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Singular hyperbolicity for transitive attractors with
singular points of 3-dimensionalC2-flows

Aubin Arroyo

Abstract. In the context ofCr -flows on 3-manifolds(r > 1), the notion of singular
hyperbolicity, inspired on the Lorenz Attractor, is the right generalization of hyperbolic-
ity (in the sense of Smale) forC1-robustly transitive sets with singularities. We estabish
conditions (on the associated linear Poincaré flow and on the nature of the singular set)
under which a transitive attractor with singularities of aC2-flow on a 3-manifold is
singular hyperbolic.
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1 Introduction

Differential equations given by a continuous vector field on a riemannian mani-
fold have two different kinds of solutions from a dynamical viewpoint: regular
orbits and equilibrium (fixed) points. When these two kinds of orbits are isolated
from each other, the notion of hyperbolicity (in the sense of Smale in [8]) pro-
vides a complete portrait of the dynamics, like in the case of diffeomorphisms.
However, when fixed points are accumulated by regular orbits of the same tran-
sitive piece it is impossible to find a continuous hyperbolic splitting. This is
due to the absence of the flow direction on the tangent space over equilibria.
Notwithstanding, in a series of papers, Morales, Pacífico and Pujals have been
developing a weaker notion calledsingular hyperbolicity, which turns out to be
adequate in this context. This notion is inspired in the Lorenz Attractor (see [5],
[4], [10] and [9]), which is the paradigm of this scenario.

Regarding the conjecture about generic dynamics for 3-dimensional flows:
hyperbolicity, singular hyperbolicity and homoclinic tangencies beingC1-dense

Received 14 September 2006.



“main” — 2007/8/13 — 19:24 — page 456 — #2

456 AUBIN ARROYO

among 3-dimensionalC1-flows, stated in [7], it seems important to obtain con-
ditions in which a transitive set with singularities is singular hyperbolic.

Main Result in this paper is to prove that a transitiveattractor set with singu-
larities is singular hyperbolic provided it satisfies two basic conditions. The first
one is about the nature of the singular set, and is an extension of the notion of
Lorenz-like singular point for several equilibirum points in the same transitive
piece. The second condition is about the existence of adominated splittingfor
the associated linear Poincaré flow (defined below). Second condition is the
natural setting for a flow which is notC1-approximated by systems exhibiting
homoclinic tangencies between periodic orbits; in particular, in [2] is proved that
in this situation, regular points in the closure of the set of hyperbolic orbits do
have a dominated splitting for the linear Poincaré flow.

This characterization of singular hyperbolicity plays an important role towards
a proof of the conjecture about generic dynamics for 3-dimensional flows.

Let us state some precise definitions. LetM be a 3-dimensional closed dif-
ferentiable manifold endowed with an auxiliary Riemannian metric. ACr -flow
8 : R × M → M is an action of the groupR on M by Cr -diffeomorphisms
8t := 8(t, ∙), with r > 1. A singular point of8 is a fixed point of the action.
Vector fields onM are closely related to flows; in fact, given aCr -flow on M ,
one obtain aCr -vector fieldX(p) := d

dt 8(t, p)|t=0 associated to8 (and vice-
versa by integration). A compact subset3 ⊂ M is an isolated invariant set of
8 if there is a neighborhoodU containing3 such that

⋂
t∈R8(U ) = 3. The

set3 is transitive if it contains a dense orbit; and it isC1-robustly transitive if⋂
t∈R9(U ) is transitive for any9 in aC1-neighborhood of8.
A continuousD8t -invariant splittingT3M = E ⊕ F over3 is dominatedif

there are constantsC > 0 andρ < 0 such that,

∀x ∈ 3 : ||D8t |E(x)|| ||D8−t |F(8t(x))|| < C exp(tρ), for any t > 0.

Such dominated splitting ispartially hyperbolic if E is one dimensional and
contracting, that is, there arẽC and ρ̃ < 0 such that∀x ∈ 3: ||D8t |E(x)|| <

C̃ exp(t ρ̃), for anyt > 0.

Definition. An invariant set3 of a C1-flow is singular hyperbolic if: any
singular point in3 is hyperbolic and, either for8t or for 8−t , there is a par-
tially hyperbolic D8t -invariant splittingT3M = Es ⊕ Ecu; and there exists
C > 0 andρ < 0 such that for anyt > 0 we have that:

|det(D8−t |Ecu)| < C exp(tρ).
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A compact invariant set3 is anattractor if there is an open setU such that
3 =

⋂
t>0 8(cl(U )); cl(U ) denotes the closure ofU . The setU is called the

basin of attraction of3. In [6], they prove thatC1-robustly transitive sets with
singularities are singular hyperbolic attractors, either for8t or 8−t ; and more,
all fixed points are like the one in the Lorenz Attractor, that is, eigenvalues of all
singular points satisfy the following relation:

λss < λs < 0 < −λs < λu, (1)

and singular points must lay on the ‘boundary’ of the attractor, that is:

Wss(σ ) ∩ 3 = {σ }. (2)

Recall that any hyperbolic singular point of this kind has a stable, strong-stable
and unstable manifold associated to each real eigenvalue. Let us call each con-
nected component ofWu

loc(σ )−{σ } an unstable separatrix ofσ , and let us extend
the notion of Lorenz-like singularities for an invariant set3 with several equi-
librium points. Denote byS(3) the set of singular points in3.

Definition. The setS(3) is Lorenz-like if anyσ ∈ S(3) is a hyperbolic, non-
resonant, satisfy(1) and (2), and both unstable separatrices accumulates on
S(3).

In order to state the theorem we need to introduce the notion of linear Poincaré
flow. ConsiderN , the normal bundle of8. Such bundle is well defined on
the set of regular points̃U = U − S(3), by the orthogonal complement of
X(p) ∈ TpU . On the other hand, for eacht ∈ R, the tangent map of8t

restricted toN induces an automorphismLt : N → N wich covers8t .
The family {Lt}, of automorphisms ofN , is called the Linear Poincaré Flow
associated to8.

Definition. The linear Poincaré flow has dominated splitting onU if there is
a splittingN = E ⊕ F such thatLt(E(x)) = E(8t(x)) and L−t(F(x)) =
F(8t(x)), for anyx ∈ Ũ and anyt ∈ R; and there areC > 0 andρ < 0 such
that:

||Lt |E(x)||||L−t |F(8t (x))|| 6 C exp(tρ), ∀t > 0.

We say that the linear Poincaré flow has acontracting directionif there is
C > 0 andλ < 0 such that for anyx ∈ 3 and anyt > 0: ||Lt |E(x)|| < C exp(tλ).
This hypothesis guarantees the existence of the local stable foliation on points
of 3; see [1].

Now we can state the Main Theorem of this work:
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Main Theorem. Let 3 be a transitive attractor of aC2-flow such that: the
linear Poincaré flow on the set of regular points has a dominated splitting with
contracting direction, all singularities are Lorenz-like and all periodic orbits are
hyperbolic, then3 is singular hyperbolic.

An outline of the argument is the following: The key property we obtain is
the volume expansion condition along a center unstable bundle over points of
the attractor3. For that, we first care about invariant subsets without singular-
ities contained in3. Corollary 1 assert that any compact invariant subset of a
transitive attractor3 without singular points of aC2-flow is hyperbolic. Then
we define inside linearizing neighborhoods of singularities two transversal sec-
tions (not connected) which controls all recurrence of regular orbits to equilibria
(Lemma 3) and where the expansion property is obtained by the eigenvalues.
Finnaly we care about pieces of orbits traveling outside the singular region prov-
ing that they should accumulate on some hyperbolic set, and then we traslate
the expansion properties by means of the Lyapunov exponents of some limit of
invariant measures.

2 Global properties

Consider aCr -flow 8 on M , with r > 1, and let3 ⊂ M be a transitive attractor
with singular points such that its linear Poincaré flow has a dominated splitting.

Lemma 1. If the linear Poincaré flow of8 has a dominated invariant splitting
with contracting direction, there is a partial hyperbolicD8t -invariant splitting
T3M = Es ⊕ Ecu.

Proof. The bundleE(∙), definied over3−S(3), can be extended continuously
to S(3) settingE(σ ) = Ess(σ ). The fact thatLt is exponentially contracting on
E implies the existence of a one dimensional stable bundle forD8t , denoted by
Es; following [3]. On the other hand, we can define a two dimensional bundle,
first on regular points byEcu(p) := F(p) ⊕ [X(p)], where[X(p)] ⊂ TpM is
the linear space spanned byX(p); and we can extend it continuously toS(3)

defining Ecu(σ ) = Es(σ ) ⊕ Eu(σ ). Observe thatEcu is D8t -invariant. A
straightforward calculation yields the domination property ofEs ⊕ Ecu and, to-
gether with the exponential contraction onEss one obtains partialy hyperbolicity
for Es ⊕ Ecu. �

As a consequence of this lemma we obtain local stable manifoldsWs
loc(x) on

every point of3. Moreover, these local stable manifolds exist on every point
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of some open subset, containing3, of the basin attraction; see Lemma 3.2 and
Corollary 3.4 in [2]; and Lemma 1 of [1]. Once we have constructed the bundle
Ecu, it is left to prove that it expands volume to obtain singular hyperbolicity.

2.1 Global properties

Denote byω(x) theω-limit of a point x ∈ M , and if V ⊂ M denoteω(V) =
∪x∈Vω(x).

Lemma 2. Let V ⊂ U be any open subset of the basin of attraction of3, then
ω(V) = 3.

Proof. The set30 = ∪x∈Vω(x) is an invariant set for8 contained in3. If
30 6= 3, then3 is not transitive whether is a periodic orbit or a non trivial
hyperbolic set. See Lemma 6 of [1]. �

Let us recall the following theorem:

Theorem B of [2]. Let 0 be a compact invariant set of aC2-flow such that:
the linear Poincaré flow on the set of regular points has a dominated splitting,
all periodic orbits are hyperbolic of saddle type and such thatS(0) = ∅; then
either it is hyperbolic or it contains a normally hyperbolic invariant torus, where
it is conjugated to an irrational-slope linear flow on it.

Corollary 1. If 30 ⊂ 3 is a compact invariant set that30 ∩ S(3) = ∅, then
30 is hyperbolic of saddle type.

Proof. Notice that all periodic orbits in3 are of saddle type. In our setting,
Theorem B of [2] implies that if30 is not hyperbolic then it contains a normally
hyperbolic (contracting) invariant torusT . Of course,T does not coincides
with 3 because the second contains singular points and the first one does not.
Therefore,T is a proper attractor contained in3. Since3 is transitive, this is a
contradiction to Lemma 2. Hence30 is hyperbolic of saddle type. �

3 Analysis around singular points

Considerσ ∈ S(3). Since it is non-resonant, there is a linearizing chartV ⊂ R3

containing the origin. Denote byλu, λssandλs the eigenvalues ofσ , correspond-
ing to thex, y andz-axis respectively. Recall that they satisfy (1). InsideV we
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can draw a picture of the stable, strong-stable and unstable manifolds according
to the standard basis ofR3. In fact, inside ofV the flow can be expressed by
a linear differential equation given by the diagonal matrix withλu, λss andλs

on the diagonal. In these coordinates, local invariant manifoldsWss, u
loc (σ ), cor-

respond to they andx-axis, respectively; andWs
loc(σ ) corresponds to the plane

[x = 0].
Given four positive real numbers:r1, r2, ε andη, we can construct a cylinder

insideV in the following way: C = (−ε, ε) × [y2 + z2 = r 2
1]; and two disks

1+ and1−, also contained inV by: 1± := {(±η, u, v)|u2 + v2 = r 2
2}. Denote

1 = 1+ ∪ 1−. These sections will be calledoutput sections. Denote by
πx, πy : V → R the canonical projections on thex andy-axis, respectively.

Lemma 3. For eachσ ∈ S(3) there isδ > 0and a choice of positive numbers:
r1, r2, ε, η such that:

1. If q ∈ Bδ(σ ) there are two positive numbersT− andT+ that8−T−(q) ∈ C
and8T+(q) ∈ 1.

2. There is someγ > 0 such that if one denotes bỹ6 = {p ∈ C| |πy(p)| <

γ }, then3 ∩ C ⊂ 6̃.

Proof. The first item is trivial, since the dynamics insideV is linear. The proof
of second item stands on the hypothesis thatWss(σ ) ∩ 3 = {σ } and is precisely
the content of Lemma 2 in [1]. �

Observe that we can change6̃ by two planar transversal sections6± contained
in the plane[z = ±z0], respectively, flowing it a small (bounded) amount of
time. Let6 = 6+ ∪ 6−; these sections will be calledinput sections. Define
Q := Ws

loc(σ )∩6. Since anyσ ∈ S(3) is Lorenz-like thenλu(σ )+λs(σ ) > 0.

Corollary 2. For any pointp ∈ 6 − Q, there ist > 0 such that8t(p) ∈ 1

anddet(D8t(p)|Ecu) = exp(t (λu(σ ) + λs(σ ))).

The union of all pieces of orbits between the input and the output sections,
together with the local stable, strong-stable and unstable manifolds ofσ , they
build an open neighborhood ofσ . Denote this neighborhood byVσ .

4 The volume expanding condition

ConsiderV = ∪σ∈S(3)Vσ ; whereVσ is obtained after Lemma 3, applied to each
σ ∈ S(3). Denote by6 the union of allinput sections, and1 the union of all
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outputsections associated to all singular points. Next lemma analyzes the past
orbit of any point of the attractor.

Lemma 4. For anyp ∈ 3 one of the following happens:p ∈
⋃

σ∈S(3) Wu(σ );
O−(p) ∩ 6 is an infinite set; orα(p) is a hyperbolic set.

Proof. Let p ∈ 3 such thatp /∈
⋃

σ∈S(3) Wu(σ ) and such thatO−(p)∩6 = ∅.
If the cardinality of this set is finite, we can consider8−T (p) instead ofp. Recall
6 is a 2-dimensional open subset. If the orbit ofp remains on the boundary
of 6 by Lemma 4.3 de [2] theα-limit of p is a hyperbolic periodic orbit.
Otherwise, for anyT > 0 there is an open setV containig p that 8T (V) ∩⋃

σ∈S(3) Bδσ
(σ ) = ∅. Hence,α(p)∩ S(3) = ∅ and is closed. Corollary 1 assert

thatα(p) is hyperbolic. �

In §3.5 of [6] it is proved that in order to obtain the volume expansion condition
on the bundleEcu it is enough to bound the rate of expansion for the past of each
orbit in 3. This is the content of the next Lemma.

Lemma 5. For anyx ∈ 3 we have that

lim inf
t→∞

det(Dx8−t(x)|Ecu(x)) = 0. (3)

Proof. Recall the open setV containingS(3). LetU ′ = cl(U )− V . Consider
any pointx ∈ 3. Lemma 4 gives us three possibilities.

[A] If x ∈ Wu(σ ) − {σ }, for someσ ∈ S(3), there isT > 0 such that
x0 := 8−T (x) ∈ 1 and8−t(x0) ∈ V , for all t > 0. Since the dynamic
insideV is linear, then

det
(
Dx08−t |Ecu(x)

)
= exp

(
− t (λs(σ ) + λu(σ ))

)
.

S(3) is Lorenz-like, thenλs(σ ) + λu(σ ) > 0. Hence, we are done in this
case. Ifx ∈ S(3) the same calculation applies.

[B] If the α-limit of x is a hyperbolic set then:

lim
t→+∞

||Dx8−t |Ecu(x)|| = 0.

Hence, det
(
Dx8−t |Ecu(x)

)
6 ||X||||Dx8−t |Ecu(x)||; and we are done in

this case.
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[C] Assume that #O−(x) ∩ 6 = +∞. Without lost of generality we can
assume thatx ∈ 6. Hence, there is a partition of the set of positive real
numbers given by a sequence of not empty intervals of the formKn :=
[an, an+1) for which8−t(x) ∈ 6 iff t ∈ {an|n ∈ N}.

Lemma 3 imply that for any integern there isbn ∈ R such thatan < bn < an+1

and8−bn(x) ∈ 1. This induces a refinament of the previous partition:

R+ =
⋃

n∈N

Kn =
⋃

n∈N

K 0
n ∪ K 1

n;

whereK 0
n = [an, bn] andK 1

n = (bn, an+1). Notice thatt ∈ ∪nK 0
n iff 8−t(x) ∈

U ′, andt ∈ ∪nK 1
n iff 8−t(x) ∈ V .

Given a fixedt ∈ R+, denote byC(t) = det(Dx8−t |Ecu(x)). Applying the
chain rule, we obtain that for eachN ∈ N we have:

C(aN) =
N∏

n=0

A(n) ∙ B(n);

where:
A(n) = det(D8−bn (x)8−(an+1−bn)|Ecu(8−bn (x)))

and
B(n) = det(D8−an (x)8−(bn−an)|Ecu(8−an (x)))

If the sequence|K 1
n | is bounded, thenα(x) do not accumulates onS(3), and

hence it is hyperbolic. In fact, it is possible to find a smaller section6̃ where
O−(x) ∩ 6̃ = ∅. Therefore there is a subsequencenj such that|K 1

n j
| → +∞

as j → +∞. Moreover, Corollary 2 implies that there isρ = min{λu(σ ) +
λs(σ )| σ ∈ S(3)} > 0 such that:

B(n) < exp(−ρ|K 1
n |) < 1; ∀n ∈ N

In particularB(nj ) → 0 as j → +∞.
On the other hand if there isT > 0 such that|K 0

n | 6 T , for all n, there is
C̃ > 0 such that|A(n)| 6 C̃. Therefore,

C(aN) 6 C̃
N∏

n=0

B(n) 6 C̃
N∗
∏

j =0

B(nj )

for N∗ being the greatestnj that nj 6 N. This implies thatC(aN) → 0 as
N → +∞, and we are done.
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Now it is left the case when|K 0
n | is unbounded. For that, denote bypn =

8−an(x) ∈ 6 andsn = bn − an = |K 0
n |, to simplify the notation. Observe that

8−s(pn) ∈ U ′ for all s ∈ [0, sn], and8−sn(pn) ∈ 1.
We claim that for any subsequencesnj → ∞ we have that:

||Dpn j
8−sn j

|Ecu(pn j )
|| → 0 as j → +∞.

If the claim is true, thenC(aN) → 0 as N → +∞ since A(n) 6 ||X|| ∙
||Dpn j

8−sn j
|Ecu(pn j )

||; and we are done.

To obtain the claim assume there is a subsequence{sn} (we drop the subindex
to simplify notation) and a numberγ > 0 that:

||Dpn8−sn |Ecu(pn)|| > γ > 0. (4)

Consider a sequence of probability measuresμn in cl(U ) defined in the fol-
lowing way: If A is any Borel setA denoteχA its characteristic function and
let:

μn(A) :=
1

sn

∫ sn

0
χA(8−t(pn))dt

Observe that ifA ⊂ V thenμn(A) = 0 andμn(U ′) = 1, for anyn ∈ N.

Lemma 6. Any convergent subsequence ofμn converges in the weak∗ topology
to an invariant measureμ.

Proof. Let μ be any limit of a subsequence ofμn. Consider a Borel setA,
some fixedT > 0 and anyn ∈ N. Observe that:

∫ sn

0
χ8−T (A)(8−t(pn))dt =

∫ sn

0
χA(8T−t(pn)) =

∫ sn−T

−T
χA(8−t(pn))dt.

Hence,

|μn(8−T (A)) − μn(A)| =
1

sn

∣
∣
∣
∣

∫ sn−T

−T
χA(8−t (pn)) −

∫ sn

0
χA(8−t (pn))

∣
∣
∣
∣

=
1

sn

∣
∣
∣
∣
∣

∫ 0

−T
χA(8−t (pn)) −

∫ sn

sn−T
χA(8−t (pn))

∣
∣
∣
∣
∣
6

2T

sn
.

Therefore,|μn(8−T (A)) − μn(A)| → 0 asn → ∞, and this implies that the
limit measureμ is invariant. �
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Let {μ j } be any convergent subsequence and denote byμ∞ its limit. The
support of the limit measure, supp(μ∞), is a compact invariant set contained in
U ′. Therefore Corollary 1 implies it is hyperbolic of saddle type, since it do not
contains singular points. As a consequence, this set has two Lyapunov exponents
ρs < 0 andρu > 0.

On the other hand, if we denote byqn = 8−sn(pn), we can estimateρu in the
following way:

ρu = lim
n→∞

1

sn
log ||Dqn8sn |Ecu(qn)||.

However,||Dqn8sn |Ecu(qn)|| = ||Dpn8−sn |Ecu(pn)||−1 6 γ −1, by (4). Hence,

ρu 6 lim
n→∞

log(γ −1)

sn
= 0

This is a contradiction to the fact of supp(μ∞) is a hyperbolic invariant set of
saddle type. So, we obtain the claim and we are done. �

Once we have completed the proof of the previous Lemma, we can conclude
that D8t expands volume on the bundleEcu; and hence, the splitting over3,
T3M = Es ⊕ Ecu is singular hyperbolic.
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