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A holomorphic extension theorem
from a fractal hypersurface in C2
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Abstract. We consider the problem of identifying boundary values of holomorphic
functions on bounded domains in C2. We use the quaternionic analysis techniques to
extending the CR structure to a pure function theoretical nature. The advantage of our
procedure lies in the fact that it also runs for domains with fractal boundary.
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1 Introduction

Holomorphic functions of several complex variables admit many unexpected and
intriguing phenomena and the attempt to extend the remarkable feature of this
theory to more general analogous has a long history. For a general background
on complex analysis with several variables the reader may consult the books
[7, 22, 23] and the references given there.

Quaternionic analysis is a natural generalization of the holomorphic functions
theory in the complex plane to four-dimensional Euclidean space that preserves
many of its basic features. It is centered around the notion of a hyperholomorphic
function, i.e., null solutions of the Cauchy Riemann operator rewritten as a
quaternionic one. For a general account of this theory we refer the reader to
[14, 15, 25].

The aim of this paper is to bring together these two theories in order to shed
some new light on the problem of holomorphic extension from the boundary in
absence of smoothness of the domain.
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2 Preliminares

2.1 C2 and quaternions

Let C2 = C × C denote the two−dimensional complex Euclidean space with
product topology. The coordinates of C2 will be denoted by z = (z1, z2) with
zs = x2s + i x2s+1, s = 0, 1. Thus, C2 can be identified with R4 in a natural
manner.

We embed the usual complex linear space C2 into the skew–fieldH of Hamil-
ton’s quaternions by means of the mapping that associates the pair

(z1, z2) = (x0 + i x1, x2 + i x3)

with the quaternion

z = z1 + j z2 = x0 + i x1 + j x2 − kx3 ∈ H.

Here we denote by i, j, k the basic quaternions, and the imaginary unit of C
is identified with i .

Throughout the paper z1 and z2 stand for the complex components of the
quaternion z.

If {ζ, z} ⊂ C2, then < ζ, z >:= ζ1z1 + ζ2z2 and |z|2 := |z1|2 + |z2|2.
As a matter of fact, the above embedding means that C2 becomes endowed

with an additional structure of a skew field. In particular, the commutation rule
is then: aj = ja for every a ∈ C ⊂ H, and the two quaternions z = z1 + j z2

and ζ = ζ1 + jζ2 are multiplied according to the rule:

z ζ = (z1ζ1 − z2ζ2) + j (z1ζ2 + z2ζ1).

Corresponding to each quaternion z = z1 + j z2 is the conjugate quaternion
z = z1 − z2 j . An important property of the quaternionic conjugation is:

z z = z z = (z1 + j z2)(z1 − z2 j) = |z|2.

Note that the introduced terminology agrees with the one given in [20, 21]. For a
recent account of the properties of the quaternions taken in the form z = z1 + j z2

we refer the reader to [16], Appendix 2, pp. 216–217.

2.2 Holomorphic and hyperholomorphic functions

As for prerequisites, the reader is expected to be familiar with the elementary
aspects of the quaternionic and complex analyses in C2, reason why in this
section we will touch only a few of the standard facts.

Bull Braz Math Soc, Vol. 38, N. 4, 2007



“main” — 2007/11/30 — 19:47 — page 637 — #3

A HOLOMORPHIC EXTENSION THEOREM FROM A FRACTAL HYPERSURFACE IN C2 637

A C-valued differentiable function f = f (z1, z2) is said to be holomorphic
in a domain � ⊂ C2 if

∂ f

∂ z1
= 0,

∂ f

∂ z2
= 0 in �.

Let O(�) denote the ring of C-valued functions that are holomorphic in the
domain � of C2. Using the complex 1-form

∂ =
∂

∂z1
dz1 +

∂

∂z2
dz2,

which is referred to as Cauchy-Riemann operator, we have that f ∈ O(�) iff
∂ f = 0 in �.

In what follows, D stands for the quaternionic Cauchy Riemann operator

D =
∂

∂x0
+ i

∂

∂x1
+ j

∂

∂x2
− k

∂

∂x3
= 2{

∂

∂z1
+ j

∂

∂z2
},

associated to the structural vector (1, i, j, −k).

A quaternion valued continuously differentiable function F is called hyper-
holomorphic in a domain � ⊂ C2, denoted by F ∈ H (�), if D[F] = 0 in �.

With the notation F = f1 + f2 j , hyperholomorphy of F is equivalent to the
following system of complex differential equations

∂ f1

∂z1
=

∂ f 2

∂z2
,

∂ f1

∂z2
= −

∂ f 2

∂z1
.

We remark that one may naturally identify the operator D with the complex
1-form ∂. In [8] such an identification is detailedly reviewed in a more general
setting.

It is easy to check that any holomorphic mapping ( f1, f2) in � defines a
hyperholomorphic function F = f1 + f2 j . Furthermore, if one of the functions
(say f1) is holomorphic, then F = f1 + f2 j is hyperholomorphic in � iff f2 is
holomorphic there.

In particular a C-valued function is holomorphic in � iff it is hyperholomor-
phic in �.

To cause no confusion, we will use small letters to denote C-valued functions
otherwise capital letters to denote those H-valued.

Accordingly this, we use the same symbol to denote the usual spaces of either
C-valued functions or H-valued functions. In this manner, the spaces of all
continuous, k-time continuous differentiable and α-Hölder continuous (0 < α ≤
1) functions are denoted by C(E), Ck(E) and 3α(E), respectively, where E can
be any suitable subset of C2.
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2.3 Cauchy and Bochner-Martinelli kernels

If ω4 stands for the surface area of the unit sphere in C2 then

K (z) :=
1

ω4

z

|z|4
=

1

ω4

z1 − z2 j

|z|4
, z 6= 0

generalizes the Cauchy kernel in the plane, more precisely K (z) is the funda-
mental solution (in the distributional sense) of the operator D. Clearly, it is
hyperholomorphic in C2 \ {0}.

From now on, � ⊂ C2 stands for an oriented bounded domain whose boundary
is a compact topological hypersurface 0. We shall first assume that 0 is a
properly smooth hypersurface guaranteeing existence of a unit normal vector
ν everywhere on 0. Nonetheless, starting from Subsection 3.1 instead of the
smooth restriction, certainly much more weaker geometric assumptions will be
required on the boundary of the domains under consideration.

It is easy to establish by direct calculation that

K (ζ − z)ν(ζ ) = u(ζ, z) + jm(ζ, z), ζ ∈ 0, z 6= ζ, (1)

where

u(ζ, z) :=
1

ω4

〈ζ − z, ν(ζ )〉

|ζ − z|4
,

is the classical Bochner-Martinelli kernel and m(ζ, z) is given by

m(ζ, z) := −
1

ω4

〈ζ − z, jν(ζ )〉

|ζ − z|4
.

This construction follows [1, 4, 26] and elsewhere, but the idea goes back at least
as far as [13].

For F ∈ C(0) the Cauchy transform of F , given by

KF(z) :=
∫

0

K (ζ − z)ν(ζ )F(ζ )dζ, z /∈ 0,

defines a hyperholomorphic function 0. Its boundary limit values

K+F(t) := lim�3z→t KF(z),
K−F(t) := limC2\�3z→t KF(z),

and the Hilbert transform of F , i.e.,

SF(t) := 2 lim
ε→0+

∫

{ζ∈0: |ζ−t |>ε}

K (ζ − t)ν(ζ )F(ζ )dζ, t ∈ 0, (2)
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are related by the so-called Plemelj-Sokhotski formulae, namely:

K±F(t) =
1

2
(SF(t) ± F(t)), t ∈ 0.

Of course, one must be worried about the existence of the limits everywhere
on 0.

There is obvious evidence that if the smooth property of 0 is not any more
assumed, then even for F = 1 the Hilbert transform S1 could fail to be a con-
tinuous function on 0. To avoid this difficulty we could replace (2) into the
following

SF(t) := 2 lim
ε→0+

∫

{ζ∈0: |ζ−t |>ε}

K (ζ − t)ν(ζ )(F(ζ ) − F(t))dζ + F(t), t ∈ 0.

However, restricting to C1-smooth boundary, it is easy to see that both Hilbert
transforms coincide. For that reason here and subsequently, we use the same
letter S for both Hilbert transforms.

The principal significance of the relation (1) is that it allows one to express the
classical Bochner-Martinelli transform in terms of the first complex component
of the Cauchy transform above defined. In fact, for a C-valued function f
we have

K f (z) = U f (z) + jM f (z), z /∈ 0, (3)

where

U f (z) :=
∫

0

u(ζ − z) f (ζ )dζ

is the Bochner-Martinelli transform of f and

M f (z) :=
∫

0

m(ζ − z) f (ζ )dζ.

A nice presentation of the study of the Bochner–Martinelli transform can be
found in [17].

According to the complex structure of the formula (3), we have

K± f (t) = U± f (t) + jM± f (t), t ∈ 0. (4)

Let us remark that whenM f (z) = 0, z /∈ 0, then the Cauchy transform becomes
C-valued and coincides with the Bochner-Martinelli one. Under this assump-
tion the machinery developed for the former could be directed toward setting
conjectures about the latter.
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3 Extension from the boundary

Let 0 be a C1-smooth hypersurface in C2 and suppose that f ∈ C1(0). Then
∂ f can be decompose on 0 into two terms, one of which, ∂ N f is directed in
the direction of the complex normal vector to 0 at this point, and the other, the
so-called tangential Cauchy Riemann operator, ∂T f := ∂ f − ∂ N f , is directed
complex-ortogonally to this normal.

A C-valued function f ∈ C1(0) satisfies the tangential Cauchy-Riemann
condition on 0, or more briefly, f is a CR-function on 0, if ∂T f = 0 on 0.

These notations overlap with the book of Shabat [23].
The following theorem, to which this section is devoted, asserts that every

function that is holomorphic, in two alternative senses, on the boundary of a
domain can be extended holomorphically into the whole domain.

The meaning of holomorphy on the boundary is considered in terms of either
the tangential Cauchy-Riemann condition or a conservation law on the Hilbert
transform. The advantage in using the latter lies in the fact that it can be con-
sidered under a relaxed assumption on the boundary. Moreover, the picture thus
obtained offers an essentially enriched approach to this topic.

Theorem 1. Suppose that in C2 we are given a domain � with C1-smooth
boundary 0 and let f ∈ C1(0). Then, the following conditions are equivalent:

(i) f is a CR-function on 0

(ii) f has holomorphic extension to �

(iii) S f = f on 0.

Proof. A direct proof of (i) ⇔ (ii) (Bochner-Severi Theorem) can be found
in many sources, see, e.g., [23] §11, Theorem 2 or [18] §8, Theorem 8.20.

Next, let us prove that (ii) ⇔ (iii).
It follows from (ii) that there exists a C-valued function f̃ on � which is

holomorphic on �, continuous in �, with f̃ |0 = f .
Note that, guaranteed by the assumption, we have

K f (z) =
{

f̃ (z), z ∈ �,

0, z ∈ C2 \ �.

Therefore, K− f (t) = 0 and, in consequence, S f = f .

Conversely, suppose that (iii) holds. We claim that the function K f is a
holomorphic extension of f to �. Indeed, from (iii) we conclude that K f is

Bull Braz Math Soc, Vol. 38, N. 4, 2007
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a hyperholomorphic extension of f , then we are left with the task of proving
that K f is C-valued. In order to get this, we can use the Plemelj-Sokhotski
formulae to conclude that the boundary limit values M± f (t) = 0. Since M f
is real harmonic off 0, we have by the classical Dirichlet problem that M f ≡ 0
in C2. Then, K f ≡ U f and the proof is complete. �

3.1 Some coments and more delicate results

Although we have been working under the assumption that f ∈ C1(0), it should
be noted, however, that Theorem 3 still holds if it is just assumed that the func-
tion f is merely continuous on 0 and condition (i) is understood in the week
sense of Definition 8.17 in [18], but we will not develop this point here.

After that only the continuity of f is assumed, the proof of (ii) ⇔ (iii) more
strongly depends on the assumption that S f = f, but now uniformly, since
the Cauchy transform of a continuous function has not in general continuous
boundary limit values even for C1-smooth boundary.

A more sophisticated arguments, see [9], enables one to prove a generalized
version of Theorem 3, if 0 can be thought of as a regular and rectifiable hyper-
surface. In this more general context, the a priori smoothness restrictions on 0

may be enterely avoided, however, if the pointwise normal vector occuring in
the definition of the Cauchy transform is replaced by the exterior normal of �

in the Federer’s sense which is defined in [12].

Definition 1. We say that 0 is a rectifiable hypersurface if it is the Lipschitz
image of some bounded subset of R3. Meanwhile, we call 0 a regular hypersur-
face, if there exists a constant c > 0 such that

c−1r3 ≤
∫

{ζ∈0:|ζ−t |≤r}

dζ ≤ cr3,

for all t ∈ 0 and 0 < r ≤ diam 0.

For a deeper discussion of these concepts we refer the reader to [10, 12, 19].

Theorem 2. Suppose that in C2, we are given a domain � with regular and
rectifiable boundary 0, and let f ∈ C(0). Then, f has holomorphic extension
to � if and only if S f = f uniformly on 0.

Proof. The proof follows by the same method as in Theorem 1, but it strongly
depends on the uniform existence of S f and the conclusion of Theorem 6
in [9]. �

Bull Braz Math Soc, Vol. 38, N. 4, 2007
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The following result may be proved in much the same way as Theorem 2.
It makes no appeal to the uniform existence assumption on S f with “continu-
ity” of f replaced by “Hölder continuity”.

Theorem 3. Let � ⊂ C2 with regular boundary 0 and let f ∈ 3α(0), 0 <

α ≤ 1. Then, f has holomorphic extension to � if and only if S f = f at all
point of 0.

Proof. By means of Theorem 4.1 in [5], §4, we can compute the jump of the
Cauchy transform K f passing across the boundary 0 having in proving the
formula

f = K+ f +K− f.

For the assumption, we then obtain that K+ f is continuous on � anK+ f = f
on 0. �

4 Extension from a fractal boundary

4.1 Whitney extension theorem

In this section we will be concerned with the problem of extending holomorphi-
cally a C-valued Hölder continuous function given on the fractal boundary 0 of
a domain �. The fractal requirement on 0 is understanding in the Mandelbrot
sense, i.e., if its Hausdorff dimension is strictly greater than 3 (see [11]).

The properties of the Whitney decomposition of the complement of a compact
set in Euclidean spaces, see [24], enable us to write the Whitney extension
theorem as follows.

Theorem 4. Let F ∈ 3α(0), 0 < α ≤ 1. Then there exists a function
E0 F ∈ 3α(C2) with compact support satisfying

(i) E0 F |0 = F,

(ii) E0 F ∈ C∞(C2 \ 0),

(iii) |DE0 F(z)| ≤ C [dist(z, 0)]α−1, z ∈ C2 \ 0.

4.2 The main theorem

In Theorem 2, the boundary 0 is required to be a regular and rectifiable hyper-
surface both assuring the finiteness of the three-dimensional Hausdorff measure

Bull Braz Math Soc, Vol. 38, N. 4, 2007
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of it. If 0 is one of kind to which this measurable nature can be missed, serious
difficulties appear, because the Cauchy transform loses its meaning and becomes
necessary to use a new method which does not use boundary integration and can
thus be used on fractal domains.

For the convinience of the reader we repeat the relevant material from [3, 6],
thus making our exposition self-contained:

Let � ⊂ C2 with boundary 0. They were able to show that for F ∈ 3α(0),
0 < α ≤ 1, when the exponent α and the Minkowski dimension M(0) of the
hypersurface 0, see [19], satisfy the relation

α >
M(0)

4
, (5)

then the functions given by the formulas

F+(z) = E0 F(z) + T�DE0 F(z)

F−(z) = T�DE0 F(z)

are hyperholomorphic in � and C2 \ �, respectively, continuous in the corre-
sponding closed domains and satisfy on 0 the jump relation:

F(t) = F+(t) − F−(t).

Here and subsequently T�G denote the Theodoresco transform of a function G
defined by

T�G(z) := −
∫

�

K (η − z)G(η)dη.

For details regarding the basic properties of Theoderesco transform, we refer the
reader to [14, 15].

It is essential to point out that, under condition (5), D(E0 F |�) is integrable
in � with any degree no greater than 4−m

1−α
, i.e., under condition (5) it is integrable

with certain exponent greater than 4.
At the same time, T�DE0 F is a μ−Hölder continuous function in the whole

C2 with

μ <
4α − M(0)

4 − M(0)
,

which is due to the fact that T�DE0 F satisfies the Hölder condition with expo-

nent 1 −
4

p
.
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When condition (5) is violated then some obstructions can be constructed as
we have proved in [2], Section 5.

In the sequel we assume α and M(0) to be connected by (5).
Based in the previous arguments, thus we are led to the following theorem

proved in [2].

Theorem 5. Let F ∈ 3α(0). If F has an extension F̃ ∈ H (�)∩3α(�), then

T�[DE0 F]|0 = 0. (6)

Conversely, if (6) is satisfied, then F has an extension F̃ ∈ H (�) ∩ 3μ(�)

for some μ < α.

Having dispossed of this result, we are in position to show our main holomor-
phic extension theorem for C-valued functions on fractal domains.

Theorem 6. Let f ∈ 3α(0). If f has an extension f̃ ∈ O(�) ∩ 3α(�), then

T�[DE0 f ]|0 = 0. (7)

Conversely, if (7) is satisfied, then f has an extension f̃ ∈ O(�) ∩ 3μ(�)

for some μ < α.

Proof. Let us suppose (7) holds. Then, by Theorem 4.2, f has hyperholomor-
phic extension F̃ to �. The task is now to prove that it is C-valued.

In fact, writing F̃ = f̃1 + f̃2 j we obtain for f̃2 the classical Dirichlet problem

4 f̃2 = 0, f̃2|0 = 0,

which implies f̃2 = 0 as required.
On the other direction the proof is immediate. �

Corollary 1. Let � ⊂ C2 with rectifiable boundary 0. If a function f ∈
31(0) satisfies the condition (7), then f can be extended into the domain � to
a function that is holomorphic in � and continuous in �.

Proof. What is essential here is that the Minkowski dimension of a rectifiable
hypersurface inC2 is equal to three. Thus, the condition (5) is evidently fulfilled
for the Hölder exponent α = 1. �
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