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On p-nilpotency of finite groups∗

Long Miao

Abstract. Let F be a class of groups. A subgroup H of a group G is called F-
s-supplemented in G, if there exists a subgroup K of G such that G = H K and
K/K ∩ HG belongs to F where HG is the maximal normal subgroup of G which is
contained in H . The main purpose of this paper is to study some subgroups of Fitting
subgroup and generalized Fitting subgroup F-s-supplemented and some new criterions
of p-nilpotency of finite groups are obtained.
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1 Introduction

The primary subgroups has been studied extensively by many scholars in de-
termining the structure of finite groups. For instance, Kramer [5] shows that a
finite solvable group G is supersolvable if and only if, for every maximal sub-
group M of G, either F(G) ≤ M , the Fitting subgroup of G, or M ∩ F(G) is
a maximal subgroup of F(G). Buckley [2] proved that a group G of odd order
is supersolvable if all minimal subgroups of G are normal in G. A. Ballester-
Bolinches, Wang and Guo [1] introduced the concept of c-supplementation of
a finite group and generalized Buckley’s Theorem by replacing normality with
c-supplementation. Recently, Wang, Wei and Li [9] extended further the results
to a saturated formation containing the class of supersolvable groups by limiting
the c-supplementation of maximal or minimal subgroups to the Fitting subgroup
of a solvable group. More recently, Miao and Guo [6] propose the new concept
of F-s-supplemented subgroup and obtain some new criterions of supersolv-
ability and p-nilpotency. In this paper, we continue to investigate the structure
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of p-nilpotent groups using F-s-supplementation of some subgroups of Fitting
subgroups and generalized Fitting subgroups.

Definition 1.1. Let F be a class of groups. A subgroup H of G is called F-
s-supplemented in G, if there exists a subgroup K of G such that G = H K
and K/K ∩ HG ∈ F where HG is the maximal normal subgroup of G which
is contained in H . In this case, K is called an F-s-supplement of H in G.
Particularly, we say that H is p-nilpotent s-supplemented in G, if there exists a
subgroup K of G such that G = H K and K/K ∩ HG is p-nilpotent.

2 Preliminaries

All groups considered in this paper are finite. Most of the notation is standard
and can be found in [3] and [7].

We denote by F(G) the Fitting subgroups G; F∗(G) denotes the generalized
Fitting subgroup of G; Op(G) is the maximal normal p-subgroup of G; 8(G)

is the intersection of all maximal subgroup of G; | G| denotes the order of a
group G; M < ∙ G denotes M is a maximal subgroup of group G.

Let π be a set of primes. Then we say that the group G ∈ Eπ if G has a Hall
π -subgroup. We also say that G ∈ Cπ if G ∈ Eπ and any two Hall π -subgroups
of G are conjugate in G. Moreover, we say that G ∈ Dπ if G ∈ Cπ and every
π -subgroup of G is contained in a Hall π -subgroup of G.

Let F be a class of groups. F is called Q-closed if G/N ∈ F for all normal
subgroups N of G whenever G ∈ F . F is called S-closed if every subgroup
K of G belongs to F whenever G ∈ F . F is said to be a formation if F
is closed under homomorphic image and subdirect product. It is clear that for
a formation F , every group G has a smallest normal subgroup (denoted by
GF ) whose quotient G/GF is in F . The normal subgroup GF is called the
F-residual of G. A formation F is said to be saturated if G ∈ F whenever
G/8(G) ∈ F . It is well known that the class of all supersolvable groups is a
saturated formation. (cf. [8])

Lemma 2.1 [6, Lemma 2.1]. LetF be a Q-closed and S-closed class of groups
and H a subgroup of G. Then the following statements hold.

(1) If K is an F-s-supplement of H in G, and N E G, then K N/N is an
F-s-supplement of H N/N in G/N .

(2) Let N E G and N ≤ H . If K/N is an F-s-supplement of H/N in G/N ,
then K is an F-s-supplement of H in G.
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(3) If H ≤ D ≤ G and K is an F-s-supplement of H in G, then K ∩ D is an
F-s-supplement of H in D.

Lemma 2.2 [9, Lemma 2.4]. Let N be a nontrivial solvable normal subgroup
of a group G. If N ∩ 8(G) = 1, then the Fitting subgroup F(N ) of N is the
direct product of minimal normal subgroups of G which is contained in N .

Lemma 2.3 [4]. Let G be a group and N a subgroup of G. The general-
ized Fitting subgroup F∗(G) of G is the unique maximal normal quasinilpotent
subgroup of G. Then

(1) If N is normal in G, then F∗(N ) ≤ F∗(G);

(2) F∗(G) 6= 1 if G 6= 1; in fact, F∗(G)/F(G) = Soc(F(G)CG(F(G))/

F(G);

(3) F∗(F∗(G)) = F∗(G) ≥ F(G); if F∗(G) is solvable, then F∗(G) =
F(G);

(4) CG(F∗(G)) ≤ F(G);

(5) Let P E G and P ≤ Op(G); then F∗(G/8(P)) = F∗(G)/8(P);

(6) If K is a subgroup of G contained in Z(G), then F∗(G/K ) = F∗(G)/K .

Lemma 2.4 [6, Corollary 3.2]. Let P be a Sylow p-subgroup of a group G,
where p is a prime divisor of | G| with (| G|, p − 1) = 1. If every maximal
subgroup of P is p-nilpotent s-supplement in G, then G/Op(G) is soluble p-
nilpotent.

Lemma 2.5 [9, Lemma 2.8]. Let M be a maximal subgroup of G, P a normal
p-subgroup of G such that G = P M , where p a prime. Then

(1) P ∩ M is a normal subgroup of G.

(2) If p > 2 and all minimal subgroups of P are normal in G, then M has
index p in G.

Lemma 2.6. Let G be a group and p a prime dividing the order of G such that
(|G|, p − 1) = 1. Suppose M is a subgroup of G with |G : M | = p. Then M is
normal in G.
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Proof. We may assume that MG = 1 by Induction. It is trivial that the lemma
holds when p = 2. So assume that p > 2. Then G is solvable by the Odd Order
Theorem. Let N be a minimal normal subgroup of G. Then N is elementary
abelian and G = M N . This implies that M∩N is normal in G, hence M∩N = 1.
Therefore |N | = [G : M] = p. Since |Aut (N )| = p − 1 and G/CG(N ) is
isomorphic to a subgroup of Aut (N ), |G/CG(N )| must divide (|G|, p −1) = 1.
So N ≤ Z(G). Therefore M is normal in G.

3 Main results

Theorem 3.1. Let G be a group and N a solvable normal subgroup of G
such that G/N is p-nilpotent where p is a prime divisor of | G|. Then G is
p-nilpotent if and only if every maximal subgroups of the Sylow subgroups of
F(N ) is p-nilpotent s-supplemented in G.

Proof. The necessity part is obvious. We only need to prove the sufficiency
part. Assume that the assertion is false and choose G to be a counterexample of
smallest order. Then

1) N ∩ 8(G) = 1.

If N ∩ 8(G) > 1,then there exists a minimal normal subgroup R of G which
is contained in N ∩ 8(G). Since N is solvable, we have R is an elemen-
tary abelian r -group for some prime r and hence R ≤ F(N ). Now we shall
prove G/R satisfies the hypotheses of the theorem. In fact, N/R E G/R and
(G/R)/(N/R) ∼= G/N is p-nilpotent. Let L/R be a maximal subgroup of
the Sylow r -subgroup of F(N/R) = F(N )/R. Then L is a maximal sub-
group of the Sylow r -subgroup of F(N ). By the hypotheses of the theorem, L
is p-nilpotent s-supplemented in G. By Lemma 2.1, L/R is also p-nilpotent
s-supplemented in G/R. Set Q1/R be a maximal subgroup of the Sylow q-
subgroup of F(N/R) = F(N )/R, where q 6= r . It is clear that Q1 = Q∗

1 R,
where Q∗

1 is a maximal subgroup of Sylow q-subgroup of F(N ). By the hy-
potheses, Q∗

1 is p-nilpotent s-supplemented in G. Hence Q∗
1 R/R is p-nilpotent

s-supplemented in G/R by Lemma 2.1. The minimal choice of G implies that
G/R is p-nilpotent. Since G/8(G) ∼= (G/R)/(8(G)/R) and the class of
all p-nilpotent groups is a saturated formation, it follows that G is p-nilpotent,
a contradiction.

2) F(N ) = R1 × R2 × ∙ ∙ ∙ × Rm , where all Ri (i = 1.2. ∙ ∙ ∙ m) are minimal
normal subgroups of G of prime order.
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By 1) and Lemma 2.2, F(N ) = R1 × R2 × ∙ ∙ ∙ × Rm where all Ri (i =
1.2. . . . m) are minimal normal subgroups of G which are contained in N . For
each i (i = 1.2. . . . m), there exists a maximal subgroup Mi of G with G = Ri Mi

and Ri ∩ Mi = 1. Furthermore, F(N ) = F(N ) ∩ Ri Mi = Ri (F(N ) ∩ Mi ).
Next we will prove that F(N ) ∩ Mi is a maximal subgroup of F(N ).

Actually, since F(N ) � Mi , there at least exists a prime q of π(| N |) with
Oq(N ) � Mi . Then G = Oq(N )M as Oq(N ) E G. Let Mq be a Sylow q-
subgroup of Mi . Then we know that Gq = Oq(N )Mq is a Sylow q-subgroup
of G. Now, let Q1 be a maximal subgroup of Gq containing Mq and set Q2 =
Q1 ∩ Oq(N ). Then Q1 = Q2 Mq . Moreover, Q2 ∩ Mq = Oq(N ) ∩ Mq , so

| Oq(N ) : Q2| = | Oq(N )Mq : Q2 Mq | = | Gq : Q1| = q,

that is, Q2 is a maximal subgroup of Oq(N ). Hence Q2(Oq(N ) ∩ Mi ) is a
subgroup of Oq(N ). By the maximality of Q2 in Oq(N ), we have Q2(Oq(N ) ∩
Mi ) = Q2 or Oq(N ).

a) If Q2(Oq(N ) ∩ Mi ) = Oq(N ), then G = Oq(N )Mi = Q2 Mi . Notice
that Oq(N ) ∩ Mi = Q2 ∩ Mi . So Oq(N ) = Q2, a contradiction.

b) Q2(Oq(N ) ∩ Mi ) = Q2, that is, Oq(N ) ∩ Mi ≤ Q2. By Lemma 2.5,
Oq(N )∩ Mi E G, so Oq(N )∩ Mi ≤ (Q2)G . On the other hand, since Q2

is p-nilpotent s-supplemented in G, then there exists a subgroup H of G
such that Q2 H = G and H/H ∩ (Q2)G is p-nilpotent. Set K = (Q2)G H ,
then G = Q2 K and

K/K ∩ (Q2)G = K/(Q2)G = (Q2)G H/(Q2)G
∼= H/H ∩ (Q2)G

is p-nilpotent.

Now, we consider the following cases.

Case 1: K < G. Suppose that K1 is a maximal subgroup of G containing K .
Then Oq(N ) ∩ K1 E G by Lemma 2.5, which implies that (Oq(N ) ∩ K1)Mi

is a subgroup of G. If (Oq(N ) ∩ K1)Mi = G = Oq(N )M , then Oq(N ) ∩ K1 =
Oq(N ) since (Oq(N )∩K1)∩Mi = Oq(N )∩Mi . This implies that Oq(N ) ≤ K1,
and hence G = Oq(N )K1 = K1, which is contrary to the above hypotheses
on K1. Thus (Oq(N ) ∩ K1)Mi = Mi , Oq(N ) ∩ K1 ≤ Mi . Furthermore,
Q2∩K ≤ Oq(N )∩K ≤ Oq(N )∩Mi ≤ (Q2)G ≤ Q2∩K , that is, Oq(N )∩K =
Oq(N ) ∩ Mi = Q2 ∩ K . This is contrary to G = Q2 K = Oq(N )K .
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Case 2: K = G. In this case, if p 6= q, then we are easy to have G is
p-nilpotent, a contradiction. So we may assume that p = q. Furthermore, if
(Q2)G = 1, then we have G is p-nilpotent, a contradiction. Set (Q2)G 6= 1. Thus
(Q2)G Mi = Mi or (Q2)G Mi = G. If (Q2)G Mi = Mi , that is (Q2)G ≤ Mi ,
then (Q2)G ≤ Oq(N ) ∩ Mi ≤ (Q2)G . Therefore Oq(N ) ∩ Mi = (Q2)G .
By hypotheses, G/(Q2)G is p-nilpotent and hence |G/(Q2)G : Mi/(Q2)G | =
| G : Mi | = | F(N )Mi : Mi | = | F(N ) : F(N ) ∩ Mi | = p. This means
that F(N ) ∩ Mi is a maximal subgroup of F(N ). If (Q2)G Mi = G, then
G = (Q2)G Mi = Oq(N )Mi = Q2 Mi . Note that Oq(N ) ∩ Mi = Q2 ∩ Mi , so
Oq(N ) = Q2, a contradiction.

Therefore F(N ) ∩ Mi is maximal in F(N ) and hence F(N ) ∩ Mi has prime
index in F(N ) since F(N ) is nilpotent. Observe that Ri ∩ Mi = 1, so Ri has
prime order for i = 1.2 ∙ ∙ ∙ m.

3) G/F(N ) is p-nilpotent.

Since G/CG(Ri ) is isomorphic to a subgroup of Aut (Ri ), G/CG(Ri ) is cyclic
and hence G/CG(Ri ) is p-nilpotent for each i . This implies that G/∩m

i=1 CG(Ri )

is p-nilpotent. Again, CG(F(N )) = ∩m
i=1CG(Ri ), so we have G/CG(F(N ) is

also p-nilpotent. Since both G/CG(F(N )) and G/N are all p-nilpotent, we
have G/N ∩CG(F(N )) = G/CN (F(N )) is p-nilpotent. Since F(N ) is abelian,
F(N ) ≤ CN (F(N )). On the other hand, CN (F(N )) ≤ F(N ) as N is solvable.
Thus F(N ) = CN (F(N )) and hence G/F(N ) is p-nilpotent.

4) Final contradiction.

For each i , we shall prove G/Ri satisfies the condition of the theorem. Ac-
tually, (G/Ri )/(F(N )/Ri ) ∼= G/F(N ) is p-nilpotent. With the similar dis-
cussion of 1), we see that G/Ri satisfies the hypotheses of the theorem. The
minimal choice of G implies that G/Ri is p-nilpotent and hence G/ ∩m

i=1 Ri is
p-nilpotent. This indicates that G is p-nilpotent if m > 1, a contradiction. So
we have F(N ) = R1. If | R1| 6= p, then G/R1 is p-nilpotent implies that G
is p-nilpotent, a contradiction. If | R1| = p, then the maximal subgroup of R1

is identity group. Clearly, in this case G is p-nilpotent by the definition of the
p-nilpotent s-supplemented subgroup, a contradiction.

The final contradiction completes our proof.

Corollary 3.2. Let G be a group and p a prime divisor of | G| with (| G|, p −
1) = 1. Then G is p-nilpotent if and only if there exists a solvable normal
subgroup N with G/N is p-nilpotent and every maximal subgroups of the Sylow
subgroups of F(N ) is p-nilpotent s-supplemented in G.
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Theorem 3.3. Let G be a group and p a prime divisor of | G| with (| G|, p −
1) = 1. Suppose that there exists a normal subgroup H with G/H is p-nilpotent.
Then G is p-nilpotent if and only if every maximal subgroups of the Sylow
subgroups of F∗(H) is p-nilpotent s-supplemented in G.

Proof. The necessity part is obvious. We only need to prove the sufficiency
part. By Corollary 3.2, we only need to prove H is solvable. Suppose that the
claim is false and choose G to be a counterexample of minimal order.

If p > 2, then G is solvable and hence H is solvable. So we may assume that
p = 2. Then

1) G = H and F∗(H) = F∗(G) = F(G).

By Lemma 2.4, F∗(H) is solvable. By Lemma 2.3, we have F∗(H) =
F(H) 6= 1. Since H satisfies the hypothesis of the theorem, the minimal choice
of G implies that H is p-nilpotent if H < G. In this case, H is p-nilpotent
implies that H is solvable, a contradiction.

2) For any proper normal subgroup N of G containing F∗(G), N is p-
nilpotent.

By Lemma 2.3, F∗(G) = F∗(F∗(G)) ≤ F∗(N ) ≤ F∗(G), so F∗(N ) =
F∗(G). And all maximal subgroups of all Sylow subgroup of F∗(N ) are p-
nilpotent s-supplemented in G and hence in N by Lemma 2.1. Therefore N is
p-nilpotent by the choice of G.

3) 8(G) < F(G).

If it is not so, then 8(G) = F(G). Let Oq(G) be a Sylow q-subgroup of
F(G) where q is a prime divisor of |F(G)| and Q1 is a maximal subgroup of
Oq(G). By hypotheses, Q1 is p-nilpotent s-supplemented in G. Then there
exists a subgroup K of G such that G = Q1 K and K/K ∩ (Q1)G is p-nilpotent.
Clearly, Q1 ≤ 8(G) and so K = G, we have G is p-nilpotent since the class of
all p-nilpotent groups is a saturated formation, a contradiction.

4) G is solvable.

Since 8(G) < F(G), there exists some Oq(G) and a maximal subgroup
M of G such that Oq(G) � M and G = Oq(G)M . Set Q1 be a maximal
subgroup of Oq(G). If q > 2, Q1 is p-nilpotent s-supplemented in G, then
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there exists a subgroup K1 of G such that G = Q1 K1 and K1/K1 ∩ (Q1)G

is p-nilpotent. It follows that K1 is solvable. Furthermore, G = Oq(G)K1

and G/Oq(G) ∼= K1/K1 ∩ Oq(G) is solvable. Therefore G is solvable, a
contradiction. If q = 2 = p, with the similar argument, we have G is solvable.

The final contradiction completes our proof.

Corollary 3.4. Let G be a finite group and p be a prime divisor of | G| with
(| G|, p − 1) = 1. Then G is p-nilpotent if and only if every maximal subgroups
of the Sylow subgroups of F∗(G) is p-nilpotent s-supplemented in G.

Theorem 3.5. Let p be the prime divisor of |G| such that G ∈ C p′ and P a
Sylow p-subgroup of G. Then G is p-nilpotent if and only if every maximal
subgroup of P is p-nilpotent s-supplemented in G.

Proof. The necessity part is obvious and we omit the proof.

For the sufficiency part, let P1 be a maximal subgroup of P and of course,
P1 6= 1. Otherwise, we may easy obtain G is p-nilpotent. By our hypothe-
ses, we see that there exists a subgroup M of G such that G = P1 M and M/

M ∩ (P1)G is p-nilpotent. It follows that P = P1(P ∩ M) and P ∩ M
is a Sylow p-subgroup of M is a Sylow p-subgroup of M . It is clear that
|(P ∩ M)/(P1 ∩ M)| = p. Now M/M ∩(P1)G is p-nilpotent. Let H/M ∩(P1)G

be the normal Hall p′-subgroup of M/M ∩ (P1)G . Then, we have H E M and
M ∩ (P1)G is a normal Sylow p-subgroup of H . Also by the well-known Schur-
Zassenhaus theorem, there exists a Hall p′-subgroup K of H . Obviously, K is
also a Hall p′-subgroup of G.

By using the usual Frattini argument, we get that M = H NM(K ) = (M ∩
(P1)G)NM(K ) and hence it follows that G = P1 NG(K ). Therefore, NP(K ) is
a Sylow p-subgroup of NG(K ). If | G : NG(K )| = | P : NP(K )| > p, then we
may let P2 be a maximal subgroup of P such that NP(K ) ≤ P2. By repeating
the above arguments once again, we can also obtain a subgroup M1 of G such
that G = P2 M1, M1/M1∩(P2)G is p-nilpotent and M1 = (M1∩(P2)G)NM1(K1),
where K1 is a Hall p′-subgroup of G. By hypotheses, there exists g ∈ P
such that K1

g = K and consequently NG(K1)
g = NG(K ). Observe that P2 is

normal in P and G = P2 NG(K1), we have G = P2 NG(K1) = (P2 NG(K1))
g =

P2 NG(K ). It follows that P = P2(P ∩ NG(K )) = P2, a contradiction. Thus,
we obtain | G : NG(K )| = | P : NP(K )| = 1 and hence K is normal in G. This
means that G is p-nilpotent.
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Corollary 3.6. Let p be the smallest prime divisor of the order of G and P
a Sylow p-subgroup of G. Then G is p-nilpotent if and only if every maximal
subgroup of P is p-nilpotent s-supplemented in G.

Theorem 3.7. Let p be the prime divisor of |G| such that (|G|, p − 1) = 1 .
Then G is p-nilpotent if and only if every second maximal subgroups of Sylow
p-subgroup P of G is p-nilpotent s-supplemented in G.

Proof. The necessity part is obvious and we omit the proof.

If P is a cyclic group, then we know that G is p-nilpotent by [7, Theo-
rem 10.1.9] since (|G|, p − 1) = 1. On the other hand, if P is not cyclic , by
hypotheses |P| > p2, then we may let P2 be a second maximal subgroup of P
and of course, P2 6= 1. By our hypotheses, we see that there exists a subgroup
M of G such that G = P2 M and M/M ∩ (P2)G is p-nilpotent. It follows that
P = P ∩ G = P ∩ P2 M = P2(P ∩ M) and P ∩ M is a Sylow p-subgroup of M .
It is clear that |P ∩ M/P2 ∩ M | = p2. Since M/M ∩ (P2)G is p-nilpotent, we
may let H/M ∩ (P2)G be the normal Hall p′-subgroup of M/M ∩ (P2)G . Then,
we have H E M and M ∩ (P2)G is a normal Sylow p-subgroup of H . Also by
the well-known Schur-Zassenhaus theorem, there exists a Hall p′-subgroup K
of H . Obviously, K is also a Hall p′-subgroup of G.

By using the usual Frattini argument, we get that M = H NM(K ) = (M ∩
(P2)G NM(K ) and hence it follows that G = P2 NG(K ). Therefore, NP(K )

is a Sylow p-subgroup of NG(K ). If | G : NG(K )| = | P : NP(K )| > p2,
then we may let P3 be a maximal subgroup of P1 and P1 a maximal subgroup
of P such that NP(K ) ≤ P3. By repeating the above arguments once again, we
can also obtain a subgroup M1 of G such that G = P3 M1, M1/M1 ∩ (P2)G is
p-nilpotent and M1 = (M1 ∩ (P3)G)NM1(K1), where K1 is a Hall p′-subgroup
of G. By the hypotheses and Lemma 2.4, we see that G is solvable and hence
there exists g ∈ P such that K1

g = K and consequently NG(K1)
g = NG(K ).

Observe that P1 is normal in P and G = P3 NG(K1) = P1 NG(K1), we have
G = P1 NG(K1) = (P1 NG(K1))

g = P1 NG(K ). It follows that P = P1(P ∩
NG(K )) = P1, a contradiction. Thus, we obtain

| G : NG(K )| = | P : NP(K )| = p or | G : NG(K )| = | P : NP(K )| = 1.

If | G : NG(K )| = | P : NP(K )| = p, we have NG(K ) E G since (|G|, p−1) =
1 by Lemma 2.6. It follows from K char NG(K ) E G that K is normal in G,
contrary to | G : NG(K )| = p. Therefore, NG(K ) = G, this means that G
is p-nilpotent.
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Corollary 3.8. Let p be the smallest prime divisor of the order of G and P
a Sylow p-subgroup of G. Then G is p-nilpotent if and only if every second
maximal subgroup of P(if exist) is p-nilpotent s-supplemented in G.
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