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Stable bundles on 3-fold hypersurfaces
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Abstract. Using monads, we construct a large class of stable bundles of rank 2 and 3
on 3-fold hypersurfaces, and study the set of all possible Chern classes of stable vector
bundles.
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1 Introduction

Given a projective variety X , a linear monad on X is a complex of holomorphic
bundles of the form:

0 → OX (−1)⊕a α
−→ O⊕b

X
β

−→ OX (1)⊕c → 0 , (1)

which is exact on the first and last terms. In other words, α is injective and
β is surjective as bundle maps, and βα = 0. The holomorphic bundle E =
ker β/Im α is called the cohomology of the monad; bundles that can be obtained
as the cohomology of a linear monad are known as linear bundles. We will also
be interested in the kernel bundle K = ker β, which is the dual to what is known
in the literature as a Steiner bundle. Such objects have been extensively studied
by a number of authors; more on linear monads and their cohomology bundles
can be found in [1, 11, 12, 13] and the references therein. Steiner bundles were
considered in [1, 3, 5, 12, 14].

The goal of this note is to use linear monads to construct stable bundles of
rank 2 and 3 on hypersurfaces within P4. More precisely, we prove:
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Main Theorem. Let X be a 3-dimensional non-singular complex projective
variety with Pic(X) = Z, and let H = c1(OX (1)). Consider the following linear
monad:

0 → OX (−1)⊕c α
−→ O⊕2+2c

X
β

−→ OX (1)⊕c → 0 (c ≥ 1). (2)

1. The kernel K = ker β is a stable rank c + 2 bundle with c1(K ) = −c ∙ H

and c2(K ) =
1

2
(c2 + c) ∙ H 2;

2. the cohomology E = ker β/Im α is a stable rank 2 bundle with c1(E) = 0
and c2(E) = c ∙ H 2.

The cohomology of a linear monad of the form (2) is known as an instanton
bundle [11, 12, 13].

Our motivation is twofold. First, we will see that it is actually impossible to
have an inequality of the form:

1(E) =
1

r2

(
2rc2(E) − (r − 1)c1(E)2

)
∙ H ≥ κc2(T X) ∙ H (3)

where E → X is a stable bundle of rank r , H is the class of an ample line
bundle on X and κ some universal positive constant, if the underlying variety X
is allowed to be too general. Such a stronger version of the Bogomolov inequality
was proposed, based on physical grounds, in [6, Conjecture 2.1] with κ = 1/12;
this conjecture was withdrawn in a revised version of [6]. Second, we present
a generalization to 3-fold hypersurfaces of a result due to Hartshorne on the
characterization of all possible cohomology classes that arise as Chern classes
of stable bundles on P3.

It is also worth mentioning that cohomologies of linear monads of the form

0 → OX (−1)⊕c+l α
−→ O⊕3+2c+l

X
β

−→ OX (1)⊕c → 0 (c, l ≥ 1)

are stable rank 3 bundles E with c1(E) = l ∙ H and c2(E) = (c+l(l +1)/2) ∙ H 2,
see [13, Theorem 10]. In addition, cohomologies of linear monads of the form

0 → OX (−1)⊕c α
−→ O⊕r+2c

X
β

−→ OX (1)⊕c → 0 (c ≥ 1, r = 3, 4, 5)

are semistable rank r bundles E with c1(E) = 0 and c2(E) = c ∙ H 2, see [13,
Theorem 7]. Further results regarding the (semi)stability of linear monads on
higher dimensional projective varieties were also estabished in [13].
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Finally, the second part of our Main Theorem may be regarded as the simplest
case of a more general conjecture: every rank 2n instanton bundle on a complex
projective variety X of dimension 2n + 1 with cyclic Picard group is stable.
Even for X = P2n+1, the conjecture has remained open for more than 20 years;
it is known to be true only for X = P5 [1] and for the case c = 1 (a.k.a
nullcorrelation bundles) on X = P2n+1 [7].

This note is organized as follows. After recalling some standard facts about
hypersurfaces within complex projective spaces in Section 2, we explicity estab-
lish the existence of monads of the form (2) in Section 3. Possible generalizations
of the Bogomolov inequality are discussed in Section 4. The proof of the Main
Theorem is left to Section 5.

2 Hypersurfaces and monads on hypersurfaces

A hypersurface X(d,n) ↪→ Pn of degree d is the zero locus of a section σ ∈
H 0(OPn (d)); for generic σ , its zero locus is non-singular. It follows from the
Lefschetz hyperplane theorem that every hypersurface is simply-connected and
has cyclic Picard group [3]. It is also easy to see that hypersurfaces are arith-
metically Cohen-Macaulay, that is H p(OX (k)) = 0 for 1 ≤ p ≤ n − 2 and all
k ∈ Z. Finally, the restriction of the Kähler H̃ class of Pn induces a Kähler class
H on X(d,n), which is the ample generator of Pic(X(d,n)). One can show that:

c1(T X(d,n)) = (n + 1 − d) ∙ H and

c2(T X(d,n)) =
(

d2 − (n + 1)d +
1

2
n(n + 1)

)
∙ H 2 . (4)

Given a fixed ample invertible sheaf Lwith c1(L) = H on a projective variety
V of dimension m, recall that the slope μ(E) with respect to L of a torsion-free
sheaf E on V is defined as follows:

μ(E) :=
c1(E) ∙ H m−1

rk(E)
.

We say that E is stable with respect to L if for every coherent subsheaf 0 6=
F ↪→ E with 0 < rk(F) < rk(E) we have μ(F) < μ(E).

In the case at hand, stability will always be measured in relation to the tau-
tological line bundle OX (1) on the hypersurface X(d,n), whose first Chern class,
denoted by H , is the ample generator of Pic(X(d,n)).

Given a linear monad on X = X(d,n) as in (1), note that

ch(E) = b − a ∙ ch(OX (−1)) − c ∙ ch(OX (1)) .
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In particular,

rk(E) = b − a − c ,

c1(E) = (a − c) ∙ H and

c2(E) =
1

2
(a2 − 2ac + c2 + a + c) ∙ H 2 ,

(5)

where in this case H = c1(OX (1)). The discriminant of the linear bundle is
given by:

1(E) =
1

rk(E)2

(
2rk(E)c2(E) − (rk(E) − 1)c1(E)2

)
∙ H n−3

=
b(a + c) − 4ac

(b − a − c)2
.

(6)

We will also be interested in the kernel bundle K = ker β; it has the following
topological invariants:

rk(K ) = b − c , c1(K ) = −c ∙ H and c2(K ) =
1

2
(c2 + c) ∙ H 2 , (7)

and

1(K ) =
1

rk(K )2

(
2rk(K )c2(K ) − (rk(K ) − 1)c1(K )2

)
∙ H n−3

=
bc

(b − c)2
.

(8)

In particular, for the monads as in (2) considered in our Main Theorem, we have
a = c and b = 2 + 2c, so the formulas above reduce to:

rk(E) = 2 , c1(E) = 0 and 1(E) = c , (9)

and

rk(K ) = c + 2 , c1(K ) = −c ∙ H and 1(K ) =
2c(c + 1)

(c + 2)2
. (10)

Fløystad has proved a very useful existence theorem for linear monads on
projective spaces in [8]; it was later adapted to linear monads on quadric hyper-
surfaces in [4]. Their argument is easily generalizable to hypersurfaces, and one
has the following result.
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Theorem 1. Let X = X(d,n) be a non-singular hypersurface of degree d
within Pn , n ≥ 3. There exists a linear monad on X as in (1) if and only
if

• b ≥ a + c + n − 2, if n is odd;

• b ≥ a + c + n − 1, if n is even.

The existence of the monad (2) above is guaranteed by this Theorem; how-
ever, since we do not give a proof of Theorem 2 in this letter, we will explicitly
establish the existence of monads of the form (2) in the next Section 3.

It is worth mentioning that the monad construction does not yield stable rank
2 bundles with odd first Chern class; to construct those, one needs a variation of
the usual Serre construction. For example on P3, this construction provides a 1-1
correspondence between rank 2 bundles and certain codimension 2 subvarieties
of P3; see Hartshorne’s paper [9].

3 Existence of linear monads on 3-fold hypersurfaces

Let X = X(d,4) be a generic, non-singular hypersurface of degree d within
P4; let

[
x0 : x1 : x2 : x3 : x4

]
be homogeneous coordinates in P4. We will now

explicitly establish the existence of linear monads of the form

0 → OX (−1)⊕c α
−→ O⊕2+2c

X
β

−→ OX (1)⊕c → 0 , c ≥ 1 .

Consider the c × (c + 1) matrices:

B1 =








x0 x1

x0 x1
. . .

. . .

x0 x1








and B2 =








x2 x3

x2 x3
. . .

. . .

x2 x3








,

and the (c + 1) × c matrices:

A1 =










x1

x0 x1
. . .

. . .

x0 x1

x0










and A2 =










x3

x2 x3
. . .

. . .

x2 x3

x2










.
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Notice that all four matrices have maximal rank c. It easy to check that:

B1 A2 = B2 A1 =








σ1 σ2 0 ∙ ∙ ∙ ∙ ∙ ∙ 0
σ0 σ1 σ2 0 ∙ ∙ ∙ 0

. . .
. . .

. . .

0 ∙ ∙ ∙ ∙ ∙ ∙ 0 σ0 σ1








,

where σ0 = x0x2, σ1 = x0x3 + x1x2 and σ2 = x1x3.

Now form the linear monad:

0 → OX (−1)⊕c α
→ O⊕2+2c

X
β
→ OX (1)⊕c → 0

where the maps α and β are given by:

β =
(

B1 B2
)

and α =
(

A2

−A1

)

Clearly, both maps are of maximal rank c for every point
[
x0 : x1 : x2 : x3 : x4

]
∈

X , and βα = B1 A2 − B2 A1 = 0.

Example. Setting c = 1 in the construction above, one obtains the following
linear monad

0 → OX (−1)
α

−→ O⊕4
X

β
−→ OX (1) → 0 (11)

with maps given by:

α =







x3

x2

−x1

−x0





 and β =

(
x0 x1 x2 x3

)
.

It follows from the Main Theorem that the cohomology E of the monad (11) is
a stable rank 2 bundle with c1 = 0 and c2 = H 2, while its kernel bundle K is a
stable rank 3 bundle with c1 = −H and c2 = H 2. From equations (9) and (10),
we have that 1(E) = 1 and 1(K ) = 4/9, and since both 1(E) and 1(K ) are
increasing as functions of c, we conclude that these are actually the minimum
values for the discriminant of the bundles considered in our Main Theorem. �

In the next Section, we will use the previous Example to show that it is actually
impossible to have an inequality of the form (3) if the underlying variety is
allowed to be too general, as claimed at the Introdution.
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4 Chern classes of stable rank 2 bundles on 3-fold hypersurfaces

The characterization of all possible cohomology classes that arise as Chern
classes of stable bundles on a given Kähler manifold is not only of mathematical
interest, but it is also relevant from the point of view of physics: it amounts to
describing the set of all possible charges of BPS particles in type IIa superstring
theory. Besides the Bogomolov inequality 1(E) ≥ 0 for every stable bundle E ,
few general results for higher dimensional varieties are available in the literature.

It is not known whether the Bogomolov inequality is actually sharp; however,
it is impossible to have an inequality of the form (3) if the underlying variety is
allowed to be too general, even if the dimension is fixed. Indeed, as noted in the
Example at the end of the previous Section, one can always find a stable rank 3
bundle K over X(d,4) with 1(K ) = 4/9. On the other hand, formula (4) shows
that for fixed dimension n, the right hand side of (3) grows quadratically with
the degree, since it is proportional to c2(T X(d,n)).

Therefore, one must somehow restrict the type of varieties allowed, e.g. by
considering only Fano or Calabi-Yau varieties of a fixed dimension. For in-
stance, for X being a nonsingular complete intersection Calabi-Yau 3-fold, all
stable bundles from the Main Theorem satisfy (3) with κ = 2/45. In particular,
we conclude that for Calabi-Yau 3-folds, the universal positive constant κ in
the strong Bogomolov inequality must satisfy κ ≤ 2/45.

The integral cohomology ring of a 3-fold hypersurface X(d,4) is simple to
describe:

H ∗(X(d,4),Z) = Z[H, L , T ]
/
(L2 = T 2 = 0, H 2 = d L , H L = T ) .

Notice that H 3 = dT and H 4 = 0. Clearly, H is the generator of H 2(X(d,4),Z),
L is the generator of H 4(X(d,4),Z) and T is the generator of H 6(X(d,4),Z).

Now let E be a rank r bundle on a 3-fold hypersurface X(d,4). Recall that
for any rank r bundle E on a variety X with cyclic Picard group, there is a
uniquely determined integer kE such that −r + 1 ≤ c1(E(kE)) ≤ 0; the twisted
bundle E(kE) is called the normalization of E . We set Enorm := E(kE) and we
call E normalized if E = Enorm. Therefore it is enough to consider the case
when c1(E) = k ∙ H for −r + 1 ≤ k ≤ 0, and study the sets S(r,k)(X(d,4))

consisting of all integers γ ∈ Z for with there exists a stable rank r bundle E
with c1(E) = k ∙ H and c2(E) = γ ∙ L .

In the simplest possible case, provided by d = 1 (so that X = P3) and
r = 2, this problem was completely solved by Hartshorne in [9]. He proved
that S(2,0)(P3) consists of all positive integers, while S(2,−1)(P3) consists of all
positive even integers. As far as it is known to the author, Hartshorne’s result
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has not been generalized neither for rank 2 bundles over other 3-folds, nor for
higher rank bundles on P3.

The following two lemmas are simple consequences of the Bogomolov in-
equality and our Main Theorem, respectively:

Lemma 2. If γ ∈ S(r,k)(X(d,4)), then γ ≥
r − 1

2r
dk2.

Lemma 3. For every positive integer c ≥ 1, cd ∈ S(2,0)(X(d,4)).

Based on Hartshorne’s result mentioned above, it seems reasonable to conjec-
ture that S(2,0)(X(d,4)) consists exactly of all positive multiples of d.

5 Proof of the Main Theorem

The proof is based on a very useful criterion (due to Hoppe) to decide whether
a bundle on a variety with cyclic Picard group is stable.

Proposition 4
(
[10, Lemma 2.6]

)
. Let E be a rank r holomorphic vector

bundle on a variety X with Pic(X) = Z. If H 0((∧q E)norm) = 0 for 1 ≤ q ≤
r − 1, then E is stable.

Our argument follows [1, Theorem 2.8]. Consider the linear monad

0 → OX (−1)⊕c α
→ O⊕2+2c

X
β
→ OX (1)⊕c → 0 ;

setting K = ker β, one has the sequences:

0 → K → O⊕2+2c
X

β
−→ OX (1)⊕c → 0 and (12)

0 → OX (−1)⊕c α
−→ K → E → 0 . (13)

First, we will show that the kernel bundle K is stable. That implies that K is
simple, which in turn implies that the cohomology bundle E is simple. Since
any simple rank 2 bundle is stable, we conclude that E is also stable.

Recall that one can associate to the short exact sequence of locally-free sheaves
0 → A → B → C → 0 two long exact sequences of symmetric and exterior
powers:

0 → ∧q A → ∧q B → ∧q−1 B⊗C → ∙ ∙ ∙ → B⊗Sq−1C → SqC → 0 , (14)

and

0 → Sq A → Sq−1 A⊗ B → ∙ ∙ ∙ → A⊗∧q−1 B → ∧q B → ∧qC → 0 . (15)

In what follows, μ(F) = c1(F)/rk(F) is the slope of the sheaf F , as usual.
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Claim. K is stable.

From the sequence dual to sequence (12), we get that:

μ(K ∗) =
c

c + 2
, μ(∧q K ∗) =

qc

c + 2

so that (∧q K ∗)norm = ∧q K ∗(k) for some k ≤ −1, and if H 0(∧q K ∗(−1)) = 0,
then H 0((∧q K ∗)norm) = 0.

The vanishing of h0(K ∗(−1)) (i.e q = 1) is obvious from the dual to se-
quence (12). For the case q = 2, start from the dual to (12) and consider the
associated sequence

0 → S2(OX (−1)⊕c) → OX (−1)⊕c ⊗ O⊕2c+2
X → ∧2(O⊕2c+2

X ) → ∧2 K ∗ → 0 .

Twist it by OX (−1) and break it into two short exact sequences to obtain

0 → OX (−3)
⊕

(
c + 1

2

)

→ OX (−2)⊕2c2+2c → Q → 0 and

0 → Q → OX (−1)
⊕

(
2c + 2

2

)

→ ∧2 K ∗(−1) → 0 .

Passing to cohomology, we get H 0(∧2 K ∗(−1)) = H 1(Q) = 0.

Now set q = 3 + t for t = 0, 1, ∙ ∙ ∙ , c − 2 and note that

μ(∧3+t K ∗(−t − 1)) =
(3 + t)c

c + 2
− t − 1 = 2

c − t − 1

c + 2
> 0 .

Thus (∧3+t K ∗)norm = ∧3+t K ∗(k) for some k ≤ −t −2, and if H 0(∧3+t K ∗(−t −
2)) = 0, then H 0((∧3+t K ∗)norm) = 0.

We show that H 0(∧3+t K ∗(−t − 2)) = 0 by induction on t . From the dual to
sequence (13) twisted by OX (−2) we get:

0 → ∧3 K ∗(−2) → ∧2 K ∗(−1)⊕c → ∙ ∙ ∙

since ∧3 E∗ = 0 because E has rank 2. Passing to cohomology, we get that
H 0(∧3 K ∗(−2)) = 0, since, as we have seen above, H 0(∧2 K ∗(−1)) = 0. This
proves the statement for t = 0.

By the same token, we get from the dual to sequence (13) after twisting by
OX (−2 − t):

0 → ∧3+t K ∗(−2 − t) → ∧2+t K ∗(−t − 1)⊕c → ∙ ∙ ∙ .
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Passing to cohomology, we get

H 0(∧2+t K ∗(−t − 1)) = 0 ⇒ H 0(∧3+t K ∗(−t − 2)) = 0

which is the induction step we needed.
In summary, we have shown that H 0((∧q K ∗)norm) = 0 for 1 ≤ q ≤ c + 1.

Thus, by Proposition 5, we have completed the proof of the claim.

Claim. E is simple, hence stable.

Applying Ext∗(∙, E) to the sequence (13) we get

0 → Ext0(E, E) → Ext0(K , E) → ∙ ∙ ∙ . (16)

Now applying Ext∗(K , ∙) we get:

Ext0(K ,OX (−1))⊕c → Ext0(K , K ) → Ext0(K , E) → Ext1(K ,OX (−1))⊕c .

However, it follows from the dual of sequence (12) twisted by OX (1) that
h0(K ∗(−1)) = h1(K ∗(−1)) = 0, thus

dim Ext0(K , E) = dim Ext0(K , K ) = 1

because K is simple. It then follows from (16) that E is also simple. But E has
rank 2, thus E is stable, as desired.

This completes the proof of the Main Theorem. �
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