

Explicit examples of nonsolvable weakly hyperbolic operators with real coefficients

Karel Pravda-Starov

Abstract. We give in this paper two explicit examples of nonsolvable weakly hyperbolic operators with real coefficients in two-space-dimensions.

Keywords: solvability, doubly characteristic operators, weakly hyperbolic operators. **Mathematical subject classification:** 35A07.

1 Introduction

We provide here some explicit examples of nonsolvable weakly hyperbolic operators with real coefficients. These are, with $(t, x, y) \in \mathbb{R}^3$,

$$\begin{split} L_1 &= \partial_t (\partial_t + y \partial_x) + \partial_y, \\ L_2 &= \partial_t^2 - H(-y) |y|^k \partial_x^2 + \partial_y, \ k \in \mathbb{N}^*, \ H = \mathbf{1}_{\mathbb{R}_+}, \end{split}$$

where the notation $1_{\mathbb{R}_+}$ stands for the characteristic function of the set \mathbb{R}_+ . Both examples are weakly hyperbolic operators in two-space-dimensions. The operator L_1 has affine coefficients and the operator L_2 has coefficients in C^{k-1} . Y.V. Egorov gave in [2] an example of a nonsolvable weakly hyperbolic operator in one-space-dimension with a quite complicated expression. Although our examples are 2-space-dimensional, we feel that their simple expression is worth noticing.

Let us begin by recalling some results about solvability for pseudo-differential operators with real principal symbols. Let L be a classical pseudo-differential operator on an open set Ω of \mathbb{R}^n with a real principal symbol a_m . The double characteristic set is defined as

$$\Sigma_2 = \{ (x, \xi) \in \dot{T}^*(\Omega) : a_m(x, \xi) = 0, \ d_{\xi} a_m(x, \xi) = 0 \},$$

where $\dot{T}^*(\Omega)$ is the cotangent bundle minus the zero section.

- If the set Σ_2 is empty, the operator L is of strong-real-principal-type and local solvability with a loss of one derivative holds according to the theorem 26.1.7 in [4].
- In the case where the operator L has a real principal symbol a_m such that its subprincipal symbol a_{m-1}^s satisfies

$$a_m(x,\xi) = 0, \ d_{\xi}a_m(x,\xi) = 0 \Rightarrow \text{Im } a_{m-1}^s(x,\xi) \neq 0,$$
 (1.0.1)

if $(x, \xi) \in \dot{T}^*(\Omega)$, N. Lerner has proved in the theorem 1.1 of [5] that there is also local solvability with a loss of one derivative. For example, this is the case of most of the operators of the type

$$AB+C$$

where A, B, C are smooth real vector fields in \mathbb{R}^3 such that A, B and [A, B] are linearly independent, for which F. Treves has shown in [8] that they are locally solvable.

- If we now assume that the set

$$\tilde{\Sigma}_2 = \{ (x, \xi) \in \dot{T}^*(\Omega) : a_m(x, \xi) = 0, \\ d_{\xi} a_m(x, \xi) = 0, \text{ Im } a_{m-1}^s(x, \xi) = 0 \},$$

is non-empty, different situations can occur. For example, for the class of operators AB + C studied by F. Treves in [8], the set $\tilde{\Sigma}_2$ can be non-empty, but the special structure of the principal symbol which appears as a product pq with $\{p,q\} \neq 0$ at p=q=0, allows this author to obtain a solvability result with a loss of derivatives. The set $\tilde{\Sigma}_2$ can also be non-empty in the cases studied by G.A. Mendoza and G.A. Uhlmann in [7], for which they introduced the additional assumption $\mathrm{Sub}(P)$, also with a product structure (of involutive type) for the principal symbol.

Let us mention that there is a nice example in [1] of an operator verifying (1.0.1), which is therefore locally solvable although a quasi-homogeneous version of condition (Ψ) is violated in that case. For the operators L_1 and L_2 , the set $\tilde{\Sigma}_2$ is non-empty. The nonsolvability in any neighbourhood of 0 in \mathbb{R}^3 of the operator L_1 is a consequence of the result of nonsolvability proved by G.A. Mendoza and G.A. Uhlmann in the theorem 1.2 of [7]. We verify in this case that the

operator L_1 violates the condition $Sub(\mathcal{P})$ defined in [6] and [7]. To prove the nonsolvability in any neighbourhood of 0 for the operator with C^{k-1} coefficients L_2 , we prove by building a quasimode that **no** a priori estimates of the following type could hold

$$\exists C_0 > 0, \ \exists N_0 \in \mathbb{N}, \ \exists V_0 \text{ an open neighbourhood of } 0 \text{ in } \mathbb{R}^3 \text{ such that}$$

$$\forall u \in C_0^{\infty}(V_0), \ C_0 \| L_2^* u \|_{(k-3)} \ge \| u \|_{(-N_0)},$$

where the notation $\|\cdot\|_{(s)}$ stands for the $H^s(\mathbb{R}^3)$ Sobolev norm. This fact induces that there do **not** exist an integer $N_0 \in \mathbb{N}$ and an open neighbourhood V_0 of 0 in \mathbb{R}^3 such that for all $f \in H^{N_0}(V_0)$, there exists $u \in H^{-k+3}(\mathbb{R}^3)$ such that

$$L_2u=f$$

on V_0 (let us notice that the quantity L_2u is well defined for $u \in H^{-k+3}(\mathbb{R}^3)$). Indeed if it was the case, we would have using similar arguments to the ones given by L. Hörmander in the proof of Lemma 26.4.5 in [4] that for all $v \in C_0^{\infty}(V_0)$,

$$|(f, v)_{L^{2}(V_{0})}| = |(L_{2}u, v)| = |(u, L_{2}^{*}v)| \le ||u||_{(-k+3)} ||L_{2}^{*}v||_{(k-3)}.$$
 (1.0.2)

Let us consider

$$T_v \colon H^{N_0}(V_0) \to \mathbb{C}$$

 $f \mapsto (f, v)_{L^2(V_0)},$

for v in $C_0^{\infty}(V_0)$. We deduce from the previous estimate that for all f in $H^{N_0}(V_0)$, there exists $u \in H^{-k+3}(\mathbb{R}^3)$ such that

$$\sup_{v \in W} |T_v(f)| \le ||u||_{(-k+3)} < +\infty,$$

if $W = \{v \in C_0^{\infty}(V_0), \|L_2^*v\|_{(k-3)} \le 1\}$. Since T_v is a bounded linear form for v in W, we deduce from the uniform boundedness principle that there exists a positive constant C_0 such that

$$\sup_{v\in W}\|T_v\|\leq C_0<+\infty.$$

It follows that for all $f \in H^{N_0}(V_0)$ and $v \in C_0^{\infty}(V_0)$, $||L_2^*v||_{(k-3)} \leq 1$, we have

$$|(f, v)_{L^2(V_0)}| \le C_0 ||f||_{(N_0)},$$

which induces by homogeneity that for all $f \in H^{N_0}(V_0)$ and $v \in C_0^{\infty}(V_0)$,

$$|(f,v)_{L^2(V_0)}| \le C_0 ||f||_{(N_0)} ||L_2^* v||_{(k-3)}, \tag{1.0.3}$$

if $||L_2^*v||_{(k-3)} \neq 0$. According to (1.0.2), we notice that this estimate (1.0.3) is also fulfilled if $||L_2^*v||_{(k-3)} = 0$. Using now that $||T_v|| = ||v||_{(-N_0)}$ for all v in $C_0^{\infty}(V_0)$, we obtain from (1.0.3) that the following estimate

$$\forall v \in C_0^{\infty}(V_0), \ C_0 \| L_2^* v \|_{(k-3)} \ge \| v \|_{(-N_0)},$$

holds, which is not possible according to our result.

2 Nonsolvability of the operator L_1

The operator L_1 is defined in standard quantization (and also in Weyl quantization) by the symbol

$$p(t, x, y; \tau, \xi, \eta) = -\tau(\tau + y\xi) + i\eta.$$

We first notice that its principal symbol, $p_2 = -\tau(\tau + y\xi)$, is real and that the doubly characteristic set

$$\Sigma_2(L_1) = \{ (t, x, y; \tau, \xi, \eta) \in \dot{T}^*(\mathbb{R}^3) : p_2 = 0, \ d_{\tau, \xi, \eta} p_2 = 0 \},$$

where $\dot{T}^*(\mathbb{R}^3)$ stands for the cotangent bundle minus the zero section, is not empty since

$$\Sigma_{2}(L_{1}) = \left\{ (t, x, y; \tau, \xi, \eta) \in \dot{T}^{*}(\mathbb{R}^{3}) : y = \tau = 0, \ (\xi, \eta) \neq (0, 0) \right\}$$
$$\cup \left\{ (t, x, y; \tau, \xi, \eta) \in \dot{T}^{*}(\mathbb{R}^{3}) : \tau = \xi = 0, \ \eta \neq 0 \right\}.$$

Let us consider the two real-valued symbols $q = -\tau$ and $s = \tau + y\xi$, we have $p_2 = qs$. The set $\Sigma_2(L_1)$ is a submanifold of codimension 2 near the point $\nu_0 = (t_0, x_0, 0; 0, 1, 0) \in \Sigma_2(L_1)$ if $t_0, x_0 \in \mathbb{R}$, which is involutive since

$$(T_{\nu}\Sigma_{2}(L_{1}))^{\sigma} = \{(t, x, y; \tau, \xi, \eta) \in \mathbb{R}^{6} : x = y = \tau = \xi = 0\}$$

$$\subset T_{\nu}\Sigma_{2}(L_{1}) = \{(t, x, y; \tau, \xi, \eta) \in \mathbb{R}^{6} : y = \tau = 0\},$$

for all ν belonging to a neighbourhood of ν_0 in $\Sigma_2(L_1)$ if $T_{\nu}\Sigma_2(L_1)$ stands for the tangent plane of $\Sigma_2(L_1)$ in ν . We also notice that the Hamilton vector fields H_q , H_s and the radial vector field r, which are equal to

$$H_q = -rac{\partial}{\partial t}, \; H_s = rac{\partial}{\partial t} - \xi rac{\partial}{\partial \eta}, \; r = \xi rac{\partial}{\partial \xi} + \eta rac{\partial}{\partial \eta},$$

at points in $\Sigma_2(L_1)$ near ν_0 , are independent and that the imaginary part of the subprincipal symbol, $p_1^s = i\eta$, changes sign at the first order in 0 along the following bicharacteristic of the symbol s,

$$\begin{cases} \gamma'(t) = H_s(\gamma(t)) \\ \gamma(0) = \nu_0, \end{cases}$$

since Im $p_1^s(v_0) = 0$ and

$$\frac{d}{dt} \left[\operatorname{Im} \, p_1^s (\gamma(t)) \right] \Big|_{t=0} = d \operatorname{Im} \, p_1^s (\gamma(t)) . H_s (\gamma(t)) \Big|_{t=0}
= \sigma \left(H_s (\gamma(t)), H_{\operatorname{Im} \, p_1^s} (\gamma(t)) \right) \Big|_{t=0}
= \left\{ s, \operatorname{Im} \, p_1^s \right\} (\gamma(t)) \Big|_{t=0} = -1 \neq 0.$$

It follows that the condition $\operatorname{Sub}(\mathcal{P})$ defined by G.A. Mendoza and G.A. Uhlmann in [7] is violated and we deduce from Theorem 1.2 in [7] that the operator L_1 is not locally solvable at $\nu_0 \in \Sigma_2(L_1)$, which induces that the operator L_1 is nonsolvable in any neighbourhood of 0 in \mathbb{R}^3 .

3 Nonsolvability of the operator L_2

The second operator L_2 that we study, is defined in standard quantization (and also in Weyl quantization) by the symbol

$$p = i\eta + (\theta_k(y)\xi^2 - \tau^2) = i(\eta + i(\tau^2 - \theta_k(y)\xi^2)),$$

where θ_k is the $C^{k-1}(\mathbb{R}, \mathbb{R})$ function defined for $k \in \mathbb{N}^*$ by

$$\theta_k(y) = (-1)^k y^k H(-y) \text{ if } H = 1_{\mathbb{R}_+},$$

where the notation 1_X stands for characteristic function of the set X. We notice that its principal symbol, $p_2 = \theta_k(y)\xi^2 - \tau^2$, is a real C^{k-1} symbol and that the doubly characteristic set

$$\Sigma_{2}(L_{2}) = \{(t, x, y; \tau, \xi, \eta) \in \dot{T}^{*}(\mathbb{R}^{3}) : p_{2} = 0, d_{\tau, \xi, \eta} p_{2} = 0\}$$

$$= \{(t, x, y; \tau, \xi, \eta) \in \dot{T}^{*}(\mathbb{R}^{3}) : \tau = 0, y \in \mathbb{R}_{+}\}$$

$$\cup \{(t, x, y; \tau, \xi, \eta) \in \dot{T}^{*}(\mathbb{R}^{3}) : \tau = \xi = 0\},$$

is not empty. This set contains some points, $(t, x, 0; 0, \pm 1, 0) \in \Sigma_2(L_2)$, where the imaginary part of the subprincipal symbol vanishes, $p_1^s = i\eta$. Then, we notice that since the function $y \mapsto \tau^2 - \theta_k(y)\xi^2$ changes sign from - to + whenever $\tau\xi \neq 0$ if y increases, the symbol p violates a quasi-homogeneous version of the condition (Ψ) .

3.1 Construction of a quasimode

Let us consider $N_0 \in \mathbb{N}$,

$$\psi_1 \in C_0^{\infty}(\mathbb{R}^2, \mathbb{R}), \text{ supp } \psi_1 \subset [1, 4]^2, \ \psi_1 = 1 \text{ on } [2, 3]^2,$$
 (3.1.1)

$$\chi_0 \in C_0^{\infty}(\mathbb{R}, \mathbb{R}), \text{ supp } \chi_0 \subset [-1, 1], \ \chi_0 = 1 \text{ on } [-1/2, 1/2],$$
 (3.1.2)

some positive parameters α and μ such that

$$\frac{1}{k} < \alpha < \frac{2}{k}$$
 and $\frac{2}{k} < \mu < \alpha + \frac{1}{k}$, (3.1.3)

where k is the integer appearing in the definition of the operator L_2 . We set for all $\lambda \geq 1$,

$$\psi_{\lambda}(\tau,\xi) = \lambda^{-\frac{1}{2}-\alpha} \psi_{1}(\lambda^{-\alpha}\tau,\lambda^{-1-\alpha}\xi). \tag{3.1.4}$$

Let us note supp $\chi_0(\lambda^{\mu}(\cdot + (\tau \xi^{-1}\lambda^{-1})^{\frac{2}{k}}))$ for the support of the function

$$y \mapsto \chi_0 \left(\lambda^{\mu} \left(y + (\tau \xi^{-1} \lambda^{-1})^{\frac{2}{k}} \right) \right).$$

Since using (3.1.2), we have for all $(\tau, \xi) \in [1, 4]^2$ and $\lambda \ge 1$,

$$\begin{aligned} \text{supp } \chi_0 \left(\lambda^{\mu} (\cdot + (\tau \xi^{-1} \lambda^{-1})^{\frac{2}{k}}) \right) &\subset \left\{ y \in \mathbb{R} : |y + (\tau \xi^{-1} \lambda^{-1})^{\frac{2}{k}}| \leq \lambda^{-\mu} \right\} \\ &\subset \left\{ y \in \mathbb{R} : -\lambda^{-\mu} - 4^{\frac{2}{k}} \lambda^{-\frac{2}{k}} \leq y \leq \lambda^{-\mu} - 4^{-\frac{2}{k}} \lambda^{-\frac{2}{k}} \right\}, \end{aligned}$$

it follows from (3.1.3), $2/k < \mu$, that we can find a constant $\lambda_0 \ge 1$ and some positive constants c_1, c_2 such that $c_1 > c_2$ and for all $(\tau, \xi) \in [1, 4]^2$, $\lambda \ge \lambda_0$,

$$\operatorname{supp} \chi_0 \left(\lambda^{\mu} (\cdot + (\tau \xi^{-1} \lambda^{-1})^{\frac{2}{k}}) \right) \subset \left\{ y \in \mathbb{R} : -c_1 \lambda^{-\frac{2}{k}} \le y \le -c_2 \lambda^{-\frac{2}{k}} \right\}. \tag{3.1.5}$$

Let us notice that since

$$L_2^* = -\partial_y + \theta_k(y)D_x^2 - D_t^2, \ \theta_k(y) = (-1)^k y^k H(-y), \ H = 1_{\mathbb{R}_+}, \quad (3.1.6)$$

with $D_x = i^{-1}\partial_x$, $D_t = i^{-1}\partial_t$, and since the function $y \mapsto \tau^2 - \theta_k(y)\xi^2$ changes sign from - to + at $y = -(\tau\xi^{-1})^{2/k}$ if $(\tau, \xi) \in \mathbb{R}_+^* \times \mathbb{R}_+^*$, we can find a non-negative phase function Φ_1 , which satisfies the equation

$$(-\partial_{y} + \theta_{k}(y)\xi^{2} - \tau^{2})(e^{-\Phi_{1}(\tau,\xi,y)})$$

$$= (\partial_{y}\Phi_{1}(\tau,\xi,y) + \theta_{k}(y)\xi^{2} - \tau^{2})e^{-\Phi_{1}(\tau,\xi,y)} = 0,$$
(3.1.7)

defined for all $y \in \mathbb{R}_{-}^{*}$ and $(\tau, \xi) \in \mathbb{R}_{+}^{*} \times \mathbb{R}_{+}^{*}$ by

$$\Phi_1(\tau, \xi, y) = \int_{-(\tau \xi^{-1})^{\frac{2}{k}}}^{y} (\tau^2 - \theta_k(s)\xi^2) ds.$$
 (3.1.8)

Indeed, since from (3.1.6) and (3.1.8),

$$\frac{\partial^2 \Phi_1}{\partial y^2}(\tau, \xi, y) = k(-y)^{k-1} \xi^2 \ge 0,$$

if $y \in \mathbb{R}_{-}^{*}$ and $(\tau, \xi) \in \mathbb{R}_{+}^{*} \times \mathbb{R}_{+}^{*}$, the function $y \mapsto \Phi_{1}(\tau, \xi, y)$ is convex on \mathbb{R}^{*} and we deduce from the fact

$$\Phi_1\left(\tau, \xi, -(\tau \xi^{-1})^{\frac{2}{k}}\right) = 0, \ \frac{\partial \Phi_1}{\partial \nu}\left(\tau, \xi, -(\tau \xi^{-1})^{\frac{2}{k}}\right) = 0 \tag{3.1.9}$$

and from the Taylor formula that

$$\Phi_{1}(\tau, \xi, y) = (y + (\tau \xi^{-1})^{\frac{2}{k}})^{2} k \xi^{2} \int_{0}^{1} (1 - \theta) ((\tau \xi^{-1})^{\frac{2}{k}} (1 - \theta) - \theta y)^{k-1} d\theta,$$
(3.1.10)

if $y \in \mathbb{R}_{-}^{*}$ and $(\tau, \xi) \in \mathbb{R}_{+}^{*} \times \mathbb{R}_{+}^{*}$. The property of non-negativity of the function Φ_{1} on $\mathbb{R}_{+}^{*} \times \mathbb{R}_{+}^{*} \times \mathbb{R}_{-}^{*}$ is clear on the formula (3.1.10). We also set for all $y \in \mathbb{R}_{-}^{*}$, $(\tau, \xi) \in \mathbb{R}_{+}^{*} \times \mathbb{R}_{+}^{*}$ and $\lambda \geq 1$,

$$\Phi_{\lambda}(\tau, \xi, y) = \Phi_{1}(\lambda^{\alpha}\tau, \lambda^{1+\alpha}\xi, y)
= \int_{-(\tau\xi^{-1}\lambda^{-1})^{\frac{2}{k}}}^{y} \left(\lambda^{2\alpha}\tau^{2} - \theta_{k}(s)\lambda^{2+2\alpha}\xi^{2}\right) ds,$$
(3.1.11)

which is also a non-negative function. A direct computation shows from (3.1.6) and (3.1.11) that for all $y \in \mathbb{R}_{+}^{*}$, $(\tau, \xi) \in \mathbb{R}_{+}^{*} \times \mathbb{R}_{+}^{*}$ and $\lambda \geq 1$,

$$\Phi_{\lambda}(\tau, \xi, y) = \lambda^{2\alpha} \tau^{2} y + \frac{k}{k+1} \lambda^{2\alpha - \frac{2}{k}} \tau^{2 + \frac{2}{k}} \xi^{-\frac{2}{k}} + \frac{(-1)^{k+1}}{k+1} \lambda^{2+2\alpha} \xi^{2} y^{k+1}.$$
(3.1.12)

We can now define for all $\lambda \geq \lambda_0$ the function u_{λ} defined by

$$u_{\lambda}(t, x, y) = \frac{1}{(2\pi)^2} \int_{\mathbb{R}^2} e^{i(x\xi + t\tau)} \psi_{\lambda}(\tau, \xi) \chi_0 \left(\lambda^{\mu} (y + (\tau \xi^{-1})^{\frac{2}{k}}) \right) e^{-\Phi_1(\tau, \xi, y)} d\tau d\xi.$$
 (3.1.13)

If we note $\mathcal{F}_{t,x}$ the Fourier transform in the variables t, x, it follows from (3.1.13) that

$$U_{\lambda}(\tau, \xi, y) = (\mathcal{F}_{t,x} u_{\lambda})(\tau, \xi, y)$$

= $\psi_{\lambda}(\tau, \xi) \chi_{0} (\lambda^{\mu} (y + (\tau \xi^{-1})^{\frac{2}{k}})) e^{-\Phi_{1}(\tau, \xi, y)}$ (3.1.14)

and we can notice from (3.1.1), (3.1.4), (3.1.5) and the change of variables $(\tilde{\tau}, \tilde{\xi}) = (\lambda^{-\alpha} \tau, \lambda^{-1-\alpha} \xi)$ that for all $(\tau, \xi) \in \text{supp } \psi_{\lambda}$ and $\lambda \geq \lambda_0$,

$$\operatorname{supp} U_{\lambda}(\tau, \xi, \cdot) \subset \mathbb{R}_{-}^{*}. \tag{3.1.15}$$

In view of (3.1.10), (3.1.14) and (3.1.15), it follows that the family $(u_{\lambda})_{\lambda \geq \lambda_0}$ belongs to the space $C^{\infty}(\mathbb{R}_y, S(\mathbb{R}^2_{t,x}))$ (because (3.1.1) and (3.1.4) imply that the function ψ_{λ} has a compact support in $\mathbb{R}^*_+ \times \mathbb{R}^*_+$) and has its support included in the set $\mathbb{R}^2_{t,x} \times (\mathbb{R}_y)_-$. We deduce from this fact and (3.1.6) that

$$L_2^* u_\lambda \in C^\infty(\mathbb{R}^3_{t,x,y})$$
 (3.1.16)

and a direct computation using (3.1.6), (3.1.7) and (3.1.14) gives that

$$\mathcal{F}_{t,x}(L_2^* u_{\lambda}) = -\partial_y U_{\lambda}(\tau, \xi, y) + (\theta_k(y)\xi^2 - \tau^2) U_{\lambda}(\tau, \xi, y) = -\lambda^{\mu} \psi_{\lambda}(\tau, \xi) \chi_0' (\lambda^{\mu} (y + (\tau \xi^{-1})^{\frac{2}{k}})) e^{-\Phi_1(\tau, \xi, y)}.$$
(3.1.17)

3.2 Upper bound for $||L_2^*u_\lambda||_{(N_0)}$

From (3.1.17) and Parseval's formula, we notice that to obtain an upper bound for the quantity $\|L_2^* u_\lambda\|_{(N_0)}$, it is enough to get an upper bound for the quantities

$$A_{j_{1},j_{2},j_{3},j_{4}}(\lambda) = \|\lambda^{\mu(j_{1}+1)}\chi_{0}^{(j_{1}+1)}(\lambda^{\mu}(y+(\tau\xi^{-1})^{\frac{2}{k}})) \tau^{j_{2}}\xi^{j_{3}}\psi_{\lambda}(\tau,\xi)\partial_{\nu}^{j_{4}}(e^{-\Phi_{1}(\tau,\xi,\nu)})\|_{L^{2}(\mathbb{R}^{3})},$$
(3.2.1)

where $(j_1, j_2, j_3, j_4) \in \mathbb{N}^4$ are some integers such that $j_1 + j_2 + j_3 + j_4 = N_0$. Using a change of variables, (3.1.4) and (3.1.11), we obtain that

$$A_{j_{1},j_{2},j_{3},j_{4}}(\lambda)^{2} = \lambda^{2\mu(j_{1}+1)+2\alpha j_{2}+2j_{3}(1+\alpha)}$$

$$\int_{\mathbb{R}^{3}} \left[\chi_{0}^{(j_{1}+1)} \left(\lambda^{\mu} (y + (\tau \xi^{-1} \lambda^{-1})^{\frac{2}{k}}) \right)^{2} \right] \times \tau^{2j_{2}} \xi^{2j_{3}} \psi_{1}(\tau,\xi)^{2} \left| \partial_{y}^{j_{4}} \left(e^{-\Phi_{\lambda}(\tau,\xi,y)} \right) \right|^{2} dy d\tau d\xi.$$
(3.2.2)

Let us stress the fact that from (3.1.1), (3.1.5), (3.1.10) and (3.1.11), if $(\tau, \xi) \in \text{supp } \psi_1$ and $\lambda \geq \lambda_0$, the function $\Phi_{\lambda}(\tau, \xi, \cdot)$ is C^{∞} on

$$\operatorname{supp} \chi_0^{(j_1+1)} \left(\lambda^{\mu} (\cdot + (\tau \xi^{-1} \lambda^{-1})^{\frac{2}{k}}) \right) \subset \mathbb{R}_{-}^*.$$

Thus, the expression (3.2.2) is well-defined. We need now the following lemma.

Lemma 3.2.1. For all $v \in \mathbb{N}^3$, there exist some functions a_l , l = 0, ..., |v|(k + 1), which are polynomial in \mathbb{R}^4 and some constants β_l , l = 0, ..., |v|(k + 1) verifying

$$\beta_l \leq 2|\nu|(\alpha+1),$$

such that for all $y \in \mathbb{R}_{+}^{*}$, $(\tau, \xi) \in \mathbb{R}_{+}^{*} \times \mathbb{R}_{+}^{*}$ and $\lambda \geq 1$,

$$\partial_{\tau,\xi,y}^{\nu}\left(e^{-\Phi_{\lambda}}\right) = e^{-\Phi_{\lambda}} \sum_{l=0}^{|\nu|(k+1)} a_{l}\left(\tau^{\frac{1}{k}}, \tau^{-\frac{1}{k}}, \xi^{\frac{1}{k}}, \xi^{-\frac{1}{k}}\right) y^{l} \lambda^{\beta_{l}}.$$
 (3.2.3)

Proof. We prove this lemma by induction on $|\nu|$. If $|\nu| = 0$, the expression (3.2.3) holds with $a_0 = 1$ and $\beta_0 = 0$. Let us assume now that for $\nu \in \mathbb{N}^3$, there exist some functions $a_l, l = 0, \ldots, |\nu|(k+1)$, which are polynomial in \mathbb{R}^4 and some constants $\beta_l, l = 0, \ldots, |\nu|(k+1)$ verifying $\beta_l \leq 2|\nu|(\alpha+1)$ such that for all $y \in \mathbb{R}_+^*$, $(\tau, \xi) \in \mathbb{R}_+^* \times \mathbb{R}_+^*$, $\lambda \geq 1$, the expression (3.2.3) holds. Since from (3.1.12), we have for all $y \in \mathbb{R}_+^*$, $(\tau, \xi) \in \mathbb{R}_+^* \times \mathbb{R}_+^*$ and $\lambda \geq 1$,

$$\partial_{\nu}\Phi_{\lambda}(\tau,\xi,y) = \lambda^{2\alpha}\tau^{2} + (-1)^{k+1}\lambda^{2+2\alpha}\xi^{2}y^{k},$$
 (3.2.4)

$$\partial_{\tau} \Phi_{\lambda}(\tau, \xi, y) = 2\lambda^{2\alpha} \tau y + 2\lambda^{2\alpha - \frac{2}{k}} \xi^{-\frac{2}{k}} \tau^{1 + \frac{2}{k}}, \tag{3.2.5}$$

$$\partial_{\xi} \Phi_{\lambda}(\tau, \xi, y) = \frac{2}{k+1} \left[-\lambda^{2\alpha - \frac{2}{k}} \tau^{2 + \frac{2}{k}} \xi^{-\frac{2}{k} - 1} + (-1)^{k+1} \lambda^{2 + 2\alpha} \xi y^{k+1} \right]. \quad (3.2.6)$$

We have also for all $y \in \mathbb{R}_{-}^{*}$, $(\tau, \xi) \in \mathbb{R}_{+}^{*} \times \mathbb{R}_{+}^{*}$ and $\lambda \geq 1$,

$$\partial_{y} \left(e^{-\Phi_{\lambda}} \sum_{l=0}^{|\nu|(k+1)} a_{l} \left(\tau^{\frac{1}{k}}, \tau^{-\frac{1}{k}}, \xi^{\frac{1}{k}}, \xi^{-\frac{1}{k}} \right) y^{l} \lambda^{\beta_{l}} \right) \\
= e^{-\Phi_{\lambda}} \sum_{l=0}^{|\nu|(k+1)} a_{l} \left(\tau^{\frac{1}{k}}, \tau^{-\frac{1}{k}}, \xi^{\frac{1}{k}}, \xi^{-\frac{1}{k}} \right) \left[-(\partial_{y} \Phi_{\lambda}) y^{l} + l y^{l-1} \right] \lambda^{\beta_{l}}, \tag{3.2.7}$$

$$\partial_{\tau} \left(e^{-\Phi_{\lambda}} \sum_{l=0}^{|\nu|(k+1)} a_{l} \left(\tau^{\frac{1}{k}}, \tau^{-\frac{1}{k}}, \xi^{\frac{1}{k}}, \xi^{-\frac{1}{k}} \right) y^{l} \lambda^{\beta_{l}} \right) \\
= e^{-\Phi_{\lambda}} \sum_{l=0}^{|\nu|(k+1)} \lambda^{\beta_{l}} y^{l} \left[- (\partial_{\tau} \Phi_{\lambda}) a_{l} \left(\tau^{\frac{1}{k}}, \tau^{-\frac{1}{k}}, \xi^{\frac{1}{k}}, \xi^{-\frac{1}{k}} \right) \\
+ \partial_{\tau} \left(a_{l} \left(\tau^{\frac{1}{k}}, \tau^{-\frac{1}{k}}, \xi^{\frac{1}{k}}, \xi^{-\frac{1}{k}} \right) \right) \right]$$
(3.2.8)

and

$$\partial_{\xi} \left(e^{-\Phi_{\lambda}} \sum_{l=0}^{|\nu|(k+1)} a_{l} \left(\tau^{\frac{1}{k}}, \tau^{-\frac{1}{k}}, \xi^{\frac{1}{k}}, \xi^{-\frac{1}{k}} \right) y^{l} \lambda^{\beta_{l}} \right) \\
= e^{-\Phi_{\lambda}} \sum_{l=0}^{|\nu|(k+1)} \lambda^{\beta_{l}} y^{l} \left[-(\partial_{\xi} \Phi_{\lambda}) a_{l} \left(\tau^{\frac{1}{k}}, \tau^{-\frac{1}{k}}, \xi^{\frac{1}{k}}, \xi^{-\frac{1}{k}} \right) \\
+ \partial_{\xi} \left(a_{l} \left(\tau^{\frac{1}{k}}, \tau^{-\frac{1}{k}}, \xi^{\frac{1}{k}}, \xi^{-\frac{1}{k}} \right) \right) \right].$$
(3.2.9)

We deduce from (3.2.4), (3.2.5), (3.2.6), (3.2.7), (3.2.8) and (3.2.9) that if

$$\tilde{\nu} \in {\{\nu + (1, 0, 0), \nu + (0, 1, 0), \nu + (0, 0, 1)\}},$$

there exist some functions \tilde{a}_l , $l=0,\ldots,|\tilde{\nu}|(k+1)$, which are polynomial in \mathbb{R}^4 and some constants $\tilde{\beta}_l$, $l=0,\ldots,|\tilde{\nu}|(k+1)$ verifying $\tilde{\beta}_l \leq 2|\tilde{\nu}|(\alpha+1)$ such that for all $y \in \mathbb{R}_+^*$, $(\tau,\xi) \in \mathbb{R}_+^* \times \mathbb{R}_+^*$ and $\lambda \geq 1$,

$$\partial_{\tau,\xi,y}^{\tilde{\nu}}(e^{-\Phi_{\lambda}}) = e^{-\Phi_{\lambda}} \sum_{l=0}^{|\tilde{\nu}|(k+1)} \tilde{a}_{l} \left(\tau^{\frac{1}{k}}, \tau^{-\frac{1}{k}}, \xi^{\frac{1}{k}}, \xi^{-\frac{1}{k}}\right) y^{l} \lambda^{\tilde{\beta}_{l}}.$$
(3.2.10)

Indeed, let us consider for example the case where $\tilde{v} = v + (0, 0, 1)$. We obtain from (3.2.3), (3.2.4) and (3.2.7) the expression

$$\begin{split} \partial_{\tau,\xi,y}^{\tilde{\nu}} \left(e^{-\Phi_{\lambda}} \right) &= e^{-\Phi_{\lambda}} \sum_{l=0}^{|\tilde{\nu}|(k+1)-(k+2)} a_{l+1} \left(\tau^{\frac{1}{k}}, \tau^{-\frac{1}{k}}, \xi^{\frac{1}{k}}, \xi^{-\frac{1}{k}} \right) (l+1) y^{l} \lambda^{\beta_{l+1}} \\ &- e^{-\Phi_{\lambda}} \sum_{l=0}^{|\tilde{\nu}|(k+1)-(k+1)} a_{l} \left(\tau^{\frac{1}{k}}, \tau^{-\frac{1}{k}}, \xi^{\frac{1}{k}}, \xi^{-\frac{1}{k}} \right) \left(\tau^{\frac{1}{k}} \right)^{2k} y^{l} \lambda^{\beta_{l}+2\alpha} \\ &- e^{-\Phi_{\lambda}} \sum_{l=k}^{|\tilde{\nu}|(k+1)-1} a_{l-k} \left(\tau^{\frac{1}{k}}, \tau^{-\frac{1}{k}}, \xi^{\frac{1}{k}}, \xi^{-\frac{1}{k}} \right) (-1)^{k+1} \left(\xi^{\frac{1}{k}} \right)^{2k} y^{l} \lambda^{\beta_{l-k}+2+2\alpha}, \end{split}$$

which can be written in the form (3.2.10). Since the power of λ is less or equal than $2 + 2\alpha$ in every term of the right-hand-side of (3.2.5) and (3.2.6), and that these terms are polynomial functions in the variables

$$\tau^{\frac{1}{k}}, \quad \tau^{-\frac{1}{k}}, \quad \xi^{\frac{1}{k}}, \quad \xi^{-\frac{1}{k}} \quad \text{and} \quad y$$

with a degree in y lower than k + 1, we have only to use (3.2.5), (3.2.6), (3.2.8), (3.2.9) and the fact that the quantities

$$\partial_{\tau} \left(a_{l} \left(\tau^{\frac{1}{k}}, \tau^{-\frac{1}{k}}, \xi^{\frac{1}{k}}, \xi^{-\frac{1}{k}} \right) \right) = \frac{1}{k} \tau^{\frac{1}{k}} \left(\tau^{-\frac{1}{k}} \right)^{k} (\partial_{1} a_{l}) \left(\tau^{\frac{1}{k}}, \tau^{-\frac{1}{k}}, \xi^{\frac{1}{k}}, \xi^{-\frac{1}{k}} \right) \\
- \frac{1}{k} \left(\tau^{-\frac{1}{k}} \right)^{k+1} (\partial_{2} a_{l}) \left(\tau^{\frac{1}{k}}, \tau^{-\frac{1}{k}}, \xi^{\frac{1}{k}}, \xi^{-\frac{1}{k}} \right)$$

and

$$\partial_{\xi} \left(a_{l} \left(\tau^{\frac{1}{k}}, \tau^{-\frac{1}{k}}, \xi^{\frac{1}{k}}, \xi^{-\frac{1}{k}} \right) \right) = \frac{1}{k} \xi^{\frac{1}{k}} \left(\xi^{-\frac{1}{k}} \right)^{k} (\partial_{3} a_{l}) \left(\tau^{\frac{1}{k}}, \tau^{-\frac{1}{k}}, \xi^{\frac{1}{k}}, \xi^{-\frac{1}{k}} \right) \\
- \frac{1}{k} \left(\xi^{-\frac{1}{k}} \right)^{k+1} (\partial_{4} a_{l}) \left(\tau^{\frac{1}{k}}, \tau^{-\frac{1}{k}}, \xi^{\frac{1}{k}}, \xi^{-\frac{1}{k}} \right),$$

are some polynomial functions in the variables $\tau^{\frac{1}{k}}$, $\tau^{-\frac{1}{k}}$, $\xi^{\frac{1}{k}}$ and $\xi^{-\frac{1}{k}}$, to obtain (3.2.10) when

$$\tilde{\nu} = \nu + (1, 0, 0)$$
 or $\tilde{\nu} = \nu + (0, 1, 0)$.

This proves the induction property at the rank $|\nu| + 1$ and ends the proof of the lemma 3.2.1.

We deduce from (3.1.5) and the lemma 3.2.1 that there exists a positive constant C_{j_4} such that for all $(\tau, \xi) \in [1, 4]^2$, $\lambda \ge \lambda_0$ and

$$y \in \operatorname{supp} \chi_{0} \left(\lambda^{\mu} \left(\cdot + \left(\lambda^{-1} \xi^{-1} \tau \right)^{\frac{2}{k}} \right) \right),$$

$$\left| \partial_{y}^{j_{4}} \left(e^{-\Phi_{\lambda}(\tau, \xi, y)} \right) \right| \leq C_{j_{4}} \lambda^{2j_{4}(1+\alpha)} e^{-\Phi_{\lambda}(\tau, \xi, y)}. \tag{3.2.11}$$

Moreover, we obtain from (3.1.2) and (3.1.5) that for all $(\tau, \xi) \in [1, 4]^2$ and $\lambda \geq \lambda_0$,

$$\operatorname{supp} \chi_0^{(j_1+1)} \left(\lambda^{\mu} \left(\cdot + \left(\lambda^{-1} \xi^{-1} \tau \right)^{\frac{2}{k}} \right) \right) \subset \Omega_{\lambda,\tau,\xi}, \tag{3.2.12}$$

if we note

$$\Omega_{\lambda,\tau,\xi} = \left\{ y \in \mathbb{R}_{-}^{*} : 2^{-1}\lambda^{-\mu} \le \left| y + (\lambda^{-1}\xi^{-1}\tau)^{\frac{2}{k}} \right| \le \lambda^{-\mu} \right\}. \tag{3.2.13}$$

Then, we deduce from (3.1.1), (3.2.2), (3.2.11), (3.2.12) and (3.2.13) that for all $\lambda \ge \lambda_0$,

$$A_{j_{1},j_{2},j_{3},j_{4}}(\lambda)^{2} \leq C_{j_{4}}^{2}\lambda^{2\mu(j_{1}+1)+2j_{2}\alpha+2j_{3}(1+\alpha)+4j_{4}(1+\alpha)}\|\chi_{0}^{(j_{1}+1)}\|_{L^{\infty}(\mathbb{R})}^{2}$$

$$\times \int_{\mathbb{R}^{2}} \tau^{2j_{2}}\xi^{2j_{3}}\psi_{1}(\tau,\xi)^{2} \left(\int_{\Omega_{\lambda,\tau,\xi}} e^{-2\Phi_{\lambda}(\tau,\xi,y)}dy\right) d\tau d\xi$$

$$\leq C_{j_{4}}^{2}\lambda^{2\mu(j_{1}+1)+2j_{2}\alpha+2j_{3}(1+\alpha)+4j_{4}(1+\alpha)-\mu}\|\chi_{0}^{(j_{1}+1)}\|_{L^{\infty}(\mathbb{R})}^{2}$$

$$\times \int_{\mathbb{R}^{2}} \tau^{2j_{2}}\xi^{2j_{3}}\psi_{1}(\tau,\xi)^{2} \left(\sup_{y\in\Omega_{\lambda,\tau,\xi}} e^{-2\Phi_{\lambda}(\tau,\xi,y)}\right) d\tau d\xi.$$

$$(3.2.14)$$

We obtain from (3.1.10) that for all $y \in \mathbb{R}_{+}^{*}$ and $(\tau, \xi) \in \mathbb{R}_{+}^{*} \times \mathbb{R}_{+}^{*}$,

$$\Phi_{1}(\tau, \xi, y) = \left(y + (\tau \xi^{-1})^{\frac{2}{k}}\right)^{2} k \xi^{2} \int_{0}^{1} (1 - \theta) \left((\tau \xi^{-1})^{\frac{2}{k}} (1 - \theta) - \theta y\right)^{k-1} d\theta
\geq \left(y + (\tau \xi^{-1})^{\frac{2}{k}}\right)^{2} k \xi^{2} \int_{0}^{1} (1 - \theta)^{k} (\tau \xi^{-1})^{2 - \frac{2}{k}} d\theta,$$

which induces that

$$\Phi_1(\tau, \xi, y) \ge \frac{k}{k+1} \xi^2 (\tau \xi^{-1})^{2-\frac{2}{k}} \left(y + (\tau \xi^{-1})^{\frac{2}{k}} \right)^2. \tag{3.2.15}$$

It follows from (3.1.11) and (3.2.15) that for all $y \in \mathbb{R}_{-}^{*}$, $(\tau, \xi) \in [1, 4]^{2}$ and $\lambda \geq 1$,

$$\Phi_{\lambda}(\tau, \xi, y) \geq \frac{k}{k+1} \xi^{2} (\tau \xi^{-1})^{2-\frac{2}{k}} \lambda^{2\alpha + \frac{2}{k}} (y + (\tau \lambda^{-1} \xi^{-1})^{\frac{2}{k}})^{2}
\geq c_{3} \lambda^{2\alpha + \frac{2}{k}} (y + (\tau \lambda^{-1} \xi^{-1})^{\frac{2}{k}})^{2},$$
(3.2.16)

with $c_3 = 4^{\frac{2}{k}-2}k/(k+1) > 0$. Thus, we obtain using (3.2.13) and (3.2.16) that for all $(\tau, \xi) \in [1, 4]^2$ and $\lambda \ge \lambda_0$,

$$\sup_{y \in \Omega_{\lambda, \tau, \xi}} e^{-2\Phi_{\lambda}(\tau, \xi, y)} \le e^{-\frac{c_3}{2}\lambda^{2(\alpha + \frac{1}{k} - \mu)}}.$$
 (3.2.17)

Getting back to (3.2.14), the next proposition follows from (3.1.1), (3.2.1), (3.2.14), (3.2.17) and the fact that from (3.1.3),

$$\mu < \alpha + \frac{1}{k}$$
.

Proposition 3.2.1. We have

$$\|L_2^* u_\lambda\|_{(N_0)} = O\left(e^{-\frac{c_3}{8}\lambda^{2(\alpha + \frac{1}{k} - \mu)}}\right) \text{ when } \lambda \to +\infty.$$
 (3.2.18)

3.3 Lower bound for the quantity $||u_{\lambda}||_{(-N_0)}$

It follows from (3.1.4), (3.1.11), (3.1.14) and a change of variables that

$$\|u_{\lambda}\|_{(-N_{0})}^{2} = \int_{\mathbb{R}^{3}} |\psi_{\lambda}(\tau,\xi)|^{2}$$

$$\left| \int_{\mathbb{R}} e^{-iy\eta} \chi_{0} \left(\lambda^{\mu} (y + (\xi^{-1}\tau)^{\frac{2}{k}}) \right) e^{-\Phi_{1}(\tau,\xi,y)} dy \right|^{2}$$

$$\times (1 + \eta^{2} + \xi^{2} + \tau^{2})^{-N_{0}} \frac{d\eta d\tau d\xi}{(2\pi)^{3}}$$

$$= \int_{\mathbb{R}^{3}} |\psi_{1}(\tau,\xi)|^{2}$$

$$\left| \int_{\mathbb{R}} e^{-iy\eta} \chi_{0} \left(\lambda^{\mu} (y + (\lambda^{-1}\xi^{-1}\tau)^{\frac{2}{k}}) \right) e^{-\Phi_{\lambda}(\tau,\xi,y)} dy \right|^{2}$$

$$\times (1 + \eta^{2} + \lambda^{2+2\alpha}\xi^{2} + \lambda^{2\alpha}\tau^{2})^{-N_{0}} \frac{d\eta d\tau d\xi}{(2\pi)^{3}} .$$

$$(3.3.1)$$

By using the following estimates, for all $(\tau, \xi) \in [1, 4]^2$ and $\lambda \ge \lambda_0 \ge 1$,

$$1 + \eta^2 + \lambda^{2+2\alpha} \xi^2 + \lambda^{2\alpha} \tau^2 \le c_4 \lambda^{2+2\alpha} (1 + \eta^2),$$

$$(1 + \eta^2 + \lambda^{2+2\alpha} \xi^2 + \lambda^{2\alpha} \tau^2)^{-N_0} \ge c_4^{-N_0} \lambda^{-2(1+\alpha)N_0} (1 + \eta^2)^{-N_0},$$

where $c_4 = 33$ and from (3.1.1), supp $\psi_1 \subset [1, 4]^2$ and $\psi_1 = 1$ on $[2, 3]^2$, we deduce from (3.3.1) that for all $\lambda \ge \lambda_0$,

$$\|u_{\lambda}\|_{(-N_0)}^2 \ge \frac{c_4^{-N_0}}{(2\pi)^2} \lambda^{-2(1+\alpha)N_0} \int_{[2,3]^2} \|g_{\lambda,\tau,\xi}\|_{H^{-N_0}(\mathbb{R}_y)}^2 d\tau d\xi, \tag{3.3.2}$$

if we note

$$g_{\lambda,\tau,\xi}(y) = \chi_0 \left(\lambda^{\mu} (y + (\lambda^{-1} \xi^{-1} \tau)^{\frac{2}{k}}) \right) e^{-\Phi_{\lambda}(\tau,\xi,y)}. \tag{3.3.3}$$

Then, we use that

$$\|g_{\lambda,\tau,\xi}\|_{L^{2}(\mathbb{R}_{\nu})}^{2} \leq \|g_{\lambda,\tau,\xi}\|_{H^{N_{0}}(\mathbb{R}_{\nu})} \|g_{\lambda,\tau,\xi}\|_{H^{-N_{0}}(\mathbb{R}_{\nu})}.$$
(3.3.4)

The following lemma allows us to get an uniform lower bound, respectively to get an uniform upper bound with respect to the variables (τ, ξ) in $[2, 3]^2$ for the quantities $\|g_{\lambda,\tau,\xi}\|_{L^2(\mathbb{R}_y)}$ and $\|g_{\lambda,\tau,\xi}\|_{H^{N_0}(\mathbb{R}_y)}$.

Lemma 3.3.1. We can find some positive constants c_5 and c_6 such that for all $(\tau, \xi) \in [2, 3]^2$ and $\lambda \ge \lambda_0$,

$$\|g_{\lambda,\tau,\xi}\|_{H^{N_0}(\mathbb{R}_{y})} \le c_5 \lambda^{(\mu+2+2\alpha)N_0 - \frac{\mu}{2}} \text{ and } \|g_{\lambda,\tau,\xi}\|_{L^2(\mathbb{R}_{y})} \ge c_6 \lambda^{-\frac{1+\alpha}{2}}.$$
 (3.3.5)

Proof. To obtain the first estimate, it is enough to get a bound for $\lambda \geq \lambda_0$ of the new quantities

$$A_{j_1,j_2}(\lambda,\tau,\xi) = \|\lambda^{j_1\mu}\chi_0^{(j_1)} \left(\lambda^{\mu}(y + (\lambda^{-1}\xi^{-1}\tau)^{\frac{2}{k}})\right) \partial_y^{j_2} \left(e^{-\Phi_{\lambda}(\tau,\xi,y)}\right)\|_{L^2(\mathbb{R}_y)},$$

uniformly with respect to the variables $(\tau, \xi) \in [2, 3]^2$ where $(j_1, j_2) \in \mathbb{N}^2$ are some integers verifying $j_1 + j_2 = N_0$. We obtain using (3.2.11) and the non-negativity of the function Φ_{λ} that for all $(\tau, \xi) \in [2, 3]^2$ and $\lambda \geq \lambda_0$,

$$A_{j_{1},j_{2}}(\lambda,\tau,\xi)^{2} = \lambda^{2j_{1}\mu} \int_{\mathbb{R}} \chi_{0}^{(j_{1})} \left(\lambda^{\mu} (y + (\lambda^{-1}\xi^{-1}\tau)^{\frac{2}{k}}) \right)^{2} \left| \partial_{y}^{j_{2}} \left(e^{-\Phi_{\lambda}(\tau,\xi,y)} \right) \right|^{2} dy$$

$$\leq C_{j_{2}}^{2} \lambda^{2j_{1}\mu+4j_{2}(1+\alpha)} \int_{\mathbb{R}} \chi_{0}^{(j_{1})} \left(\lambda^{\mu} (y + (\lambda^{-1}\xi^{-1}\tau)^{\frac{2}{k}}) \right)^{2} dy$$

$$= C_{j_{2}}^{2} \|\chi_{0}^{(j_{1})}\|_{L^{2}(\mathbb{R})}^{2} \lambda^{2j_{1}\mu+4j_{2}(1+\alpha)-\mu}.$$

We deduce from this last estimate that there exists a positive constant c_5 such that for all $(\tau, \xi) \in [2, 3]^2$ and $\lambda \ge \lambda_0$,

$$\|g_{\lambda,\tau,\xi}\|_{H^{N_0}(\mathbb{R}_{\nu})} \leq c_5 \lambda^{(\mu+2+2\alpha)N_0-\frac{\mu}{2}},$$

which shows the first estimate of (3.3.5). We want now to get an uniform lower bound for the quantity $\|g_{\lambda,\tau,\xi}\|_{L^2(\mathbb{R}_y)}$ with respect to the variables $(\tau,\xi) \in [2,3]^2$ for $\lambda \geq \lambda_0$. Using (3.1.10), we obtain that for all $y \in \mathbb{R}_+^*$ and $(\tau,\xi) \in \mathbb{R}_+^* \times \mathbb{R}_+^*$,

$$\Phi_{1}(\tau,\xi,y) = \left(y + (\tau\xi^{-1})^{\frac{2}{k}}\right)^{2} k\xi^{2} \int_{0}^{1} (1-\theta) \left((\tau\xi^{-1})^{\frac{2}{k}}(1-\theta) - \theta y\right)^{k-1} d\theta
\leq k\xi^{2} \left(y + (\tau\xi^{-1})^{\frac{2}{k}}\right)^{2} \left((\tau\xi^{-1})^{\frac{2}{k}} + |y|\right)^{k-1}.$$
(3.3.6)

We deduce from (3.1.11) and (3.3.6) that for all $y \in \mathbb{R}^*_-$, $(\tau, \xi) \in [2, 3]^2$ and $\lambda \geq 1$,

$$\Phi_{\lambda}(\tau, \xi, y) \le 9k\lambda^{2+2\alpha} \left(y + \left(\tau \xi^{-1} \lambda^{-1} \right)^{\frac{2}{k}} \right)^{2} \left(3^{\frac{2}{k}} 2^{-\frac{2}{k}} + |y| \right)^{k-1}. \tag{3.3.7}$$

We obtain using (3.3.7) and the change of variables, $u = y + (\tau \xi^{-1} \lambda^{-1})^{\frac{2}{k}}$, that for all $(\tau, \xi) \in [2, 3]^2$ and $\lambda \ge 1$,

$$\begin{split} \|e^{-\Phi_{\lambda}(\tau,\xi,y)} \mathbf{1}_{\mathbb{R}_{-}^{*}}(y)\|_{L^{2}(\mathbb{R}_{y})}^{2} \\ &\geq \int_{-\infty}^{0} e^{-18k\lambda^{2+2\alpha}(y+(\tau\lambda^{-1}\xi^{-1})^{\frac{2}{k}})^{2}(3^{\frac{2}{k}}2^{-\frac{2}{k}}+|y|)^{k-1}} dy \\ &\geq \int_{-\infty}^{-(\tau\xi^{-1}\lambda^{-1})^{\frac{2}{k}}} e^{-18k\lambda^{2+2\alpha}(y+(\tau\lambda^{-1}\xi^{-1})^{\frac{2}{k}})^{2}(3^{\frac{2}{k}}2^{-\frac{2}{k}}+|y|)^{k-1}} dy \\ &\geq \int_{-\infty}^{0} e^{-18k\lambda^{2+2\alpha}u^{2}(3^{\frac{2}{k}}2^{-\frac{2}{k}}+|u-(\tau\xi^{-1}\lambda^{-1})^{\frac{2}{k}}|)^{k-1}} du. \end{split}$$
(3.3.8)

Since we can find a positive constant c_7 such that for all $y \in \mathbb{R}^*_-$, $(\tau, \xi) \in [2, 3]^2$ and $\lambda \ge 1$,

$$18k\left(3^{\frac{2}{k}}2^{-\frac{2}{k}} + |y - (\tau\xi^{-1}\lambda^{-1})^{\frac{2}{k}}|\right)^{k-1} \le c_7(1 + |y|^{k-1}),\tag{3.3.9}$$

it follows from (3.3.8) and (3.3.9),

$$\|e^{-\Phi_{\lambda}(\tau,\xi,y)}\mathbf{1}_{\mathbb{R}_{-}^{*}}(y)\|_{L^{2}(\mathbb{R}_{y})}^{2} \geq \int_{-\infty}^{0} e^{-c\gamma\lambda^{2+2\alpha}u^{2}(1+|u|^{k-1})}du. \tag{3.3.10}$$

Then using some changes of variables, we deduce from (3.3.10) that for all $(\tau, \xi) \in [2, 3]^2$ and $\lambda \ge 1$,

$$\|e^{-\Phi_{\lambda}(\tau,\xi,y)}\mathbf{1}_{\mathbb{R}_{-}^{*}}(y)\|_{L^{2}(\mathbb{R}_{y})}^{2}$$

$$\geq \int_{0}^{+\infty} e^{-c_{7}\lambda^{2+2\alpha}u^{2}(1+u^{k-1})}du$$

$$= \lambda^{-1-\alpha} \int_{0}^{+\infty} e^{-c_{7}v^{2}(1+v^{k-1}\lambda^{-(1+\alpha)(k-1)})}dv$$

$$\geq \lambda^{-1-\alpha} \int_{0}^{+\infty} e^{-c_{7}v^{2}(1+v^{k-1})}dv = c_{8}\lambda^{-1-\alpha}.$$
(3.3.11)

Next, if we note

$$\tilde{\Omega}_{\lambda,\tau,\xi} = \left\{ y \in \mathbb{R}_{-}^* : |y + (\lambda^{-1}\xi^{-1}\tau)^{\frac{2}{k}}| \ge 2^{-1}\lambda^{-\mu} \right\},\tag{3.3.12}$$

using from (3.1.2) that $\chi_0 = 1$ on [-1/2, 1/2] and (3.2.16), we obtain that for all $(\tau, \xi) \in [2, 3]^2$ and $\lambda \ge 1$,

$$\begin{split} & \left\| \left[1 - \chi_{0} \left(\lambda^{\mu} (y + (\lambda^{-1} \xi^{-1} \tau)^{\frac{2}{k}}) \right) \right] e^{-\Phi_{\lambda}(\tau, \xi, y)} \mathbf{1}_{\mathbb{R}_{-}^{*}}(y) \right\|_{L^{2}(\mathbb{R}_{y})}^{2} \\ & \leq \| 1 - \chi_{0} \|_{L^{\infty}(\mathbb{R})}^{2} \int_{\tilde{\Omega}_{\lambda, \tau, \xi}} e^{-2\Phi_{\lambda}(\tau, \xi, y)} dy \\ & \leq \| 1 - \chi_{0} \|_{L^{\infty}(\mathbb{R})}^{2} \int_{\tilde{\Omega}_{\lambda, \tau, \xi}} e^{-2c_{3}\lambda^{2\alpha + \frac{2}{k}} (y + (\lambda^{-1} \xi^{-1} \tau)^{\frac{2}{k}})^{2}} dy \\ & \leq e^{-\frac{c_{3}}{4}\lambda^{2\alpha + \frac{2}{k} - 2\mu}} \| 1 - \chi_{0} \|_{L^{\infty}(\mathbb{R})}^{2} \int_{\mathbb{R}} e^{-c_{3}\lambda^{2\alpha + \frac{2}{k}} (y + (\lambda^{-1} \xi^{-1} \tau)^{\frac{2}{k}})^{2}} dy \\ & \leq \pi^{\frac{1}{2}} c_{3}^{-\frac{1}{2}} \| 1 - \chi_{0} \|_{L^{\infty}(\mathbb{R})}^{2} \lambda^{-\alpha - \frac{1}{k}} e^{-\frac{c_{3}}{4}\lambda^{2(\alpha + \frac{1}{k} - \mu)}}, \end{split}$$
 (3.3.13)

since if $y \in \tilde{\Omega}_{\lambda,\tau,\xi}$, we have

$$e^{-2c_3\lambda^{2\alpha+\frac{2}{k}}(y+(\lambda^{-1}\xi^{-1}\tau)^{\frac{2}{k}})^2}< e^{-\frac{c_3}{4}\lambda^{2\alpha+\frac{2}{k}-2\mu}}e^{-c_3\lambda^{2\alpha+\frac{2}{k}}(y+(\lambda^{-1}\xi^{-1}\tau)^{\frac{2}{k}})^2}$$

and since a change of variables gives that

$$\int_{\mathbb{R}} e^{-c_3 \lambda^{2\alpha + \frac{2}{k}} (y + (\lambda^{-1} \xi^{-1} \tau)^{\frac{2}{k}})^2} dy = \int_{\mathbb{R}} e^{-c_3 \lambda^{2\alpha + \frac{2}{k}} y^2} dy = \pi^{\frac{1}{2}} c_3^{-\frac{1}{2}} \lambda^{-\alpha - \frac{1}{k}}.$$

In view of (3.1.5) and (3.3.3), the use of the triangular inequality for all $(\tau, \xi) \in [2, 3]^2$ and $\lambda \ge \lambda_0$,

$$\begin{split} \|g_{\lambda,\tau,\xi}\|_{L^{2}(\mathbb{R}_{y})} &= \|\chi_{0}\left(\lambda^{\mu}(y+(\lambda^{-1}\xi^{-1}\tau)^{\frac{2}{k}})\right)e^{-\Phi_{\lambda}(\tau,\xi,y)}\mathbf{1}_{\mathbb{R}_{-}^{*}}(y)\|_{L^{2}(\mathbb{R}_{y})} \\ &\geq \|e^{-\Phi_{\lambda}(\tau,\xi,y)}\mathbf{1}_{\mathbb{R}_{-}^{*}}(y)\|_{L^{2}(\mathbb{R}_{y})} \\ &- \|\left[1-\chi_{0}\left(\lambda^{\mu}(y+(\lambda^{-1}\xi^{-1}\tau)^{\frac{2}{k}})\right)\right]e^{-\Phi_{\lambda}(\tau,\xi,y)}\mathbf{1}_{\mathbb{R}_{-}^{*}}(y)\|_{L^{2}(\mathbb{R}_{y})}, \end{split}$$

with the estimates (3.3.11) and (3.3.13), shows that there exists a positive constant c_6 such that for all $(\tau, \xi) \in [2, 3]^2$ and $\lambda \ge \lambda_0$,

$$\|g_{\lambda,\tau,\xi}\|_{L^2(\mathbb{R}_v)} \geq c_6 \lambda^{-\frac{1+\alpha}{2}},$$

because from (3.1.3),

$$\alpha + \frac{1}{k} - \mu > 0.$$

This ends the proof of Lemma 3.3.1.

The previous lemma permits us to obtain from the estimate (3.3.4) that for all $(\tau, \xi) \in [2, 3]^2$ and $\lambda \ge \lambda_0$,

$$\|g_{\lambda,\tau,\xi}\|_{H^{-N_0}(\mathbb{R}_v)} \geq c_6^2 c_5^{-1} \lambda^{-\alpha-1+\frac{\mu}{2}-(\mu+2+2\alpha)N_0}.$$

Then using (3.3.2), we obtain the following proposition.

Proposition 3.3.1. There exists a positive constant c_9 such that for all $\lambda \geq \lambda_0$,

$$||u_{\lambda}||_{(-N_0)} \ge c_9 \lambda^{-\alpha - 1 + \frac{\mu}{2} - (\mu + 3 + 3\alpha)N_0}.$$
 (3.3.14)

We need now to cutoff in the variables t, x to obtain a quasimode localized in an arbitrary neighbourhood of 0 in \mathbb{R}^3 .

3.4 Cutoff in variables t and x

We need first to make the result of the lemma 3.2.1 more precise when there is no differentiation in the variable *y*.

Lemma 3.4.1. For all $\rho \in \mathbb{N}^2$, there exist some functions a_l , $l = 0, ..., |\rho|(k+1)$, which are polynomial in \mathbb{R}^4 and some constants β_l , $l = 0, ..., |\rho|(k+1)$ verifying

$$\beta_l \leq 2 |\rho| \left(\alpha - \frac{1}{k}\right),$$

such that for all $y \in \mathbb{R}_{-}^{*}$, $(\tau, \xi) \in \mathbb{R}_{+}^{*} \times \mathbb{R}_{+}^{*}$ and $\lambda \geq 1$,

$$\partial_{\tau,\xi}^{\rho}(e^{-\Phi_{\lambda}}) = e^{-\Phi_{\lambda}} \sum_{l=0}^{|\rho|(k+1)} a_{l} \left(\tau^{\frac{1}{k}}, \tau^{-\frac{1}{k}}, \xi^{\frac{1}{k}}, \xi^{-\frac{1}{k}}\right) \left(\lambda^{\frac{2}{k}} y\right)^{l} \lambda^{\beta_{l}}.$$
 (3.4.1)

Proof. We prove again this lemma by induction on $|\rho|$. If $|\rho| = 0$, the expression (3.4.1) holds with $a_0 = 1$ and $\beta_0 = 0$. Let us assume now that for $\rho \in \mathbb{N}^2$, there exist some functions $a_l, l = 0, \ldots, |\rho|(k+1)$, which are polynomial in \mathbb{R}^4 and some constants $\beta_l, l = 0, \ldots, |\rho|(k+1)$ verifying

$$\beta_l \leq 2 |\rho| \left(\alpha - \frac{1}{k}\right)$$

such that for all

$$y \in \mathbb{R}_{-}^{*}, \ (\tau, \xi) \in \mathbb{R}_{+}^{*} \times \mathbb{R}_{+}^{*}, \ \lambda \geq 1,$$

the expression (3.4.1) holds. Since we can write (3.2.5) and (3.2.6) in the following way,

$$\partial_{\tau} \Phi_{\lambda}(\tau, \xi, y) = \lambda^{2\alpha - \frac{2}{k}} \left(2\tau(\lambda^{\frac{2}{k}}y) + 2\xi^{-\frac{2}{k}} \tau^{\frac{k+2}{k}} \right), \tag{3.4.2}$$

$$\partial_{\xi} \Phi_{\lambda}(\tau, \xi, y) = \frac{2}{k+1} \lambda^{2\alpha - \frac{2}{k}} \left(-\tau^{\frac{2k+2}{k}} \xi^{-\frac{k+2}{k}} + (-1)^{k+1} \xi (\lambda^{\frac{2}{k}} y)^{k+1} \right) \quad (3.4.3)$$

and

$$\partial_{\tau} \left(e^{-\Phi_{\lambda}} \sum_{l=0}^{|\rho|(k+1)} a_{l}(\tau^{\frac{1}{k}}, \tau^{-\frac{1}{k}}, \xi^{\frac{1}{k}}, \xi^{-\frac{1}{k}}) (\lambda^{\frac{2}{k}} y)^{l} \lambda^{\beta_{l}} \right) \\
= e^{-\Phi_{\lambda}} \left(\sum_{l=0}^{|\rho|(k+1)} \left[-(\partial_{\tau} \Phi_{\lambda}) a_{l}(\tau^{\frac{1}{k}}, \tau^{-\frac{1}{k}}, \xi^{\frac{1}{k}}, \xi^{-\frac{1}{k}}) \right. \right. \\
\left. + \partial_{\tau} \left(a_{l}(\tau^{\frac{1}{k}}, \tau^{-\frac{1}{k}}, \xi^{\frac{1}{k}}, \xi^{-\frac{1}{k}}) \right) \left[(\lambda^{\frac{2}{k}} y)^{l} \lambda^{\beta_{l}} \right), \\
\partial_{\xi} \left(e^{-\Phi_{\lambda}} \sum_{l=0}^{|\rho|(k+1)} a_{l}(\tau^{\frac{1}{k}}, \tau^{-\frac{1}{k}}, \xi^{\frac{1}{k}}, \xi^{-\frac{1}{k}}) (\lambda^{\frac{2}{k}} y)^{l} \lambda^{\beta_{l}} \right) \\
= e^{-\Phi_{\lambda}} \left(\sum_{l=0}^{|\rho|(k+1)} \left[-(\partial_{\xi} \Phi_{\lambda}) a_{l}(\tau^{\frac{1}{k}}, \tau^{-\frac{1}{k}}, \xi^{\frac{1}{k}}, \xi^{-\frac{1}{k}}) \right. \right. \\
\left. + \partial_{\xi} \left(a_{l}(\tau^{\frac{1}{k}}, \tau^{-\frac{1}{k}}, \xi^{\frac{1}{k}}, \xi^{-\frac{1}{k}}) \right) \left[(\lambda^{\frac{2}{k}} y)^{l} \lambda^{\beta_{l}} \right), \right. \tag{3.4.5}$$

we obtain that

$$\begin{split} \partial_{\tau} \Big(e^{-\Phi_{\lambda}} \sum_{l=0}^{|\rho|(k+1)} a_{l} (\tau^{\frac{1}{k}}, \tau^{-\frac{1}{k}}, \xi^{\frac{1}{k}}, \xi^{-\frac{1}{k}}) (\lambda^{\frac{2}{k}} y)^{l} \lambda^{\beta_{l}} \Big) \\ &= -e^{-\Phi_{\lambda}} \sum_{l=0}^{|\rho|(k+1)} 2 (\tau^{\frac{1}{k}})^{k} a_{l} (\tau^{\frac{1}{k}}, \tau^{-\frac{1}{k}}, \xi^{\frac{1}{k}}, \xi^{-\frac{1}{k}}) (\lambda^{\frac{2}{k}} y)^{l+1} \lambda^{\beta_{l}+2(\alpha-\frac{1}{k})} \\ &- e^{-\Phi_{\lambda}} \sum_{l=0}^{|\rho|(k+1)} 2 (\xi^{-\frac{1}{k}})^{2} (\tau^{\frac{1}{k}})^{k+2} a_{l} (\tau^{\frac{1}{k}}, \tau^{-\frac{1}{k}}, \xi^{\frac{1}{k}}, \xi^{-\frac{1}{k}}) (\lambda^{\frac{2}{k}} y)^{l} \lambda^{\beta_{l}+2(\alpha-\frac{1}{k})} \\ &+ e^{-\Phi_{\lambda}} \sum_{l=0}^{|\rho|(k+1)} \Big(\frac{1}{k} \Big[\tau^{\frac{1}{k}} (\tau^{-\frac{1}{k}})^{k} (\partial_{1} a_{l}) (\tau^{\frac{1}{k}}, \tau^{-\frac{1}{k}}, \xi^{\frac{1}{k}}, \xi^{-\frac{1}{k}}) \\ &- (\tau^{-\frac{1}{k}})^{k+1} (\partial_{2} a_{l}) (\tau^{\frac{1}{k}}, \tau^{-\frac{1}{k}}, \xi^{\frac{1}{k}}, \xi^{-\frac{1}{k}}) \Big] (\lambda^{\frac{2}{k}} y)^{l} \lambda^{\beta_{l}} \Big) \end{split}$$

and

$$\partial_{\xi} \left(e^{-\Phi_{\lambda}} \sum_{l=0}^{|\rho|(k+1)} a_{l}(\tau^{\frac{1}{k}}, \tau^{-\frac{1}{k}}, \xi^{\frac{1}{k}}, \xi^{-\frac{1}{k}})(\lambda^{\frac{2}{k}}y)^{l} \lambda^{\beta_{l}} \right)$$

$$= e^{-\Phi_{\lambda}} \sum_{l=0}^{|\rho|(k+1)} \frac{2}{k+1} (\tau^{\frac{1}{k}})^{2k+2} (\xi^{-\frac{1}{k}})^{k+2} a_{l}(\tau^{\frac{1}{k}}, \tau^{-\frac{1}{k}}, \xi^{\frac{1}{k}}, \xi^{-\frac{1}{k}})$$

$$(\lambda^{\frac{2}{k}}y)^{l} \lambda^{\beta_{l}+2(\alpha-\frac{1}{k})}$$

$$- e^{-\Phi_{\lambda}} \sum_{l=0}^{|\rho|(k+1)} \frac{2}{k+1} (-1)^{k+1} (\xi^{\frac{1}{k}})^{k} a_{l}(\tau^{\frac{1}{k}}, \tau^{-\frac{1}{k}}, \xi^{\frac{1}{k}}, \xi^{-\frac{1}{k}})$$

$$(\lambda^{\frac{2}{k}}y)^{l+k+1} \lambda^{\beta_{l}+2(\alpha-\frac{1}{k})}$$

$$+ e^{-\Phi_{\lambda}} \sum_{l=0}^{|\rho|(k+1)} \left(\frac{1}{k} \left[\xi^{\frac{1}{k}} (\xi^{-\frac{1}{k}})^{k} (\partial_{3}a_{l})(\tau^{\frac{1}{k}}, \tau^{-\frac{1}{k}}, \xi^{\frac{1}{k}}, \xi^{-\frac{1}{k}}) - (\xi^{-\frac{1}{k}})^{k+1} (\partial_{4}a_{l})(\tau^{\frac{1}{k}}, \tau^{-\frac{1}{k}}, \xi^{\frac{1}{k}}, \xi^{-\frac{1}{k}}) \right] (\lambda^{\frac{2}{k}}y)^{l} \lambda^{\beta_{l}} \right).$$

$$(3.4.7)$$

Since from (3.1.3), $\alpha > 1/k$, we deduce from (3.4.6) and (3.4.7) that if $\tilde{\rho} \in \{\rho+(1,0), \rho+(0,1)\}$, there exist some functions $\tilde{a}_l, l=0,\ldots, |\tilde{\rho}|(k+1)$, which are polynomial in \mathbb{R}^4 and some constants $\tilde{\beta}_l, l=0,\ldots, |\tilde{\rho}|(k+1)$ verifying $\tilde{\beta}_l \leq 2 |\tilde{\rho}| (\alpha-1/k)$ such that for all $y \in \mathbb{R}^*_+$, $(\tau, \xi) \in \mathbb{R}^*_+ \times \mathbb{R}^*_+$ and $\lambda \geq 1$,

$$\partial_{\tau,\xi}^{\tilde{\rho}}\left(e^{-\Phi_{\lambda}}\right) = e^{-\Phi_{\lambda}} \sum_{l=0}^{|\tilde{\rho}|(k+1)} \tilde{a}_{l}\left(\tau^{\frac{1}{k}}, \tau^{-\frac{1}{k}}, \xi^{\frac{1}{k}}, \xi^{-\frac{1}{k}}\right) \left(\lambda^{\frac{2}{k}} y\right)^{l} \lambda^{\tilde{\beta}_{l}}.$$

This proves the induction property at the rank $|\rho| + 1$ and ends the proof of the lemma 3.4.1.

We can now prove the following lemma.

Lemma 3.4.2. For all $\rho \in \mathbb{N}^2$, there exists a positive constant M_{ρ} such that for all $(\tau, \xi) \in [1, 4]^2$, $\lambda \geq \lambda_0$ and $y \in \text{supp } \chi_0(\lambda^{\mu}(\cdot + (\lambda^{-1}\xi^{-1}\tau)^{\frac{2}{k}}))$,

$$\left|\partial_{\tau,\xi}^{\rho}\left(e^{-\Phi_{\lambda}(\tau,\xi,y)}\right)\right| \leq M_{\rho}\lambda^{2|\rho|(\alpha-\frac{1}{k})}.\tag{3.4.8}$$

Proof. We recall that the above notation supp $\chi_0(\lambda^{\mu}(\cdot + (\lambda^{-1}\xi^{-1}\tau)^{\frac{2}{k}}))$ stands for the support of the function

$$y \mapsto \chi_0 \left(\lambda^{\mu} (y + (\lambda^{-1} \xi^{-1} \tau)^{\frac{2}{k}}) \right).$$

It follows from the previous lemma that there exist some functions a_l , $l = 0, ..., |\rho|(k+1)$, which are polynomial in \mathbb{R}^4 and some constants β_l , $l = 0, ..., |\rho|(k+1)$ verifying

$$\beta_l \leq 2 |\rho| \left(\alpha - \frac{1}{k}\right),$$
(3.4.9)

such that for all $y \in \mathbb{R}_{+}^{*}$, $(\tau, \xi) \in \mathbb{R}_{+}^{*} \times \mathbb{R}_{+}^{*}$ and $\lambda \geq 1$,

$$\partial_{\tau,\xi}^{\rho}(e^{-\Phi_{\lambda}}) = e^{-\Phi_{\lambda}} \sum_{l=0}^{|\rho|(k+1)} a_{l} \left(\tau^{\frac{1}{k}}, \tau^{-\frac{1}{k}}, \xi^{\frac{1}{k}}, \xi^{-\frac{1}{k}}\right) \left(\lambda^{\frac{2}{k}} y\right)^{l} \lambda^{\beta_{l}}.$$
(3.4.10)

Using the non-negativity of the phase function Φ_{λ} (see (3.1.10) and (3.1.11)), we deduce from (3.1.5) and (3.4.9) that for $l=0,\ldots,|\rho|(k+1)$, there exists a positive constant $c_{10,l}$ such that for all $(\tau,\xi)\in[1,4]^2$, $\lambda\geq\lambda_0$ and

$$y \in \text{supp } \chi_0 \left(\lambda^{\mu} (\cdot + (\lambda^{-1} \xi^{-1} \tau)^{\frac{2}{k}}) \right),$$

$$\left| e^{-\Phi_{\lambda}} a_l(\tau^{\frac{1}{k}}, \tau^{-\frac{1}{k}}, \xi^{\frac{1}{k}}, \xi^{-\frac{1}{k}}) \lambda^{\beta_l} \right| \leq c_{10,l} \lambda^{2|\rho|(\alpha - \frac{1}{k})}, \tag{3.4.11}$$

since from (3.1.3), $\alpha > 1/k$. Finally, in view of (3.1.5), (3.4.10) and (3.4.11), we deduce that there exists a positive constant M_{ρ} such that the estimate (3.4.8) holds. This ends the proof of the lemma 3.4.2.

Let us now consider the function v_{λ} defined by

$$v_{\lambda}(t, x, y) = \chi_1(\lambda^{\gamma} t, \lambda^{\gamma} x) u_{\lambda}(t, x, y), \tag{3.4.12}$$

where γ is a parameter verifying

$$0 < \gamma < \frac{1}{k} \quad \text{and} \quad \gamma + \alpha < \frac{2}{k}. \tag{3.4.13}$$

This choice is possible in view of (3.1.3). The function χ_1 is taken in the space $C_0^{\infty}(\mathbb{R}^2, \mathbb{R})$ such that

supp
$$\chi_1 \subset B(0, 1)$$
 and $\chi_1 = 1$ on $B\left(0, \frac{1}{2}\right)$, (3.4.14)

where the notation B(0, r) stands for the closed Euclidean ball centered in 0 with a radius r. We start by getting a lower bound for the quantity $||v_{\lambda}||_{(-N_0)}$. To do this, we prove the following lemma.

Lemma 3.4.3. For all $M \in \mathbb{N}$, there exists a positive constant K_M such that for all $\lambda > \lambda_0$,

$$\|(1 - \chi_1(\lambda^{\gamma}t, \lambda^{\gamma}x))u_{\lambda}(t, x, y)\|_{(-N_0)} \le K_M \lambda^{-M}.$$
 (3.4.15)

Proof. Since from (3.1.4), (3.1.11), (3.1.13) and a change of variables

$$u_{\lambda}(t, x, y) = \frac{\lambda^{\frac{1}{2} + \alpha}}{(2\pi)^{2}} \times \int_{\mathbb{R}^{2}} e^{i(x\xi\lambda^{1+\alpha} + t\tau\lambda^{\alpha})} \psi_{1}(\tau, \xi) \chi_{0} \left(\lambda^{\mu} (y + (\tau\xi^{-1}\lambda^{-1})^{\frac{2}{k}})\right) e^{-\Phi_{\lambda}(\tau, \xi, y)} d\tau d\xi,$$
(3.4.16)

we deduce from (3.1.1), (3.1.5) and (3.4.14) that for all $\lambda \geq \lambda_0$,

$$\begin{split} & \| \left(1 - \chi_{1}(\lambda^{\gamma}t, \lambda^{\gamma}x) \right) u_{\lambda}(t, x, y) \|_{(-N_{0})} \\ & \leq \| \left(1 - \chi_{1}(\lambda^{\gamma}t, \lambda^{\gamma}x) \right) u_{\lambda}(t, x, y) \|_{L^{2}(\mathbb{R}^{3})} \leq \| 1 - \chi_{1} \|_{L^{\infty}(\mathbb{R}^{2})} \\ & \times \left(\int_{-c_{1}\lambda^{-\frac{2}{k}}}^{-c_{2}\lambda^{-\frac{2}{k}}} \left[\int_{\{(t, x) \in \mathbb{R}^{2}: \ t^{2} + x^{2} \geq 4^{-1}\lambda^{-2\gamma}\}} |u_{\lambda}(t, x, y)|^{2} dt dx \right] dy \right)^{\frac{1}{2}}. \end{split}$$

$$(3.4.17)$$

Now, some integrations by parts on (3.4.16) show that for all $q \in \mathbb{N}$, $(t, x) \neq (0, 0)$, $y \in \mathbb{R}$ and $\lambda > \lambda_0$,

$$u_{\lambda}(t,x,y) = \frac{\lambda^{\alpha+\frac{1}{2}}(i\lambda^{1+\alpha}x + \lambda^{\alpha}t)^{-q}}{(2\pi)^{2}} \int_{\mathbb{R}^{2}} (\partial_{\xi} - i\partial_{\tau})^{q} \left(e^{i(\lambda^{1+\alpha}x\xi + \lambda^{\alpha}t\tau)} \right)$$

$$\times \psi_{1}(\tau,\xi) \chi_{0} \left(\lambda^{\mu} (y + (\lambda^{-1}\xi^{-1}\tau)^{\frac{2}{k}}) \right) e^{-\Phi_{\lambda}(\tau,\xi,y)} d\tau d\xi$$

$$= \frac{\lambda^{\alpha+\frac{1}{2}}(i\lambda^{1+\alpha}x + \lambda^{\alpha}t)^{-q}}{(2\pi)^{2}} \int_{\mathbb{R}^{2}} e^{i(\lambda^{1+\alpha}x\xi + \lambda^{\alpha}t\tau)} (i\partial_{\tau} - \partial_{\xi})^{q}$$

$$\left[\chi_{0} \left(\lambda^{\mu} (y + (\lambda^{-1}\xi^{-1}\tau)^{\frac{2}{k}}) \right) \psi_{1}(\tau,\xi) e^{-\Phi_{\lambda}(\tau,\xi,y)} \right] d\tau d\xi.$$
(3.4.18)

We need the following lemma.

Lemma 3.4.4. For all $\rho \in \mathbb{N}^2$ and $l \in \mathbb{N}$, there exists a positive constant $c_{11,\rho,l}$ such that for all $y \in \mathbb{R}$, $(\tau, \xi) \in [1, 4]^2$ and $\lambda \geq 1$,

$$\left| \partial_{\tau,\xi}^{\rho} \left[\chi_0^{(l)} \left(\lambda^{\mu} (y + (\lambda^{-1} \xi^{-1} \tau)^{\frac{2}{k}}) \right) \right] \right| \le c_{11,\rho,l} \lambda^{|\rho|(\mu - \frac{2}{k})}. \tag{3.4.19}$$

Proof of the lemma 3.4.4. We start by proving that for all $\rho \in \mathbb{N}^2$ and $l \in \mathbb{N}$, there exist some polynomial functions $P_{\rho,l,j}$ in \mathbb{R}^4 , $j = 0, \ldots, |\rho|$, such that for all $y \in \mathbb{R}$, $(\tau, \xi) \in \mathbb{R}_+^* \times \mathbb{R}_+^*$ and $\lambda \ge 1$,

$$\partial_{\tau,\xi}^{\rho} \left[\chi_0^{(l)} \left(\lambda^{\mu} (y + (\lambda^{-1} \xi^{-1} \tau)^{\frac{2}{k}}) \right) \right] \\
= \sum_{j=0}^{|\rho|} P_{\rho,l,j} (\tau^{\frac{1}{k}}, \tau^{-\frac{1}{k}}, \xi^{\frac{1}{k}}, \xi^{-\frac{1}{k}}) \chi_0^{(l+j)} \left(\lambda^{\mu} (y + (\lambda^{-1} \xi^{-1} \tau)^{\frac{2}{k}}) \right) \lambda^{j(\mu - \frac{2}{k})}.$$
(3.4.20)

Let us consider $l \in \mathbb{N}$. We prove (3.4.20) by induction on $|\rho|$. If $|\rho| = 0$, the identity (3.4.20) holds with $P_{\rho,l,0} = 1$. Let us assume now that the identity (3.4.20) holds for $\rho \in \mathbb{N}^2$. The two direct computations using (3.4.20),

$$\begin{split} \partial_{\tau,\xi}^{\tilde{\rho}} \bigg[\chi_0^{(l)} \big(\lambda^{\mu} (y + (\lambda^{-1} \xi^{-1} \tau)^{\frac{2}{k}}) \big) \bigg] \\ &= \sum_{j=0}^{|\tilde{\rho}|-1} \bigg[\frac{2}{k} (\xi^{-\frac{1}{k}})^2 (\tau^{\frac{1}{k}})^{2-k} P_{\rho,l,j} (\tau^{\frac{1}{k}}, \tau^{-\frac{1}{k}}, \xi^{\frac{1}{k}}, \xi^{-\frac{1}{k}}) \\ & \times \chi_0^{(l+j+1)} \big(\lambda^{\mu} (y + (\lambda^{-1} \xi^{-1} \tau)^{\frac{2}{k}}) \big) \lambda^{(j+1)(\mu - \frac{2}{k})} \bigg] \\ &+ \sum_{j=0}^{|\tilde{\rho}|-1} \bigg[\frac{1}{k} (\tau^{\frac{1}{k}})^{1-k} (\partial_1 P_{\rho,l,j}) (\tau^{\frac{1}{k}}, \tau^{-\frac{1}{k}}, \xi^{\frac{1}{k}}, \xi^{-\frac{1}{k}}) \\ & \times \chi_0^{(l+j)} \big(\lambda^{\mu} (y + (\lambda^{-1} \xi^{-1} \tau)^{\frac{2}{k}}) \big) \lambda^{j(\mu - \frac{2}{k})} \bigg] \\ &- \sum_{j=0}^{|\tilde{\rho}|-1} \bigg[\frac{1}{k} (\tau^{-\frac{1}{k}})^{k+1} (\partial_2 P_{\rho,l,j}) (\tau^{\frac{1}{k}}, \tau^{-\frac{1}{k}}, \xi^{\frac{1}{k}}, \xi^{-\frac{1}{k}}) \\ & \times \chi_0^{(l+j)} \big(\lambda^{\mu} (y + (\lambda^{-1} \xi^{-1} \tau)^{\frac{2}{k}}) \big) \lambda^{j(\mu - \frac{2}{k})} \bigg], \end{split}$$

if $\tilde{\rho} = \rho + (1, 0)$ and

$$\begin{split} \partial_{\tau,\xi}^{\tilde{\rho}} \bigg[\chi_0^{(l)} \big(\lambda^{\mu} (y + (\lambda^{-1} \xi^{-1} \tau)^{\frac{2}{k}}) \big) \bigg] \\ &= - \sum_{j=0}^{|\tilde{\rho}|-1} \bigg[\frac{2}{k} (\xi^{-\frac{1}{k}})^{k+2} (\tau^{\frac{1}{k}})^2 P_{\rho,l,j} (\tau^{\frac{1}{k}}, \tau^{-\frac{1}{k}}, \xi^{\frac{1}{k}}, \xi^{-\frac{1}{k}}) \\ & \qquad \times \chi_0^{(l+j+1)} \big(\lambda^{\mu} (y + (\lambda^{-1} \xi^{-1} \tau)^{\frac{2}{k}}) \big) \lambda^{(j+1)(\mu - \frac{2}{k})} \bigg] \\ &+ \sum_{j=0}^{|\tilde{\rho}|-1} \bigg[\frac{1}{k} (\xi^{\frac{1}{k}})^{1-k} (\partial_3 P_{\rho,l,j}) (\tau^{\frac{1}{k}}, \tau^{-\frac{1}{k}}, \xi^{\frac{1}{k}}, \xi^{-\frac{1}{k}}) \\ & \qquad \times \chi_0^{(l+j)} \big(\lambda^{\mu} (y + (\lambda^{-1} \xi^{-1} \tau)^{\frac{2}{k}}) \big) \lambda^{j(\mu - \frac{2}{k})} \bigg] \\ &- \sum_{j=0}^{|\tilde{\rho}|-1} \bigg[\frac{1}{k} (\xi^{-\frac{1}{k}})^{k+1} (\partial_4 P_{\rho,l,j}) (\tau^{\frac{1}{k}}, \tau^{-\frac{1}{k}}, \xi^{\frac{1}{k}}, \xi^{-\frac{1}{k}}) \\ & \qquad \times \chi_0^{(l+j)} \big(\lambda^{\mu} (y + (\lambda^{-1} \xi^{-1} \tau)^{\frac{2}{k}}) \big) \lambda^{j(\mu - \frac{2}{k})} \bigg], \end{split}$$

if $\tilde{\rho} = \rho + (0, 1)$, prove that the induction property holds at the rank $|\rho| + 1$. This proves (3.4.20). Since from (3.1.2), $\chi_0 \in C_0^{\infty}(\mathbb{R}, \mathbb{R})$ and from (3.1.3), $\mu > 2/k$,

we deduce from (3.4.20) that there exists a positive constant $c_{11,\rho,l}$ such that for all $y \in \mathbb{R}$, $(\tau, \xi) \in [1, 4]^2$ and $\lambda \ge 1$,

$$\left| \partial_{\tau,\xi}^{\rho} \left[\chi_0^{(l)} \left(\lambda^{\mu} (y + (\lambda^{-1} \xi^{-1} \tau)^{\frac{2}{k}}) \right) \right] \right| \leq c_{11,\rho,l} \lambda^{|\rho|(\mu - \frac{2}{k})},$$

which ends the proof of the lemma 3.4.4.

Then, we obtain using the lemma 3.4.2, (3.1.1), (3.4.19) and the Leibniz formula on the expression

$$(i\partial_{\tau}-\partial_{\xi})^q\Big[\chi_0\big(\lambda^{\mu}(y+(\lambda^{-1}\xi^{-1}\tau)^{\frac{2}{k}})\big)\psi_1(\tau,\xi)e^{-\Phi_{\lambda}(\tau,\xi,y)}\Big],$$

where $q \in \mathbb{N}$, that there exist some positive constants $c_{12,j}$, $j = 0, \ldots, q$ and c_{13} such that for all $y \in \mathbb{R}$, $(\tau, \xi) \in \mathbb{R}^2$ and $\lambda \geq \lambda_0$,

$$\left| (i\partial_{\tau} - \partial_{\xi})^{q} \left[\chi_{0} \left(\lambda^{\mu} (y + (\lambda^{-1} \xi^{-1} \tau)^{\frac{2}{k}}) \right) \psi_{1}(\tau, \xi) e^{-\Phi_{\lambda}(\tau, \xi, y)} \right] \right| \\
\leq \sum_{j=0}^{q} c_{12, j} \lambda^{(\mu - \frac{2}{k})j} \lambda^{2(q-j)(\alpha - \frac{1}{k})} \\
\leq c_{13} \lambda^{q \max(\mu - \frac{2}{k}, 2\alpha - \frac{2}{k})}, \tag{3.4.21}$$

since from (3.1.3),

$$\mu > \frac{2}{k}$$
 and $\alpha > \frac{1}{k}$.

Since from (3.1.1), supp $\psi_1 \subset [1, 4]^2$, it follows from (3.4.18) and (3.4.21) that for all $q \in \mathbb{N}$, there exists a positive constant $c_{14,q}$ such that for all $(t, x) \neq (0, 0)$, $y \in \mathbb{R}$ and $\lambda \geq \lambda_0$,

$$|u_{\lambda}(t,x,y)| \le c_{14,q} \lambda^{q \max(\mu - \frac{2}{k}, 2\alpha - \frac{2}{k}) - q\alpha + \alpha + \frac{1}{2}} |x^2 + t^2|^{-\frac{q}{2}}.$$
 (3.4.22)

We deduce by getting back to (3.4.17), using (3.4.22) and a change of variables that for all $q \in \mathbb{N} \setminus \{0, 1\}$ and $\lambda \ge \lambda_0$,

$$\begin{split} & \left\| \left(1 - \chi_{1}(\lambda^{\gamma}t, \lambda^{\gamma}x) \right) u_{\lambda} \right\|_{(-N_{0})} \\ & \leq c_{14,q}(c_{1} - c_{2})^{\frac{1}{2}} \lambda^{q \max(\mu - \alpha - \frac{2}{k}, \alpha - \frac{2}{k}) + \alpha + \frac{1}{2} - \frac{1}{k}} \| 1 - \chi_{1} \|_{L^{\infty}(\mathbb{R}^{2})} \\ & \times \left(\int_{\{(t,x) \in \mathbb{R}^{2}: \ t^{2} + x^{2} \geq 4^{-1}\lambda^{-2\gamma}\}} | t^{2} + x^{2}|^{-q} dt dx \right)^{\frac{1}{2}} \\ & \leq c_{14,q}(c_{1} - c_{2})^{\frac{1}{2}} \lambda^{q \max(\mu - \alpha - \frac{2}{k} + \gamma, \alpha + \gamma - \frac{2}{k}) + \alpha + \frac{1}{2} - \frac{1}{k} - \gamma} \| 1 - \chi_{1} \|_{L^{\infty}(\mathbb{R}^{2})} \\ & \times \left(\int_{\{(t,x) \in \mathbb{R}^{2}: \ t^{2} + x^{2} \geq 4^{-1}\}} | t^{2} + x^{2}|^{-q} dt dx \right)^{\frac{1}{2}}. \end{split}$$

We recall in view of (3.1.5) that $c_1 > c_2$. Let us notice that

$$\max\left(\mu - \alpha - \frac{2}{k} + \gamma, \alpha + \gamma - \frac{2}{k}\right) < 0, \tag{3.4.24}$$

because from (3.4.13),

$$\alpha + \gamma < \frac{2}{k}$$

and from (3.1.3) and (3.4.13),

$$\mu - \alpha - \frac{2}{k} + \gamma < \gamma - \frac{1}{k} < 0.$$

Finally, we obtain using (3.4.23) and (3.4.24) the estimate (3.4.15). This ends the proof of the lemma 3.4.3.

We can now use (3.4.12) and the triangular inequality for all $\lambda \geq \lambda_0$,

$$||u_{\lambda}||_{(-N_0)} - ||(1 - \chi_1(\lambda^{\gamma}t, \lambda^{\gamma}x))u_{\lambda}||_{(-N_0)} \le ||v_{\lambda}||_{(-N_0)},$$

with the estimates (3.3.14) and (3.4.15) to prove the following result.

Proposition 3.4.1. There exists a positive constant c_{15} such that for all $\lambda \geq \lambda_0$,

$$||v_{\lambda}||_{(-N_0)} \ge c_{15} \lambda^{-\alpha - 1 + \frac{\mu}{2} - (\mu + 3 + 3\alpha)N_0}.$$
 (3.4.25)

We now need to get an upper bound for the quantity $||L_2^*v_\lambda||_{(N_0)}$, $N_0 \in \mathbb{N}$, with respect to the parameter λ . It follows from (3.1.6) and (3.4.12) that for all $\lambda > \lambda_0$,

$$L_{2}^{*}v_{\lambda} = \chi_{1}(\lambda^{\gamma}t, \lambda^{\gamma}x)L_{2}^{*}u_{\lambda} - \lambda^{2\gamma}\theta_{k}(y)(\partial_{x}^{2}\chi_{1})(\lambda^{\gamma}t, \lambda^{\gamma}x)u_{\lambda} - 2\lambda^{\gamma}\theta_{k}(y)(\partial_{x}\chi_{1})(\lambda^{\gamma}t, \lambda^{\gamma}x)\partial_{x}u_{\lambda} + \lambda^{2\gamma}(\partial_{t}^{2}\chi_{1})(\lambda^{\gamma}t, \lambda^{\gamma}x)u_{\lambda} + 2\lambda^{\gamma}(\partial_{t}\chi_{1})(\lambda^{\gamma}t, \lambda^{\gamma}x)\partial_{t}u_{\lambda}.$$
 (3.4.26)

We note respectively A_{λ} , B_{λ} , C_{λ} , D_{λ} and E_{λ} the terms appearing in the right-hand-side of the last expression. Let us first notice that these five terms are C^{∞} on \mathbb{R}^3 . Indeed, we have already proved after (3.1.15) that $u_{\lambda} \in C^{\infty}(\mathbb{R}_y, S(\mathbb{R}^2_{t,x}))$ and, it follows from (3.1.1), (3.1.5) and (3.4.16) that for all $(t, x) \in \mathbb{R}^2$, $\lambda \geq \lambda_0$,

$$\operatorname{supp} u_{\lambda}(t, x, \cdot) \subset \left[-c_1 \lambda^{-\frac{2}{k}}, -c_2 \lambda^{-\frac{2}{k}} \right]$$
 (3.4.27)

and from (3.1.6), $\theta_k(y) = (-y)^k$ if $y \in \mathbb{R}_-$. Moreover, we have already proved in (3.1.16) that $L_2^* u_\lambda$ is C^∞ on \mathbb{R}^3 . Then, we want to get an upper bound for the

 $H^{N_0}(\mathbb{R}^3)$ norm of the term A_{λ} . To do this, it is enough to get an upper bound for the quantity

$$\|\partial_{t,x}^{M_1}(\chi_1(\lambda^{\gamma}t,\lambda^{\gamma}x))\partial_{t,x,y}^{M_2}(L_2^*u_{\lambda})\|_{L^2(\mathbb{R}^3)},$$

where $M_1 \in \mathbb{N}^2$ and $M_2 \in \mathbb{N}^3$ verify $|M_1| + |M_2| = N_0$. Since

$$\|\partial_{t,x}^{M_1} (\chi_1(\lambda^{\gamma}t,\lambda^{\gamma}x)) \partial_{t,x,y}^{M_2} (L_2^*u_{\lambda})\|_{L^2(\mathbb{R}^3)} \leq \lambda^{\gamma|M_1|} \|\partial_{t,x}^{M_1} \chi_1\|_{L^{\infty}(\mathbb{R}^2)} \|L_2^*u_{\lambda}\|_{(|M_2|)},$$

it follows that there exists a positive constant c_{16} such that for all $\lambda \geq \lambda_0$,

$$||A_{\lambda}||_{(N_0)} \le c_{16} \lambda^{\gamma N_0} \left(\sup_{|j| \le N_0} ||\partial_{t,x}^j \chi_1||_{L^{\infty}(\mathbb{R}^2)} \right) ||L_2^* u_{\lambda}||_{(N_0)}. \tag{3.4.28}$$

Thus, we deduce from (3.1.3), (3.2.18) and (3.4.28) that

$$||A_{\lambda}||_{(N_0)} = O\left(e^{-\frac{c_3}{16}\lambda^{2(\alpha + \frac{1}{k} - \mu)}}\right) \text{ when } \lambda \to +\infty.$$
 (3.4.29)

Let us now consider $(j_1, j_2, j_3) \in \mathbb{N}^3$. It follows from (3.4.16) that for all $\lambda \geq \lambda_0$,

$$\partial_{t}^{j_{1}} \partial_{x}^{j_{2}} \partial_{y}^{j_{3}} u_{\lambda}(t, x, y) = \frac{i^{j_{1}+j_{2}}}{(2\pi)^{2}} \lambda^{\alpha+\frac{1}{2}+j_{1}\alpha+j_{2}(1+\alpha)} \int_{\mathbb{R}^{2}} e^{i(\lambda^{1+\alpha}x\xi+\lambda^{\alpha}t\tau)} \times \tau^{j_{1}} \xi^{j_{2}} \psi_{1}(\tau, \xi) \partial_{y}^{j_{3}} \left[\chi_{0} \left(\lambda^{\mu} (y + (\lambda^{-1}\xi^{-1}\tau)^{\frac{2}{k}}) \right) e^{-\Phi_{\lambda}(\tau, \xi, y)} \right] d\tau d\xi.$$
(3.4.30)

We can make again some integrations by parts in (3.4.30) as in (3.4.18). Thus, we obtain that for all $q \in \mathbb{N}$, $(t, x) \neq (0, 0)$, $y \in \mathbb{R}$ and $\lambda \geq \lambda_0$,

Let us prove the following lemma.

Lemma 3.4.5. For all $\rho \in \mathbb{N}^2$, $j_3 \in \mathbb{N}$, there exists a positive constant c_{17,ρ,j_3} such that for all $(\tau, \xi) \in [1, 4]^2$, $\lambda \geq \lambda_0$ and $y \in \text{supp } \chi_0(\lambda^{\mu}(\cdot + (\lambda^{-1}\xi^{-1}\tau)^{\frac{2}{k}}))$,

$$\left| \partial_{\tau,\xi}^{\rho} \partial_{y}^{j_{3}} \left[\chi_{0} \left(\lambda^{\mu} (y + (\lambda^{-1} \xi^{-1} \tau)^{\frac{2}{k}}) \right) e^{-\Phi_{\lambda}(\tau,\xi,y)} \right] \right| \\
\leq c_{17,\rho,j_{3}} \lambda^{(2+2\alpha+\mu)j_{3}+|\rho| \max(2\alpha - \frac{2}{k},\mu - \frac{2}{k})}.$$
(3.4.32)

Proof. The Leibniz formula first proves that

$$\partial_{y}^{j_{3}} \left[\chi_{0} \left(\lambda^{\mu} (y + (\lambda^{-1} \xi^{-1} \tau)^{\frac{2}{k}}) \right) e^{-\Phi_{\lambda}} \right] \\
= \sum_{l=0}^{j_{3}} C_{j_{3}}^{l} \lambda^{l \mu} \chi_{0}^{(l)} \left(\lambda^{\mu} (y + (\lambda^{-1} \xi^{-1} \tau)^{\frac{2}{k}}) \right) \partial_{y}^{j_{3}-l} \left(e^{-\Phi_{\lambda}} \right). \tag{3.4.33}$$

We deduce from the lemma 3.2.1 and (3.4.33) that there exist some functions $a_{r,l}$, $r = 0, \ldots, j_3(k+1)$, $l = 0, \ldots, j_3$, which are polynomial in \mathbb{R}^4 and some constants $\beta_{r,l}$, $r = 0, \ldots, j_3(k+1)$, $l = 0, \ldots, j_3$, verifying

$$\beta_{r,l} \le 2j_3(\alpha+1),$$
 (3.4.34)

such that for all $y \in \mathbb{R}_{-}^{*}$, $(\tau, \xi) \in \mathbb{R}_{+}^{*} \times \mathbb{R}_{+}^{*}$ and $\lambda \geq 1$,

$$\partial_{y}^{j_{3}} \left[\chi_{0} \left(\lambda^{\mu} (y + (\lambda^{-1} \xi^{-1} \tau)^{\frac{2}{k}}) \right) e^{-\Phi_{\lambda}} \right]$$

$$= \sum_{\substack{0 \le l \le j_{3} \\ 0 \le r \le j_{3}(k+1)}} \chi_{0}^{(l)} \left(\lambda^{\mu} (y + (\lambda^{-1} \xi^{-1} \tau)^{\frac{2}{k}}) \right) y^{r} a_{r,l} (\tau^{\frac{1}{k}}, \tau^{-\frac{1}{k}}, \xi^{\frac{1}{k}}, \xi^{-\frac{1}{k}}) \lambda^{l\mu + \beta_{r,l}} e^{-\Phi_{\lambda}}.$$
 (3.4.35)

Since using the Leibniz formula on (3.4.35), we can write

$$\begin{split} \partial_{\tau,\xi}^{\rho} \partial_{y}^{j3} & \left[\chi_{0} \left(\lambda^{\mu} (y + (\lambda^{-1} \xi^{-1} \tau)^{\frac{2}{k}}) \right) e^{-\Phi_{\lambda}} \right] \\ & = \sum_{l,r,\rho_{1},\rho_{2},\rho_{3}} \left[c_{18,l,r,\rho_{1},\rho_{2},\rho_{3}} \partial_{\tau,\xi}^{\rho_{1}} \left(\chi_{0}^{(l)} \left(\lambda^{\mu} (y + (\lambda^{-1} \xi^{-1} \tau)^{\frac{2}{k}}) \right) \right) \right. \\ & \times y^{r} \partial_{\tau,\xi}^{\rho_{2}} \left(a_{r,l} (\tau^{\frac{1}{k}}, \tau^{-\frac{1}{k}}, \xi^{\frac{1}{k}}, \xi^{-\frac{1}{k}}) \right) \partial_{\tau,\xi}^{\rho_{3}} \left(e^{-\Phi_{\lambda}} \right) \lambda^{l\mu + \beta_{r,l}} \right], \end{split}$$

where the above sum is taken on $0 \le l \le j_3$, $0 \le r \le j_3(k+1)$, $(\rho_1, \rho_2, \rho_3) \in (\mathbb{N}^2)^3$, $\rho_1 + \rho_2 + \rho_3 = \rho$ and where $c_{18,l,r,\rho_1,\rho_2,\rho_3}$ are some constants, we deduce from (3.1.5), (3.4.8), (3.4.19) and (3.4.34), that there exist some positive constant $c_{19,l,r,\rho_1,\rho_2,\rho_3}$ and c_{20} such that for all $(\tau, \xi) \in [1, 4]^2$, $\lambda \ge \lambda_0$ and $y \in \text{supp } \chi_0(\lambda^{\mu}(\cdot + (\lambda^{-1}\xi^{-1}\tau)^{\frac{2}{k}}))$,

$$\begin{split} & \left| \partial_{\tau,\xi}^{\rho} \partial_{y}^{j3} \left[\chi_{0} \left(\lambda^{\mu} (y + (\lambda^{-1} \xi^{-1} \tau)^{\frac{2}{k}}) \right) e^{-\Phi_{\lambda}} \right] \right| \\ & \leq \sum_{l,r,\rho_{1},\rho_{2},\rho_{3}} c_{19,l,r,\rho_{1},\rho_{2},\rho_{3}} \lambda^{|\rho_{1}|(\mu - \frac{2}{k})} \lambda^{2|\rho_{3}|(\alpha - \frac{1}{k})} \lambda^{l\mu + 2j_{3}(\alpha + 1)} \\ & \leq c_{20} \lambda^{j_{3}(2 + 2\alpha + \mu) + |\rho| \max(2\alpha - \frac{2}{k}, \mu - \frac{2}{k})}, \end{split}$$

where the sum of the previous expression is taken on $0 \le l \le j_3$, $0 \le r \le j_3(k+1)$, $(\rho_1, \rho_2, \rho_3) \in (\mathbb{N}^2)^3$, $\rho_1 + \rho_2 + \rho_3 = \rho$. This proves (3.4.32) and ends the proof of the lemma 3.4.5.

Thus, since from (3.1.1) and (3.1.3),

supp
$$\psi_1 \subset [1, 4]^2$$
 and $\max\left(2\alpha - \frac{2}{k}, \mu - \frac{2}{k}\right) > 0$,

we can deduce from (3.4.31) and the previous lemma that for all $q \in \mathbb{N}$, there exists a positive constant $c_{21,q}$ such that for all $(t, x) \neq (0, 0), y \in \mathbb{R}$ and $\lambda \geq \lambda_0$,

$$\begin{aligned} &|\partial_{t}^{j_{1}}\partial_{x}^{j_{2}}\partial_{y}^{j_{3}}u_{\lambda}(t,x,y)|\\ &\leq c_{21,q}\lambda^{\alpha+\frac{1}{2}+j_{1}\alpha+j_{2}(1+\alpha)+j_{3}(\mu+2+2\alpha)+q\max(2\alpha-\frac{2}{k},\mu-\frac{2}{k})-q\alpha}|t^{2}+x^{2}|^{-\frac{q}{2}}.\end{aligned}$$
(3.4.36)

It follows from (3.4.27) and from (3.1.6), $\theta_k(y) = (-y)^k$ for all $y \in \mathbb{R}_-$ that there exists a positive constant c_{22} such that we have the following estimate of the $H^{N_0}(\mathbb{R}^3)$ norm of the terms B_{λ} , C_{λ} , D_{λ} and E_{λ} defined in (3.4.26),

$$\max \left(\|B_{\lambda}\|_{(N_{0})}, \|C_{\lambda}\|_{(N_{0})}, \|D_{\lambda}\|_{(N_{0})}, \|E_{\lambda}\|_{(N_{0})} \right)$$

$$\leq c_{22} \sum_{\beta_{1},\beta_{2}} \|\partial_{t,x}^{\beta_{1}} \left(\chi_{1}(\lambda^{\gamma}t, \lambda^{\gamma}x) \right) \partial_{t,x,y}^{\beta_{2}} u_{\lambda} \|_{L^{2}(\mathbb{R}^{3})}.$$
(3.4.37)

where the sum is taken on $\beta_1 = (l_1, l_2)$, $\beta_2 = (l_3, l_4, l_5)$ with l_j , j = 1, ..., 5 some integers verifying $0 \le l_j \le N_0 + 2$ and $l_1 + l_2 \ge 1$. Using these notations, let us consider some integers l_i , j = 1, ..., 5 verifying

$$0 \le l_j \le N_0 + 2$$
 and $l_1 + l_2 \ge 1$. (3.4.38)

We set $\beta_1 = (l_1, l_2)$ and $\beta_2 = (l_3, l_4, l_5)$. Since from (3.4.14) and (3.4.38),

supp
$$\partial_{t,x}^{\beta_1} \chi_1 \subset \{(t,x) \in \mathbb{R}^2 : t^2 + x^2 \ge 1/4\}$$
,

we deduce from (3.4.27) and (3.4.36) that for all $q \ge 2$, there exists a positive constant $c_{23,q}$ such that for all $\lambda \ge \lambda_0$,

$$\left\| \partial_{t,x}^{\beta_1} \left(\chi_1(\lambda^{\gamma} t, \lambda^{\gamma} x) \right) \partial_{t,x,y}^{\beta_2} u_{\lambda} \right\|_{L^2(\mathbb{R}^3)} \tag{3.4.39}$$

$$\leq c_{23,q} \lambda^{\alpha + \frac{1}{2} + \gamma(l_1 + l_2) + \alpha l_3 + (1 + \alpha)l_4 + (\mu + 2 + 2\alpha)l_5 + q \max(\alpha - \frac{2}{k}, \mu - \alpha - \frac{2}{k})} \|\partial_{t,x}^{\beta_1} \chi_1\|_{L^{\infty}(\mathbb{R}^2)}$$

$$\times \left(\int_{-c_1\lambda^{-\frac{2}{k}}}^{-c_2\lambda^{-\frac{2}{k}}} \left(\int_{\{(t,x)\in\mathbb{R}^2: \ t^2+x^2\geq 4^{-1}\lambda^{-2\gamma}\}} |t^2+x^2|^{-q} dt dx \right) dy \right)^{\frac{1}{2}}.$$

Since with our choice of the integers l_j in (3.4.38), we have

$$\gamma(l_1+l_2)+\alpha l_3+(1+\alpha)l_4+(\mu+2+2\alpha)l_5 \le (N_0+2)(3+2\gamma+4\alpha+\mu).$$
 (3.4.40)

We deduce from (3.4.38), (3.4.39), (3.4.40) and a change of variables that

$$\left\| \partial_{t,x}^{\beta_1} \left(\chi_1(\lambda^{\gamma} t, \lambda^{\gamma} x) \right) \partial_{t,x,y}^{\beta_2} u_{\lambda} \right\|_{L^2(\mathbb{R}^3)}$$
(3.4.41)

$$\leq c_{23,q}(c_1-c_2)^{\frac{1}{2}}\lambda^{\alpha+\frac{1}{2}-\frac{1}{k}-\gamma+(N_0+2)(3+2\gamma+4\alpha+\mu)+q\max(\alpha-\frac{2}{k},\mu-\alpha-\frac{2}{k})+q\gamma}$$

$$\left(\sup_{|\beta_1| \leq 2N_0+4} \|\partial_{t,x}^{\beta_1} \chi_1\|_{L^{\infty}(\mathbb{R}^2)}\right) \left(\int_{\{(T,X) \in \mathbb{R}^2: \ T^2 + X^2 \geq 4^{-1}\}} |T^2 + X^2|^{-q} dT dX\right)^{\frac{1}{2}}.$$

We recall that in view of (3.1.5), we have $c_1 > c_2$. Then, it follows from (3.4.37) and (3.4.41) that for all $q \ge 2$, there exists a positive constant $c_{24,q}$ such that

$$\max \left(\|B_{\lambda}\|_{(N_{0})}, \|C_{\lambda}\|_{(N_{0})}, \|D_{\lambda}\|_{(N_{0})}, \|E_{\lambda}\|_{(N_{0})} \right)$$

$$< c_{24} \alpha^{\alpha + \frac{1}{2} - \frac{1}{k} - \gamma + (N_{0} + 2)(3 + 2\gamma + 4\alpha + \mu) + q \max(\alpha + \gamma - \frac{2}{k}, \mu + \gamma - \alpha - \frac{2}{k})}.$$
(3.4.42)

Since from (3.1.3) and (3.4.13),

$$\max\left(\alpha + \gamma - \frac{2}{k}, \mu + \gamma - \alpha - \frac{2}{k}\right) < 0, \tag{3.4.43}$$

because

$$\mu - \alpha - \frac{1}{k} < 0$$
 and $\gamma - \frac{1}{k} < 0$,

we obtain from (3.4.26), (3.4.29), (3.4.42) and (3.4.43) that for all $M \in \mathbb{N}$, there exists a positive constant C_M such that for all $\lambda \geq \lambda_0$,

$$||L_2^* v_\lambda||_{(N_0)} \le C_M \lambda^{-M}. \tag{3.4.44}$$

To sum up, we have built a family $(v_{\lambda}(t, x, y))_{\lambda \geq \lambda_0}$ in (3.4.12), which is C^{∞} on \mathbb{R}^3 and has according to (3.4.14) and (3.4.27), its support in the compact set

$$B(0,\lambda^{-\gamma}) \times \left[-c_1 \lambda^{-\frac{2}{k}}, -c_2 \lambda^{-\frac{2}{k}} \right]. \tag{3.4.45}$$

The estimates obtained in (3.4.25) and (3.4.44), for all $\lambda \geq \lambda_0$,

$$\|v_{\lambda}\|_{(-N_0)} \ge c_{15}\lambda^{-\alpha-1+\frac{\mu}{2}-(\mu+3+3\alpha)N_0},$$
 (3.4.46)

$$\forall M \in \mathbb{N}, \exists C_M > 0, \ \|L_2^* v_\lambda\|_{(N_0)} \le C_M \lambda^{-M}, \tag{3.4.47}$$

allow us to prove that no a priori estimates of the following type can hold

$$\exists C_0 > 0, \exists N_0 \in \mathbb{N}, \exists V_0 \text{ an open neighbourhood of } 0 \text{ in } \mathbb{R}^3 \text{ such that}$$

 $\forall u \in C_0^{\infty}(V_0), C_0 || L_2^* u ||_{(k-3)} \ge ||u||_{(-N_0)}.$

This proves that the operator L_2 is nonsolvable in any neighbourhood of 0 in \mathbb{R}^3 in the sense where there do **not** exist an integer $N_0 \in \mathbb{N}$ and an open neighbourhood V_0 of 0 in \mathbb{R}^3 such that for all $f \in H^{N_0}(V_0)$, there exists $u \in H^{-k+3}(\mathbb{R}^3)$ such that

$$L_2u = f$$
 on V_0 .

References

- [1] F. Colombini, L. Pernazza and F. Treves. *Solvability and nonsolvability of second-order evolution equations*. Hyperbolic problems and related topics, 111-120, Grad. Ser. Anal., Int. Press, Somerville, MA (2003).
- [2] Yu. V. Egorov. *On an example of a linear hyperbolic equation without solutions*. C.R. Acad. Sci. Paris Sér. 1 Math. **317**(12) (1993), 1149–1153.
- [3] Yu. V. Egorov. Sur un exemple d'équation linéaire hyperbolique n'ayant pas de solution, Journées "Equations aux Dérivées Partielles" (Saint-Jean-de-Monts, 1992), Exp. No. XIV, 6 pp., École Polytech. Palaiseau (1992).
- [4] L. Hörmander. *The analysis of Linear Partial Differential Operators*, Springer-Verlag (1983-1985).
- [5] N. Lerner. On a class of doubly characteristic operators with a principal-type behaviour, preprint (2006).
- [6] G.A. Mendoza and G.A. Uhlmann. A sufficient condition for local solvability for a class of operators with double characteristics. Am. Jour. Math. **106** (1984), 187–217.
- [7] G.A. Mendoza and G.A. Uhlmann. *A necessary condition for local solvability for a class of operators with double characteristics*. J. Funct. Anal. **52**(2) (1983), 252–256.
- [8] F. Treves. On a question of Louis Nirenberg. Math. Res. Lett. **10**(5-6) (2003), 729–735.

Karel Pravda-Starov

UCLA Department of Mathematics Los Angeles, CA 90095-1555 USA

E-mail: karel@math.ucla.edu