3.4.17)

Nl

+3 iy 1+ —q ,
s 2(| A (za);z‘l‘ )\,at) '/ (35 . |8r)q(e' (AH"str)J"tr))
T R2

x Ya(r, E)xo(M (Y + (L1 k))e eV drde

urt, X, y) =

(3.4.18)

1.
_ )\‘O(+§ (| )\.l+ax + )\,at)iq i()»1+aX%'+)\at‘[) . . q
o2 ¢ (idr — 3)

[xo(k"(y + 0% k) E)e_q”(”g’y)]dtdé.

We need the following lemma.

Lemma 3.4.4. Forall p € N?andl € N, there exists a positive constant , |
such that for ally € R, (t, &) € [1, 4] andA > 1,

01 ey + 0% R || = ea il b, (3.4.19)

Proof of the lemma 3.4.4. We start by proving that for ap € N? andl € N,
there exist some polynomial functio®s j inR%, j =0, ..., |p|, such that for
ally e R, (r,§) e R, x R% andi > 1,

018 (v + 07 o) |
lol : _ (3.4.20)
= Z P,O,l,j (1’%, T_%, é%’ S_%)XO(I+J)()\'M(y + (}\._lé_lf)%)))xj(u_%)

j=0
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Let us considel € N. We prove (3.4.20) by induction gp|. If |p| = O, the
identity (3.4.20) holds withP,; o = 1. Let us assume now that the identity
(3.4.20) holds fop € N2. The two direct computations using (3.4.20),

o0 [ (e + 0% )|

lpl-1

2
=2 [& e et o b e e h
j=0
X xS (v (y + (rlg—lf)%))m+w—%>]
lpl-1

1
+ Y [feh @Pa et gt e
j=0

X(()I+J)()"M(y 4 (X—lg—lf)%)))\‘j(ﬂ—%)]
[pl-1

1 1 1 1 1 1
D R CT AR NN )

j=0
" X(()I+J)()\'M(y+ (kflsflt)%)))tj(;h%)]’
if 5= p+ (L 0) and
o[ (v + e b) |
lpl-1

——Z[ E 2P, j(ok, o 5 5 7E)

2 i 2
x0T (M y + (rlsflr)R))A““)(“’F)]
lpl-1

+ Z[ (ER) 1K (BaPy ) (TF, T7F, £5, £7F)

x Py + (g )l 0P|
] 1 1 1.1 1
= Y [ @R T g e
j=0

x0Ty + g )l e b,

if o = p+(0, 1), prove that the induction property holds at the rgsiki-1. This
proves (3.4.20). Since from (3.1.2p € C°(R, R) and from (3.1.3)p > 2/K,
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we deduce from (3.4.20) that there exists a positive constapi such that for
ally e R, (t,£) € [1, 4] andAr > 1,

Ore [Xé"(k“(y + (A*lsflf)%)” < i 2P,

which ends the proof of the lemma 3.4.4. O

Then, we obtain using the lemma 3.4.2, (3.1.1), (3.4.19) and the Leibniz for-
mula on the expression

(ior — 8s)q[Xo(k“(y + (TRl s)e*¢x<ff>V>],

whereq € N, that there exist some positive constaaits;, j = 0,...,q and
cizsuch that for ally € R, (r, £) € RZ andA > A,

(G0 = 9 xo(M(y + 1 D)) yn(r, e e ||
q
< Y ey AR 2eDED (3.4.21)
=0
e max(;;—%,h—%)

IA

C13
since from (3.1.3),
and 1
> — > —.
7k “7k
Since from (3.1.1), supg C [1, 4], it follows from (3.4.18) and (3.4.21) that

forallq € N, there exists a positive constamj ; such that for al(t, x) # (0, 0),
y € Randx > Ao,

UL (E, X, V)| < CrgqhdMmdk2e-f-detatd)y? 4 ¢2)-3 (3.4.22)

We deduce by getting back to (3.4.17), using (3.4.22) and a change of variables
that for allqg € N\ {0, 1} andx > Ao,

[(2 =310t 2 0)u |

1 2 2 1 1
< Craq(C1 — C) 229 MBI L — x4 | o e
1
X (/ £2 + x?dtdx)
(0SS Endzah 2 (3.4.23)
1. gmaxu—a—LZ+y.a+y—2)ta+i—L1—
< C14q(C1 —C2)2A grv.ot+y—f 27Kk y||1—X:L|||_OO(R2)
1

x (/ |t2+X2|’thdx)?.
{(t,x)eR2: t24-x2>4-1}
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We recall in view of (3.1.5) that; > ¢,. Let us notice that

2 2
maX(M—W—E+%Ol+V—E)<O, (3.4.24)
because from (3.4.13),
2
a+y < K

and from (3.1.3) and (3.4.13),

2+ 1 0
—o— - <y—-—-<0.
H—o K V<V K

Finally, we obtain using (3.4.23) and (3.4.24) the estimate (3.4.15). This ends
the proof of the lemma 3.4.3. O

We can now use (3.4.12) and the triangular inequality fok aHl Ao,
Uz ll =Ny — [ (1 = x2 ('t A7) ”(—No) < [lvall(=No)

with the estimates (3.3.14) and (3.4.15) to prove the following result.

Proposition 3.4.1. There exists a positive constant such that for alih. > A,
103l (—Ng) = Crsh @ HH 2~ (ut3+30No, (3.4.25)

We now need to get an upper bound for the quanftitjv, [Ny, No € N,
with respect to the parametgr It follows from (3.1.6) and (3.4.12) that for all
A = Ao,

Lyve = xa(W't, A0 L5u — A% 6k(y) (0 x) (A't, AV x)uy
— 2070 (Y) (dx x1) Y, AT X)dkUs 4+ A% (02 x1) (WY t, AV XUy (3.4.26)
+ 20Y (0 x1) (AV't, AV X)duy,.
We note respectively,, B;, C,, D, andE; the terms appearing in the right-
hand-side of the last expression. Let us first notice that these five terr@$are

onRR3. Indeed, we have already proved after (3.1.15)that C>(Ry, S(RZ,))
and, it follows from (3.1.1), (3.1.5) and (3.4.16) that for@llx) R2, A > Ao,

suppu;.(t, X, ) C [—cl)i%, —Cg)»_%] (3.4.27)

and from (3.1.6)6«(y) = (—y)¥if y € R_. Moreover, we have already proved
in (3.1.16) that_3u, is C>* onR3. Then, we want to get an upper bound for the
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HNo(RR3) norm of the termA,. To do this, it is enough to get an upper bound for
the quantity
13¢5 (X2 (78, 730) 9052 (L5Us) | L2,

whereM; € N? andM, e N2 verify M| + |[My| = No. Since

||3t’j/I (Xl()\yt )»)/X))at vy (Lo [l 2rs) < )»ylMﬂHa ExallLse w2y ILSUs N Ma))»

it follows that there exists a positive constamy such that for alh. > Ao,

I Asll(Ng) < Cle)uyN(’( SU’\FI) ||3tJ,xX1||Lw(R2)>||LEUAH(NO)- (3.4.28)
[71=No

Thus, we deduce from (3.1.3), (3.2.18) and (3.4.28) that

1
€34 2(a+ i —w)
~ 164 K )

ANy = O(e wheni — 4-o0. (3.4.29)

Let us now considetjs, j2, j3) € N, Itfollows from (3.4.16) that for all. > Ao,

. ja+i .
8t118)‘(28§,3uk(t,x, y) = il 2)\054- +Jla+12(l+a)/ el(A1+°‘x§+A“tr)

(21)? R? (3.4.30)
x TIgl2yy (7, £)9)° [XO(A“(H (rls*lr)%))e*“’w’f»y)]drdg.

We can make again some integrations by parts in (3.4.30) as in (3.4.18). Thus,
we obtain that for alf € N, (t, x) # (0,0), y € R andi > Aq,

L8203 u; (1, X, y)
jj1itiz 1, L _ e wrn
— (27,)2 )\a+§+11a+12(1+a)(|)\l+ax +)L°‘t)7q /Rz e (AIrexe 4 tr)(l dr — ag)q

(3.4.31)
(1l 3 [xo( (v + (71~ F))em eV ) ards.
Let us prove the following lemma.

Lemma 3.4.5. Forall p € N?, j3 € N, there exists a positive constast, |,
such that for all(z, £) € [1, 412, > Ao andy € suppxo(A“(-+ ("1 11)k)),

afg 8)]/3 I:Xo()#(y 4 (k_lé_l‘r)%))e_@*(ff’y)] ’

| L (3.4.32)
< C17’p’j3)t(2+2a+u)13+\m max(2o—g.1—¢)
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Proof. The Leibniz formula first proves that

0P [xo(v (v + 6.7 o F))e ™ |
. (3.4.33)
_ZC' Aexd (W + e 1)) ok (e,

We deduce from the lemma 3.2.1 and (3.4.33) that there exist some functions
a;,r=0,...,j3k+1),1=0,..., js which are polynomial iR* and some
constantg, |, r =0, ..., js(k+1),1 =0,..., j3, verifying

Bri = 2j3(x + 1), (3.4.34)

such thatforaly € R*, (r,§) € R{ x R} andi > 1,

Aol (v + 072 Tok))e ]
= Y PRy Ry ek ok gk e ioalktue % (3.4.35)
0<I<j3

0<r<jz(k+1)

Since using the Leibniz formula on (3.4.35), we can write
0000 [xo( (v + ) b)e |
= 2 [t (1 (v + 67 0E))

I,r.p1.02,03
x Yy o7 (a”(rk Tk ER, 57%))aﬁz(ef¢k))\‘|ﬂ+ﬂr.l:|’

where the above sumis taken orxd < j3, 0 <r < j3(k+ 1), (o1, 02, p3) €

(N?)3, p1 + p2 + p3 = p and Wherecig) ;. .0, are SOme constants, we de-
duce from (3.1.5), (3.4.8), (3.4.19) and (3.4.34), that there exist some positive
CONStantCiq| r.p,. .05 @Nd C2o such that for all(z, &) € [1,4]% A > Ao and

y € suppxo(M* (- + (AL 1)E)),
9208 (v (v + 67 F))e |

2 _1 i
< Z Clg,l,l’,p]_,pz,p3)“‘pl|(,u_k))“z‘pBKQ k))\’IM"FZIB(CH‘l)

1.r.01,p2.p3
< Gyph 3@ 2t Flpl max2a—f =)

where the sum of the previous expression is takengn D < j3, 0 <r <
ja(k+1), (p1, p2, p3) € (N?)3, p1+ po+ p3 = p. This proves (3.4.32) and ends
the proof of the lemma 3.4.5. 0
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Thus, since from (3.1.1) and (3.1.3),

suppy1 C [1, 4% and ma><(2a 2, "w— %) > 0,

we can deduce from (3.4.31) and the previous lemma that for allN, there
exists a positive constaot;  such that for al(t, x) # (0, 0),y € Randx > Ao,

|80020)2u, (t, X, y)|
q

+3+j10+ j2(ta)+ ja(ut2+20)+gmaxa— 2, u—2)—qa 12 | y2|—3 (3.4.36)
§C21,q)\a 3t J2(l+a)+)3(n a)+q o — R R qa|t +X| 3

It follows from (3.4.27) and from (3.1.6§(y) = (—y)* for all y € R_ that
there exists a positive constant such that we have the following estimate of
the HNo(R3) norm of the terms,, C,, D, andE, defined in (3.4.26),

max (1| By ll (noy: 1C:.llNgys 11 Dallnoys I1Es Il )

< 2 Y [0t t A %0)af% U | oo, (3.4.37)
B1.B2

where the sum is taken gfy = (I1,12), B2 = (I3, 14, 15) with |, j =1,...,5
some integers verifying & |; < No+ 2 andl; 41, > 1. Using these notations,
let us consider some integdfs j = 1, ..., 5 verifying

0<Ilj <Nog+2 and I;+Il,>1 (3.4.38)
We setf; = (I1,12) andBz = (I3, 14, 15). Since from (3.4.14) and (3.4.38),
suppdfix C {(t, x) € R? 1 12+ x% > 1/4}

we deduce from (3.4.27) and (3.4.36) that foratk 2, there exists a positive
constant,s 4 such that for alh. > A,

Ha (Xl()‘yt )‘VX))at X yu)»|||_2(]R3) (3.4.39)

1 2 2
+3+y (1+H2)+alg+(1+a)l 4+ (1 +2+20)s+q maxe— g, u—o— B1
< C23,q)»a 5ty (1+H2)+alz+1+a)la+(u o)l5+q max(e— g, u—a R)”at,xXlnLoo(]Rz)

1
—CoA K
x / , ([ |t2+x2|‘thdx)dy
—Cc1A Kk {(t,x)eR2: t24x2>4-13 -2y}

2
Since with our choice of the integdrsin (3.4.38), we have

y (li+H2)+alz+(A4a)l s+ (n+2+2a)ls < (No+2) (3+2y +4a+un). (3.4.40)
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We deduce from (3.4.38), (3.4.39), (3.4.40) and a change of variables that
1985 (a7t 7 30) 3% s | 2 s (3.4.41)

< CaqlC1— Cz)%)\oﬁ-%—%—y+(No+2)(3+2y+4a+u)+q maxa—£.u—a—g)+qy

1

_ 2

( SUp ”atf,}i()(lHLw(RZ))(/ |T2—|- X2| dadX) .
|B11=2No+4 {(T,X)eR2: T24+X2>4-1}

We recall that in view of (3.1.5), we haeg > c,. Then, it follows from (3.4.37)
and (3.4.41) that for alf > 2, there exists a positive constamj ; such that

max (|| By Il noys 1C Il Noy» 1 Dall oy 1 Esll o)

< Coug 0+ 3— kv +H(No+2) B+2y+ha-+u)+q maXa+y — . uty—a—F) (3.4.42)
Since from (3.1.3) and (3.4.13),
2 2
max(a—l—y—E,;L—i-y—a—E) <0, (3.4.43)

because 1 1
,u—a—E<0 and V_E<O’

we obtain from (3.4.26), (3.4.29), (3.4.42) and (3.4.43) that foMak N, there
exists a positive constafty such that for all. > Ag,

IL5vallngy < Cua™™. (3.4.44)

To sum up, we have built a familj; (t, X, y))A>A0 in (3.4.12), which i<C>® on
R? and has according to (3.4.14) and (3.4.27), its support in the compact set

B(0, A7) x [—cl,\—%, —czx—%] . (3.4.45)
The estimates obtained in (3.4.25) and (3.4.44), fok &l Ao,
v llngy > Cash @72~ (HH3+30No, (3.4.46)

VM e N,3Cw > 0, |[L3v;ll(ngy < CmA ™, (3.4.47)

allow us to prove thaho a priori estimates of the following type can hold

3C, > 0, 3Ny € N, 3V, an open neighbourhood of 0 & such that
Yu € Cy”(Vo), CollLsullk-3) = lUll(~No)-

Bull Braz Math Soc, Vol. 38, N. 3, 2007



NONSOLVABLE WEAKLY HYPERBOLIC OPERATORS WITH REAL COEFFICIENTS 425

This proves that the operatbp is nonsolvable in any neighbourhood of ORA

in the sense where there dot exist an integeNy € N and an open neighbour-
hoodV; of 0 in R2 such that for allf € HNe(\p), there existsi € HK+3(R3)
such that

Lou=f on V.
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