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On p-nilpotency of finite groups*®
Long Miao

Abstract. Let /F be a class of groups. A subgroup H of a group G is called F-
s-supplemented in G, if there exists a subgroup K of G such that G = HK and
K /K N Hg belongs to F where Hg is the maximal normal subgroup of G which is
contained in AH. The main purpose of this paper is to study some subgroups of Fitting
subgroup and generalized Fitting subgroup F-s-supplemented and some new criterions
of p-nilpotency of finite groups are obtained.
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1 Introduction

The primary subgroups has been studied extensively by many scholars in de-
termining the structure of finite groups. For instance, Kramer [5] shows that a
finite solvable group G is supersolvable if and only if, for every maximal sub-
group M of G, either F(G) < M, the Fitting subgroup of G, or M N F(G) is
a maximal subgroup of F(G). Buckley [2] proved that a group G of odd order
is supersolvable if all minimal subgroups of G are normal in G. A. Ballester-
Bolinches, Wang and Guo [1] introduced the concept of c-supplementation of
a finite group and generalized Buckley’s Theorem by replacing normality with
c-supplementation. Recently, Wang, Wei and Li [9] extended further the results
to a saturated formation containing the class of supersolvable groups by limiting
the c-supplementation of maximal or minimal subgroups to the Fitting subgroup
of a solvable group. More recently, Miao and Guo [6] propose the new concept
of F-s-supplemented subgroup and obtain some new criterions of supersolv-
ability and p-nilpotency. In this paper, we continue to investigate the structure
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of p-nilpotent groups using F-s-supplementation of some subgroups of Fitting
subgroups and generalized Fitting subgroups.

Definition 1.1. Let F be a class of groups. A subgroup H of G is called T-
s-supplemented in G, if there exists a subgroup K of G such that G = HK
and K/K N Hg € F where Hg is the maximal normal subgroup of G which
is contained in H. In this case, K is called an F-s-supplement of H in G.
Particularly, we say that H is p-nilpotent s-supplemented in G, if there exists a
subgroup K of G such that G = HK and K /K N Hg is p-nilpotent.

2 Preliminaries

All groups considered in this paper are finite. Most of the notation is standard
and can be found in [3] and [7].

We denote by F(G) the Fitting subgroups G; F*(G) denotes the generalized
Fitting subgroup of G; O,(G) is the maximal normal p-subgroup of G; ®(G)
is the intersection of all maximal subgroup of G; | G| denotes the order of a
group G; M < - G denotes M is a maximal subgroup of group G.

Let  be a set of primes. Then we say that the group G € E,, if G hasa Hall
m-subgroup. We also say that G € C,, if G € E, and any two Hall -subgroups
of G are conjugate in G. Moreover, we say that G € D, if G € C,; and every
mr-subgroup of G is contained in a Hall w-subgroup of G.

Let F be a class of groups. ‘F is called O-closed if G/N € F for all normal
subgroups N of G whenever G € F. F is called S-closed if every subgroup
K of G belongs to F whenever G € F. ‘F is said to be a formation if F
is closed under homomorphic image and subdirect product. It is clear that for
a formation F, every group G has a smallest normal subgroup (denoted by
G7) whose quotient G/G7 is in F. The normal subgroup G7 is called the
F-residual of G. A formation ‘F is said to be saturated if G € F whenever
G/®P(G) € F. It is well known that the class of all supersolvable groups is a
saturated formation. (cf. [8])

Lemma2.1[6, Lemma2.1]. LetF bea Q-closed and S-closed class of groups
and H a subgroup of G. Then the following statements hold.

(1) If K is an F-s-supplement of H in G, and N < G, then KN/N is an
F-s-supplement of HN/N in G/N.

(2) Let N A Gand N < H. If K/N is an ‘F-s-supplement of H/N in G/N,
then K is an F-s-supplement of H in G.
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(3) If H < D < G and K is an F-s-supplement of H in G, then K N D is an
F-s-supplement of H in D.

Lemma 2.2 [9, Lemma 2.4]. Let N be a nontrivial solvable normal subgroup
of agroup G. If NN ®(G) = 1, then the Fitting subgroup F(N) of N is the
direct product of minimal normal subgroups of G which is contained in N.

Lemma 2.3 [4]. Let G be a group and N a subgroup of G. The general-
ized Fitting subgroup F*(G) of G is the unique maximal normal quasinilpotent
subgroup of G. Then

(1) If N is normal in G, then F*(N) < F*(G);

(2) F*(G) # 1if G # 1; in fact, F*(G)/F(G) = Soc(F(G)Cs(F(G))/
F(G),

(3) F*(F*(G)) = F*(G) = F(G), if F*(G) is solvable, then F*(G) =
F(G);

(4) Co(F*(G)) = F(G);

(5) Let P A G and P < O,(G), then F*(G/®(P)) = F*(G)/P(P),

(6) If K is a subgroup of G contained in Z(G), then F*(G/K) = F*(G)/K.
Lemma 2.4 [6, Corollary 3.2]. Let P be a Sylow p-subgroup of a group G,
where p is a prime divisor of | G| with (|G|, p — 1) = 1. If every maximal

subgroup of P is p-nilpotent s-supplement in G, then G/O,(G) is soluble p-
nilpotent.

Lemma 2.5 [9, Lemma 2.8]. Let M be a maximal subgroup of G, P a normal
p-subgroup of G such that G = PM, where p a prime. Then

(1) PN M is a normal subgroup of G.
(2) If p > 2 and all minimal subgroups of P are normal in G, then M has
index p in G.

Lemma 2.6. Let G be a group and p a prime dividing the order of G such that
(1Gl, p— 1) = 1. Suppose M is a subgroup of G with |G : M| = p. Then M is
normal in G.
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Proof. We may assume that M; = 1 by Induction. It is trivial that the lemma
holds when p = 2. So assume that p > 2. Then G is solvable by the Odd Order
Theorem. Let N be a minimal normal subgroup of G. Then N is elementary
abelianand G = M N. Thisimplies that M NN isnormal in G, hence MNN = 1.
Therefore |N| = [G : M] = p. Since |Aut(N)| = p — 1 and G/Cg(N) is
isomorphic to a subgroup of Aut(N), |G/Cg(N)| mustdivide (|G|, p—1) = 1.
So N < Z(G). Therefore M is normal in G.

3 Main results

Theorem 3.1. Let G be a group and N a solvable normal subgroup of G
such that G/N is p-nilpotent where p is a prime divisor of | G|. Then G is
p-nilpotent if and only if every maximal subgroups of the Sylow subgroups of
F(N) is p-nilpotent s-supplemented in G.

Proof. The necessity part is obvious. We only need to prove the sufficiency
part. Assume that the assertion is false and choose G to be a counterexample of
smallest order. Then

1) NN®(G) = L.

If NN ®(G) > 1,then there exists a minimal normal subgroup R of G which
is contained in N N ®(G). Since N is solvable, we have R is an elemen-
tary abelian r-group for some prime » and hence R < F(N). Now we shall
prove G/R satisfies the hypotheses of the theorem. In fact, N/R < G/R and
(G/R)/(N/R) = G/N is p-nilpotent. Let L/R be a maximal subgroup of
the Sylow r-subgroup of F(N/R) = F(N)/R. Then L is a maximal sub-
group of the Sylow r-subgroup of F(N). By the hypotheses of the theorem, L
is p-nilpotent s-supplemented in G. By Lemma 2.1, L/R is also p-nilpotent
s-supplemented in G/R. Set Q;/R be a maximal subgroup of the Sylow ¢-
subgroup of F(N/R) = F(N)/R, where g # r. Itis clear that 0, = O7R,
where Q7 is a maximal subgroup of Sylow g-subgroup of F(N). By the hy-
potheses, Q7 is p-nilpotent s-supplemented in G. Hence Q7 R/R is p-nilpotent
s-supplemented in G/R by Lemma 2.1. The minimal choice of G implies that
G/R is p-nilpotent. Since G/P(G) = (G/R)/(®(G)/R) and the class of
all p-nilpotent groups is a saturated formation, it follows that G is p-nilpotent,
a contradiction.

2) F(N) = Ry X Ry X --- X R,,, where all R;(i = 1.2.---m) are minimal
normal subgroups of G of prime order.

Bull Braz Math Soc, Vol. 38, N. 4, 2007



ON p-NILPOTENCY OF FINITE GROUPS 589

By 1) and Lemma 2.2, F(N) = Ry X Ry X .-+ X R,, where all R;(i =
1.2....m) are minimal normal subgroups of G which are contained in N. For
eachi (i = 1.2....m), there exists a maximal subgroup M; of G with G = R; M;
and R; N M; = 1. Furthermore, F(N) = F(N)N R;M; = R;(F(N) N M;).
Next we will prove that F'(N) N M; is a maximal subgroup of F(N).

Actually, since F(N) £ M,, there at least exists a prime g of (| N|) with
O, (N) j{ M;. Then G = Oy(N)M as O,(N) < G. Let M, be a Sylow g-
subgroup of M;. Then we know that G, = O,(N)M, is a Sylow g-subgroup
of G. Now, let O be a maximal subgroup of G, containing M, and set O, =
01N Oy(N). Then Q) = 0> M,. Moreover, 0o N M, = O,(N) N M,, so

| Og(N) : Qo] =[Oy (N)My - Oo2My| = |Gy : Q1] =4¢,

that is, (0, is a maximal subgroup of O,(N). Hence 0>(O,(N) N M;) is a
subgroup of O, (N). By the maximality of O, in O,(N), we have 0>(0,(N) N
M) = 0; or O, (N).

a) If 02(04(N) N M;) = Oy(N), then G = O,(N)M; = O, M,. Notice
that O,(N) N M; = O, N M;. So O,(N) = Q», a contradiction.

b) 0:2(0,(N) N M;) = O», thatis, O,(N) N M; < O>. By Lemma 2.5,
O,(N)NM; < G,s0 O,(N)NM; < (Q2)¢. On the other hand, since 0>
is p-nilpotent s-supplemented in G, then there exists a subgroup H of G
suchthat O, H = G and H/H N (Q3)¢ is p-nilpotent. Set K = (0,)c H,
then G = 0, K and

K/K N (026 =K/(0Q2)6 = (0Q2)cH/(Q2)6 = H/HN(O2)¢

is p-nilpotent.

Now, we consider the following cases.

Case 1: K < G. Suppose that K is a maximal subgroup of G containing XK .
Then O,(N) N Ky < G by Lemma 2.5, which implies that (O, (N) N K1) M;
is a subgroup of G. If (O, (N)NK)M; = G = O,(N)M, then O, (N)NK; =
O, (N)since (O, (N)NK)NM; = O,(N)NM;. Thisimplies that O, (N) < K|,
and hence G = O,(N)K; = K, which is contrary to the above hypotheses
on K;. Thus (O,(N) N K\)M; = M;, O,(N) N K; < M;. Furthermore,
0>NK < 0,(N)NK < O,(N)NM; < (02)¢ < O,NK, thatis, O,(N)NK =
O,(N) N M; = O, N K. This is contrary to G = 0>K = O,(N)K.
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Case 2: K = G. In this case, if p # ¢, then we are easy to have G is
p-nilpotent, a contradiction. So we may assume that p = ¢. Furthermore, if
(02)¢ = 1,thenwehave G is p-nilpotent, a contradiction. Set (Q,)¢ # 1. Thus
(02)6M; = M; or (Q2)M; = G. If (Q2)6M; = M,;, thatis (O2)¢ < M,,
then (Q2)¢ < Oy(N) N M; < (Q2)g- Therefore O,(N) N M; = (Q2)¢-
By hypotheses, G/(Q»)¢ is p-nilpotent and hence |G/(Q2)g : M;/(Q2)g| =
|G : M;| = |F(N)M; : M;| = |F(N) : F(N) N M;|] = p. This means
that F(N) N M; is a maximal subgroup of F(N). If (QO2)¢M; = G, then
G = (02)6M; = O,(N)M; = Q> M;. Note that O,(N) N M; = 0 N M;, so
O,(N) = 0>, a contradiction.

Therefore F(N) N M; is maximal in F(N) and hence F(N) N M; has prime
index in F(N) since F(N) is nilpotent. Observe that R; N M; = 1, so R; has
prime order fori = 1.2---m.

3) G/F(N) is p-nilpotent.

Since G/ Cg(R;) is isomorphic to a subgroup of Aut(R;), G/Cs(R;) is cyclic
and hence G/ C(R;) is p-nilpotent for each i. This implies that G/N/_, C5(R;)
is p-nilpotent. Again, Cs(F(N)) = N/L,Cs(R;), so we have G/Cs(F(N) is
also p-nilpotent. Since both G/Cs(F(N)) and G/N are all p-nilpotent, we
have G/NNCg(F(N)) = G/Cy(F(N)) is p-nilpotent. Since F(N) is abelian,
F(N) < Cy(F(N)). On the other hand, Cy(F(N)) < F(N) as N is solvable.
Thus F(N) = Cy(F(N)) and hence G/ F(N) is p-nilpotent.

4) Final contradiction.

For each i, we shall prove G/R; satisfies the condition of the theorem. Ac-
tually, (G/R;)/(F(N)/R;) = G/F(N) is p-nilpotent. With the similar dis-
cussion of 1), we see that G/R; satisfies the hypotheses of the theorem. The
minimal choice of G implies that G/R; is p-nilpotent and hence G/ N/, R; is
p-nilpotent. This indicates that G is p-nilpotent if m > 1, a contradiction. So
we have F(N) = Ry. If | Ry| # p, then G/R, is p-nilpotent implies that G
is p-nilpotent, a contradiction. If | R;| = p, then the maximal subgroup of R;
is identity group. Clearly, in this case G is p-nilpotent by the definition of the
p-nilpotent s-supplemented subgroup, a contradiction.

The final contradiction completes our proof.

Corollary 3.2. Let G be a group and p a prime divisor of | G| with (| G|, p —
1) = 1. Then G is p-nilpotent if and only if there exists a solvable normal
subgroup N with G/ N is p-nilpotent and every maximal subgroups of the Sylow
subgroups of F(N) is p-nilpotent s-supplemented in G.
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Theorem 3.3. Let G be a group and p a prime divisor of | G| with (| G|, p —
1) = 1. Suppose that there exists a normal subgroup H with G/ H is p-nilpotent.
Then G is p-nilpotent if and only if every maximal subgroups of the Sylow
subgroups of F*(H) is p-nilpotent s-supplemented in G.

Proof. The necessity part is obvious. We only need to prove the sufficiency
part. By Corollary 3.2, we only need to prove H is solvable. Suppose that the
claim is false and choose G to be a counterexample of minimal order.

If p > 2, then G is solvable and hence H is solvable. So we may assume that
p = 2. Then

1) G =H and F*(H) = F*(G) = F(G).

By Lemma 2.4, F*(H) is solvable. By Lemma 2.3, we have F*(H) =
F(H) # 1. Since H satisfies the hypothesis of the theorem, the minimal choice
of G implies that H is p-nilpotent if H < G. In this case, H is p-nilpotent
implies that H is solvable, a contradiction.

2) For any proper normal subgroup N of G containing F*(G), N is p-
nilpotent.

By Lemma 2.3, F*(G) = F*(F*(G)) < F*(N) < F*(G), so F*(N) =
F*(G). And all maximal subgroups of all Sylow subgroup of F*(N) are p-
nilpotent s-supplemented in G and hence in N by Lemma 2.1. Therefore N is
p-nilpotent by the choice of G.

3) ®(G) < F(G).

If it is not so, then ®(G) = F(G). Let O,(G) be a Sylow g-subgroup of
F(G) where ¢ is a prime divisor of |F(G)| and Q; is a maximal subgroup of
0,(G). By hypotheses, O, is p-nilpotent s-supplemented in G. Then there
exists a subgroup K of G suchthat G = Q0K and K/K N (Q)¢ is p-nilpotent.
Clearly, O; < ®(G) and so K = G, we have G is p-nilpotent since the class of
all p-nilpotent groups is a saturated formation, a contradiction.

4) G is solvable.

Since ®(G) < F(G), there exists some O,(G) and a maximal subgroup
M of G such that O,(G) £« M and G = O,(G)M. Set Q| be a maximal
subgroup of O,(G). If ¢ > 2, Oy is p-nilpotent s-supplemented in G, then
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there exists a subgroup K; of G such that G = QK and K1/K; N (Q1)¢
is p-nilpotent. It follows that K is solvable. Furthermore, G = 0,(G)K;
and G/0,(G) = K;/K; N O,4(G) is solvable. Therefore G is solvable, a
contradiction. If ¢ = 2 = p, with the similar argument, we have G is solvable.

The final contradiction completes our proof.

Corollary 3.4. Let G be a finite group and p be a prime divisor of | G| with
(|G|, p—1) = 1. Then G is p-nilpotent if and only if every maximal subgroups
of the Sylow subgroups of F*(G) is p-nilpotent s-supplemented in G.

Theorem 3.5. Let p be the prime divisor of |G| such that G € C,y and P a
Sylow p-subgroup of G. Then G is p-nilpotent if and only if every maximal
subgroup of P is p-nilpotent s-supplemented in G.

Proof. The necessity part is obvious and we omit the proof.

For the sufficiency part, let P; be a maximal subgroup of P and of course,
Py # 1. Otherwise, we may easy obtain G is p-nilpotent. By our hypothe-
ses, we see that there exists a subgroup M of G such that G = Py M and M/
M N (Py)g is p-nilpotent. It follows that P = P(P N M) and PN M
is a Sylow p-subgroup of M is a Sylow p-subgroup of M. It is clear that
[(PNM)/(PiNM)| = p. Now M/MN(Py)¢ is p-nilpotent. Let H/M N (Py)¢g
be the normal Hall p’-subgroup of M/M N (P;)s. Then, we have H < M and
M N (Py)g is anormal Sylow p-subgroup of H. Also by the well-known Schur-
Zassenhaus theorem, there exists a Hall p’-subgroup K of H. Obviously, K is
also a Hall p’-subgroup of G.

By using the usual Frattini argument, we get that M = HNy(K) = (M N
(P)) )N (K) and hence it follows that G = P; Ng(K). Therefore, Np(K) is
a Sylow p-subgroup of Ng(K). If |G : Ng(K)| = | P : Np(K)| = p, then we
may let P, be a maximal subgroup of P such that Np(K) < P,. By repeating
the above arguments once again, we can also obtain a subgroup M, of G such
that G = Ple, Ml/Mlm(Pz)G isp-nilpotentand Ml = (Ml m(PZ)G)NMl (Kl),
where K; is a Hall p’-subgroup of G. By hypotheses, there exists g € P
such that K14 = K and consequently Ng(K )8 = Ng(K). Observe that P, is
normal in P and G = P,Ng(K;), we have G = P,Ng(K;) = (P,Ng(K;))8 =
P,Ng(K). It follows that P = P,(P N Ng(K)) = P,, a contradiction. Thus,
we obtain | G : Ng(K)| = | P : Np(K)| = 1 and hence K is normal in G. This
means that G is p-nilpotent.
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Corollary 3.6. Let p be the smallest prime divisor of the order of G and P
a Sylow p-subgroup of G. Then G is p-nilpotent if and only if every maximal
subgroup of P is p-nilpotent s-supplemented in G.

Theorem 3.7. Let p be the prime divisor of |G| such that (|G|, p —1) = 1.
Then G is p-nilpotent if and only if every second maximal subgroups of Sylow
p-subgroup P of G is p-nilpotent s-supplemented in G.

Proof. The necessity part is obvious and we omit the proof.

If P is a cyclic group, then we know that G is p-nilpotent by [7, Theo-
rem 10.1.9] since (|G|, p — 1) = 1. On the other hand, if P is not cyclic , by
hypotheses |P| > p?, then we may let P, be a second maximal subgroup of P
and of course, P, # 1. By our hypotheses, we see that there exists a subgroup
M of G such that G = P,M and M/M N (P,)¢ is p-nilpotent. It follows that
P=PNG=PNPM=P,(PNM)and PN M isa Sylow p-subgroup of M.
It is clear that [P N M/ P, N M| = p?. Since M/M N (P,)¢ is p-nilpotent, we
may let H/M N (P,) be the normal Hall p’-subgroup of M/ M N (P»)¢. Then,
we have H < M and M N (P,)¢ is a normal Sylow p-subgroup of H. Also by
the well-known Schur-Zassenhaus theorem, there exists a Hall p’-subgroup K
of H. Obviously, K is also a Hall p’-subgroup of G.

By using the usual Frattini argument, we get that M = HNy(K) = (M N
(Py))gNy(K) and hence it follows that G = P,Ng(K). Therefore, Np(K)
is a Sylow p-subgroup of Ng(K). If |G : Ng(K)| = | P : Np(K)| > p?,
then we may let P; be a maximal subgroup of P, and P; a maximal subgroup
of P such that Np(K) < P;. By repeating the above arguments once again, we
can also obtain a subgroup M, of G such that G = PsM|, M/ M N (Py)¢g is
p-nilpotent and M, = (M; N (P3)g) N, (K1), where K is a Hall p’-subgroup
of G. By the hypotheses and Lemma 2.4, we see that G is solvable and hence
there exists g € P such that K;¥ = K and consequently Ng(K)¢ = Ng(K).
Observe that P; is normal in P and G = P3sNg(K;) = P/ Ng(K;), we have
G = PINg(K1) = (PINg(K1))8 = PiNg(K). It follows that P = Pi(P N
Ng(K)) = Py, a contradiction. Thus, we obtain

|G : Ng(K)| =[P :Np(K)|=p or [G:Ng(K)|=|P:Np(K)l =1

If|G: Ng(K)|=|P:Np(K)| = p,wehave Ng(K) < Gsince (|G|, p—1) =
1 by Lemma 2.6. It follows from K char Ng(K) < G that K is normal in G,
contrary to | G : Ng(K)| = p. Therefore, Ng(K) = G, this means that G
is p-nilpotent.

Bull Braz Math Soc, Vol. 38, N. 4, 2007



594 LONG MIAO

Corollary 3.8. Let p be the smallest prime divisor of the order of G and P
a Sylow p-subgroup of G. Then G is p-nilpotent if and only if every second
maximal subgroup of P (if exist) is p-nilpotent s-supplemented in G.
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