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1 Introduction

On the Carnot group, Garofalo and Vassilev (see [6, 13]) had studied the non-
linear Dirichlet problem






Lu = −u
Q+2
Q−2 ,

u ∈ D1,2
0 (�), u ≥ 0,

(1.1)

corresponding to Sobolev inequality due to Folland and Stein [2, 3]

(∫

�

|u|p∗
d H

) 1
p∗

≤ C

(∫

�

|Xu|p d H

) 1
p

, u ∈ C∞
0 (�), (1.2)
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whereX is the horizontal gradient,L is the sub-Laplacian associated toX, Q
is the homogeneous dimension,p∗ = Qp

Q−p is the Sobolev conjugate,D1,2
0 (�) is

the closure ofC∞
0 (�) under the norm

‖u‖ =
(∫

�

|Xu|2 d H

) 1
2

.

They proved the existence of extremal function of (1.2) by Concentration-Com-
pactness principle of Lions (see [12]) and got theL p estimates by combining the
Serrin’s idea (see [11]) and Moser’s iteration technique (see [10]).

In 2005, the first author of this paper and Prof. Niu (see [8]) generalized
Sobolev inequality (1.2) and obtained the Hardy-Sobolev type inequality on the
H-type group.

Proposition 1.1 (Hardy-Sobolev type inequality).Let1< p < Q, 0 ≤ s ≤ p
and p∗(s) = p(Q−s)

Q−p . For anyu ∈ D1,p
0 (�), the following inequality holds:

(∫

�

|x|s

ρs

|u|p∗(s)

ρs
dxdy

) 1
p∗(s)

≤ C(s, p, Q)

(∫

�

|Xu|p dxdy

) 1
p

, (1.3)

where� ⊂ G (H-type group) is an open set,D1,p
0 (�) is the closure ofC∞

0 (�)

with respect to the norm

‖u‖ =
(∫

�

|Xu|p dxdy

) 1
p

andC(s, p, Q) is a positive constant independent ofu.

Remark 1.2. In the Euclidean space, Sobolev-Hardy inequalities similar to
(1.3) were obtained by Badiale and Tarantello (see [1]) in 2002.

Let

Is,p = inf

{(∫

G
|Xu|p dxdy

) 1
p ∣
∣u ∈ D1,p

0 (G),

∫

G

|x|s

ρs

|u|p∗(s)

ρs
dxdy= 1, 0 ≤ s< p

}
.

(1.4)

Using Lions’ idea of Concentration-Compactness principle and choosing the
suitable concentration function, the existence of extremal function of (1.4) was
given.
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Proposition 1.3. In the extremal problem(1.4) the infimun is attained at a
functionu ∈ D1,p

0 (G) which satisfies
∫

G
|Xu|p dxdy= I (s, p)p,

∫

G

|x|s

ρs

|u|p∗(s)

ρs
dxdy= 1.

Henceforth, non-linear equation
{

−
∑m

j =1 X j (|Xv|p−2X j v) = |x|s

ρ2s v
p∗(s)−1,

v > 0, v ∈ D1,p(G), 0 ≤ s< p
(1.5)

admits the nontrivial solutionv = I
p

p∗(s)−p
s,p u, whereu is an extremal function

for (1.4).

The proof of the above proposition is given by Garofalo and Vassilev (see
[6, 13]) for the cases = 0 and by us (see [8]) for the case 0< s< p.

In this paper, we will discuss its regularity by Serrin’s idea and Moser’s iter-
ation technique, which generalize the results obtained by Vassilev (see [14]) in
then-dimensional Euclidean space.

The paper is organized as follows. In Section 2, we present some basic defini-
tions and notations. Section 3 is devoted toL p estimate for the extremal function
of (1.4). As an application, we can study its asymptotic behavior. In Section 4,
its doubling property is obtained and this leads to the strong unique continuation.

2 Preliminary

Consider a Carnot groupG of step 2, with Lie algebrag = V1 ⊕ V2. We
assume thatg is equipped with a scalar product< ∙, ∙ >, with respect to which
the V ′

j s are mutually orthogonal. We use the exponential mapping exp: g →
G to define analytic mapsξi : G → Vi , i = 1, 2, through the equationg =
exp(ξ1(g) + ξ2(g)). Here,ξ(g) = ξ1(g) + ξ2(g) is such thatg = exp(ξ(g)).
With m = dim(V1) andV1 = span{X1, . . . , Xm} (X1, . . . , Xm are orthonormal),
the coordinates of the projectionξ1 in the basisX1, . . . , Xm are denoted by
x1 = x1(g), . . . , xm = xm(g); that is,

xj (g) = 〈ξ(g), X j 〉, j = 1, . . . ,m,

and we setx = x(g) = (x1(g), . . . , xm(g)) ∈ Rm.Similarly, we fix an orthonor-
mal basisY1, . . . ,Yk of V2 and define the exponential coordinates in the second
layerV2 of a pointg ∈ G by letting

yi (g) = 〈ξ(g),Yi 〉, i = 1, . . . , k
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andy = (y1, ∙ ∙ ∙ , yk) ∈ Rk.
For eachv ∈ V1, consider the orthogonal decomposition

V1 = Kv ⊕ Rv,

whereKv = ker(adv : V1 → V2) = {v′ ∈ V1 : [v, v′] = 0}. We shall say that the
Lie algebrag is of H-type if the mappingadv : Rv → V2 is a surjective isometry
for every unit vectorv ∈ V1 and the corresponding simple connected groupG is
named H-type group, which was introduced first by Kaplan[9] and extensively
investigated by many authors (see [6, 7] etc.). If the dimension of the center
of Lie algebra of an H-type is trivial, then the H-type group is isomorphic to a
Heisenberg group.

In [6, 7], Garofalo and Vassilev pointed out that

X j =
∂

∂xj
+

1

2

k∑

i =1

〈[ξ, X j ],Yi 〉
∂

∂yi

=
∂

∂xj
+

1

2

k∑

i =1

〈[ξ1, X j ],Yi 〉
∂

∂yi
, j = 1, . . . ,m,

where

ξ = ξ1 + ξ2 ∈ g = V1

⊕
V2, x = (x1, . . . , xm) ∈ Rm, y = (y1, . . . , yk) ∈ Rk.

For any differentiable functionu on G, let Xu = (X1u, . . . , Xmu) denote the

horizontal gradient and|Xu| =
(∑m

j =1 |X j u|2
) 1

2
.

A family of dilations is defined by

δλ(x, y) = (λx, λ2y), for anyλ > 0, (x, y) ∈ G.

The homogeneous dimension ofG with respect to dilations isQ = m+2k. The
norm function onG has the form

ρ(g) = d(g, 0) =
(
|x(g)|4 + 16|y(g)|2

) 1
4 ,

where 0 is the unit element ofG. It is clear thatρ is quasi-homogeneous of
degree one with respect to dilations above. Denote byBR(ξ) ≡ B(ξ, R) = {η ∈
G|d(ξ, η) = ρ(η−1ξ) < R} the ball centered atξ with radiusR.
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3 Regularity and asymptotic of extremal function

Let 1< p < Q, 0 ≤ s< p. Denote byp∗(s) the Hardy-Sobolev conjugate

p∗(s) =
p(Q − s)

Q − p
(3.1)

and byp′ the Hölder conjugatep′ = p
p−1. For anys as above we define the ex-

ponentr = r (s) to be the Hölder conjugate of the exponentr ′ = r ′(s) defined by

r ′ =
p∗

p∗(s)− p
=

Q

p − s
, (3.2)

thusr = Q
Q−p+s ≥ 1, 0≤ rs ≤ p and

rp = p∗(rs). (3.3)

In the sequel, we usually let� ⊂ G be an open set (not necessarily bounded),
1< p < Q and 0≤ s< p.

Theorem 3.1. Assume thatu ∈ D1,p
0 (�) is a non-negative weak solution of

the inequality

−
m∑

j =1

X j

(
|Xu|p−2X j u

)
≤ V

|x|s

ρs

|u|p−2

ρs
u in � (3.4)

i.e., for any non-negative functionφ ∈ C∞
0 (�),

∫

�

|Xu|p−2〈Xu, Xφ〉 dxdy≤
∫

�

V
|x|s

ρs

|u|p−2

ρs
uφ dxdy. (3.5)

1) If V ∈ Lr ′
(�), thenu ∈ Lq

(
|x|t

ρ2t dxdy
)

for any0 ≤ t < s, q ≥ p∗(s);

2) If V ∈ Lt0(�) ∩ Lr ′
(�) for somet0 > r ′, thenu ∈ L∞(�).

In particular u ∈ Lq(�) for everyp∗ ≤ q < ∞.

Proof. The assumptionV ∈ Lr ′
(�) and Hardy-Sobolev type inequality (1.3)

show that (3.5) holds for any non-negativeφ ∈ D1,p
0 (�). In fact, take a sequence

of test functionsφn ∈ C∞
0 (�) which converge toφ in D1,p

0 (�). Observing
|Xu|p−1 ∈ L p′

, we can put the limit function in the left-hand side of (3.5). On
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the other hand, for anyφ ∈ C∞
0 (�), Hölder inequality and Hardy-Sobolev type

inequality (1.3) lead to

∫

�

|V |
|x|s

ρs

|u|p−1

ρs
φ dxdy

≤ ‖V‖Lr ′

(∫

�

|x|r s

ρrs

|u|r (p−1)

ρrs
|φ|r dxdy

) 1
r

≤ ‖V‖Lr ′

(∫

�

|x|r s

ρrs

|u|rp′(p−1)

ρrs
dxdy

) 1
rp′ (∫

�

|x|r s

ρrs

|φ|r p

ρrs
dxdy

) 1
rp

= ‖V‖Lr ′

(∫

�

|x|r s

ρrs

|u|p∗(rs)

ρrs
dxdy

) p−1
p∗(rs)

(∫

�

|x|r s

ρrs

|φ|p∗(rs)

ρrs
dxdy

) 1
p∗(rs)

≤ I p
rs,p‖V‖Lr ′ ‖Xu‖p−1

L p ‖Xφ‖L p,

(3.6)

which allows to pass to the limit in the right-hand side of (3.5).

1) DefineG(t)(t ∈ R) on the real line as follows

G(t) =

{
sign(t)|t |

q
p if 0 ≤ |t | ≤ l ,

l
q
p −1t if l < |t |,

(3.7)

Obviously,G is a piece-wise smooth, globally Lipschitz function. Set

F(u) =
∫ u

0
|G′(t)|p dt. (3.8)

It is easy to obtain that

|u|p−1|F(u)| ≤ C(q)|G(u)|p ≤ C(q)|u|q, (3.9)

whereC(q) ≤ Cqp, C is dependent on the constantp, but independent ofq
and l . From the chain rule,G(u), F(u) ∈ D1,p(�). We claim that for any

q ≥ p∗(s), 0 ≤ t < s, if u ∈ Lq
(

|x|s

ρ2s dxdy
)
, thenu ∈ Lκt q

(
|x|t

ρ2t dxdy
)
, where

κt = p∗(t)
p , and there exists a constantC depending onp, q, ‖V‖Lr ′ such that

‖u‖
Lκt q(

|x|t

ρ2t dxdy)
≤ C‖u‖Lq(

|x|s

ρ2s dxdy). (3.10)
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Taking φ = F(u) and substituting into (3.5), the left-hand side can be re-
written as

∫

�

|Xu|p−2 < Xu, X F(u) > dxdy=
∫

�

|XG(u)|p dxdy. (3.11)

Let M > 0 be a constant that will be fixed in the sequel and estimate the integral
in the right-hand side of (3.5) as follows.

∫

�

V
|x|s

ρs

|u|p−1

ρs
F(u) dxdy

=
∫

(|V |≤M)
V

|x|s

ρs

|u|p−1

ρs
F(u) dxdy

+
∫

(|V |>M)
V

|x|s

ρs

|u|p−1

ρs
F(u) dxdy

≤ C(q)
∫

(|V |≤M)
|V |

|x|s

ρs

|G(u)|p

ρs
dxdy

+ C(q)‖V‖Lr ′
(|V |>M)

(∫

�

|x|r s

ρrs

|G(u)|r p

ρrs
dxdy

) 1
r

≤ C(q)M‖u‖q

Lq
(

|x|s

ρ2s dxdy
) + C(q)I p

rs,p‖V‖Lr ′
(|V |>M)‖XG(u)‖p

L p.

(3.12)

Because ofV ∈ Lr ′
, so we can takeM sufficiently large such that

C(q)I p
rs,p‖V‖Lr ′

(|V |>M) ≤
1

2
.

Combining (3.11), (3.12) and Hardy-Sobolev type inequality (1.3), we have

‖G(u)‖p

L p∗(t)
(

|x|t

ρ2t dxdy
) ≤ 2C(q)M I p

s,p‖u‖q

Lq
(

|x|s

ρ2s dxdy
). (3.13)

Let l → ∞ in the definition ofG. By Fatou’s theorem we get

‖u‖
Lκt q

(
|x|t

ρ2t dxdy
) ≤ (2C(q)M I p

s,p)
1
q ‖u‖

Lq
(

|x|s

ρ2s dxdy
),

The proof of part 1) is finished.
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2) The assumptiont0 > r ′ implies thatt ′
0 = t0

t0−1 < r and then 0≤ t ′
0s < rs.

Therefore,
(∫

�

|x|st′0

ρ2st′0
|u|qt′0 dxdy

) 1
qt′0

< +∞

due to part 1). In the following, we will prove that for anyq ≥ q0 = t ′
0 p∗(s),

‖u‖
Lq(

|x|
st′0

ρ
2st′0

dxdy)
are uniformly bounded and there exists constantC such that

(∫

�

|x|st′0

ρ2st′0
|u|q dxdy

) 1
q

≤ C

(∫

�

|x|st′0

ρ2st′0
|u|q0 dxdy

) 1
q0

.

For anyq ≥ p∗(s), takingφ = F(u) as in the part 1) and substituting in (3.5),
by (3.11), we have

‖XG‖p
L p ≤

∫

�

|V |
|x|s

ρs

|u|p−1

ρs
F(u) dxdy

≤ C(q)‖V‖Lt0‖u‖q

Lqt′0

(
|x|

st′0

ρ
2st′0

dxdy

).

Noting thatC(q) ≤ C(p)qp, whenl → ∞, Hardy-Sobolev type inequality (1.3)
and Fatou’s theorem lead to

(∫

�

|x|st′0

ρst′0

|u|
q
p p∗(st′0)

ρst′0
dxdy

) p
p∗(st′0)

≤ I p
st′0,p

C(p)qp‖V‖Lt0

(∫

�

|x|st′0

ρ2st′0
|u|qt′0 dxdy

) 1
t ′0

.

(3.14)

Let δ =
p∗(st′0)

pt′0
>

p∗(st′0)
rp =

p∗(st′0)
p∗(rs) > 1. (3.14) can be rewritten as

‖u‖
Lδqt′0(

|x|
st′0

ρ
2st′0

dxdy)

≤ I
p
q

st′0,p
C(p)q

−1
q

p
q ‖V‖q−1

Lt0 ‖u‖
Lqt′0

(
|x|

st′0

ρ
2st′0

dxdy

)

= C(p, s, t0)
1

qt′0 (qt′0)
pt′0
qt′0 ‖V‖

t ′0
qt′0
Lt0‖u‖

Lqt′0

(
|x|

st′0

ρ
2st′0

dxdy

).

(3.15)
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Lettingq0 = p∗(s)t ′
0, qk = δkq0, C = C(p, s, t0), we have

‖u‖
Lqk

(
|x|

st′0

ρ
2st′0

dxdy

) ≤
k−1∏

j =0

[
Cq

pt′0
j

] 1
qj ‖V‖

t ′0
∑k−1

j =0
1

qj

Lt0 ‖u‖
Lq0

(
|x|

st′0

ρ
2st′0

dxdy

). (3.16)

Becauseδ > 1, thus

∞∑

j =0

1

qj
=

1

q0

∞∑

j =0

1

δ j
< ∞,

∞∑

j =0

logqj

qj
< ∞. (3.17)

Whenk → ∞, (3.16) leads to

‖u‖L∞ ≤ C‖u‖
Lq0

(
|x|

st′0

ρ
2st′0

dxdy

). �

Corollary 3.2. If R ∈ L∞ andu ∈ D1,p
0 (�) is a non-negative weak solution of

inequality

−
m∑

j =1

X j

(
|Xv|p−2X j u

)
≤ R

|x|s

ρs

|u|p∗(s)−2

ρs
u in �,

thenu ∈ L∞(�).

Proof. Let V = R|u|p∗(s)−p and thenV ∈ L
p∗

p∗(s)−p (�). By the part 1) of
Theorem 3.1,u ∈ Lq(�)(p∗ ≤ q < ∞) andV ∈ L

q
p∗(s)−p (�). Combining the

part 2) of Theorem 3.1,u ∈ L∞(�) holds. �

Theorem 3.3. Assume thatV ∈ Lr ′
, V0 ∈ L1 ∩ Lr ′

. If u ∈ D1,p
0 (�) is

non-negative locally bounded weak solution of the inequality

−
m∑

j =1

X j
(
|Xu|p−2X j u

)
≤ V

|x|s

ρs

|u|p−2

ρs
u + V0, (3.18)

thenu ∈ Lq
(

|x|s

ρ2s dxdy
)

for every p∗(s)
p′ < q ≤ p∗(s). In particular, u ∈ Lq for

every p∗

p′ < q ≤ p∗.
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Proof. Obviously,u ∈ L p∗(s)
(

|x|s

ρ2s dxdy
)
. Henceforth, it is enough to discuss

the casep∗(s)
p′ < q < p∗(s). Let 0< θ < 1

p and define the functionf = u1−θ .

If we can prove‖X f ‖L p < ∞, then we can getf ∈ L p∗(s)
(

|x|s

ρ2s dxdy
)

and

complete the proof.

Define functionηm(t) as follows

ηm(t) =






t1−θp, if t ≥ 1
m

2mθp(t − 1
2m), if 1

2m < t < 1
m

0, if t ≤ 1
2m.

(3.19)

It is easy to prove thatηm(t) is a piece-wise smooth, globally Lipschitz function
and there exists a constantC(p, θ) such that

0 ≤ ηm(t) ≤ 22−θp|t |1−θp ≡ Cp,θ |t |
1−θp. (3.20)

Takeφm = ηm(u) ≥ 0 and thenφm ∈ D1,p(�).

Let

j =
(

p∗

1 − θp

)′

=
p∗

p∗ − (1 − θp)
.

Obviously,

r ′ =
p∗

p∗(s)− p
> j > 1. (3.21)

The factV0 ∈ L1 ∩ Lr ′
implies thatV0 ∈ L j . Takingφ = φm as a test function,

substituting it into (3.18) and notingpr = p∗(rs), we have the following three
estimates:

∫

�

|Xu|p−2Xu ∙ Xφm dxdy

=
∫

1
2m<u< 1

m

|Xu|p−2Xu ∙ Xφm dxdy

+
∫

1
m≤u

|Xu|p−2Xu ∙ Xφm dxdy

= 2mθp
∫

1
2m<u< 1

m

|Xu|p dxdy+
1 − θp

(1 − θ)p

∫

1
m≤u

|X f |p dxdy,

(3.22)
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∫

�

V
|x|s

ρs

|u|p−1

ρs
φm dxdy

=
∫

u≥ 1
m

V
|x|s

ρs

|u|p−1

ρs
φm dxdy+

∫

1
2m<u< 1

m

V
|x|s

ρs

|u|p−1

ρs
φm dxdy

≤ Cp,θ

∫

u≥ 1
m

|V |
|x|s

ρs

| f |p

ρs
dxdy+ 2mθp

∫

1
2m<u< 1

m

|V |
|x|s

ρs

|u|p

ρs
dxdy

≤ Cp,θ‖V‖Lr ′

(∫

u≥ 1
m

|x|r s

ρrs

| f |r p

ρrs
dxdy

) 1
r

+ 2mθp‖V‖Lr ′

(∫

1
2m<u< 1

m

|x|r s

ρrs

|u|r p

ρrs
dxdy

) 1
r

≤ Cp,θ‖V‖Lr ′ I p
rs,p

∫

u≥ 1
m

|X f |p dxdy

+ 2mθp‖V‖Lr ′ I p
rs,p

∫

1
2m<u< 1

m

|Xu|p dxdy,

(3.23)

∫

�

V0φm dxdy≤ Cp,θ

∫

1
2m<u< 1

m

|V0|u
1−θp dxdy

+ Cp,θ

∫

u≥ 1
m

|V0|u
1−θp dxdy≤ Cp,θm

θp−1
∫

1
2m<u< 1

m

|V0| dxdy

+ Cp,θ‖V0‖L j
(
u≥ 1

m

)‖u‖1−θp

L p∗
(
u≥ 1

m

).

(3.24)

Combining (3.18), (3.22), (3.23) and (3.24), we have

2mθp
(
1 − I p

rs,p‖V‖Lr ′
) ∫

1
2m<u< 1

m

|Xu|p dxdy

+
(

1 − θp

(1 − θ)p
− Cp,θ I p

rs,p‖V‖Lr ′

) ∫

u≥ 1
m

|X f |p dxdy

≤ Cp,θm
θp−1

∫

1
2m<u< 1

m

|V0| dxdy+ Cp,θ‖V0‖L j
(
u≥ 1

m

)‖u‖1−θp

L p∗
(
u≥ 1

m

).

(3.25)
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Let

C1 = 2mθp
(
1 − I p

rs,p‖V‖Lr ′
)
, C2 =

1 − θp

(1 − θ)p
− Cp,θ I p

rs,p‖V‖Lr ′ .

If C1,C2 > 0, then for everyθ , ‖X f ‖L p < ∞.

With this in mind, fix a sufficiently large constantR0 > 0 and a sufficiently
small constantδ > 0, which we shall choose in a moment. LetB2δ,R0 =
G\BR0(0)∪ B2δ(0) and take the functionα ∈ C∞

0 (B2δ,R0) satisfying 0≤ α ≤ 1
andα ≡ 1 on Bδ,2R0. Let V ′ = αV and then for everyθ , we chooseδ and R0

such that

2mθp
(
1 − I p

rs,p‖V ′‖Lr ′
)
> 0,

1 − θp

(1 − θ)p
− Cp,θ I p

rs,p‖V ′‖Lr ′ > 0.

Take

g = (1 − α)V
|x|s

ρs

|u|p−2

ρs
u + V0 ≡ g0 + V0

and theng ∈ L1. On the other hand, the fact suppg0 ⊂ B2δ,R0 and the fact that
u is locally bounded lead to

∫

2δ≤ρ≤R0

|g0|
r ′

dxdy≤ C max

{
1

(2δ)s
,

1

Rs
0

} ∫

2δ≤ρ≤R0

|V |r
′
dxdy< ∞.

Because ofV0 ∈ Lr ′
, thusg ∈ Lr ′

. Henceforth,g ∈ L j .
Rewriting the inequality (3.18) in the form

−
m∑

j =1

X j

(
|Xu|p−2X j u

)
≤ V ′ |x|s

ρs

|u|p−2

ρs
u + g, (3.26)

replacing V,V0 with V ′, g and applying (3.25) to (3.26), we obtain that
‖X f ‖L p < ∞ holds for everyθ . �

Remark 3.4. If u ∈ D1,p
0 (�) is a non-negative solution of nonlinear equation

(1.5), then Theorem 3.2 and Theorem 3.3 show thatu ∈ Lq, where p∗

p < q ≤
+∞.

Theorem 3.5. Letu ∈ D1,p
0 (�) be a non-negative weak solution to the equation

−
m∑

j =1

X j

(
|Xu|p−2X j u

)
=

|x|s

ρs

|u|p∗(s)−2

ρs
u in �, (3.27)
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i.e., for everyφ ∈ C∞
0 (�),

∫

�

|Xu|p−2〈Xu, Xφ〉 dxdy=
∫

�

|x|s

ρs

|u|p∗(s)−2

ρs
uφ dxdy. (3.28)

We assume thatu has been extended with zero outside�. Suppose thatq ≥ p
is an exponent such thatu ∈ Lq(�). There existsC = C(p) > 0 such that for
everyξ ∈ G\B3(0)

ess sup
B(ξ,1)

u ≤ C

(
1

|B(ξ, 2)|

∫

B(ξ,2)
|u|q dxdy

) 1
q

. (3.29)

In particular, we can takeq = p∗ in the above inequality.

Proof. Given a non-negative functionα ∈ C∞
0 (G), for γ ≥ 1 we consider the

functionφ = α puγ ∈ D1,p
0 (�). Usingφ as a test function in (3.28) we find

∫

�

α p |x|s

ρs

|u|γ+p∗(s)−1

ρs
dxdy =

∫

�

|x|s

ρs

|u|p∗(s)−2

ρs
uα puγ dxdy

= γ

∫

�

α puγ−1|Xu|p dxdy

+ p
∫

�

α p−1uγ |Xu|p−2〈Xu, Xα〉 dxdy,

At this point we chooseγ = q − p + 1 to obtain

∫

�

α p |x|s

ρs

|u|q+p∗(s)−p

ρs
dxdy = (q − p + 1)

∫

�

α puq−p|Xu|p

+ p
∫

�

α p−1uq−p+1|Xu|p−2〈Xu, Xα〉 dxdy

≥ (q − p + 1)
∫

�

α puq−p|Xu|p dxdy

− p
∫

�

α p−1uq−p+1|Xu|p−1|Xα| dxdy.

(3.30)

Bull Braz Math Soc, Vol. 38, N. 3, 2007



“main” — 2007/8/13 — 17:41 — page 450 — #14

450 YAZHOU HAN and SHUTAO ZHANG

Now Young’s inequality gives
∫

�

α p−1uq−p+1|Xu|p−1|Xα| dxdy

=
∫

�

α p−1u
q−p

p′ |Xu|p−1u
q
p |Xα| dxdy

≤
(∫

�

α puq−p|Xu|p dxdy

) 1
p′

(∫

�

uq|Xα|p dxdy

) 1
p

≤
ε

p′

∫

�

α puq−p|Xu|p dxdy+
ε

− p
p′

p

∫

�

uq|Xα|p dxdy,

(3.31)

whereε > 0 is an arbitrary constant fixed in a moment. Substituting (3.31) into
(3.30) and choosingε = 1

p , we have

∫

�

α p |x|s

ρs

|u|q+p∗(s)−p

ρs
dxdy

≥
(

q − p +
1

p

) ∫

�

α puq−p|Xu|p dxdy

− pp−1
∫

�

uq|Xα|p dxdy

≥
1

p

∫

�

α puq−p|Xu|p dxdy− pp−1
∫

�

uq|Xα|p dxdy.

(3.32)

Letψ = u
q
p and then|Xψ |p = (

q
p)

puq−p|Xu|p. We obtain from (3.32)

∫

�

α p|Xψ |p dxdy=
(

q

p

)p ∫

�

α puq−p|Xu|p dxdy

≤ p

(
q

p

)p ∫

�

α p |x|s

ρs

|u|γ+p∗(s)−1

ρs
dxdy+ qp

∫

�

uq|Xα|p dxdy.

(3.33)

For ξ ∈ B3(0) and 1≤ r < R ≤ 2, letα ∈ C∞
0 (B(ξ, R)) such thatα ≡ 1

in the B(ξ, r ) and |Xα| ≤ C
R−r . Assumingδ = p∗

p > 1, Hardy-Sobolev type
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inequality (1.3) and Theorem 3.1 lead to
(∫

B(ξ,r )
uδq dxdy

) 1
δ

=
(∫

B(ξ,r )
ψ p∗

dxdy

) 1
δ

≤ I p
0,p

∫

B(ξ,R)
|X(αψ)|p dxdy

≤ 2pI p
0,p

(∫

B(ξ,R)
α p|Xψ |p dxdy+

∫

B(ξ,R)
|ψ |p|Xα|p dxdy

)

≤ 2pI p
0,p

(
p

(
q

p

)p ∫

B(ξ,R)
α p |x|s

ρs

|u|q+p∗(s)−p

ρs
dxdy

+ (qp + 1)
∫

B(ξ,R)
uq|Xα|p dxdy

)

≤ 2pI p
0,p

(
p

(
q

p

)p

‖u‖p∗(s)−p
L∞(�)

∫

B(ξ,R)
α puq dxdy

+ (qp + 1)
∫

B(ξ,R)
uq|Xα|p dxdy

)
,

(3.34)

namely, there existsK = K (p, ‖u‖L∞(�)) such that
(∫

B(ξ,r )
uδq dxdy

) 1
δq

≤
K

1
q q

p
q

|R − r |
p
q

(∫

B(ξ,R)
uq dxdy

) 1
q

.

Assuming the finiteness of the integral in the right-hand side of the latter inequal-
ity, Moser’s iteration procedure finally gives (3.29). �

Corollary 3.6. Let� ⊂ G be an unbounded open set. Ifu ∈ D1,p
0 (�) is a weak

solution to the equation(3.27), then

lim
ξ∈G,d(ξ,e)→∞

u(ξ) = 0.

4 Unique continuation

Theorem 4.1.Letu ∈ D1,p
0 (�) be a non-negative weak solution of the equation

−
m∑

j =1

X j

(
|Xu|p−2X j u

)
= V

|x|s

ρs

|u|p−2

ρs
u
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with V ∈ Lr ′
(�), i.e., for anyφ ∈ D1,p(�)

∫

�

|Xu|p−2〈Xu, Xφ〉 dxdy=
∫

�

V
|x|s

ρs

|u|p−2

ρs
uφ dxdy. (4.1)

There existq = q(G, ‖V‖Lr ′
(�)) > 0 andC = C(G, ‖V‖Lr ′

(�)) > 0 such that
for everyB̄(ξ, 2r ) ⊂ � one has

∫

B(ξ,2r )
uq dxdy≤ C

∫

B(ξ,r )
uq dxdy.

Proof. Letφ = α p(u + ε)−p+1, ε > 0 withα ∈ C∞
0 (�) satisfying 0≤ α ≤ 1,

α ≡ 1 in B(ξ, r ), α ≡ 0 outsideB(ξ, 2r ), |Xα| ≤ C/r . Substitutingφ into
(4.1), we have

(p − 1)
∫

�

α p(u + ε)−p|Xu|p dxdy

≤ p
∫

�

α p−1(u + ε)−p+1|Xu|p−1|Xα| dxdy+
∫

�

|V |
|x|s

ρs

α p

ρs
dxdy.

Let v = log(u + ε) and then the above formula can be rewritten as follows

(p − 1)
∫

�

α p|Xv|p dxdy≤ p
∫

�

α p−1|Xv|p−1|Xα| dxdy+
∫

�

|V |
|x|s

ρs

α p

ρs
dxdy.

Applying Hölder inequality, Young inequality and Hardy-Sobolev type inequal-
ity (1.3), for everyσ > 0 we have

∫

�

α p|Xv|p dxdy

≤ p′
∫

�

α p−1|Xv|p−1|Xα| dxdy+
1

p − 1

∫

�

|V |
|x|s

ρs

α p

ρs
dxdy

≤ p′

(∫

ω

α p|Xv|p dxdy

) 1
p′

(∫

�

|Xα|p dxdy

) 1
p

+
1

p − 1
‖V‖Lr ′

(B(ξ,2r ))

(∫

�

|x|r s

ρrs

αr p

ρrs
dxdy

) 1
r

≤ σ

∫

�

α p|Xv|p dxdy+
σ 1−p

p − 1

∫

�

|Xα|p dxdy

+
I p
rs,p

p − 1
‖V‖Lr ′

(B(ξ,2r ))

∫

�

|Xα|p dxdy.
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Choosingσ = p−1
p we get

∫

�

α p|Xv|p dxdy ≤
(

p

p − 1

)p Cp

r p
|B(ξ, 2r )|

+
p

p − 1

Cp

r p
|B(ξ, 2r )|‖V‖Lr ′

(B(ξ,2r ))

= C(p)
|B(ξ, 2r )|

r p

(
1 + ‖V‖Lr ′

(B(ξ,2r ))

)
,

whereC(p) =
(

p
p−1

)p
Cp. Repeating the procedure of Theorem 10.6 in [6],

we finish the proof. �

By Theorem 4.1, we immediately deduce a unique continuation as follows

Corollary 4.2. Letu ∈ D1,p(�) be a non-negative weak solution to(3.27) in a
connected, open set� ⊂ G. If u vanishes to infinite order at one pointg ∈ �,
thenu ≡ 0 in �.

The proof is similar to the proof of Corollary 10.7 in [6].
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