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Singular hyperbolicity for transitive attractors with
singular points of 3-dimension&l?-flows

Aubin Arroyo

Abstract. In the context ofC"-flows on 3-manifoldgr > 1), the notion of singular
hyperbolicity, inspired on the Lorenz Attractor, is the right generalization of hyperbolic-
ity (in the sense of Smale) f@*-robustly transitive sets with singularities. We estabish
conditions (on the associated linear Poincaré flow and on the nature of the singular set)
under which a transitive attractor with singularities o€3-flow on a 3-manifold is
singular hyperbolic.
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1 Introduction

Differential equations given by a continuous vector field on a riemannian mani-
fold have two different kinds of solutions from a dynamical viewpoint: regular
orbits and equilibrium (fixed) points. When these two kinds of orbits are isolated
from each other, the notion of hyperbolicity (in the sense of Smale in [8]) pro-
vides a complete portrait of the dynamics, like in the case of diffeomorphisms.
However, when fixed points are accumulated by regular orbits of the same tran-
sitive piece it is impossible to find a continuous hyperbolic splitting. This is
due to the absence of the flow direction on the tangent space over equilibria.
Notwithstanding, in a series of papers, Morales, Pacifico and Pujals have been
developing a weaker notion callsthgular hyperbolicitywhich turns out to be
adequate in this context. This notion is inspired in the Lorenz Attractor (see [5],
[4], [10] and [9]), which is the paradigm of this scenario.

Regarding the conjecture about generic dynamics for 3-dimensional flows:
hyperbolicity, singular hyperbolicity and homoclinic tangencies béhglense
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among 3-dimensional!-flows, stated in [7], it seems important to obtain con-
ditions in which a transitive set with singularities is singular hyperbolic.

Main Result in this paper is to prove that a transitgactor set with singu-
larities is singular hyperbolic provided it satisfies two basic conditions. The first
one is about the nature of the singular set, and is an extension of the notion of
Lorenz-like singular point for several equilibirum points in the same transitive
piece. The second condition is about the existencedafrainated splittingor
the associated linear Poincaré flow (defined below). Second condition is the
natural setting for a flow which is n@!-approximated by systems exhibiting
homoclinic tangencies between periodic orbits; in particular, in [2] is proved that
in this situation, regular points in the closure of the set of hyperbolic orbits do
have a dominated splitting for the linear Poincaré flow.

This characterization of singular hyperbolicity plays an important role towards
a proof of the conjecture about generic dynamics for 3-dimensional flows.

Let us state some precise definitions. Mtbe a 3-dimensional closed dif-
ferentiable manifold endowed with an auxiliary Riemannian metri€' Alow
® : R x M — M is an action of the grouf® on M by C'-diffeomorphisms
@ ;= ®(t, ), withr > 1. A singular point ofd is a fixed point of the action.
Vector fields onM are closely related to flows; in fact, giverCa-flow on M,
one obtain &C"-vector fieldX (p) := %d>(t, p)|i—o associated t@ (and vice-
versa by integration). A compact subgetc M is an isolated invariant set of
@ if there is a neighborhood containingA such thaf"), .z ®(U) = A. The
setA is transitive if it contains a dense orbit; and itGd-robustly transitive if
Mier ¥ (U) is transitive for anyd in a C!-neighborhood ofp.

A continuousD @ -invariant splittingT, M = E & F over A is dominatedf
there are constan® > 0 andp < 0 such that,

VX € A [DPtgll IDP-t|r (P1(X)] < Cexptp), forany t=>0.

Such dominated splitting ip@rtially hyperbolicif E is one dimensional and
cpntracting, that is, there a@ andp < O such thatvx € A: |[D®i|gxl <
Cexptp), foranyt > 0.

Definition. An invariant setA of a C!-flow is singular hyperbolic if: any
singular point inA is hyperbolic and, either fo; or for ®_;, there is a par-
tially hyperbolic D ®;-invariant splittingTAM = ES @ E®; and there exists
C > 0andp < Osuch that for any > 0 we have that:

|de1(Dd>_t |[ecw)| < Cexptp).
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A compact invariant sed is anattractor if there is an open séf such that
A = ﬂt>0 d(cl(U)); cl(U) denotes the closure &f. The setU is called the
basin of attraction of. In [6], they prove thaC*-robustly transitive sets with
singularities are singular hyperbolic attractors, either@pior ®_;; and more,
all fixed points are like the one in the Lorenz Attractor, that is, eigenvalues of all
singular points satisfy the following relation:

Ass < As < 0 < —Ag < Ay, Q)
and singular points must lay on the ‘boundary’ of the attractor, that is:
W3(o) N A = {o}. 2

Recall that any hyperbolic singular point of this kind has a stable, strong-stable
and unstable manifold associated to each real eigenvalue. Let us call each con-
nected component 8/ (o) —{o } an unstable separatrix of and let us extend

the notion of Lorenz-like singularities for an invariant gewith several equi-
librium points. Denote by5(A) the set of singular points in.

Definition. The setS(A) is Lorenz-like if anyr € S(A) is a hyperbolic, non-
resonant, satisfy1) and (2), and both unstable separatrices accumulates on
S(A).

In order to state the theorem we need to introduce the notion of linear Poincaré
flow. ConsiderN', the normal bundle ofb. Such bundle is well defined on
the set of regular points = U — S(A), by the orthogonal complement of
X(p) € TpU. On the other hand, for eadhe R, the tangent map ob,
restricted toN induces an automorphisi; : N — N wich coversdy.
The family {L;}, of automorphisms ofV, is called the Linear Poincaré Flow
associated t@.

Definition. The linear Poincaré flow has dominated splitting Gnif there is
a splitting N = £ @ F such thatL;(E(x)) = E(P¢(X)) and L_{((F(X)) =
F(@i(x)), for anyx € U and anyt € R; and there areC > 0 andp < 0 such
that:

ILtlz00 L —t| 7@ 00n | < C expltp), YVt = 0.

We say that the linear Poincaré flow hasantracting directionif there is
C > Oandr < Osuchthatforanx € Aandanyt > O: L]z | < Cexptir).
This hypothesis guarantees the existence of the local stable foliation on points
of A; see [1].

Now we can state the Main Theorem of this work:
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Main Theorem. Let A be a transitive attractor of &2-flow such that: the
linear Poincaré flow on the set of regular points has a dominated splitting with
contracting direction, all singularities are Lorenz-like and all periodic orbits are
hyperbolic, them\ is singular hyperbolic.

An outline of the argument is the following: The key property we obtain is
the volume expansion condition along a center unstable bundle over points of
the attractorA. For that, we first care about invariant subsets without singular-
ities contained inA. Corollary 1 assert that any compact invariant subset of a
transitive attractors without singular points of £2-flow is hyperbolic. Then
we define inside linearizing neighborhoods of singularities two transversal sec-
tions (not connected) which controls all recurrence of regular orbits to equilibria
(Lemma 3) and where the expansion property is obtained by the eigenvalues.
Finnaly we care about pieces of orbits traveling outside the singular region prov-
ing that they should accumulate on some hyperbolic set, and then we traslate
the expansion properties by means of the Lyapunov exponents of some limit of
invariant measures.

2 Global properties

Consider &'"-flow ® on M, withr > 1, and letA ¢ M be a transitive attractor
with singular points such that its linear Poincaré flow has a dominated splitting.

Lemmal. Ifthe linear Poincaré flow of has a dominated invariant splitting
with contracting direction, there is a partial hyperboliz®,-invariant splitting
TAM = ES® E®.

Proof. The bundleE(.), definied overA — S(A), can be extended continuously
to S(A) settingE (o) = ESS(o). The fact that; is exponentially contracting on

F implies the existence of a one dimensional stable bund|®fby, denoted by

ES; following [3]. On the other hand, we can define a two dimensional bundle,
first on regular points b (p) := F(p) & [X(p)], where[X(p)] C T,M is

the linear space spanned By(p); and we can extend it continuously 8A)
defining E®“(0) = ES(0) & EY(0). Observe thaE® is D®;-invariant. A
straightforward calculation yields the domination propertféfp E° and, to-
gether with the exponential contraction BP° one obtains partialy hyperbolicity
for ES @ E°. O

As a consequence of this lemma we obtain local stable maniffij$x) on
every point ofA. Moreover, these local stable manifolds exist on every point
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of some open subset, containing of the basin attraction; see Lemma 3.2 and
Corollary 3.4 in [2]; and Lemma 1 of [1]. Once we have constructed the bundle
EY, itis left to prove that it expands volume to obtain singular hyperbolicity.

2.1 Global properties

Denote byw(x) the w-limit of a pointx € M, and ifV c M denotew (V) =
Uxev@ (X).

Lemma?2. LetV c U be any open subset of the basin of attractioothen
w(V) = A.

Proof. The setAg = Uycyvw(X) is an invariant set fod contained inA. If
Ao # A, thenA is not transitive whether is a periodic orbit or a non trivial
hyperbolic set. See Lemma 6 of [1]. d

Let us recall the following theorem:

Theorem B of [2]. LetI" be a compact invariant set of @>-flow such that:

the linear Poincaré flow on the set of regular points has a dominated splitting,
all periodic orbits are hyperbolic of saddle type and such tBdf) = @; then
either itis hyperbolic or it contains a normally hyperbolic invariant torus, where
it is conjugated to an irrational-slope linear flow on it.

Corollary 1. If Ag C A is a compact invariant set thaty, N S(A) = @, then
Ao is hyperbolic of saddle type.

Proof. Notice that all periodic orbits im\ are of saddle type. In our setting,
Theorem B of [2] implies that if\( is not hyperbolic then it contains a normally
hyperbolic (contracting) invariant torus. Of course,7 does not coincides

with A because the second contains singular points and the first one does not.
Therefore,T is a proper attractor containedin SinceA is transitive, this is a
contradiction to Lemma 2. Henak, is hyperbolic of saddle type. O

3 Analysis around singular points

Considew € S(A). Since itis non-resonant, there is a linearizing chart R3
containing the origin. Denote By, Assandis the eigenvalues of, correspond-
ing to thex, y andz-axis respectively. Recall that they satisfy (1). Insideve
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can draw a picture of the stable, strong-stable and unstable manifolds according
to the standard basis &?2. In fact, inside ofV the flow can be expressed by

a linear differential equation given by the diagonal matrix with Ass and s

on the diagonal. In these coordinates, local invariant manifW@%“(a), cor-
respond to the andx-axis, respectively; an@/3 (o) corresponds to the plane

[x = 0].

Given four positive real numbersi, r,, ¢ andn, we can construct a cylinder
insideV in the following way: C = (—¢, &) x [y? + % = r#]; and two disks
A* andA~, also contained iV by: A% := {(£n, u, v)|u? + v? = r3}. Denote
A = AT U A~. These sections will be callesutput sections. Denote by
mx, my : V. — R the canonical projections on tkeandy-axis, respectively.

Lemma3. Foreacho € S(A)thereiss > 0and a choice of positive numbers:
ri, rz, €, n such that:

1. If g € Bs(o) there are two positive numbefs andT, that® 1 (q) € C
and®t, (q) € A.

2. There is somg > ~Osuch that if one denotes By = {p € C| lTy(P)| <
vy}, thenANC C X.

Proof. The firstitem s trivial, since the dynamics insidds linear. The proof
of second item stands on the hypothesis Wét(c) N A = {o} and is precisely
the content of Lemma 2 in [1]. O

Observe that we can changeby two planar transversal sectiofis contained
in the plane[z = £2z], respectively, flowing it a small (bounded) amount of
time. LetX = T U X7; these sections will be calleédput sections. Define
Q :=W3.(o)NX. Sinceany € S(A) is Lorenz-like theri, (o) +1s(o) > O.

Corollary 2. For any pointp € ¥ — Q, there ist > 0 such thatd;(p) € A
anddet(D®(p)|E®) = exp(t(Au(o) + As(0))).

The union of all pieces of orbits between the input and the output sections,
together with the local stable, strong-stable and unstable manifolds thiey
build an open neighborhood ef Denote this neighborhood By, .

4 The volume expanding condition

ConsidelV = U,esa) Vs ; WhereV, is obtained after Lemma 3, applied to each
o € S(A). Denote byX the union of allinput sections, and\ the union of all
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outputsections associated to all singular points. Next lemma analyzes the past
orbit of any point of the attractor.

Lemma4. Foranyp € A one of the following happeng e U(,Es(,\) WY(o);
O~ (p) N X is an infinite set; o (p) is a hyperbolic set.

Proof. Letp e Asuchthap ¢ U, g, W!(0) andsuchthad=(p)NxT = ¢.

If the cardinality of this set s finite, we can considert (p) instead ofp. Recall

3 is a 2-dimensional open subset. If the orbitpfemains on the boundary
of ¥ by Lemma 4.3 de [2] thex-limit of p is a hyperbolic periodic orbit.
Otherwise, for anyT > O there is an open s&t containig p that ®+(V) N
UaeS(A) Bs, (0) = ¥. Hencep(p)NS(A) = W andis closed. Corollary 1 assert
thata (p) is hyperbolic. O

In 83.5 of [6] itis proved thatin order to obtain the volume expansion condition
on the bundl€E® it is enough to bound the rate of expansion for the past of each
orbitin A. This is the content of the next Lemma.

Lemma5. Foranyx € A we have that
II{’n inf det( Dy®_; (X)|Ecu(x)) =0. (3)
Proof. Recall the open sat containingS(A). LetU’ = cl(U) — V. Consider

any pointx € A. Lemma 4 gives us three possibilities.

[A] If x € WHY(o) — {0}, for someo € S(A), there isT > 0 such that
Xo := ®_1(X) € Aandd_((Xp) € V, forallt > 0. Since the dynamic
insideV is linear, then

det(Dy, P—t|ecun)) = exp( — t(hs(o) + Au(0))).

S(A) is Lorenz-like, theris(o) + Ay(o) > 0. Hence, we are done in this
case. Ifx € S(A) the same calculation applies.

[B] If the «-limit of X is a hyperbolic set then:

lim || DXq)—t|E°U(X)|| =0.
t—+4o00

Hence, defDx®_t[ecvy) < IX[IDxP—t|geuwl; and we are done in
this case.
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[C] Assume that & (x) N ¥ = 4o0. Without lost of generality we can
assume that € . Hence, there is a partition of the set of positive real
numbers given by a sequence of not empty intervals of the &fm=
[an, any1) for which®_;(x) € X iff t € {ay|n € N}.

Lemma 3 imply that for any integ@rthere ish, € R suchthat, < by < an1
and®_p (X) € A. This induces a refinament of the previous partition:

= JKn=JKIUKY

neN neN

whereK? = [a,, by] andK?! = (by, an11). Notice thatt € U, K2 iff & _;(x)
U’, andt € UpKiff ®_(x) € V.

Given a fixedt € R*, denote byC(t) = det(Dx®_;|ecux)). Applying the
chain rule, we obtain that for eath € N we have:

N
Cean) =[] A - B(n):
n=0
where:
A(n) = det(Do_;,, 00 P—(an;1-bm [E@(®_1, 0)
and
B(n) = det(Do_,, ) P (by—an) | Et(@_a0 )
If the sequencéK }| is bounded, them(x) do not accumulates oﬁ(~A), and
hence it is hyperbolic. In fact, it is possible to find a smaller secHowhere
O~ (X) N X = @. Therefore there is a subsequemgesuch that K,}j| — 400

asj — +oo. Moreover, Corollary 2 implies that there js= min{i,(c) +
As(0)| o € S(A)} > 0 such that:

B(n) < exp(—p|K}) <1 ¥neN

In particularB(nj) — O asj — +oo.
On the other hand if there i§ > 0 such thatK?| < T, for all n, there is
C > 0 such thatA(n)| < C. Therefore,

C(an) < C ]_[ B(n) <€ ]_[ B(nj)

for N* being the greatest; thatn; < N. This implies thatC(ay) — 0 as
N — +o0, and we are done.
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Now it is left the case wheK?| is unbounded. For that, denote Ipy =
P_,(X) € ¥ands, =Db, —a, = |Kr?|, to simplify the notation. Observe that
d_s(pn) € U’ forall s € [0, s3], andd_g (pn) € A.

We claim that for any subsequengge — oo we have that:

[ DPnj CD_S” |ECU(pnj)|| — 0 a.Sj — +00.
If the claim is true, therC(ay) — 0 asN — +oo since A(n) < |X] -
IDpn, P—s,; [Ecu(py) I; @Nd we are done.
To obtain the claim assume there is a subsequgn¢éwe drop the subindex
to simplify notation) and a number > 0O that:

IDp, s, [Ect(pr | = ¥ > 0. (4)

Consider a sequence of probability measurgsn cl(U) defined in the fol-
lowing way: If A is any Borel setA denotey, its characteristic function and
let:

1 S
un(A) = _/ XA(P_¢(pn))dt
S Jo

Observe that ifA c V thenu,(A) = 0 andus(U’) = 1, for anyn € N.

Lemma6. Any convergent subsequencegiconverges in the weékopology
to an invariant measurg.

Proof. Let i be any limit of a subsequence af,. Consider a Borel sef,
some fixedl > 0 and anyn € N. Observe that:

Sh—T

S %
/0 X<I>T(A)(‘D—t(pn))dt=/o XA(@1_t(Pn)) Z/ xa(P_t(pn))dt.

Hence,

1 si—T Sn
[n (@1 (A) — un(A)| s ‘/T XA(CD—t(pn))—/O XA(q)—t(pn))‘

2T
< =—.
Sh

10 S
- = / AA@_(pn)) — f KA (pn))
Sh|J-T -T

Therefore,|un(®_1(A)) — un(A)] — 0 asn — oo, and this implies that the
limit measureu is invariant. O
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Let {uj} be any convergent subsequence and denotgbyts limit. The
support of the limit measure, su@p,,), is a compact invariant set contained in
U’. Therefore Corollary 1 implies it is hyperbolic of saddle type, since it do not
contains singular points. As a consequence, this set has two Lyapunov exponents
ps < 0andp, > 0.

On the other hand, if we denote by = ®_s, (pn), we can estimatg, in the
following way:

) 1
Pu = nll_)moo g |Og ” an CD% | ECU(gn) ”

However,| Dg, ®s, | cu(g | = | Dp, @ s, ecu(pm |7 < ¥ 74, by (4). Hence,
. log(y—?
Ou < lim M =0
n—o0 S

This is a contradiction to the fact of supp,,) is a hyperbolic invariant set of
saddle type. So, we obtain the claim and we are done. O

Once we have completed the proof of the previous Lemma, we can conclude
that D®; expands volume on the bundiE"; and hence, the splitting ovex,
TaM = E® @ E®is singular hyperboalic.
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