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Heterogeneous ubiquitous system®&hand
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Abstract. Let {x,}ncr be a sequence if®, 119, {in}nen @ Sequence of positive real
numbers converging to 0, add> 1. The classical ubiquity results are concerned with
the computation of the Hausdorff dimension of limsup-sets of the form

s® = () U B rp.

NeN n>N

Let u be a positive Borel measure ¢ 119, p € (0, 1] anda > 0. Consider the finer
limsup-set

Su(p.8,0) = ) U B(Xn, A3).

NeN  n>N: pu(B(Xn,A0)~AR"

We show that, under suitable assumptions on the meastine Hausdorff dimension of

the setsS, (p, 8, @) can be computed. Moreover, when< 1, a yet unknown saturation
phenomenon appears in the computation of the Hausdorff dimensi&(pf §, «).

Our results apply to several classes of multifractal measuresS@ndorresponds to

the special case whegeis a monofractal measure like the Lebesgue measure.

The computation of the dimensions of such sets opens the way to the study of several
new objects and phenomena. Applications are given for the Diophantine approximation
conditioned by (or combined with)-adic expansion properties, by averages of some
Birkhoff sums and branching random walks, as well as by asymptotic behavior of random
covering numbers.
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1 Introduction

Since the famous result of Jarnik [34] concerning Diophantine approximation
and Hausdorff dimension, the following problem has been widely encountered
and studied in various mathematical situations.

Let {X,}hew be @asequence in a compact metric spa@md{A, }neny @ SEQUENCE
of positive real numbers converging to 0. Let us define the limsup set

S= m U B(Xn, An),

NeN n>N

and letD be its Hausdorff dimension. Lét> 1. What can be said about the
Hausdorff dimension of the subsgts) of Sdefined by

s =[] UBGn2rp ?

NeN n>N

Intuitively one would expect the Hausdorff dimension &) to be lower
bounded byD /5. This has been proved to hold in many cases which can roughly
be separated into two classes:

» when the sequendéx,, An)}, forms a sort of “regular system” [3, 18, 19],
which ensures a strong uniform repartition of the poitg.

» when the sequendéx,, An)}n forms an ubiquitous system [22, 23, 33, 15]
with respect to a monofractal measure carried by th&set

Let us mention that similar results are obtained in [47] wikeis a Julia set.
When dimS(8) < D, such subsetS(s) are often referred to as exceptional sets
[21]. Another type of exceptional sets arises when considering the level sets of
well-chosen functions:

» the function associating with each pointe [0, 1] the frequency of the
digiti € {0, 1, ..., b — 1} in theb-adic expansion of,

» more generally the function associating with each pgitite average of
the Birkhoff sums related to some dynamical systems,

» the functionx — h¢(x), when f is either a function or a measure on
RY andh;(x) is a measure of the local regularity (typically an Holder
exponent) off aroundx.
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It is a natural question to ask whether these two approaches can be combined
to obtain finer exceptional sets. Let us take an example to illustrate our purpose.
On one side, it is known since Jarnik’s results [34] that if the sequence
{(Xn, An)}n is made of the rational paif$p/q, 1/q2)}p,q€N*z, n<q» then for every
8 > 1 the subseB(§) of [0, 1] has a Hausdorff dimension equal tgs1 In
the ubiquity’s setting, this is a consequence of the fact that the faflyq,
1/q2)}p)qu*z forms an ubiquitous system associated with the Lebesgue mea-
sure [22, 23].

On the other side, givefirg, 71, . .., mp_1) € [0, 1P such thaly ") 7 = 1,
Besicovitch and later Eggleston [24] studied the d&t&™-™-1 of points X
such that the frequency of the digit {0, 1, ..., b— 1} in theb-adic expansion
of x is equal tar;. More precisely, for anx € [0, 1], let us consider thb-adic
expansion of

o0
X = meb‘m, where Vm, Xm € {0,1,...,b—1}.
m=1

Let ¢i n(X) be the mapping

#Hm=n:xn=i}
- )

(1)

ThenE™ 7171 = {x : Vi € {0,1,...,b—1}, liMmy_ 400 i n(X) = 7;}. They
found that dimg™o-72:--7-1 — Zib;ol —m; logy, i .

We address the problem of the computation of the Hausdorff dimension of
the subset&;*™ "™ of [0, 1] defined by

X > ¢in(X) =

3(pn, dn)n € (N*2)N such thaty, — +oo,
E;TO;T[J_,,‘.,T[D*]-: Xxe 0, :13 |X—pn/0nl < 1/q§6 andvi < {0, ..., b 1),
limp 00 ¢i,[logb(q§)] (Pn/Qn) = mi

([x] denotes the integer part of). In other words, we seek in this exam-

ple for the Hausdorff dimension of the set of points[0f1] which are well-
approximated by rational numbers fulfilling a given Besicovitch condition (i.e.
having given digit frequencies in thdiradic expansion). This problem is not
covered by the works mentioned above. The main reason is the heterogeneity
of the repartition of the rational numbers satisfying the Besicovitch conditions.
As a consequence of Theorems 2.1 and 2.2 of this paper, we obtain

b—-1

dim ET0-L -1 _ £i=0 —7i log, 7
5 = .

g @
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470 JULIEN BARRAL and STEPHANE SEURET

The key point to achieve this work is to see the Besicovitch condition as
a scaling property derived from a multinomial measure. More precisely, the
computation of the Hausdorff dimensions of the $&f$™ ™" proves to be a
particular case of the following problem: Letbe a positive Borel measure on
the compact metric spade considered above. Given> 0 ands > 1, what is
the Hausdorff dimension of the set of poixt®f E that are well-approximated
by points of{(x,, An)}n at rates, i.e. such that for an infinite number of integers
n, |Xx — xn| < A2, conditionally to the fact that the corresponding sequence of
pairs(x,, An) satisfy

log M( B(Xn, )tn))

lim 1090w =qa? 3)

In other words, ife = (¢)n>1 iS @ sequence of positive numbers converging to
0, what is the Hausdorff dimension of

S, a.e) =) U B(%n, A2) ? (4)

NZ0  n>N: %N < (B(Xn, An)) <AL "

We study the problem iiRY (d > 1). An upper bound for the Hausdorff
dimension ofS, (8, «, ¢) is given by Theorem 2.1 foweakly redundant systems
{(Xn, An)}n (see Definition 2.1). Its proof uses ideas coming from multifractal
formalism for measures [17, 43].

Theorem 2.2 (casp = 1) gives a precise lower bound for the Hausdorff
dimension ofS, (8, «, €) when the family{(xn, An)}n forms a kheterogeneous
ubiquitous system with respect to the measurésee Definition 2.2 for this
notion, which generalizes the notion of ubiquitous system mentioned above).
It can be applied to measurgsthat enjoy some statistical self-similarity prop-
erty, and to any family{(x,, An)}n @s soon as the support afis covered by
limsup,_, .. B(Xn, An).

To fix ideas, let us state a corollary of Theorems 2.1 and 2.2. This result
uses the Legendre transforhof the “dimension” functiorr,, considered in the
multifractal formalism studied in [17] (see Section 2.2 and Definition 8).

Theorem 1.1. Let « be a multinomial measure o, 1]°. Suppose that the
family {(Xn, An)}n forms a weakly redundant 1-heterogeneous ubiquitous system
with respect tdu, o, T (@)).

There is a positive sequenee= (&,)n>1 CONverging to 0 abo such that

Vé>1 dim S, a,¢8) =1,()/3.
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Examples of remarkable familiggx,, An)}n are discussed in Section 6, as
well as examples of suitable statistically self-similar measuresThere, the
measureg are chosen so that the property (3) has a relevant interpretation (for
instance in terms of thie-adic expansion of the poinis).

The formula (4) defining the s&, (3, «, &) naturally leads to the question
of conditioned ubiquity into the following more general form: Lete (0, 1].
What is the Hausdorff dimension of

Sup.s.ae) =) U B(n.2n)?  (5)

NZ0 > N <y (Boxn. 1R) ) <A@

We remark that, in (4) and (5), jf equals the Lebesgue measure and i d,
the conditions orB(x,, A£) are empty, since they are independernofi, and
p. This remains true for a strictly monofractal measuraf index«, that is such
that3C > 0, 3rg such that

VX esupp(u),Y 0 <r <ro, C % < u(B(x,r)) < Cr.

Again, an upper bound for the Hausdorff dimensiorsefp, 8, «, ¢) is found
in Theorem 2.1 for weakly redundant systems.

Theorem 2.2 (case < 1) yields a lower bound for the Hausdorff dimension
of S,(p, 8, a, &) whenp < 1, as soon as the fami{yx,, An)}» forms ap-hetero-
geneous ubiquitous system with respeqt o the sense of Definition 2.3. The
introduction of this dilation parameter substantially modifies Definition 2.2
and the proofs of the results in the initial case- 1.

As a consequence of Theorem 2.2, a new saturation phenomenon occurs for
systems that are both weakly redundant anrldeterogeneous ubiquitous sys-
tems wherp < 1. This points out the heterogeneity introduced when consider-
ing ubiquity conditioned by measures that are not monofractal. The following
result is also a corollary of Theorems 2.1 and 2.2.

Theorem 1.2. Let 1 be a multinomial measure of), 1]9. Letp € (0, 1).
Suppose thaf(x,, An)}n forms a weakly redundant-heterogeneous ubiquitous
system with respect fQc, o, 75 ().

There is a positive sequenee= (g,)n>1 CONverging to 0 abo such that

d - p) + pt;()
8

Vs =1 dim S.(p.5 o ¢) = min( ,r;’;(a)).
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Under the assumptions of Theorem 1.2, wh¢(w) < d, althoughs starts
to increase from 1, din8, (p, 8, «, €) remains constant untl reaches the crit-

ical Valued(l_‘:i—w > 1. Whens becomes larger thad(l_‘;itap)rﬁ(a), the
dimension decreases. This is what we call a saturation phenc;menon.

It turns out that conditioned ubiquity as defined in this paper is closely related
to the local regularity properties of some new classes of functions and measures
having dense sets of discontinuities. In particular, Theorem 2.2 is a crucial tool

to analyze measures constructed as the measpires

Vpys = Z}\g 1 (B(Xn, 22))7 8,

n>0

wheredy, is the probability Dirac mass &, p € (0, 1], andy, o are real
numbers which make the series converge. Conditioned ubiquity is also essential
to perform the multifractal analysis of Lévy processes in multifractal time. These
objects have multifractal properties that were unknown until now. Their study
is achieved in other works [9, 10, 11, 12].

The definitions of weakly redundant andheterogeneous ubiquitous sys-
tems are given in Section 2. The statements of the main results (Theorems 2.1
and 2.2) then follow. The proofs of Theorem 2.1, Theorem 2.2 (pasel)
and Theorem 2.2 (case < 1) are respectively achieved in Sections 3, 4 and
5. Finally, our results apply to suitable examples of systés An)}n and
measureg: that are discussed in Section 6.

2 Definitions and statement of results

It is convenient to endovR® with the supremum nornfj - |l and with the
associated distanae, y) € RY x RY — X — Y[loo = Max<i<a(|X — Vi)
Throughout the paper, for a s8t|S| denotes then the diameter &f

We briefly recall the definition of the generalized Hausdorff measures and
Hausdorff dimension iiRY. Let& be agaugefunction, i.e. a non-negative non-
decreasing function oR_. such that lim_, o+ £(x) = 0. LetSbe a subset dR9.
Forn > 0, let us define

HE(S) = inf Ci]), (the family{C;};.; coversS
1=, . i%jsu i, ( Y{(Ciliez )
where the infimum is taken over all countable famili€%}ic; such thatvi €
1, |Ci| < n. Asn decreases to Qi (S) is non-decreasing, an@l{*(S) =
lim, o 5{,75(8) defines a Borel measure &, called Hausdorff-measure.
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Defining the family%, (x) = |X|* (¢ > 0), there exists a unique real number
0 < D < d, called the Hausdorff dimension &and denoted ding, such that
D = sup{a > 0: H*(S) = +oo} = inf {a : H*(S) = 0} (with the conven-
tion sup® = 0). We refer the reader to [40, 26] for instance for more details on
Hausdorff dimensions.

Let 1 be a positive Borel measure with a support containef@ji]¢. The
analysis of the local structure of the measuria [0, 1] may be naturally done
using ac-adic grid € > 2). This is the case for instance for the examples of
measures of Section 6. We shall thus need the following definitions.

Letc be an integer 2. For every

j >0 Vk=(k,....kg) € {0,1,....c! =19 I
denotes the-adic box
[kic™d, (ke + ey x ... x [kee ™), (kg + De .

Then,vx € [0, 1)9, I]-C(x) stands for the unique-adic box of generation that
contains, andk‘ix is the unique (multi-)integer such thl#t(x) = Iik?x' If both
k= (Kg, ..., Kq)andk’ = (ki, ..., k) belongtaNd, |k —k'||lc = max |k —K/|.
The set ofc-adic boxes included if0, 1) is denoted by.

Finally, the lower Hausdorff dimension of, dim(uw), is defined, as usual, as
inf {dim E : E € B([0, 1]%), u(E) > 0}.

2.1 Weakly redundant systems

Let {Xn}ney be afamily of points of0, 1]¢ and{,}nen @ NON-increasing sequence
of positive real numbers converging to 0. For every 0, let

Tj={n: 270" <), <271}, (6)

The following definition introduces a natural property from which an upper
bound for the Hausdorff dimension of limsup-sets (4) and (5) can be derived.
Weak redundancig slightly more general thasparsityin [27].

Definition 2.1. The family{(Xn, An)}nen is said to form a weakly redundant
system if there exists a sequence of integhii9 ;-0 such that

(i) lim;_logN;/j =0.
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(ii) foreveryj > 1, T; can be decomposed indd; pairwise disjoint subsets
i i
(denotedTj 4, ..., TJ-,Nj) such that for eacll < i < N;j, the family
{B(Xn, An) : N € Tj;}is composed of disjoint balls.

We haveUihil T;i = T;. Since theT;; are pairwise disjoint, any point e
[0, 119 is covered by at modN; balls B(x,, An), n € T;. Moreover, for every
andj, the number of balls of; ; is bounded byCyq - 241, whereCy is a positive
constant depending only ah Indeed, if two integers £ n" are such thak,
andin belong toT; i, then||Xn — X [leo > 2.

2.2 Upper bounds for Hausdorff dimensions of conditioned limsup sets

Let u be a finite positive Borel measure @ 1]°.
We let the reader verify that if sugp = [0, 1]%, then the concave function

T, : g lim jigllo—j‘l log, Z m(l§ ) (7)

does not depend on the integer 2. This function is often considered when
performing the multifractal formalism for measures of [17]. Then, the Legendre
transform ofr, ate € R, denoted by, is defined by

T (i}r;]% (2q — 7,(q)) € RU {—o0}. (8)

Theorem 2.1. Let {Xn}ney be a family of points of0, 1]¢ and {A,}nen @ Non-
increasing sequence of positive real numbers converging to Q« heta positive
finite Borel measure with a support equal[t 1]9. Let {e,}nen be a positive
sequence converging to p,e (0, 1], > 1anda > 0. Let us define

Si(p.8.a.8) =) U B(Xn, A%).
NZL =N < (Bom ) =i @
Suppose thaft(Xn, An)}nen forms a weakly redundant system. Then

d(1- p) + p}(@)
8

dim S.(p. 8, . €) < min( @) ) 9)

Moreover,S,(p, §, a, &) = @ if r;(a) < 0.

The result does not depend on the precise value of the seqlghgeas soon
as lim,_, ;o en = 0. The proof of Theorem 2.1 is given in Section 3.
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2.3 Heterogeneous ubiquitous systems

Leta > Oandg € (0, d] be two real numbers. They play the role respectively of
the Hoélder exponent gf and of the lower Hausdorff dimension of an auxiliary
measuren.

The upper bound obtained by Theorem 2.1 is rather natural. Here we seek
for conditions that make the inequality (9) become an equality. The following
Definitions 2.2 and 2.3 provide properties guarantying this equality.

The notion otheterogeneous ubiquitous systgemeralizes the notion abig-
uitous systerin RY considered in [22]. The abbreviatioma.e. oru-a.e. means
as usuam- or p-almost every om- or p-almost everywhere.

Definition 2.2. The systen{(X,, An)}nen iS said to form al-heterogeneous
ubiquitous system with respect(o, «, ) if conditions(1-4) are fulfilled.

(1) There exist two non-decreasing continuous functipiasd s defined on
R, with the following properties:

- 0 =y (0) =0,1r > r¢® andr — r~¥® are non-increasing
nearO™,

— lim,_ o+ r #0 = 400, andVe > 0, r - r*=¢" is non-decreasing
nearO™,

— @ andy verify (2), (3)and(4).
(2) There is a measuma with support[0, 119 enjoying the following proper-
ties:

e m-a.e.y € [0, 1] belongs tdim sup,_, . .. B(Xn, An/2), i.€.

(ﬂ U B(x. n/2)=llm||. (10)

N>1 n>N
e \WWe have:

[Form—a.e.y €[0,119, 3j(y), Yj=jy, (11)

vV k such thatlk —k§ ,llc < 1, P1(If,) holds
WhereTlM(I) is said to hold for the selt and for the real numbeM >
1 when

—1|| |a+w(lll) < M(I) < M|l |oc—¢(|||)_ (12)
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e \We have:

Form-a.e.y € [0,1]%, 3 j(y), Vj > j(y),

13
V k such that|k — kJ?,y||Oo <1, @lm(lﬁk) holds (13)

whereDY; (1) is said to hold for the sett and for the real numbeM >
Owhen
m(l) < M|l |f=UID, (14)

(3) (Self-similarity ofm) For everyc-adic boxL of [0, 1)¢, let f_ denote the
canonical affine mapping froin onto[0, 1)¢ . There exists a measune-
on L, equivalent to the restrictiom;. of mto L (in the sense tham,_
andmt are absolutely continuous with respect to one another), such that
property (13) holds for the measumng- o fL‘1 instead of the measura.

For everyJ > 1, let us then introduce the sets
Vj=J+log,(ILIY),
Y k such that|k — kJSX||o<> <1,

c
||j°,k)ﬂ¢’(l'tk)

L]

Ef=1xel:

we have: mL(Iﬁk) < (

The setE ! form a non-decreasing sequencelinand by(13) and prop-
erty(3), U1 E} is of fullm--measure. We can thus consider the integer

J(L) =inf{J>1: m~(E}) = Im"|/2}.
For everyx € (0, 1)d andj > 1, let us define the set of balls
Bj(X) = {B(Xn, An) : X € B(Xn, An/2) andi, € (¢, ¢}

Notice that this set may be empty. Wides 1 and B(xn, An) € Bj(X),
considerB(x,, A%). This ball contains an infinite number ofadic boxes.
Among them, leB? be the set ot-adic boxes of maximal diameter.

Then define
1) l | S
BJ (X) = Bn.

B(Xn,An)€B] (X)

(4) (Control of the growth speed(L) and of the masgm"||) There exists a
subsetD of (1, oo) such that for every € D, for m-a.e. x € [0, 1]¢ (or
equivalently, by (10) fom-a.e. x € limsup,_, ., B(Xn, An/2)), thereis an
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infinite number of generationp for which there existd € B‘J? (X) such
that

J(L) < log. (ILI™e(IL]) and [L]?I"P < imby). (15)

Remark 2.1.

1. (1) is a technical assumption. (&), (13) provides us with a lower bound
for the lower Hausdorff dimension of the analyzing measurél 1) yields
a control of the local behavior gf, m-a.e. Then (10) is the natural
condition onmto analyze ubiquitous properties{@k,, An)}n conditioned
by . (3) details a self-similar property fon, and(4) imposes a control
of the growth speed in the level sets for the “copigs’ o fl_‘1 of m. The
combination of(3) and(4) supplies the monofractality property used in
classical ubiquity results.

2. If wis astrictly monofractal measure of exponéftypically the Lebesgue
measure), the(il-4) are always fulfilled withh = 8 = d andu = mas
soon as (10) holds. Infact, in this cagke4)imply the conditions required
to be an ubiquitous system in the sense of [22, 23].

3. Property(4) can be weakened without affecting the conclusions of Theo-
rem 2.2 below as follows:

(weak 4) There exists a subsé? of (1, oo) such that for every € D,
for m-a.e.x € (0, 1), there exists an increasing sequenge) such that
for everyk, there existB(Xp,, An) € Bj,x(X) as well as a-adic box

Lk included inB(xy,, /\ﬁk) such that (15) holds witlh. = Ly; moreover
log|Lk| __

“mkﬁoo 10g Any,

This weaker property, necessary in [11], slightly complicates the proof
and we decided to only discuss this point in this remark.

In order to treat the case of the limsup-sets (5) defined with a dilation parameter
o < 1, conditiong2) and(4) are modified as follows.

Definition 2.3. Let p < 1. The systenfi(Xn, An)}nen is said to form go-hetero-
geneous ubiquitous system with respeaytow, 8) if the following conditions
are fulfilled.

(1) and(3) are the same as in Definitidh2.
(2(p)) There exists a measune with a support equal t¢0, 119 such that:

Bull Braz Math Soc, Vol. 38, N. 3, 2007
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e There exists a hon-decreasing continuous funcfiaefined oriR, such
that x (0) = 0, r — r %" is non-increasing nea®*, lim, g+ r % =
+o0, andVe, 6,y > 0,r > re=%¢M-rx® js non-decreasing near 0.

Moreover, form-a.e.y € [0, 119, there exists an infinite number of integers
{Ji () }ien With the following property: the balB(y, c=*i¥) contains at
leastci W @A-p)=x (1Y) pointsx, such that the associated paiis,, An)

all satisfy

An € |:C_J.i(y)+l’ C—ji(y)(l_x(c—ii(y)))] ’

(16)
for everyn’ # n, B(x], ;) () B(Xn, 2n) = 9.

e (11) and(13) of assumptiorf2) are also supposed here.

(4) There exists, such that for every > Jn, for everyc-adic boxL = Iﬁk,
(15) holds. In particular,(4) holds withD = (1, +00).

Remark 2.2.

1. Heuristically, (16) ensures that fom-a.e.y, for infinitely many j,
approximatelyc!dd-») “disjoint” pairs (X,, An) such that., ~ ¢~ can
be found in the neighborhooB(y, c=*!) of y. This property is stronger
than(10).

2. Condition(4’) is stronger thar4), in the sense that it impliggl) for any
system{(x,, An)} andD = (1, +o00). It appears thaid’) is often satisfied,
for instance by the first two classes described in Section 6.2 (see [13]).

Property(4) is needed for the last two examples developed in Section 6.2
and for other measures constructed similarly (see [14]). Indeed, for these
kinds of random measures, it was impossible for us to péyeand we

are only able to derive that, with probability ¢4) holds with a dense
countable seD (see [14]).

Before stating the results, a last property has to be introducech ket. For
every setl, for every constanM > 1, P, (1) is said to hold if

M—lll |o¢+W(|l D) +2ax (I11)) < M(I ) < M|l |a—1ﬁ(|| N—2ax (|1 D (17)

The dependence im of Py, (1) is hidden in the functiory (see (16)).
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Itis convenient for @-heterogeneous ubiquitous systgm,, An)} (0 € (0, 1])
with respect tau, o, B) to introduce the sequence§ (m.n)n=1 defined for
aconstanM > 1 byey, . = maxey; . &y ) where

a:l:sM n

An = MTF(24)0EV @nE22x(2n) (hy conventiony = 0if p = 1).  (18)

2.4 Lower bounds for Hausdorff dimensions of conditioned limsup-sets

The triplets(u, «, 8), together with the auxiliary measume have the properties
required to study the exceptional sets we introduced before.
Lets = (8n)n>1 € [1, OO)N*1’5 = (én)n>1 € (0, OO)N*1 p € (0,1],M > 1, and

Sup. 8,08 =) U B(Xn, A7), (19)

N=1 p>nN: 9 (Xn,An,p,0,En) holds

whereQ (Xn, An, o, @, £n) holds when.g@+en) < i (B(Xn, M’)) < AP("‘ &) S,
when3 is a constant sequence equal to sdme 1, the seg(p 3, a, 7) coin-
cides with the se8, (p, 8, «, ¥) defined in (4) and considered in Theorem 2.1.

Theorem 2.2.Let . be a finite positive Borel measure whose suppai®id],
p € (0,1l anda, B > 0. Let{xn}ney be a sequence ifD, 1]% and {An}nen @
non-increasing sequence of positive real numbers converging to 0.

Suppose that(xn, An)}nen forms ap-heterogeneous ubiquitous system with
respect tdu, «, B). LetD be the set of points of R which are limits of a non-
decreasing element Qfl} U D) (in thecaseop < 1,D = = (1, +00)).

There exists a constaél > 1 such that for every € D, we can find a
non- decreasmg sequen&e:onverglng tos and a positive measum,,; which
satisfym,, 5 (SL(,O 3, a, ey)) > 0, and such that for every € SL(,O 8, a, &),
(recall thaty = 0if p = 1 and the definition of}, (18))

m,.s(B(X, 1))

imsup 5520 <

r—0t

(20)

. d@A -
Vp € (0,1], D(B, p,8) =min (%’ ﬂ>

Vr >0, &,0)=@A+de)+ x@).

where

3§ can be taken equal to the constant sequeige.1 if 6 € {1} U D.

For the two first classes of measures of Section 6.2 (Gibbs measures and
products of multinomial measure$d,) holds instead of4) andD = (1, +00),
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and thus Theorem 2.2 applies with apye (0, 1]. For the last two classes
of measures of Section 6.2 (independent multiplicative cascades and compound
Poisson cascades), Theorem 2.2 cannot be applied wkef.

Corollary 2.3. Under the assumptions of Theor@, there existdM > 1 such
that for everys € D, there exists a non-decreasing sequehicenverging tos
such that# % (S, (p, 3, a, e§;)) > 0. Moreovers = (8)y-1 if § € {1} U D.
In particular, dim i(p,ﬁ\, a, ey) > D(B, p, 9).
Whenp < 1, D(B, p, §) remains constant and equal gowhené ranges in
[1, 4321281, This is what we call a saturation phenomenon. Then, as soon as

d(l"# < 8, we are back to a “normal” situation wheB¥ 8, p, §) decreases
as 16 whené increases.
Whenp =1, D(8, p, §) = B/§, thus there is no saturation phenomenon.

Corollary 2.4. Fix € = (en)n>1 @ positive sequence converging to 0. As-
sume tha{(x,, An) }nen forms a weakly redundant andaiheterogeneous ubig-
uitous system with respect {p, o, 7;(«)). Under the assumptions of Theo-

rem2.1 and Theoren®.2, there exists a constatMl > 1 such that for every
s € [m_‘;)—w +00) N D, there exists a non-decreasing sequeda®n-
"

verging toé such that

dim (S.(0, 38, @, e5y)) = dim <$(p,§,a, sfﬂ)\UﬁL(p,S’,a,a)

8'>6
= D(r;(a), p,9).

Moreoverg can be taken equal tt) -1 if § € {1} U D.
Remark 2.3.

1. Corollary 2.3 is an immediate consequence of Theorem 2.2.

2. Inorderto prove Corollary 2.4, observe firstthat when 1 ands is a non-
decreasing sequence converging t&, (o, 8, «, e,) C S.(p, 8, o, )
forall 8 < §. Theorem 2.1 gives the optimal upper bound for

dim (@(p,ﬁ, a, 8',(\),,)).

Again by Theorem 2.1, whef > M_f)—w for 8 > §, the sets
"

S.(p, &, a,%) form a non-increasing family of sets of Hausdorff dimen-
sion < D(z;(a), p, ). This impliesH (| Jy .45 S.(p, 8", . 8)) = 0.
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Finally the lower bound for the dimension

dim (31(/),3\, a. ep\ | Suo. 8, Ot,?‘?))

§'>6

is given by Corollary 2.3. This holds for any sequef@ceonverging to
zero.

Whens = p =1 ands = (Dn>1, the arguments are similar to those used for
s> 1.

3 Upper bound for the Hausdorff dimension of conditioned limsup-sets:
Proof of Theorem 2.1

The sequenc@(x,, An)}n is fixed, and is supposed to form a weakly redundant
system (Definition 2.1). We shall need the functions defined for ejeryl by

Ty, (@) = = Hog, Y (B, 20)) and 1, ,(q) = fiminf 7., (@,

neT;

with the convention that the empty sum equals 0 anddpg- —oo.
In the sequel, the Besicovitch’s covering theorem is used repeatedly

Theorem 3.1.[Theorem 2.7 of [40]]Letd be an integer greater than 1. There
is a constanQ(d) depending only od with the following properties. LeA be
a bounded subset & and F a family of closed balls such that each pointfof
is the center of some ball gf.
There are familiegFy, ..., Fo@) C F coveringA such that eaclf; is disjoint,
ie.
Q(d)

AC U U F andVF’F’ej_‘i with F#F/, FﬂF’:Q)
i=1 FeFi

Let (N;);>1 be a sequence as in Definition 2.1, and consider for eyeryl
the associated partitidi; 1, ..., Tj n;} of Tj. Forevery subsedof Tj, for every
1 <i < Nj, Theorem 3.1 is used to extract frofB(x,, 25) : n € Tj; N S}
Q(d) disjoint families of balls denoted by, i «(S), 1 < k < Q(d), such that

Q)
U Bowapcly UJ BOw . (21)
neijiﬂS k=1 neTji k(S
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Let us then introduce the functions
i (@ =—] " log, sup Z 1(BOG. A0)T (j =1
neU. -1 )T] i k(S

and 7, ,(q) = liminf 7, ,,j(q). Recall thatr, is defined in (7).
Lemma 3.2. Under the assumptions of Theor@m, one has

T, >d(1—p)+p7, and T, , > p1,. (22)
Proof.

e Let us show the first inequality of (22).

First suppose thag > 0. Fix ] > 1and 1<i < N;. For everyn € T,
B(Xn, A2) N[0, 1]9 is contained in the union of at most @istinct dyadic boxes

of generationj, := [jp] — 1 denotedB;(n), ..., Bz (n). Hence
3 d 3
w(BOn, M) < [ Y u(Bim) | =319 u(Bim)*
i=1 i=1

Moreover, since the ballB(xn, An) (N € Tj;) are pairwise disjoint and of
diameter larger than2/+1, there exists a universal const&htdepending only
ond such thateach dyadic box of generatjpmeets less thay2?1-)1 of these
balls B(xn, A5). Hence when summing overe T;; the masseg (B(xn, Aﬁ))q,
each dyadic box of generatigp appears at mo§y29-»)J times. This implies
that

IA

D (B )T = 3MC22 T N u(j0Y (23)

neTj ke{o,..., 210 —1)d

IA

and Y u(B(xa. M)t < BMICGN; 29T 3 u(l09. (24)
neT; ke{0,..., 20 —1}d
Since logN; = o(j), we obtainr, ,(q) > d(1— p) + p7,(Q).

Now suppose thatf < 0. Letus fixj > 1 and 1< i < N;. For every
ne T B(xn,AP) contains a dyadic boB(n) of generationjp] + 1, and

(B (X, M)) < M(B(n)) The same arguments as above also yiglg(q) >
d(l—p) + pru(@).
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e We now prove the second inequality of (22).

Suppose thag > 0. Fix j > 1 andSa subset offj, as well as 1< i < N;
and 1< k < Q(d). We use the decomposition (21). Since the bBl%,, A7)
(n € T k(9) are pairwise disjoint and of diameter larger thai2V#, there
exists a universal consta@y;, depending only oml, such that each dyadic box
of generationj, meets less tha@ of these balls. Consequently, the arguments
used to get (23) yield here

> u(Bxa.a)* < 39C; Y u(j? and

neTjike ke{0,..., 210 —13d

> 1(BOn Ap)? < 319C,QEAN; > (0t

Nj ip —1yd
nEUizll UI<Q=(?,) Tj,i,k(s) kE{O ,,,,, 21p l}

A

IA

The right hand side in the previous inequality does not deperf§l bence

sup Z 1(B(%, A2))? < 3%9C, Q()N; Z (09,

SCT; N: j d
nEUi=J].UkQ=(?_) TJIk(S> ke{O ,,,,, 2 p—1}

and the conclusion follows. The cage< O is left to the reader. 0

Proof of Theorem 2.1. Let0 <« < 7,,(07). We haver;(a) = infqzo (xq —

7,(q)). We first prove that din§,(p, 8, a) < w For this, we fix
n > 0andN > 1 so thats, < n for n > N. Then we introduce the set

Su(N,n, p, 8, @) = U B(Xn, 49,

n>N: Aﬁ(”")SM(B(XnJ»ﬁ))

which can be written as

S.(N,n,p,8,a) = U U B(Xn, A%).

j=infronl0g(in D) neTj: 28" <u(B(xn,A0))

We remark thatS,(p, 8, @, ¢) € S,(N,n, p, 8, «) and useS,(N, n, p, 8, a)
as covering ofS, (p, 8, «, €) in order to estimate th®-dimensional Hausdorff
measure 05, (p, 8, «, ) for a fixedD > 0.

Letq > Osuchthat,(q) > —oo. Let j,; beanintegerlarge enough so that
jq impliest, , ; (@) > 7,,,(@) — n. Also let jy = max(jg, infa=n l0g,(A;1)).

Bull Braz Math Soc, Vol. 38, N. 3, 2007



484 JULIEN BARRAL and STEPHANE SEURET

For some constar@ depending oD, 8, «, n, p andq only, we have

HD s (Su(p.8.0.®) < Y > |BOXn, 13)]
izin neTj:Aﬁ(””)gu(B(xn,xﬁ))
51D 4 — q

< D D IBOn A A Y (Bxn, 1)

i=iN neT;j
< Y (22715)PUtbB @ty i@

i=in
< C Z 2§ (D8—ap(@+n)+7u,, (@) —n)

i=in

Therefore, if

+n) — +
_ platn Sm,p(q) 150 (Si0.8,0.7))

converges to 0 all — oo, and dimS,(p, 8, «,¥) < D. This yields

D

go(a +n) — Tu,p(Q) +1n
6 9

dim S, (0,8, 0,3 <

which is less thad :=2+2@4-tu@H @+ by | emma 3.2. This holds for every
n > 0 and for everyg > 0 such that, (q) > —oo. Finally,

d(1-p)+pinfg=0aq — 7,(Q)
8
d—p) + p7; ()
5 .

dim S.(p, 8, a, %)

Let us now show that din8, (p, §, «, %) < r;j(a). This time, forj > 1 we
defineS; = {ne Tj : A“*™ < 1u(B(xn, 1))}. By (21), we remark that

Nj Q)

S.(p,8,a,8) C U U U U B(Xn, A2).

j>jn i=1 k=1 neTj,i k(S
By definition of7, ,(q), a computation mimicking the previous one yields

ﬂf.im (Su(p,8,2,8) < C Z2*1<Dpfqp(a+n)+r,l,p(q>fn)‘
iZin
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Hence dimS, (p, 8, @, %) < w for everyn > 0 and everyg > 0
such thatr, (q) > —oo. The conclusion follows from Lemma 3.2.
Finally, whent(«) < 0 andS,(p, 8, @, ) # ¢, the previous estimates show

that 435 ;. (S.(p. 8, @, ¥)) is bounded forD € ((«), 0) (we can formally

2.2-piN
extend the definition af{° to the caseéD < 0). This is a contradiction.
The proof wherw > tl;(O‘) follows similar lines. O

4 Conditioned ubiquity. Proof of Theorem 2.2 (case = 1)

We assume that a 1-heterogeneous ubiquitous system is fixed. With each pair
(Xn, An) is associated the ball, = B(x,, An). For everys > 1, 1® denotes

the contracted balB(x,, A%). The following property is useful in the sequel.
Because of the assumpti¢h) on ¢ andy,, we have

IC>1 V0<r<s<1 s¢® <Cr*Yands?® <crv®. (25)
We begin with a simple technical lemma

Lemma4.1. Lety € [0, 1]9, and assume that there exists an integéy) such
that for some integec > 2, (11) and(13) hold fory and everyj > j(y).

There exists a constamd independent oy with the following property: for
everyn such thaty € B(X,, An/2) andlog; At > j(y) + 4, DN (B(Y, 2An))
and Py, (B(Xa, An)) hold.

Proof. Assumethay € B(Xn, An/2) With A, < ¢ 1¥~4, Let jobe the smallest
integerj such that™! < x,/2, andj; the largest integej such that=/ > 2x,,.
We havejo > —log.An > j1 > j(y). We thus ensured by construction that
j0—4§ —|Ogc)\.n < jl+4

Recall that ; (y) is the uniquee-adic box of scalg containingy, and thak
is the uniquek € N such thaty I ¥, = 1;(y). We have

Iy cBx iy () 154

Ik—kS, ylloo=1

which yields

n(IE0) < nBCw ) < > w(1%).

Ik=kS ylloo<1
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Applying (11) and (12) yields
|c ot v 10D <y (B(xy, An)) < 34| IrjevleT D,
Combining the fact thajp — 4 < —log, An < j1 + 4 with (25) and (18) gives

1+
CH'EM,n

— 1'7
A M= M7 20 A0 < (B, An)) < M 20|V @) = 3T M

for some constantl that does not depend gn
Similarly, we get from (13) and (14) tha};, (B(y, 2A,)) holds for some
constantM > 0 that does not depend gn O

Proof of Theorem 2.2 inthe casep = 1 Throughout the proofC denotes a
constant which depends only ene, 8, 8, ¢ andy.

The cases = 1 follows immediately from the assumptions (herg =
m; = m).

Now letM > 1 be the constant given by Lemma 4.1. Bet DN (1, +00),
and let{d,},>1 be a non-decreasing sequenc&irconverging tas (if § € D,
d, = 8 for everyn). For everyk > 1, j > 1 andy € [0, 1]¢, let

B(Xn, An) € Bj/()/) and

n'% —infin:a,<ci, 3j > j: .
3L e B%, (15) holds

iy (26)
We shall find a sequen&*: (8n)n>1, CONverging tas, to construct a general-
ized Cantor seK; in S,(1, 8, «, sﬁ,l) and simultaneously the measung on K.
The successive generationses@dic boxes involved in the construction is§,
namelyG,, are obtained by induction.

First step: The first generation of boxes definig is taken as follows.

Let Lo = [0, 1]9. Consider the first elememnk of D of the sequence con-
verging tos. We first impose thai, := d,, for everyn > 1. The values of the
sequence will be modified in the next steps of the construction so thaiill
become a non-decreasing sequence satisfying.lim, 6, = 8.

Due to assumption§2), (3) and (4), there existEle C E5<0L0> such that
m(E0) > ||m||/4 and an integed’(Lo) > J(Lo) such that for aly € E‘o:

- Y€ mNzl UnzN B(Xn, An/2),
— for everyj > J'(Lo), both (11) and (13) hold,
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— there are infinitely many integeljssuch that (15) holds for somle €
B(y).
i

In order to construct the first generation of balls of the Cantor set, we invoke
the Besicovitch’s covering Theorem 3.1. We are going to apply Ate E°
and to several familieg1(j) of balls constructed as follows.

Fory e Ebo, we denoten!™ by nj,. Then for everyj > J'(Lo) + 4, we
defineF1(j) = {B (y, 2Anw) y € ERo}.

The family F1(j) fulfills the conditions of Theorem 3.1. Thus, for every
j > J(Lo) + 4, Q(d) families of disjoint ballsT(j), ..., F2?P(j), can be
extracted fromFi1(j). Therefore, sincen(A) = m(E°) > ||m||/4, for some

we have
Imil
o U ) m
_ 4Q(d
BeTL() (4Q(d))
Again, we extract fronﬂ(j ) afinite family of pairwise disjoint ball€,(j) =
{B1, By, ..., BN} such that

[ml
m( U Bk)zm. (27)

BkeBG1(j)

By construction, with eacBy can be associated a poyte E-° sothatB, =
B(Yk, 2An;, ). Moreover, by construction (see (26)),, = B(Xn;, . 4n;, ) C
B(Yk, 2An;,, ) = B Thuslrﬁﬁlyi = B(xnw,)»ﬂ}_w) is included inBy. Finally,
Lemma 4.1 yieldPy, (B(Xnj y.» Anj, ) @NADR (By).

Let F¢ be the closure of one of tleeadic boxes of maximal diameter included in
(R (dl) , and such that both (15) holds fBg. Such a box exists by (26). Moreover,

by constructlon we havgy| < |1 <d1) | < C|F| for some universal consta@t

We write By = Fy. Conversely |f a-adic boxF can be writterB for some
larger ballB, we write B = F. Therefore, for every closed bdx constructed
above we can ensure by construction that

“HFI < [F|* < CIF|, (28)
whereC depends only on the fixed given sequefag,. We eventually set
Gi1(j) = {B: Bc € Ga(j)}- (29)

We notice the following property that will be used in the last step: By construc-
tion, if F, andF, are two distinct elements &1 (j) then their distance is at least
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max .2 (|Fil/2— (|fi|/2)d1), which is larger than max, o, |Fi|/3 for j large
enough ¢; > 1 by our assumption).
On the algebra generated by the elementSfj ), a probability measure;
is defined by
m(F)
2 ey MF)

Let F € Gi(j). By construction,@"h}l(F) holds. Using consecutively this
fact, (28) and (25), we obtain

m(f) <M |f|/3*<p(lf\) < C|F|ﬁ/dl|f|7¢(|ﬁ) <C| |:|/3/d1||:|*<ﬂ(\|:|)_

ms(F) =

Moreover, by (27), and recalling the definition@f () (29), we obtain

_— Il
Yo mFo= ), m(Bo = g

FkeGa()) BkeG1(j)

As a consequence,
VF € Gi(j), ms(F) <8Q(d)C|im|~F A% F|=¢IFD,
By our assumptioiil), we can fixj; large enough so that
V F € Gi(jo), 8Q()C[m|~* < [F|7#IFP,

We choose the-adic elements of the first generation of the constructioK pf
as being those dB; := G1(j1). By construction

VF € Gy, my(F) < |FIP/a200FD, (30)

We know that by construction, for evefy € G, there existsy, € E-° such
thatB(Xn, , » Anj, ) C F = B(Yk, 20y, )-

As a consequence, for eveyye | g, F, there exists an integersuch that
An < €74 Xy — Y| < Al andPy, (1n) = Py, (B(Xn, An)) holds.

Second step: The second generation of boxes is obtained as follows.nket
be the largest integer among th%’};k, where theyy are the points naturally
associated with the ballse G, above.

Considerd,, the second element of the sequefdg, converging tos. We
modify the sequencg for everyn > ny, we imposes,, := d.

Let us focus on one of the-adic boxed € G;. The selection procedure is
the same as in the first step. Due to assumpt{@hg3) and(4), we can find a
subsetE" of EY, | such tham"(E") > [m"||/4 and an integed’(L) > J(L)
such that for aly € E*:
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- Y€ mNzl UnzN B(Xn,kn/Z),
— V= J(L) +log. (1LY,

L -1
m-of

VK, Ik —=kSyllo <1, D} (fL(1fp) andPi(If,) hold.  (31)

— There are infinitely many integefissuch that (15) holds for some €
BER(y).
j

We again apply Theorem 3.1 # = E" and to familiesF,(j) of balls con-
structed as above. Hence, for every

j = 3L +log, (ILI™Y) +4, Fa(j) = {B(y, 20 @) Y€ EL}

) o (@)
(n{?is defined in(26)). We setn; , := n;’2’.

The family F»(j) fulfills the conditions of Theorem 3.1 and coveEs. By
Theorem 3.1, for every > J'(L) +log, (|L|™*) 44, Q(d) families of pairwise
disjoint boxesF1(j). ..., F2%(j), whose union coverk", can be extracted
from F»(j). Sincem-(A) = mt(EL) > ||mb||/4, there exists such that

) Imt
m ( U B>Z4Q(d)'

BeFh(j)

_As in the first step, we extract fromfi(j) a finite family of disjoint balls
G5(j) = {B1, By, ..., By} such that

jmt
(U &)= gq 42

BkeGL(j)

As above, with eaclBy is associated a poiiy € E* so that

B =B (Y 2iny, ), and 1® C o C By

N,y

Now, notice that Lemma 4.1 applies with- o f ! instead ofm and with the
LO -1

same constar¥l. It follows thatl)r,c, fr (fL(Bo) and?b(lnjyyk) hold. LetFy

be the closure of one of theadic balls of maximal diameter included Iﬁf’i

such that (15) holds fofF.
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We then define the notatidB, = Fx, and converselBy = Fx. We also have
(28) (for the same constaft). We eventually define

G5(j) = {Bc: Bce G5(j)}. (33)

On the algebra generated by the elementsf G5 (j), an extension of the
restriction to the ballL of the measuren; is defined by

m*-(F)

ms(F) = —
2 ey M- (F)

ms(L).

-1
L

LetF € G5(j). SinceDr,C,LOf (fL(F)) holds, we have

[F]

=\ #-o() =\ ()
m-(F) < M(E) ) <C|F|ﬂ/d2|L|‘ﬁ<E> )
- LI - ILI

C||:|/3/d2||_|—ﬁ||:|—<p(lFl)’

A

where (25) has been used. Moreover, by (32) and (33),

Y omtFy= > m-(Bo = [m"[/8Q).

FkeG5 (j) BkeG5(j)
Consequently, sinces(L) can be bounded using (30), we obtain

8m, (L) Q(d) Im" || "C|F [P/%|L|~#|F|~¢(FD

8Q(d) ”ml— ||_lC| L |/5/d1—/3—2¢7(||-|) IF |ﬂ/d2—<ﬂ(|F|).

ms(F)

IA

IA

By (1), we can chooség,(L) large enough so that for every integer j»(L),
for everyc-adic ballF € G5(j), 8Q(d)C[mt | YL P/a—FA-2eL) < |F|=UFD,
Then, takingj, = max{j2(L) : L € G;}, and defining

G, = U G5 (j2),

LeGy

thisyields an extension afi; to the algebra generated by the elemenGdf ) G,
andsuch thatforeverly € G; | G,, ms(F) < |F|#/%2=2¢(FD (indeed ifF € G;
|F|f/% < |F|P/% becausel, > dy).

Notice that by construction, for evefy € Gy, |F| < maXecg, 2(c4|F|)%.
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Finally we definen, as the largest integer among thgﬁ)u’yk, where theyy

are the points naturally associated with the b&lle G, above.

Third step: We end the induction. Assume thbit generations of closed
adic boxesG,, ..., Gy are found for some integeM > 2. Assume also that
a probability measuren; on the algebra generated leSpSN G, is defined
and that the following properties hold (the fact that this holdsNo& 2 comes
from the two previous steps):

(i) Forevery 1< p < N, the elements o6, are closed pairwise disjoirat
adic boxes, and for 2 p < N, maxecg, |F| < 2c™* maxeg, , |F|%.

For 1< p < N, with eachF € G, is associated hall F enjoying the
properties:
- FCF,
— there is a constar@ > 0 which depends only o# such that (28)
holds,
— if F1 # F, belong toG,, their distance is at least may 2 Fi/3,
— theF's (F e Gp) are pairwise disjoint.
— F satisfies the next par(s), (iii), (iv), (v) and(vi).
(i) Forevery 2< p < N, each elemenk of G, is included in an element
L of Gp_1. Moreover F C L, log, (|F|™) > J(L) + log, (JL|7*) and
FNES,, #9.

(iii) There exists a sequen@e: {8q}q>1 such that:

— 3 is non-decreasing, andiq > 1, 8q <8,
— forevery 1< p < N andF € Gy, there is an integeq such that
FClg? = B(xg. Ad) C F, P& (lg) holds, andsy = d.

— forevery 1< p < N —1, we found an integer, such that for every
ge{np—1+1np_1+2 ...,np}, 84 = p (with the convention that
no = 0).

(iv) ForeveryF € [J;-pn Gp, Ms(F) < |F|B/dN=2¢(FD)
(v) Forevery 1< p< N —1,L € G,, andF € G4 such thatr c L,
m*(F)

F 8QU L .
ms(F) = 8Qmy (L) r
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(vi) EveryL € (J;p<n Gp satisfies (15).

The constructions of a generati@y ., of c-adic balls and an extension of
m; to the algebra generated by the eIemenﬂ@Jgg;psN+l G, such that proper-
ties(i) to (vi) hold for N 4+ 1 are done in the same way as whén= 1.

By induction, and because of the separation prop@rtyve get:

— asequencéGy)ns1 and a non-decreasing sequeﬁamnverging tas,

— a probability measumn; ono (F : F € Jy., Gn)

such that propertie@) to (vi) hold for everyN > 1. We now define

Ks=() U F

N>1 FeGn

By constructionm;(Ks) = 1 and because of proper(yi) , we haveKs C
st(l, 3, a, e1,). The measurm; can be extended t8([0, 119) by the usual way:
m;(B) := ms(BNKj) for B € B([0, 119). Finally, sinces,, < § for everyn > 1,
property(iv) implies that for everyF € [ J-; Gn,

ms(F) < |F|P/o-2¢(FD, (34)

Last step: Proof of (20). IfF € Gy, we setg(F) = N.

Let us fix B an open ball of0, 1]¢ of length less than the one of the elements
of G4, and assume th& N K; # @. LetL be the element of largest diameter in
Un>1 Gn such thatB intersects at least two elements@j 1 included inL.

We remark that this implies th& does not intersect any other elemen€gf, ),
and as a consequengg(B) < ms(L).

Let us distinguish three cases:
e When|B| > |L|: we have by (34)

ms(B) < ms(L) < ||_|/3/5—2¢>(|L|) < C|B|’3/6—2¢(|B|). (35)

e When|B| < cI®=3|L]: letLy, ..., L, be the elements dbg ;1 that
intersectB. We use propertyv) to get

p 8 d p N
m® =Y m@E L) <mLE2 S m @) (36)

— Im-| =
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Let jo be the unique integer such thatlo < |B| < ¢ lotl, Assume thaB
intersects for instance the boxés andL;i,. Then, by(i), we have|B| >
max(|Li,|, |Li,|)/3 whenjj is large enough. Consequently, whej is small
enough, we geB| > (max—;._p|Li|)/3 and the scale of the besL; (defined
as[— log, |L;|]) is always larger thafy — [log, 3] > jo — 2.

By property (ii), for eachi € {1,...d}, we haveEJ(L) NL # @ Let
y e Ej, N L; for somei, and let us conS|der theadic boxlfofz’kjofz’y. For

everyz e L;, |y — z| < ¢c~Uo=2, Thisyields

T c
L| C U Ij()fz,k'

ke [k—Kjg—2.yllo<1

The ballB intersectd., thus the distance betwegrandB is at most—o—2),
As a consequence, lfi # Li, the distance betweeyandL; is lower than
c~Uo=3 This implies that

p
Utic U © e (37)
i=1

k: [k—Kjg—aylloo=<l

Sincey € EE(L) and jo > —log, |L| + J(L) + 3, assumptior{3) ensures
the control of them-mass of the unions of all the balls that appear on the left
hand-side of (37) by the sum of the masses of the-&dic boxed sk Ik —
Kjp—3.yllo < 1. These boxes all satisfy

NEC-s o(i#)
o= (M) e () (7))

whereC depends only org. Injecting this in (36) and using thahe L; are
pairwise disjoint, we obtain that foB| small enough

A

8Q() <~ | —
my(B) < my(L) Qf”)ZmL<Li)

Im=l =
8Q) . (181" (181 ()
= MO C(E) (|L|>

C (1B’ . &
my(L)—— (—) 1B|¥®,
2 mt L
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whereC takes into account all the constant factors. We then use consecutively
two facts. First, by (34)ms(L) < |L|#%|L|=2*ILD < C|L|#/%|B|=2¢(BD which
implies, since — r#1-%9 js bounded near 0,

m;(B) < |BIP B~

B(1-1/5)
|B|/3/5|B|*3</)(IBI) (@) <

Im*| IL| ~ Imb)

Second(vi) allows to upper boungm® || by |L|~#\, which yields
ms(B) < C|L|—<ﬂ(|L|)|B|ﬂ/5|B|—3¢(\B|) < C|B|'B/5|B|_4¢(‘B|). (38)

e c '3 < |B| < |L|: we need at most?? L+ contiguous boxes of
diametecc—?~3|L| to coverB. For these boxes, the estimate (38) can be
used. Also we know bvi) thatc?™ < |L|=#(Y, so for|B| small enough

C L)+ (C—J(L)—BI L |)ﬂ/8—4¢(C’J(L)*3IL\)

ccdIwm | B|ﬁ/5—4§0(\ Bl)
C|L |—dtﬂ(\|-\) | Blﬁ/5—4¢(|5\)
C| B|/3/5—(4+d)¢(\ BD

m;(B)

INIA TN IA

Combining (35) and (38) with assumpti¢h), we obtain a universal constatt
such that for every non-trivial baB of [0, 119 small enough, we hava; (B) <
C|B|#/%|B|-4+D¢(BD  This yields (20). O

5 Dilation and Saturation. Proof of Theorem 2.2 (Case < 1)

The introduction of the condition (16) induces a modification in the construction
of the Cantor set with respect to the case= 1, in the selection of the pairs
(Xn, An). The following lemma is comparable with Lemma 4.1

Lemma 5.1. Lety e [0, 119, and assume thatl1) and (13) hold for y when
j = j(y) forsome integer (y). There exists a constaht independent of with
the following property: for every integer such thatj (1 — x(c™1)) > 18+,

for every integen such thati, € [c1+1, ¢c-1@x©")] and

B(y. (¢° — 1)c1?) C B(Xn, A2) C B(y, ¢ 1p@-x(@ ), (39)

then Py, (B(xn, A2)) holds. Moreover, the same constavitcan be chosen so
that D (B(y, r)) holds forr € (0, c=1¥-1),
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Proof. Letusfixj suchthat(39) holds, and let us denptéhe integefjo]+2
andj, the integef jo(1— x(c~1))] — 2. By definition ofj, andj,, (39) implies
thatl}; (y) C B(Xn, A8) C U\lk—kf2,y|\m51 I, k- Combining this with (11) yields

(C IV < u(B(a, ) = B (C ) VO, (40)
We havec™t < 212 = |B(Xn, A£)| < 2¢72, but by (39) we also have
C2c ) Tre T < 208 < C(2c K (41)

for some constart independent of and j. Hence, using the monotonicity of
r — r=v®, (40) and (41) yields the two inequalities

)
a '0_ 1—x(c™ 1)
M2 @) e (2 0 @) Bk, 20,

*piﬁ
(ZAg)w(zxﬁ> < (ZAﬁ)W(anl’X(C D)

for some constaritl > 1 also independent gfandj. Eventually, since (r) —

0 whenr — 0, we havewlc,j) < 14 2x(c7}) for j large enough. As a
consequence, for the same constiénive can write

M—l(ZAﬁ)a+2ax(2lﬁ)+W(2kﬁ) < n(B(Xn, )»g)).
The upper bound of (40) isptreatepd with the same arguments, and we obtain
(B(Xn, A0)) < M (200~ ex@n=v (@) HencePy, (B(Xn, A2)) holds.
To prove thatDy} (B(y,r) holds for someM > 0 independent ofy and

r € (0,c1®-1) it is enough to write that

By.nc U I
Ik—KS ylloo=<1
wherej is the largest integer such thak ¢, and then to use (13). O

If y, j and(xn, An) satisfy (16), then they also satisfy (39). This ensures that
the Cantor set we are going to build is includedir(p, 8, o, e}y).

Proof of Theorem 2.2 in the caseo < 1. Here again, the casé = 1
is obvious and left to the reader. Sinfe = (1, co), we deal with the sets
S.(p, (§)n=1, @, £);), Which are equal to the se& (p, 8, o, e}y).
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Lets > 1. Asinthe proof of Theorem 2.2, we construct a generalized Cantor
setK; in S,(p, 8, a, &y,) and a measuna, s on Ks.

First step: The first generation in the constructionkf is as follows:

Let Lo = [0, 1]9. Using assumptio(2(p)), there exist a subs&"° of EJLE’LO)
of m-measure larger thafim||/4 and an integetd’(Lg) > J(Lg) such that
vy € Elo, Vj > J'(Lo), (11) and (13) hold. There is a subgeto of E-o of
m-measure greater thami|| /8 such that for every € Elo, (16) holds.

Once again we are going to apply Theorem 3.1te= E'° and to families
B1()) of balls built as follows. Ley € Elo. We define

Ny, = inf {n .1 < ¢='° and(16) holds withj; (y) = n} . (42)
Then for everyj > J'(Ly), let us introduce the family
B1(j) = {B(y, 3c™""v») : y e EM).

For everyj > J'(Lg), the familyB,(j) fulfills conditions of Theorem 3.1.

HenceVj > J'(Lo), Q(d) families of disjoint ballsBL(j), ..., BX?(j) can
be extracted fromB1(j). The same procedure as in Theorem 2.2 allows us
to extract from these new families a finite family of disjoint ba@g(j) =
{By1, By, ..., By} such that

[Imil
m( U 8)= 500 (43)

BkeGi(j)

Recall that with eachBy can be associated a poigt € Elo so that
By = B(yk, 3c ""ixr), Let us fix one of the ball8x = B(yk, 3¢ "),
By construction, we can fintﬂc”ivw(d(lfp)*X(C_n"Yk’p))] points x, in the ball
B(yk, c™”"ixr) such that (16) holds. We denof¢By) the set of these points
Xn. The corresponding ballB(x,, 1) are pairwise disjoint. By construction,
for each of these points, € S(By), we have

B(Yk. (¢ — e "Mixnr) C B(Xn, A5) C B(yk, G PN (@) (4

Therefore each point, € S(By) such that (16) holds verifies the conditions
of Lemma 5.1. ThusP}, (B(Xn, A2)) and DY, (By) hold for some constaril
independent of the scale andxf This constanM is the one chosen to define

S.(p, 8, a, ).
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Let us now considet® = B(xn, A)). Let F,x be the closure of one of the
c-adic box of maximal diameter included 1. Since|By| = 6¢ "%, we
have|By| < C|Fnk|*/® for some constarn depending only od.

We write Bx = Fn k. Conversely, if a closed-adic boxF can be writtenB
for some larger balB, we write B = F. Pay attention to the fact that a number
equal to #(By) > [cimr@d-p=x( nj'yw))] of c-adic boxes,  can be written
as By for the same balBy. For everyc-adic boxF such that there existswith
B« = F, we ensured by construction

|F| < C|F|°/? (45)

for some constar® depending od. Moreover, thec-adic boxF is included in
a contracted ball ¥ = B(x,, A2) such thatPy, (B(x,, A£)) holds.
Since|Bx| = 6¢ "+, there isC > 0 independent df andp such that

d(L

#S(By) > [an,yk.p(d(l—m—x(c’”wkﬁ))] > CYB |~ 7 | By 1B, (46)

We eventually define
G1(j) = {Fx : Fax € Ga(i)} . (47)

We notice thaF; andF, belong toG:(j) andF; # F, then the distance between
F1 andF; is by construction at least max, o F/3.
On the algebra generated by the elemenGfj ), a probability measuna; ,

is defined by
(F)
:]S(f)

2 ety M(BO
SinceDy, (F) holds for the measunm, by (45) and (25), we have

mp,S(F) =

m(f) <M |f|/3*<p(lfl) < C||:|p/3/5 |E|*<ﬂ(lf\) <C| F|Pﬁ/3|F|*<ﬂ(\F|).

Then, we also have by (46) and (44)

d(1-p)

@#SF)~t < C[F| 7 [F|(F
< CIF|F* 52 F 2R
dd-p)

< CIF|" = |07,
Moreover, by (43) and the definition &1(j) (29), we get

> M@0z oo
BkeGa(j) Q)
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Thus,

d(1-p)+pB

VF e Gi(j), m,s(F) <16Q(d)Clim|~HF|~#IFD|F|=x(FDjE 7=,

By our assumptioifl), we can fixj, large enough so that
YV F € Gi(j1), 16Q(d)C|m|~t < |F|#(FD,

We choose the-adic elements of the first generation of the constructioK pf
as being those dB; := G1(j1). By construction

VF € Gy m,(F) < |FIT 52 m, (48)

and for everyx € g, F, there exists an integer so thatr, < ¢ *7,
[1Xn — X|loo < AS, @ndPy; (B(Xn, AR)) holds. Moreover, max.g, |F| < 2c7>/7.

Second step:The second generation is built as in the case 1, by focusing
on onec-adic boxL of the first generation. We give the essential clues to obtain
this second generation.

Using assumptior{2(p)), there exist a subse&" of Ej, , of m--measure
larger than|m"| /4 and an integed’(L) > J(L) such that for ally € E*, for
everyj > J'(L) 4 log; (IL|7"), (31) holds. Then, there exists a subBét of
E' of m--measure greater tham' || /8 such that for every e E', (16) holds.

One more time we apply Theorem 3.1 fo= EL- and to families of balls
By(j). Lety € EL. Foreveryj > J'(L) + log, (IL|7%), we define the family

Bo(j) = {B(y. 3c"Mv) 1 y e EV.

The family ﬁg(j) fulfills conditions of Theorem 3.1. Henc&(d) families of
disjoint ballsB3(j), . . ., 23?“”(]) can be extracted fror,(j). Moreover, we
can also extract from these families one finite family of disjoint b@?@j) =

{B1, By, ..., BN} such that

L jmt |
(U &)= goq “9

BkeGa(j)

Each of these ball8, can be writtenB(yy, 3¢~ ") for some pointyx €
E- and some integem; y, ,. Moreover, by (16), with eaclB, can be associ-
ated[c" s @A- -1 @ %) ] pointsx, in B(yk, ¢ %) such that (16) holds.
As above,S(By) denotes the set of these poids The corresponding balls
B(xn, An) are pairwise disjoint.
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By construction, (44) holds for each of these poixise S(Bx). Moreover,
Lemma 5.1 holds with the measuré o f, ! instead ofm and with the same
constantM. Consequently, ealch poirt € S(By) such that (16) holds is such
that Py, (B(Xn, A2)) andDr,achL (fL(Bw) hold.

We then considel® = B(x,, %), and we denote b¥, « the closure of one
c-adic box of maximal diameter included iff’. Again we have (45).

We write By = Fq«. Conversely, if a closed-adic boxF can be writtenB

for some larger balB, we write B = F. We eventually set
G5(j) = {Fak: Fax € G5(i)}. (50)

On the algebra generated by the elemeniofj), an extension of the prob-
ability measuren, ; is defined by

m- (F)
#S(F)
- L :
ZBKGG'Z-(j) m*(By)

-1
Sincel)rh“,lLofL (fL(By) and (45) hold, we get

=1\ Felim) =\ ~(E)
_ (FF F
m(F) < (U> < cIF F L <U> < CIFIF LI IF 0,

mp,S(F) = mp,S(L)

LI

where the monotonicity ok — x~¢® of assumptior(1) is used. Then (46)
appliedto F and (49) yield

16 Q(d)C
[mt ]|

dd-p)

[FI LI R0 55 e,

mp,B(F) =< mp,S(I—)

and using (48) finally gives

lGQ(d)C|Llw—ﬁ—zw(lu)—x(lu) Fld(1—§>+pﬁ7¢(|,:|)7x(|,:|)

[Im* ]
By assumptior(1) we can choosg,(L) large enough so that for every integer
j > j2(L), for everyl € G5(j),

m,s(F) <

16 Q(d)C[mb ||t L L 20l D—x (LD < | |—(FD,

Then, takingjz = max{j2(L) : L € G} and definingGz = U, g, G5 (j2),
this yields an extension ah, s to the algebra generated by the elements of
G1J G2. We have for every

dd—p)+pB _ _
FeGil JGa mus(F) < [F|7 & - 20FD-x(FD,
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We remark that by construction ¥ € G; andF € G, verify F ¢ J we have

3F
S muF) < 16Q@m, ()T

“, Im?|
F'eGy, F'=F

Also notice that by constructionF| < maxjcg, 2(c™°|J|)¥* < (2c/r)2
foreveryF € G,. Moreover,F is contained in somg?® such thatl | < C|F|,
whereC is a constant which depends only on

Third step: Assume thatN generations of closed-adic boxesGy, ..., Gy
have already been found for some inteljler- 2. Assume also that a probability
measurem, s on the algebra generated by, ,.y Gy is defined and that:

(i) The elements of5, are pairwise disjoint closed-adic boxes, and for
1<p=<N maxeg, |l =< (2c7%/°)".

For 1< p < N, with eachF € G, is associated hall F enjoying the
properties:

- FCF,

— there is a constar@ > 0 which depends only o# such that (45)
holds,

— if F1 # F, belong toG,, their distance is at least may, Fi/3,

— theF's (F € G)) are pairwise disjoint,

— F satisfies the next pars), (iii) , (iv) and(v).

(i) Forevery 2< p < N, each elemenE of G, is a subset of an element
L of Gp_1. Moreover F C L, log, (IF|™) = J(L) + log, (JL|7*) and
FNES,, #9.

(i) Forevery 1< p < N andF e Gy, there exists an integey such that
F C B(xg. A3 = 1Y € F andPy,(B(xq. 24)) holds, and1{| < C|F|
for some constart which depends only oo.

(V) For everyF € Uspoy Gp, My.s(F) < [F|* 8 -20FD—x(FD,
(v) Foreveryl< p<N —1,L € Gy, andF € Gp;s suchthatr C L,

m*(F)

Y mu(F) < 16Qm, s (L) e

F'e€Gpy1, F'=F
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The construction of a generatiday,; of c-adic boxes and an extension of
m, s to the algebra generated by the elemem@@prJrl G such that prop-
erties(i) to (v) hold for N 4+ 1 are done as wheN = 1.

Then, by induction, we get a sequer{@y)n>1 and a probability measure on
o(F : F € Uy.1Gn) such that propertied) to (v) hold for every

N>1 and K,s=() [JF

N>1 1eGn

By constructionm, 5(K, s) = 1 and because dfii) K, s C S,(p, 8, a, ey).
Finally, the measurm, s is extended t®B([0, 119y in the usual waym, ;(B) :=
m, s(BN K, s) for everyB e B([0, 1]%).

Last step: Proof of (20). IfF € Gy, recall that we segj(F) = N.

Fix B an open ball of0, 1] of diameter less than the one of the elemen(s pf
suchthatB N K, 5 # @. LetL be the element of largest diameteif)., Gn

such thatB intersects at least twisalls L; such thatl_; belongs t0Gg(L)+1 and
L; is included inL (hencem, ;(B) < m, s(L)).

e When|B| > |L]|:

dd=p)+pB _
mp,(;(L) < |IL| 5 29(ILD—x (LD

m,s(B) =<
< C|B| "5 ~20(B)-x(1B))
e When|B| < ¢ ?L-3|L|: letLy,..., L, be thec-adic boxes iGg )41

such thawi L; intersectsB. Property(v) yields

p
d
Mys(B) =) > m,s(BNL) <Zmp5(|_) QL(”)m (Li).

i=1 LEGg(L)+1, L=L; i=1 ”

Let jo be the unique integer so thatlo < |B| < c7lotl, Because ofi), we
have|B| > max |L;|/3. As aconsequencelog, |Li| > jo—[log,3] > jo—2.

The same arguments as in the proof of Theorem 2.2 (@asel) yield that
there exists an indéy and a pointy € EJ, N L;, such that J”_, L; isincluded
in Uk Ik—Kjg_aylleo<1 Ifo_s’k. Hence

m-(L;) < > mhg e, (51)

k: lk=Kjg-3ylloo<1

i
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and by definition ofE}; | |, we can boundn"(I¢ ) by

o) o(121)
s ()=o) ()

There are 3 such pairwise disjoint boxes in the sum (51), hence

o(18)
@ = 2D L)z <|B|> ()

[mt| IL| IL|
d
16Q@3'c . (1Bl |B|7¢(|BD.
jmcy L
By (iv), we obtain
My (L) < |L|“F L2t —x(Lh <) =52 g 200B)-x(1B),
which yields
d p
m (B)<—16Q(d)3c||_|d‘l‘§w 1Bl |B|~3¢(1B)-x(BI)
S TONT L] :

Then, the second property of (15) in assumpt{d allows to upper bound
Imt 1~ by |L|~#ID, which is lower thariB|~¢(BD, and thus

da-p+o8 [ | B p _ _
m,5(B) < CIL|" <m> | B BDx B, (52)

Finally, if g > 4=+ (52) yields

da- ﬂ)+,0ﬂ

ﬂ_
CIBId(l pos (Bl |B|~%(BD-x(BD
m

d(d—p)+pp _ _
< C|B| e I=] 4p(IBD—x(IBI).

m,s(B)

A

If p < 40=01H08 | (52) yields

m, s(B) < C| BIF|L| "5 8| B4 IB)-x(B) < C|B|F|B|~%(BI-x (B
In both cases, iD(B, p, §) = min (B, HTﬂ)ﬁ)

m, s(B) < C|B|P#»?|B|~#Bh=x(IBD, (53)
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e ¢ V3| < |B| < |L|: we need at most??M+4 contiguousc-adic
boxes of diametec™7(M)—3|L| to coverB. For these boxes, (53) can be
used to get

_ _ D(8,p,8)— 7J(L)73L _ 7J(L)73L
mp’(g(B) CCd(J(L)+4)(C J(L) 3|L|) (B,p,8)—4p(C ILD—x(c ILD)

CCdJ(L)| B D(ﬂ,ﬂ,5)| B|—4¢(IBD—X(\B|)
CIL |—d<ﬂ(||-|) |B| D(B,p.8) | B|—4<P(IB|)—X(IBD
C|B| D(B,0,9) | B|—(4+d)<ﬂ(|BD—X(|B|)‘

(VAN VAN VAN VY

This shows (20) and ends the proof of Theorem 2.2 when1. O

6 Examples

Section 6.1 exhibits several famili¢éx,, An)}n Which satisfy (10) or (16) for
any measuren, and form weakly redundant systems. Then Section 6.2 pro-
vides examples of triplet@, a, r*(a)) leading top-heterogeneous ubiquitous
systems. It also gives relevant interpretations to propfty

6.1 Examples of families{(Xn, An) }hen

Let us notice first that, to ensure (10), it suffices that

(N U B(¥. 2n/2) = [0, 11°. (54)

N>1 n>N

e The family of theb-adic numbers.

Fix b an integer> 2. Let us consider the sequerfckb~/, 2b=1)}, for j € N
andk = (ky, ko, ..., ky) € {0, ..., bl — 1}9. By construction, for every > 2,
Uketo.....bi_1d B(kb I b~ J) = [0, 1]9. Hence (54) is satisfied, (16) holds for

,,,,,

any measuren and the family is weakly redundant.
e The family of the rational numbers.

By Theorem 200 of [30], any point = (X1,...,%Xq) € [0, 119 such that
at least one of the; is an irrational number satisfies for infinitely mapy=
(P1, P2, - .., Pg) andq the inequality||x — p/qllee < g~ Y9, As a conse-
quence, the sequendép/q, 2q-**%)} for g € N* andp = (p1. pa. ...,
Pg) € {0, ..., q — 1}9 fulfills (54). Here again, (16) holds for any measune
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To ensure the weak redundancy, we must select only the rational numbers
{(p/g, 2q=*+D)} such that at least one fractign/q is irreducible. But (54)
is no more satisfied. Indeed, the rational numipgsthemselves do not belong
to the corresponding limsup-set (each rational number belongs only to a finite
number of ballB(p/q, 2q-*?). Nevertheless, as soon as the rational points
are not atoms ofn (for instance ifdim(m) > 0), both (10) and (16) hold. In
this case, by Theorem 193 of [30], the same holds th/q., 2/+/5G%)} when
d = 1. This family is used to prove (2).

o The family {({na}, 1/m)}, -

Let us focus on the cas® = 1 to introduce another family. Let be an
irrational number. For eveny € N, we denote byn«} the fractional part ohc.
If X ¢ Z + aZ, we havelne — X| < 1/2n for an infinite number of integens
(see Theorem I1.B in [20] for instance). Hence

R\(Z +aZ) (] | B(na}, 1/2n).

N>1 n>N

As soon asn(Z + «Z) = 0, (10) is satisfied for the family({nc}, 1/n)}n>1.
We do not know the measuresfor which (16) holds. However the following
property concerning the redundancy holds:

Proposition 6.1. {({na}, 1/n)}n>1 forms a weakly redundant system if and
only if inf {€ : #{(p,q) e Nx N*: |o — p/g| <q ¥} =00} = 2.

We know that every irrational number is approximated at &ate 2 by the
rational numbers. But the systeft{na}, 1/n)}, is weakly redundant if and
only if the approximation rate by rational numbersxofs exactly equals 2.

Proof. Notations of Definition 2.1 are used.

We remark thafl; (defined by (6)) contains exactly mtegers.

Suppose that the family is not weakly redundant. For every partitidi ioito
Nj subsets, we have limsyp_ j~logN; > 0. Let us fix such a partition.
There existe > 0 such that for infinitely many integelis we can find a real
numberx € [0, 1] such that more tharf2among the B(x,, An) e, containx.
Since these integenelong taT;, the correspondiniy, belong to2-0+b 2717,
Consequently, thesé!2ntegersn all verify |{na} — x| < 271,

By a classical argument, there are two integeasdn’ of T; such that

n#n, In—n| <2 and|{na} — {na}] < 22714+, (55)
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We deduce from (55) that there exigtse N such that||n — n'ja — p| <
2.2714%9 < 2In — '|=3+9) Hencelw — p/In — || < 2n —n’|~?®. Since
(55) holds for infinitely manyj, |n — n’| cannot be bounded gsgoes toco.
This yields
g =inf{&: #{(p,q) eNxN*: |a — p/q| =g} =00} > 2

Conversely, i, > 2,fixe € (0, & —2). Forinfinitely many(p, q) € N x N*,
we havela — p/q| < q~®*®. For such an integay, we have{nge} < 1/gn
for everyn € [1, g*/?]. Forq large enough, lef, be the largest integgrso that
[j. ] +11 C [log,(@), (1+ £/2)log,(q)]. Consider thef;,. By construction,
the point 0 belongs to at least®2 balls B(x,, An) such thatn € Tj,- Hence
Nj, > 2le¢/4. Since this holds for infinitely many’s, the conclusion follows]

e Poisson point processes.

Let Sbe a Poisson point process with intengiyv in the squarg0, 1] x (0, 1],
where) denotes the Lebesgue measurg¢@ri] andv is a positive locally finite
Borel measure ofD, 1] (see [38] for the construction of a Poisson process). Let
us take the family{(x,, An)}n equal to the seb. Letc be an integer 2. Then
for j > 1, let us introduce the quantitidy = {n: ¢ U*Y <, < c7l}, as
well as

B = jHog,v((cI7,c7U72]) and B = lim supp;.
J—00
We haveg = limsup,_, , jHog, E#T;j_) for b € {2, c}, but we use a basis
c rather than 2 in order to discuss property (16). In fact, it is a general property
that the number lim syp, ., j—llogc#TjC itself does not depend an We group
the information concerning (10), (16) and weak redundancy:

Proposition 6.2.

1. Supposef;, ;, exp(2 [, 4, v((2y, 1)) dy)dt = 4oc. This implies in par-
ticular g > 1. With probabilityl, (54) holds.

2. Fix p € (0,1). Letx be afunction defined as in Definiti(ms. If there
exists an increasing sequen@g)n>1 such thatg;, > 1— x(c™!n) +4/jn,
then with probabilityl, (16) holds for any measune.

3. {(Xn, An)}n is weakly redundant almost surely if and onlik 1.

As a consequence, if(dx) = ydi/A% with y > 1/2, with probability 1, the
systemS is weakly redundant and (54) holds. In additionyifs large enough,
with probability 1, (16) holds for any measume
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Proof.
() Itis a consequence of Shepp’s theorem (see [46] and [16]).

(i) We shall need the following lemma.

Lemma 6.3. Lety € (1,2,1). LetN be a Poisson random variable with
parameterM. For all p > 1, we have

P(N<M—M")=O(MP) (M- o).

The proof of Lemma 6.3 uses the identity
n
Mk oo yn
Zexp(—M)—:/ —e Ydu(M > 0,neN)
o k! m N

as well as Laplace’s method for equivalents of integrals.

Forj >1andO<k <cli?l —1, let15 ), « be the subset dft , , obtained by
keeping one ovet of the consecutive-adic subintervals of;j,,; k of generation
j —2,thatis

Toc= U Haae
[iplk — j—2,ci—2-lirlk+ck *

Let us also define the random sets
. -(j-D ~—(j-2 Tc
S]’k - {n . )Ln € (C ,C ], Xn € I[]p],k}’

and the random variablesj x = #Sj k. The Nj\’s are mutually independent

Poisson random variables with parametgrequal to the product af((c™0 7,

c U=2]) with |15, |, thatisM; = cl#i . ¢l
Fix y € (1/2, 1) and let

Ej={vOo<k=cl—1 Njy>=M; —M/'} for j=>1.

We haveP(Ej) = (P(Njo > Mj — M}'))C“p]. Moreover, by definition of,, we
have lim,_,, Mj, = co. Consequently, using the form M; and Lemma 6.3,
we have lim_ . P(Ej,) = 1. Since the eventg; are independent, by the
Borel-Cantelli lemma we hav&(lim sup,_, . Ej,) = 1.

A computation shows thavl;, — M/ > cBin=Pin=4 for n large enough. It
follows that with probability 1, there exist infinitely many such that for all
0 < k < clinel — 1, Nj, > clh@=r=x©™) " Moreover, by construction, the
balls B(xn, 1) for n € S x are pairwise disjoint, and ¥ < [0, 1], B(y, c ey
contains at least one of tfﬂqnp]’k’s. The conclusion follows.
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(i) If B < 1, the fact thaf(xn, An)}n forms almost surely a weakly redundant
systemis aconsequence of~the estimates obtained inthe proofs of Lemma5b
and 8 of [32] for the numbem x = #{n € Tj : X, € [k27), (k+1)27]}.

If B > 1, computations patterned after those performed in proving (ii) show
that if ¢ € (0, 8 — 1), with probability 1, there are infinitely many integeys
suchthatforalk € {0,...,cl =1}, #n € Tj : x, € If}} > ¢l*. O

e Random family based on uniformly distributed points.

Let {xh}n be a sequence of points independently and uniformly distributed in
[0, 119 and{A,}, @ non-increasing sequence of positive numbers.

We do not know conditions ensuring that (16) holds for some non-trivial mea-
surem. The following Proposition concerns (10) and weak redundancy.

Proposition 6.4.Let 8 = limsup, . . j ~‘log, #T;.

1. Suppose thdtmsup,_, | (Z’;Zlkp/z) —d logn = 4oc0. This implies
B > 1. With probability 1(54) holds.

2. Suppose thas < 1. With probability 1,{(Xn, An)}n is weakly redundant.

As a consequence, if, = y/n for somey > 2d then, with probability 1,
{(Xn. An)},, is weakly redundant and (54) holds.

Proof.
() Itis Proposition 9 of [35].

(i) The estimates of [32] invoked in the proof of Proposition 6.2(iii) also
concernNj y = #{n € T; : x, € [k271, (k + 1)271} for the example we
are dealing with (i.e(xy) is a sequence of i.i.d. uniform variables) when
d = 1. In particular, wherd = 1, a sufficient condition for the system
to be weakly redundant i§ < 1. Since a random variable with uniform
distribution in[0, 1] is a random vector iR® which components are
independent uniform random variablegh 1], the same property holds
in dimensiord if g < 1. O
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6.2 Examples of measureg and m, Interpretations of the property Py,
We give interpretations only faPy,, sincePy, contains similar information.

Given the measurg and the exponent > 0, there is typically an uncount-
able family of values o8 > 0 such that properties (11), (138) and (4) of
Definition 2.2 hold for many systeméx,, An)}n. Consequently, we seek for the
largest value oB. It follows from the study of the multifractal nature of statis-
tically self-similar (including the deterministic) measures we deal with that, in
general, this optimal value is given IBy= t;(«) (see formulas (7) and (8)).

We select four classes of measures to which Theorem 2.2 is applicable.
Other examples can be found in [28, 7, 2, 8, 14]. We keep in mind Jart
of Remark 2.1.

For the rest of this section the sequenfegneny and{in}nen are fixed, and
we assume thaD, 1)? c limsup, . ., B(Xn, An/2).

ForC,«,r > 0andy > 1/2, letec(r) = C|log(r)|~*/?(loglog| log(r)|

gc(r) = (log|log(r)|)~*, andy, (r) = C|log(r)|~*/?(log| log(r))”.

)1/2

e Product ofd multinomial measures and frequencies of digits

Let (", ..., 7)), 1 <i < d, bed probability vectors with positive com-
ponents such that

c-1 ]
an('):l, Vi<i<d.

For1<i < dlet u® be the multinomial measure g0, 1] associated with
@, ... (')1) andu = 1@ ® - - @ @ the product measure of the on
[0, 1]¢. We have

d
7,0(q) = — log, Z(n“) and 7,(0) =Y _7,0(0).
i1

It is convenient to take: = 7, (q) for some giverg € R. Let us then define
B = ti(@) = qr,(q)—1.(Q), anduq M(1)® ®M(d) Whereu(')lsthe multi-
nomial measure associated with the vecﬁuﬁxr(”(‘” (né'))q .C u“)(q)(n(') D9).

It is proved in [13] that each measurd’ satisfies propertles (11), (13B)
and(4’) with the exponents; = %w(m andgi = qu:(i)(q) - 7,0(Q), and
with m equal toug). This requires some work, because the masses af #iukic
boxes and of their immediate neighbors need to be controlled. We can choose
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m' o fl‘1 =m= [Lg), and(3) and(4") do not matter. Moreove(yp, ¥) is of the

form (¢c, ¥,).
Now, in terms of conditioned ubiquity, itis interesting to recall the well-known

interpretation of the conditions (11) and (13), which hold for eaéh in terms
of c-adic expansions (recall Section 1 and the definition (1of): For -
almost every poink; € [0, 1], for every 0< k < ¢ — 1, for all

Y € i —1Y Nk U kg +10 j”—>moo¢k,j(y) = cu @Dz,
The previous remarks yield the following result, which implies (2).

Proposition 6.5. Letq € R. The measure: satisfies propertie$ll), (13),
(3) and (4) with @ = 7,(q), B = 7, (), (¢, ) of the form(¢c, ¥,), and
mofl=m=pyqforall el.

Moreover, there exists a sequenge™, 0 such that, when applying Theo-
remz2.2, propertyQ (xn, An, 1, o, S%A,n) in (19) can be replaced by the following
condition in terms ot-adic expansion: for every <i < d, for every

T, @ ()
0 S k S C— 1, ¢k,[|ogc(xﬁl)](xn,i) —C u@) q (ﬂk )q S En,
wherex, = (Xn1, - - -, Xn.d)-
e Gibbs measures and average of Birkhoff sums

Let ¢ be a(l, ..., 1)-periodic Holder continuous function dk. Let T be
the transformation of0, 1)¢ defined by

T((X1,....%X)) =(cxx mod1...,cxy mod J).
Fork € N, let Tk denote thekt" iteration of T (T = Idjo,1¢). For every

x € [0,1)9 andn > 1, let us also define thetD Birkhoff sum ofx,

n—-1
S =D ¢(THx) aswellas Dy(¢)(X) = exp(S(¢)(X)).
k=0

The Ruelle Perron-Frobenius theorem (see [44]) ensures that the probability
measureg., given on[0, 119 by un(dx) = Dn(¢)(X) dx/flo’l)d Dn(¢)(u)du
converges weakly to a probability measur@hich is a Gibbs state with respectto
the potentialp and the dynamical syste(f0, 1)¢, T). The multifractal analysis
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of u is performed in [28, 29] for instance. Withis also associated the analytic
function

L: geR > dlog(c) + lim i tlog d Dn(q¢)(u) du,

which is the topological pressure g$. We have

L@ - L@

W@ =50

Forqg € R, let uq be the Gibbs measure definedigdut with the potentiadie.
Then, the structure gf combined with the Holder regularity gf and the law
of the iterated logarithm (see Chapter 7 of [45]) yield

Proposition 6.6. Letq € R. The measure:. satisfies propertiesll), (13),
(3) and (4") with @ = 7,(q), B = 7;(), bothy and ¢ of the formgc, and
m o fit=m=pqforalll el.

There existC > 0 such that, applying Theore2, in (19) the property
Q(Xn, An, 1, E%A,n) can be replaced in terms of average of Birkhoff sums by:

IL'(@) — Ayjiog,u1(%n)| < @c(hn),  Where Ap(x) = Sp(i)(X).

e Independent multiplicative cascades, average of branching random walks

For these random measures, the situation is subtle. Indeed, the study achieved
in[14] concludes that proper{y) can be satisfied for some systefos,, An)}n>1,
while the strong propert{4’) fails because of the unavoidable large values of
J(L) for somec-adic boxed..
Let us recall that these measugesare constructed as follows. L&t be a
real valued random variable. Let us defineq € R — dlog(c) + logE(e%%),
and assume thdt(1) < co. For everyc-adic boxJ included in[0, 119, let
X; be a copy ofX. Moreover, assume that th¢;’s are mutually independent.
The branching random walk is then

¥xe[0,14 Vn>1 S(X) = > X;. (56)

Jel, c"<|J|<c 1, xed

The measure is obtained as the almost sure weak limit of the sequence
on [0, 1] given byua(dx) = (E€*)) "e™™ dx.
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Let
LW - L@

log(c)

In [39, 37], it is shown tha#’(17) > 0 is a necessary and sufficient condition
for u to be almost surely a positive measure with support equid, tb]?. The
multifractal nature ofx or of variants ofu has been investigated in many works
[36, 31, 25, 42, 1, 41, 4]. We need to consider the intefiaf the interval
{geR: 6'()g—0(q) > 0}

Foreveryy € 7 and everg-adic boxl in[0, 1)¢, letus introduce the sequences
of measuregiq n andm('q’n defined as followsyuq n is defined age, but using
X3(Q) := gX; instead ofX; in (56), andm('w is defined aguqn but with
qulfl(J) instead ofX;(q) in (56).

Itis shown in [4] that, with probability Iy q € 7, the measureg, , converge
weakly to a positive measuyg, on|0, 1]9: In addition,Y q € 7, for everyc-adic
box | of generatiore 1, the sequence of measureé.,n converges weakly to a
measuren;, on [0, 1]%, andz,(q) = 6(q) on 7.

The following result is a consequence of Theorem 4.1 in [14].

0:qeR—

Proposition 6.7. Suppose thatm sup, ., ., B(Xn, An/4) D (0, 1)¢.

For everyq € 7, with probability 1 (and also with probability 1, for almost
everyq € 7), u satisfies propertiesll), (13), (3) and (4) with the exponents
a = 1,(q)andg = 7 (), (¢, ¥) of the form@,. ¥,,), m = pg, m'o ft= m,
forall | el,andD = QN (1, c0).

There existyy > 1/2 such that, applying Theore@2, in (19) the property
9 (Xn, Any 1, EJM,n) can be replaced in terms of average of branching random
walks by:“—/(Q) - A[\logc(xn)u(xn)’ < ¥, (2hn), WhereAy(X) = Sy(X)/p.

e Poisson cascades and average of covering numbers in thd eade

Let ¢ > 0 andS a Poisson point process It x (0, 1) with intensity A
given by A(ds d) = £dsdr/20%. For everyc-adic box | of [0, 1], define
S = {(f7t®), 1117 : (t,») € S, & < [I]}. The point proces§, is a copy
of S.

For evenyt € [0, 1] ande € (0, 1], the covering number dfat heights by the
Poisson interval§(s — A, s+ 1) : (s, A) € S} is defined by

NSO = D Lsasan® =#{( 1) eS: =6 te(s—2s+1}
(t,A)€S, A>¢
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The measurg on [0, 1] is the almost sure weak limit, as— 0, of
pe(dt) = (E(V0)) N0 gt = 8D gt (57)

LetL:qeR— & 1+e'—1,andle: ge R £(qL1) — L(q)).

In [7], itis shown tha®’(17) > 0 is a necessary and sufficient condition for
w to be almost surely a positive measure supportef®b)?. Let 7 = {g e R :
6’(q)g —6(q) > 0. Itis also shown in [7] that, with probability 1, for ajl€ 7,
the measuregq . on [0, 1] given by j1q . (dt) = 5@ -DeIN® gt converge
weakly, ase — 0, to a positive measurgq on [0, 1]; moreover, for every
g € 7, for everyc-adic intervall of generation> 1, the family of measurema)g
constructed agq,. but with N‘,f4 (t) instead ofNSS(t) in (57) converges weakly,
ase — 0,toa measurm('q on [0, 1]; finally, we haver, (q) = 6(q) on 7.

The same conclusions as in Proposition 6.7 hol@ ik, An, 1, «, S%A,n) is
replaced by

L'(a) + Ny, (Xn) | = ¥y (2hn).

1
& log(An)
More on covering numbers and related questions can be found in [5, 6].
6.3 Example wheredim (lim sup,_, o, B(Xn, 2n/2)) < d.

Let us return to the example of Gibbs measw@s Section 6.2. Letp > 0. Fix
X asubset oR such that;, (X) N (z, (o), 7,,(—0o)) = . Define the system

] B((k+1/2),c
{(xn,xn)}={((k+1/2)0_"0_1): ogu ( E(j Iog(é)) c))

Let S=limsup,_, ., B(xh, An/2). For everyg € X, we haveuq(S) = 1 and

eac}.

dim S < max(z;(z;,(—0p)). 7, (t,,(0o))) < d.
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