

On *p*-nilpotency of finite groups*

Long Miao

Abstract. Let \mathcal{F} be a class of groups. A subgroup H of a group G is called \mathcal{F} s-supplemented in G, if there exists a subgroup K of G such that G = HK and $K/K \cap H_G$ belongs to \mathcal{F} where H_G is the maximal normal subgroup of G which is contained in H. The main purpose of this paper is to study some subgroups of Fitting subgroup and generalized Fitting subgroup \mathcal{F} -s-supplemented and some new criterions of p-nilpotency of finite groups are obtained.

Keywords: \mathcal{F} -s-supplement; Fitting subgroup; generalized Fitting subgroup; p-nilpotent group.

Mathematical subject classification: 20D10, 20D15, 20D20.

1 Introduction

The primary subgroups has been studied extensively by many scholars in determining the structure of finite groups. For instance, Kramer [5] shows that a finite solvable group G is supersolvable if and only if, for every maximal subgroup M of G, either $F(G) \leq M$, the Fitting subgroup of G, or $M \cap F(G)$ is a maximal subgroup of F(G). Buckley [2] proved that a group G of odd order is supersolvable if all minimal subgroups of G are normal in G. A. Ballester-Bolinches, Wang and Guo [1] introduced the concept of c-supplementation of a finite group and generalized Buckley's Theorem by replacing normality with c-supplementation. Recently, Wang, Wei and Li [9] extended further the results to a saturated formation containing the class of supersolvable groups by limiting the c-supplementation of maximal or minimal subgroups to the Fitting subgroup of a solvable group. More recently, Miao and Guo [6] propose the new concept of \mathcal{F} -s-supplemented subgroup and obtain some new criterions of supersolvability and p-nilpotency. In this paper, we continue to investigate the structure

Received 1 March 2007.

^{*}This research is supported by the grant of NSFC and TianYuan Fund of Mathematics of China (Grant #10626047).

of *p*-nilpotent groups using \mathcal{F} -*s*-supplementation of some subgroups of Fitting subgroups and generalized Fitting subgroups.

Definition 1.1. Let \mathcal{F} be a class of groups. A subgroup H of G is called \mathcal{F} s-supplemented in G, if there exists a subgroup K of G such that G = HKand $K/K \cap H_G \in \mathcal{F}$ where H_G is the maximal normal subgroup of G which is contained in H. In this case, K is called an \mathcal{F} -s-supplement of H in G. Particularly, we say that H is p-nilpotent s-supplemented in G, if there exists a subgroup K of G such that G = HK and $K/K \cap H_G$ is p-nilpotent.

2 Preliminaries

All groups considered in this paper are finite. Most of the notation is standard and can be found in [3] and [7].

We denote by F(G) the Fitting subgroups G; $F^*(G)$ denotes the generalized Fitting subgroup of G; $O_p(G)$ is the maximal normal *p*-subgroup of G; $\Phi(G)$ is the intersection of all maximal subgroup of G; |G| denotes the order of a group G; $M < \cdot G$ denotes M is a maximal subgroup of group G.

Let π be a set of primes. Then we say that the group $G \in E_{\pi}$ if G has a *Hall* π -subgroup. We also say that $G \in C_{\pi}$ if $G \in E_{\pi}$ and any two *Hall* π -subgroups of G are conjugate in G. Moreover, we say that $G \in D_{\pi}$ if $G \in C_{\pi}$ and every π -subgroup of G is contained in a *Hall* π -subgroup of G.

Let \mathcal{F} be a class of groups. \mathcal{F} is called Q-closed if $G/N \in \mathcal{F}$ for all normal subgroups N of G whenever $G \in \mathcal{F}$. \mathcal{F} is called S-closed if every subgroup K of G belongs to \mathcal{F} whenever $G \in \mathcal{F}$. \mathcal{F} is said to be a formation if \mathcal{F} is closed under homomorphic image and subdirect product. It is clear that for a formation \mathcal{F} , every group G has a smallest normal subgroup (denoted by $G^{\mathcal{F}}$) whose quotient $G/G^{\mathcal{F}}$ is in \mathcal{F} . The normal subgroup $G^{\mathcal{F}}$ is called the \mathcal{F} -residual of G. A formation \mathcal{F} is said to be saturated if $G \in \mathcal{F}$ whenever $G/\Phi(G) \in \mathcal{F}$. It is well known that the class of all supersolvable groups is a saturated formation. (cf. [8])

Lemma 2.1 [6, Lemma 2.1]. Let \mathcal{F} be a Q-closed and S-closed class of groups and H a subgroup of G. Then the following statements hold.

- (1) If K is an \mathcal{F} -s-supplement of H in G, and $N \leq G$, then KN/N is an \mathcal{F} -s-supplement of HN/N in G/N.
- (2) Let $N \leq G$ and $N \leq H$. If K/N is an \mathcal{F} -s-supplement of H/N in G/N, then K is an \mathcal{F} -s-supplement of H in G.

(3) If $H \le D \le G$ and K is an \mathcal{F} -s-supplement of H in G, then $K \cap D$ is an \mathcal{F} -s-supplement of H in D.

Lemma 2.2 [9, Lemma 2.4]. Let N be a nontrivial solvable normal subgroup of a group G. If $N \cap \Phi(G) = 1$, then the Fitting subgroup F(N) of N is the direct product of minimal normal subgroups of G which is contained in N.

Lemma 2.3 [4]. Let G be a group and N a subgroup of G. The generalized Fitting subgroup $F^*(G)$ of G is the unique maximal normal quasinilpotent subgroup of G. Then

- (1) If N is normal in G, then $F^*(N) \leq F^*(G)$;
- (2) $F^*(G) \neq 1$ if $G \neq 1$; in fact, $F^*(G)/F(G) = Soc(F(G)C_G(F(G))/F(G))$;
- (3) $F^*(F^*(G)) = F^*(G) \ge F(G)$; if $F^*(G)$ is solvable, then $F^*(G) = F(G)$;
- (4) $C_G(F^*(G)) \le F(G);$
- (5) Let $P \leq G$ and $P \leq O_p(G)$; then $F^*(G/\Phi(P)) = F^*(G)/\Phi(P)$;
- (6) If K is a subgroup of G contained in Z(G), then $F^*(G/K) = F^*(G)/K$.

Lemma 2.4 [6, Corollary 3.2]. Let P be a Sylow p-subgroup of a group G, where p is a prime divisor of |G| with (|G|, p - 1) = 1. If every maximal subgroup of P is p-nilpotent s-supplement in G, then $G/O_p(G)$ is soluble p-nilpotent.

Lemma 2.5 [9, Lemma 2.8]. Let M be a maximal subgroup of G, P a normal p-subgroup of G such that G = PM, where p a prime. Then

- (1) $P \cap M$ is a normal subgroup of G.
- (2) If p > 2 and all minimal subgroups of P are normal in G, then M has index p in G.

Lemma 2.6. Let G be a group and p a prime dividing the order of G such that (|G|, p - 1) = 1. Suppose M is a subgroup of G with |G : M| = p. Then M is normal in G.

Proof. We may assume that $M_G = 1$ by Induction. It is trivial that the lemma holds when p = 2. So assume that p > 2. Then *G* is solvable by the Odd Order Theorem. Let *N* be a minimal normal subgroup of *G*. Then *N* is elementary abelian and G = MN. This implies that $M \cap N$ is normal in *G*, hence $M \cap N = 1$. Therefore |N| = [G : M] = p. Since |Aut(N)| = p - 1 and $G/C_G(N)$ is isomorphic to a subgroup of $Aut(N), |G/C_G(N)|$ must divide (|G|, p-1) = 1. So $N \le Z(G)$. Therefore *M* is normal in *G*.

3 Main results

Theorem 3.1. Let G be a group and N a solvable normal subgroup of G such that G/N is p-nilpotent where p is a prime divisor of |G|. Then G is p-nilpotent if and only if every maximal subgroups of the Sylow subgroups of F(N) is p-nilpotent s-supplemented in G.

Proof. The necessity part is obvious. We only need to prove the sufficiency part. Assume that the assertion is false and choose G to be a counterexample of smallest order. Then

1) $N \cap \Phi(G) = 1$.

If $N \cap \Phi(G) > 1$, then there exists a minimal normal subgroup R of G which is contained in $N \cap \Phi(G)$. Since N is solvable, we have R is an elementary abelian r-group for some prime r and hence R < F(N). Now we shall prove G/R satisfies the hypotheses of the theorem. In fact, $N/R \triangleleft G/R$ and $(G/R)/(N/R) \cong G/N$ is *p*-nilpotent. Let L/R be a maximal subgroup of the Sylow r-subgroup of F(N/R) = F(N)/R. Then L is a maximal subgroup of the Sylow r-subgroup of F(N). By the hypotheses of the theorem, L is p-nilpotent s-supplemented in G. By Lemma 2.1, L/R is also p-nilpotent s-supplemented in G/R. Set Q_1/R be a maximal subgroup of the Sylow qsubgroup of F(N/R) = F(N)/R, where $q \neq r$. It is clear that $Q_1 = Q_1^*R$, where Q_1^* is a maximal subgroup of Sylow q-subgroup of F(N). By the hypotheses, Q_1^* is *p*-nilpotent *s*-supplemented in *G*. Hence Q_1^*R/R is *p*-nilpotent s-supplemented in G/R by Lemma 2.1. The minimal choice of G implies that G/R is p-nilpotent. Since $G/\Phi(G) \cong (G/R)/(\Phi(G)/R)$ and the class of all *p*-nilpotent groups is a saturated formation, it follows that G is *p*-nilpotent, a contradiction.

2) $F(N) = R_1 \times R_2 \times \cdots \times R_m$, where all $R_i (i = 1.2, \cdots m)$ are minimal normal subgroups of G of prime order.

By 1) and Lemma 2.2, $F(N) = R_1 \times R_2 \times \cdots \times R_m$ where all $R_i(i = 1.2...m)$ are minimal normal subgroups of *G* which are contained in *N*. For each *i* (*i* = 1.2...*m*), there exists a maximal subgroup M_i of *G* with $G = R_i M_i$ and $R_i \cap M_i = 1$. Furthermore, $F(N) = F(N) \cap R_i M_i = R_i(F(N) \cap M_i)$. Next we will prove that $F(N) \cap M_i$ is a maximal subgroup of F(N).

Actually, since $F(N) \leq M_i$, there at least exists a prime q of $\pi(|N|)$ with $O_q(N) \leq M_i$. Then $G = O_q(N)M$ as $O_q(N) \leq G$. Let M_q be a Sylow q-subgroup of M_i . Then we know that $G_q = O_q(N)M_q$ is a Sylow q-subgroup of G. Now, let Q_1 be a maximal subgroup of G_q containing M_q and set $Q_2 = Q_1 \cap O_q(N)$. Then $Q_1 = Q_2M_q$. Moreover, $Q_2 \cap M_q = O_q(N) \cap M_q$, so

$$|O_q(N): Q_2| = |O_q(N)M_q: Q_2M_q| = |G_q: Q_1| = q_1$$

that is, Q_2 is a maximal subgroup of $O_q(N)$. Hence $Q_2(O_q(N) \cap M_i)$ is a subgroup of $O_q(N)$. By the maximality of Q_2 in $O_q(N)$, we have $Q_2(O_q(N) \cap M_i) = Q_2$ or $O_q(N)$.

- a) If $Q_2(O_q(N) \cap M_i) = O_q(N)$, then $G = O_q(N)M_i = Q_2M_i$. Notice that $O_q(N) \cap M_i = Q_2 \cap M_i$. So $O_q(N) = Q_2$, a contradiction.
- b) $Q_2(O_q(N) \cap M_i) = Q_2$, that is, $O_q(N) \cap M_i \le Q_2$. By Lemma 2.5, $O_q(N) \cap M_i \le G$, so $O_q(N) \cap M_i \le (Q_2)_G$. On the other hand, since Q_2 is *p*-nilpotent *s*-supplemented in *G*, then there exists a subgroup *H* of *G* such that $Q_2H = G$ and $H/H \cap (Q_2)_G$ is *p*-nilpotent. Set $K = (Q_2)_G H$, then $G = Q_2K$ and

$$K/K \cap (Q_2)_G = K/(Q_2)_G = (Q_2)_G H/(Q_2)_G \cong H/H \cap (Q_2)_G$$

is *p*-nilpotent.

Now, we consider the following cases.

Case 1: K < G. Suppose that K_1 is a maximal subgroup of G containing K. Then $O_q(N) \cap K_1 \leq G$ by Lemma 2.5, which implies that $(O_q(N) \cap K_1)M_i$ is a subgroup of G. If $(O_q(N) \cap K_1)M_i = G = O_q(N)M$, then $O_q(N) \cap K_1 = O_q(N)$ since $(O_q(N) \cap K_1) \cap M_i = O_q(N) \cap M_i$. This implies that $O_q(N) \leq K_1$, and hence $G = O_q(N)K_1 = K_1$, which is contrary to the above hypotheses on K_1 . Thus $(O_q(N) \cap K_1)M_i = M_i$, $O_q(N) \cap K_1 \leq M_i$. Furthermore, $Q_2 \cap K \leq O_q(N) \cap K \leq O_q(N) \cap M_i \leq (Q_2)_G \leq Q_2 \cap K$, that is, $O_q(N) \cap K = O_q(N) \cap M_i = Q_2 \cap K$. This is contrary to $G = Q_2K = O_q(N)K$. **Case 2:** K = G. In this case, if $p \neq q$, then we are easy to have G is p-nilpotent, a contradiction. So we may assume that p = q. Furthermore, if $(Q_2)_G = 1$, then we have G is p-nilpotent, a contradiction. Set $(Q_2)_G \neq 1$. Thus $(Q_2)_G M_i = M_i$ or $(Q_2)_G M_i = G$. If $(Q_2)_G M_i = M_i$, that is $(Q_2)_G \leq M_i$, then $(Q_2)_G \leq O_q(N) \cap M_i \leq (Q_2)_G$. Therefore $O_q(N) \cap M_i = (Q_2)_G$. By hypotheses, $G/(Q_2)_G$ is p-nilpotent and hence $|G/(Q_2)_G : M_i/(Q_2)_G| = |G : M_i| = |F(N)M_i : M_i| = |F(N) : F(N) \cap M_i| = p$. This means that $F(N) \cap M_i$ is a maximal subgroup of F(N). If $(Q_2)_G M_i = G$, then $G = (Q_2)_G M_i = O_q(N)M_i = Q_2M_i$. Note that $O_q(N) \cap M_i = Q_2 \cap M_i$, so $O_q(N) = Q_2$, a contradiction.

Therefore $F(N) \cap M_i$ is maximal in F(N) and hence $F(N) \cap M_i$ has prime index in F(N) since F(N) is nilpotent. Observe that $R_i \cap M_i = 1$, so R_i has prime order for $i = 1.2 \cdots m$.

3) G/F(N) is *p*-nilpotent.

Since $G/C_G(R_i)$ is isomorphic to a subgroup of $Aut(R_i)$, $G/C_G(R_i)$ is cyclic and hence $G/C_G(R_i)$ is *p*-nilpotent for each *i*. This implies that $G/\bigcap_{i=1}^m C_G(R_i)$ is *p*-nilpotent. Again, $C_G(F(N)) = \bigcap_{i=1}^m C_G(R_i)$, so we have $G/C_G(F(N))$ is also *p*-nilpotent. Since both $G/C_G(F(N))$ and G/N are all *p*-nilpotent, we have $G/N \cap C_G(F(N)) = G/C_N(F(N))$ is *p*-nilpotent. Since F(N) is abelian, $F(N) \leq C_N(F(N))$. On the other hand, $C_N(F(N)) \leq F(N)$ as *N* is solvable. Thus $F(N) = C_N(F(N))$ and hence G/F(N) is *p*-nilpotent.

4) Final contradiction.

For each *i*, we shall prove G/R_i satisfies the condition of the theorem. Actually, $(G/R_i)/(F(N)/R_i) \cong G/F(N)$ is *p*-nilpotent. With the similar discussion of 1), we see that G/R_i satisfies the hypotheses of the theorem. The minimal choice of *G* implies that G/R_i is *p*-nilpotent and hence $G/\bigcap_{i=1}^m R_i$ is *p*-nilpotent. This indicates that *G* is *p*-nilpotent if m > 1, a contradiction. So we have $F(N) = R_1$. If $|R_1| \neq p$, then G/R_1 is *p*-nilpotent implies that *G* is *p*-nilpotent, a contradiction. If $|R_1| = p$, then the maximal subgroup of R_1 is identity group. Clearly, in this case *G* is *p*-nilpotent by the definition of the *p*-nilpotent s-supplemented subgroup, a contradiction.

The final contradiction completes our proof.

Corollary 3.2. Let G be a group and p a prime divisor of |G| with (|G|, p - 1) = 1. Then G is p-nilpotent if and only if there exists a solvable normal subgroup N with G/N is p-nilpotent and every maximal subgroups of the Sylow subgroups of F(N) is p-nilpotent s-supplemented in G.

Theorem 3.3. Let G be a group and p a prime divisor of |G| with (|G|, p - 1) = 1. Suppose that there exists a normal subgroup H with G/H is p-nilpotent. Then G is p-nilpotent if and only if every maximal subgroups of the Sylow subgroups of $F^*(H)$ is p-nilpotent s-supplemented in G.

Proof. The necessity part is obvious. We only need to prove the sufficiency part. By Corollary 3.2, we only need to prove H is solvable. Suppose that the claim is false and choose G to be a counterexample of minimal order.

If p > 2, then G is solvable and hence H is solvable. So we may assume that p = 2. Then

1) G = H and $F^*(H) = F^*(G) = F(G)$.

By Lemma 2.4, $F^*(H)$ is solvable. By Lemma 2.3, we have $F^*(H) = F(H) \neq 1$. Since *H* satisfies the hypothesis of the theorem, the minimal choice of *G* implies that *H* is *p*-nilpotent if H < G. In this case, *H* is *p*-nilpotent implies that *H* is solvable, a contradiction.

2) For any proper normal subgroup N of G containing $F^*(G)$, N is p-nilpotent.

By Lemma 2.3, $F^*(G) = F^*(F^*(G)) \le F^*(N) \le F^*(G)$, so $F^*(N) = F^*(G)$. And all maximal subgroups of all Sylow subgroup of $F^*(N)$ are *p*-nilpotent *s*-supplemented in *G* and hence in *N* by Lemma 2.1. Therefore *N* is *p*-nilpotent by the choice of *G*.

3) $\Phi(G) < F(G)$.

If it is not so, then $\Phi(G) = F(G)$. Let $O_q(G)$ be a Sylow q-subgroup of F(G) where q is a prime divisor of |F(G)| and Q_1 is a maximal subgroup of $O_q(G)$. By hypotheses, Q_1 is p-nilpotent s-supplemented in G. Then there exists a subgroup K of G such that $G = Q_1 K$ and $K/K \cap (Q_1)_G$ is p-nilpotent. Clearly, $Q_1 \leq \Phi(G)$ and so K = G, we have G is p-nilpotent since the class of all p-nilpotent groups is a saturated formation, a contradiction.

4) G is solvable.

Since $\Phi(G) < F(G)$, there exists some $O_q(G)$ and a maximal subgroup M of G such that $O_q(G) \nleq M$ and $G = O_q(G)M$. Set Q_1 be a maximal subgroup of $O_q(G)$. If q > 2, Q_1 is *p*-nilpotent *s*-supplemented in G, then

there exists a subgroup K_1 of G such that $G = Q_1K_1$ and $K_1/K_1 \cap (Q_1)_G$ is p-nilpotent. It follows that K_1 is solvable. Furthermore, $G = O_q(G)K_1$ and $G/O_q(G) \cong K_1/K_1 \cap O_q(G)$ is solvable. Therefore G is solvable, a contradiction. If q = 2 = p, with the similar argument, we have G is solvable.

The final contradiction completes our proof.

Corollary 3.4. Let G be a finite group and p be a prime divisor of |G| with (|G|, p-1) = 1. Then G is p-nilpotent if and only if every maximal subgroups of the Sylow subgroups of $F^*(G)$ is p-nilpotent s-supplemented in G.

Theorem 3.5. Let p be the prime divisor of |G| such that $G \in C_{p'}$ and P a Sylow p-subgroup of G. Then G is p-nilpotent if and only if every maximal subgroup of P is p-nilpotent s-supplemented in G.

Proof. The necessity part is obvious and we omit the proof.

For the sufficiency part, let P_1 be a maximal subgroup of P and of course, $P_1 \neq 1$. Otherwise, we may easy obtain G is p-nilpotent. By our hypotheses, we see that there exists a subgroup M of G such that $G = P_1M$ and $M/M \cap (P_1)_G$ is p-nilpotent. It follows that $P = P_1(P \cap M)$ and $P \cap M$ is a Sylow p-subgroup of M is a Sylow p-subgroup of M. It is clear that $|(P \cap M)/(P_1 \cap M)| = p$. Now $M/M \cap (P_1)_G$ is p-nilpotent. Let $H/M \cap (P_1)_G$ be the normal Hall p'-subgroup of $M/M \cap (P_1)_G$. Then, we have $H \leq M$ and $M \cap (P_1)_G$ is a normal Sylow p-subgroup of H. Also by the well-known Schur-Zassenhaus theorem, there exists a Hall p'-subgroup K of H. Obviously, K is also a Hall p'-subgroup of G.

By using the usual Frattini argument, we get that $M = HN_M(K) = (M \cap (P_1)_G)N_M(K)$ and hence it follows that $G = P_1N_G(K)$. Therefore, $N_P(K)$ is a Sylow *p*-subgroup of $N_G(K)$. If $|G: N_G(K)| = |P: N_P(K)| \ge p$, then we may let P_2 be a maximal subgroup of *P* such that $N_P(K) \le P_2$. By repeating the above arguments once again, we can also obtain a subgroup M_1 of *G* such that $G = P_2M_1, M_1/M_1 \cap (P_2)_G$ is *p*-nilpotent and $M_1 = (M_1 \cap (P_2)_G)N_{M_1}(K_1)$, where K_1 is a Hall *p'*-subgroup of *G*. By hypotheses, there exists $g \in P$ such that $K_1^g = K$ and consequently $N_G(K_1)^g = N_G(K)$. Observe that P_2 is normal in *P* and $G = P_2N_G(K_1)$, we have $G = P_2N_G(K_1) = (P_2N_G(K_1))^g =$ $P_2N_G(K)$. It follows that $P = P_2(P \cap N_G(K)) = P_2$, a contradiction. Thus, we obtain $|G: N_G(K)| = |P: N_P(K)| = 1$ and hence *K* is normal in *G*. This means that *G* is *p*-nilpotent. **Corollary 3.6.** Let p be the smallest prime divisor of the order of G and P a Sylow p-subgroup of G. Then G is p-nilpotent if and only if every maximal subgroup of P is p-nilpotent s-supplemented in G.

Theorem 3.7. Let p be the prime divisor of |G| such that (|G|, p - 1) = 1. Then G is p-nilpotent if and only if every second maximal subgroups of Sylow p-subgroup P of G is p-nilpotent s-supplemented in G.

Proof. The necessity part is obvious and we omit the proof.

If *P* is a cyclic group, then we know that *G* is *p*-nilpotent by [7, Theorem 10.1.9] since (|G|, p - 1) = 1. On the other hand, if *P* is not cyclic, by hypotheses $|P| \ge p^2$, then we may let P_2 be a second maximal subgroup of *P* and of course, $P_2 \ne 1$. By our hypotheses, we see that there exists a subgroup *M* of *G* such that $G = P_2M$ and $M/M \cap (P_2)_G$ is *p*-nilpotent. It follows that $P = P \cap G = P \cap P_2M = P_2(P \cap M)$ and $P \cap M$ is a Sylow *p*-subgroup of *M*. It is clear that $|P \cap M/P_2 \cap M| = p^2$. Since $M/M \cap (P_2)_G$ is *p*-nilpotent, we may let $H/M \cap (P_2)_G$ be the normal Hall *p'*-subgroup of $M/M \cap (P_2)_G$. Then, we have $H \le M$ and $M \cap (P_2)_G$ is a normal Sylow *p*-subgroup of *H*. Also by the well-known Schur-Zassenhaus theorem, there exists a Hall *p'*-subgroup *K* of *H*. Obviously, *K* is also a Hall *p'*-subgroup of *G*.

By using the usual Frattini argument, we get that $M = HN_M(K) = (M \cap (P_2)_G N_M(K))$ and hence it follows that $G = P_2 N_G(K)$. Therefore, $N_P(K)$ is a Sylow *p*-subgroup of $N_G(K)$. If $|G : N_G(K)| = |P : N_P(K)| \ge p^2$, then we may let P_3 be a maximal subgroup of P_1 and P_1 a maximal subgroup of *P* such that $N_P(K) \le P_3$. By repeating the above arguments once again, we can also obtain a subgroup M_1 of *G* such that $G = P_3M_1, M_1/M_1 \cap (P_2)_G$ is *p*-nilpotent and $M_1 = (M_1 \cap (P_3)_G)N_{M_1}(K_1)$, where K_1 is a Hall *p'*-subgroup of *G*. By the hypotheses and Lemma 2.4, we see that *G* is solvable and hence there exists $g \in P$ such that $K_1^g = K$ and consequently $N_G(K_1)^g = N_G(K)$. Observe that P_1 is normal in *P* and $G = P_3N_G(K_1) = P_1N_G(K_1)$, we have $G = P_1N_G(K_1) = (P_1N_G(K_1))^g = P_1N_G(K)$. It follows that $P = P_1(P \cap N_G(K)) = P_1$, a contradiction. Thus, we obtain

$$|G: N_G(K)| = |P: N_P(K)| = p$$
 or $|G: N_G(K)| = |P: N_P(K)| = 1$.

If $|G: N_G(K)| = |P: N_P(K)| = p$, we have $N_G(K) \leq G$ since (|G|, p-1) = 1 by Lemma 2.6. It follows from K char $N_G(K) \leq G$ that K is normal in G, contrary to $|G: N_G(K)| = p$. Therefore, $N_G(K) = G$, this means that G is *p*-nilpotent.

Bull Braz Math Soc, Vol. 38, N. 4, 2007

Corollary 3.8. Let p be the smallest prime divisor of the order of G and P a Sylow p-subgroup of G. Then G is p-nilpotent if and only if every second maximal subgroup of P(if exist) is p-nilpotent s-supplemented in G.

Acknowledgment. The author is very grateful to the helpful suggestions of the referee.

References

- A. Ballester-Bolinches, Y. Wang and X. Guo, *C-supplemented subgroups of finite groups*. Glasgow Math. J., 42 (2000), 383–389.
- [2] J. Buckley, *Finite groups of whose minimal subgroups are normal*. Math. Z., **116** (1970), 15–27.
- [3] W. Guo, "The Theory of Classes of Groups". Science Press-Kluwer Academic Publishers, Beijing-New York-Dordrecht-Boston-London, 2000.
- [4] B. Huppert, "Endliche Gruppen I". Springer-Verlag, Berlin-Heidelberg-New York, 1967.
- [5] O. Kramer, Über Durchschmitte von untergruppen endlicher auflösbarer gruppen. Math. Z., **148** (1976), 89–97.
- [6] L. Miao and W. Guo, *Finite groups with some primary subgroups F-s-supple*mented. Comm. Algebra, 33(8) (2005), 2789–2800.
- [7] D.J. Robinson, "A Course in the Theory of Groups". Springer-Verlag, New York-Heidelberg-Berlin, 1982.
- [8] L.A. Shemetkov, Formations of Finite Groups. Nauka, Moscow, 1978.
- [9] Y. Wang, H. Wei and Y. Li, A generalization of Kramer's theorem and its applications. Bull. Austral. Math. Soc., 65 (2002), 467–475.

Long Miao

Department of Mathematics Yangzhou University Yangzhou 225002 P.R. CHINA

E-mail: miaolong714@vip.sohu.com